
Co-Evolutionary Defence of Active Directory
Attack Graphs via GNN-Approximated Dynamic

Programming

Diksha Goel1,2, Hussain Ahmad3, Kristen Moore1,2, and Mingyu Guo3

1 CSIRO’s Data61, Clayton, Australia
2 Cyber Security Cooperative Research Centre (CSCRC), Joondalup, Australia

{diksha.goel, kristen.moore}@data61.csiro.au
3 The University of Adelaide, Adelaide, Australia
{hussain.ahmad, mingyu.guo}@adelaide.edu.au

Abstract. Modern enterprise networks are increasingly built upon Ac-
tive Directory (AD) systems for identity and access management, but
this centralisation exposes the organisation’s control infrastructure, offer-
ing adversaries a single point of entry to compromise high-value assets.
While existing AD defence approaches often assume non-adaptive attacker
behaviour, real-world adversaries dynamically adapt their strategies to
bypass defences, rendering such approaches brittle and ineffective. To
address this limitation, we model the attacker–defender interaction in AD
environments as a Stackelberg game between an adaptive attacker and a
proactive defender. We propose a co-evolutionary defence framework that
integrates Graph Neural Network–Approximated Dynamic Programming
(GNNDP) to model attacker decision-making across large, structurally
complex AD graphs, and Evolutionary Diversity Optimization (EDO)
to synthesise diverse and resilient blocking strategies. To ensure scalabil-
ity, we introduce a Fixed-Parameter Tractable (FPT) graph reduction
technique that preserves strategic structure while reducing computa-
tional complexity. Our co-evolutionary loop jointly refines attacker and
defender policies, improving generalisation to realistic adversarial pat-
terns and avoiding premature convergence. Experiments on synthetic AD
graphs demonstrate that our framework achieves near-optimal perfor-
mance (within 0.1% of optimality on r500) and consistently outperforms
baselines on larger graphs (r1000 and r2000). These results validate the
effectiveness of co-evolutionary training, combined with structure-aware
learning, as a scalable and adaptive approach to securing enterprise
environments against sophisticated threats.

Keywords: Attack graphs · Active Directory · Stackelberg games · Graph
neural networks · Evolutionary algorithms · Adaptive cyber defence

1 Introduction

Enterprise networks are increasingly targeted by sophisticated adversaries who
exploit configuration flaws and access dependencies to escalate privileges and

ar
X

iv
:2

50
5.

11
71

0v
1

 [
cs

.C
R

]
 1

6
M

ay
 2

02
5

2 Goel et al.

compromise high-value assets [2, 11]. Defenders, meanwhile, must respond under
uncertainty and with limited resources, making proactive, strategic countermea-
sures essential. These challenges are amplified in complex enterprise infrastruc-
tures, where hierarchical access and interdependent components expand the
attack surface [8, 9].

A particularly critical target in this landscape is Microsoft Active Directory
(AD), the central identity and access management system for Windows-based
networks [4]. Over 90% of Fortune 1000 companies rely on AD to govern authen-
tication, authorisation, and access control [10], making it a high-value target.
According to Enterprise Management Associates (EMA 2021), more than half of
surveyed organisations experienced AD-related breaches. These breaches often
follow an “identity snowball” pattern, where attackers pivot from low-privilege
accounts toward the highly privileged Domain Admin (DA) node via lateral
movement [3]. AD environments can be represented as attack graphs, with nodes
denoting entities (e.g., users, machines, groups) and edges representing access
relationships. Tools such as BloodHound [1] are used to analyse AD graphs
by identifying shortest paths to high-value targets, but they assume static at-
tacker strategies (these strategies assume fixed, precomputed paths that remain
unchanged despite defensive actions) and fail to model adaptive behaviour. In
practice, attackers frequently adapt to blocked or failed paths by exploiting alter-
nate paths, credentials, underused privileges, and overlooked misconfigurations.
Prior work for defending AD graphs has explored edge-blocking techniques that
selectively block high-impact edges. However, these methods often assume fixed
attacker strategies and lack mechanisms to model dynamic adaptation, limiting
their robustness and generalisability to real-world threats.

In this paper, we address this gap by proposing a scalable, structure-aware co-
evolutionary defence framework that models the interaction between an adaptive
attacker and a proactive defender as a Stackelberg game over AD graphs. The
attacker aims to maximise their probability of reaching the DA node, while the
defender, operating under a constrained budget, strategically blocks key edges to
minimise attacker success.

Our approach jointly learns attacker and defender strategies through a unified
co-evolutionary loop that captures both structural complexity and adaptive
behaviours. To model realistic attacker behaviour, we formulate attacker decision-
making as a Markov Decision Process (MDP), where each edge is associated
with success, failure, and detection probabilities. The attacker starts from one of
several entry nodes and adapts its strategy based on edge outcomes. The defender,
in turn, must anticipate these adaptive behaviours and deploy robust, and effec-
tive countermeasures. Unlike prior approaches [3, 5–7,12], our method supports
dynamic attacker adaptation and generalises to structurally complex AD environ-
ments. To enable scalable and effective defence of AD graphs, we introduce three
key components: (1) a Graph Neural Network–Approximated Dynamic
Programming (GNNDP) model that approximates the attacker’s strategy
using graph-aware learning, (2) an Evolutionary Diversity Optimization
(EDO) strategy that synthesises diverse and high-impact blocking plans, guided

Co-Evolutionary Defence of Active Directory Attack Graphs 3

by GNNDP as a fitness oracle, and (3) a Fixed-Parameter Tractable (FPT)
graph reduction method based on Non-Splitting Paths (NSPs) [7], which preserves
critical decision points while significantly reducing computational overhead.

This co-evolutionary loop enables dynamic policy refinement between attacker
and defender strategies through adversarial interplay. EDO generates an evolving
set of defensive configurations, persistently challenging the attacker model. In
parallel, GNNDP retrains across these varying defensive configurations, gener-
alising attacker behaviour under shifting constraints. This mutual adaptation
process prevents convergence to overfitted policies, enhances robustness against
distributional shifts in attacker–defender dynamics, and scales to complex, large-
scale Active Directory graphs. Our results demonstrate that this co-evolutionary
training yields defensive strategies that are resilient to adaptive adversaries and
effective across large-scale AD structures in enterprise environments.
We make the following key contributions:
– Attacker policy. We formulate the attacker’s behaviour as an MDP and

propose GNNDP, a GNN-approximated dynamic programming method, en-
abling scalable and structure-aware computation of attack policies over large
AD graphs.

– Defender policy. We propose an Evolutionary Diversity Optimization
(EDO)-driven defence approach to discover diverse and robust edge-blocking
defences, guided by GNNDP as a fitness oracle.

– Attacker–Defender co-training. We develop an integrated co-training
mechanism where attacker and defender strategies are iteratively refined,
capturing dynamic behaviours on both sides and avoiding policy stagnation.

– Experimental analysis. We conduct extensive experiments on synthetic
AD graphs (r500, r1000, r2000), showing that our method achieves near-
optimal performance (within 0.1% of the optimum on r500) and consistently
outperforms baselines on larger graphs, demonstrating the effectiveness of
the proposed defence.

2 Related work

Existing approaches to defending AD graphs have mainly focused on edge inter-
diction and adversarial path disruption. However, they often impose restrictive
assumptions that hinder scalability, adaptability, and realistic modelling of at-
tacker behaviour.

Guo et al. [5] studied the edge interdiction problem, proposing a GNN-
based model that captures attacker decision-making at local points to maximise
attacker’s expected shortest path lengths. However, their approach assumes
that once a path is selected, the attacker proceeds without adapting to failures
or blocked edges, limiting its ability to model realistic dynamic behaviours.
Expanding on this, Guo et al. [7] proposed scalable edge-blocking algorithms
by exploiting the tree-like structures and short attack paths commonly found in
AD graphs. While improving computational efficiency, their method assumes a
non-adaptive attacker and heavily relies on structural simplifications, limiting its
applicability to real-world AD environments that feature dense cycles and evolving

4 Goel et al.

attacker strategies. Zhang et al. [14] introduced a dual-oracle defence framework
that improves evaluation against industry baselines; however, their model also
assumes that attackers follow fixed paths after defence deployment, without
adapting to changing defensive configurations. Similarly, Goel et al. [4] integrated
neural networks with evolutionary algorithms to optimise edge-blocking policies.
While effective for small graphs, their approach relied on simple feedforward
neural networks that lacked the structural awareness necessary to capture the
hierarchical and relational complexity intrinsic to AD graphs, reducing their
generalisability across network topologies. Ngo et al. [12,13] explored dynamic AD
defence through honeypot placement and decoy deployment strategies. Although
valuable for node-level deception and dynamic decoy placement, their work does
not address the critical edge-blocking problem central to disrupting privilege
escalation pathways. Moreover, they assume static attacker objectives and do
not model adaptive adversary capable of rerouting in response to defences.

Our approach significantly advances AD defence by overcoming limitations
of prior work. Unlike existing neural network-based defences [4] that struggle to
model relational dependencies and generalise across AD topologies, we formulate
attacker behaviour as a MDP and approximate it via a graph-aware GNN model.
This enables scalable, structure-sensitive reasoning over complex AD graphs. In
contrast to static shortest-path assumptions and local heuristic methods [5], our
attacker model supports dynamic rerouting and policy refinement in response to
evolving defensive configurations. Moreover, by integrating EDO with GNN-driven
dynamic programming, we establish a co-evolutionary training loop where attacker
and defender strategies mutually adapt. This synergy produces near-optimal results
on small graphs and scales robustly to large enterprise environments. Together,
these advancements provide a realistic, adaptive, and scalable framework for
defending Active Directory infrastructures, representing a significant advancement
beyond existing static or locally optimised approaches.

3 Problem Formulation

We model the AD environment as a directed graph G = (V,E), where n = |V |
denotes the number of nodes and m = |E| the number of edges. An attacker
initiates the attack from one of s predefined entry nodes and aims to reach
the Domain Admin (DA) node by formulating an attack policy that maximises
their probability of success. To simplify analysis, multiple DA nodes, if present,
are consolidated into a single representative DA node. Each edge e ∈ E is
associated with three mutually exclusive probabilities: detection pd(e), failure
pf (e), and success ps(e) = 1−pd(e)−pf (e). A detection event results in immediate
termination of the attack; a failure blocks traversal but allows the attacker to
continue exploring; and a success grants access to the edge’s destination node. The
attacker selects and attempts unvisited edges, progressively expanding control over
the network. The attack terminates under one of three conditions: (i) the attacker
is detected, (ii) no accessible paths remain, or (iii) the attacker successfully reaches
the DA node. Throughout this process, the attacker accumulates a set of secured
nodes, endpoints of successfully traversed edges, which serve as new footholds

Co-Evolutionary Defence of Active Directory Attack Graphs 5

for further exploration. The defender seeks to minimise the attacker’s success
probability by selectively blocking up to k block-worthy edges (i.e., edges eligible
for blocking), where k denotes the defender’s blocking budget. Only a subset of
edges are considered block-worthy based on operational and strategic significance.
To capture the strategic interaction between defender and attacker, we model
the problem as a Stackelberg game. The defender commits to a blocking strategy
first, anticipating the attacker’s response. The attacker, with full knowledge of
the blocked edges, computes an adaptive attack policy. This hierarchical setup
models proactive defence planning in enterprise networks, where defenders must
anticipate adversarial adaptation rather than react passively to attacks.

4 Proposed Co-Evolutionary Attack–Defence Framework

In this section, we present our proposed attacker-defender framework, comprising
three core components: (i) Fixed-Parameter Tractable (FPT) graph reduction
procedure that condenses large-scale AD graphs into computationally tractable
representations; (ii) Graph Neural Network-approximated Dynamic Program-
ming based attacker policy; and (iii) Evolutionary Diversity Optimization based
defensive policy for generating robust and diverse defence plans. Figure 1 presents
our proposed co-evolutionary framework for defending AD graphs through joint
optimisation of attacker and defender policies.

4.1 Graph Reduction via Fixed-Parameter Tractable Procedure

Condensing the AD Graph. We propose a Fixed-Parameter Tractable (FPT)
procedure to preprocess the original AD graph into a smaller yet strategically
equivalent representation. Intuitively, an AD graph can be viewed as a spanning
tree augmented by h feedback edges, where h = m− (n− 1) and m and n denote
the number of edges and nodes, respectively. Within this graph, Splitting nodes
(t) are nodes with multiple outgoing edges, representing critical decision points
for the attacker, and Entry nodes (s) are nodes from which the attacker can
initiate an attack. Let SplitSet represent the set of all splitting nodes and
EntrySet represent the set of all entry nodes. Our FPT procedure leverages
these sets to systematically condense the graph while preserving the structural
properties critical to attacker–defender interactions. To facilitate this, we use the
concept of Non-Splitting Paths [5]:

Definition 1. Non-Splitting Path (NSP). A Non-Splitting Path from node
i to node j, denoted NSP(i, j), is a directed path that originates at a splitting
or entry node i, traverses intermediate nodes, each having exactly one successor,
and terminates at either another splitting node or the DA node [5].

NSP = {NSP(i, j) | i ∈ SplitSet ∪EntrySet, j ∈ Successor(i)}

We focus on those NSPs that contain at least one blockable edge, i.e., edges
that the defender is permitted to block. For each such path NSP(i, j), we define
its farthest blockable edge from the source node i as bw(i, j). We refer to this

6 Goel et al.

edge as a block-worthy edge , as it represents a critical point where the defender
can intervene to disrupt attacker progression. The complete set of block-worthy
edges is defined as:

BW = {bw(i, j) | i ∈ SplitSet ∪EntrySet, j ∈ Successor(i)}

It is important to note that a single block-worthy edge may appear in multiple
NSPs. Blocking a specific path NSP(i, j) consumes one unit of the defender’s
budget and is realised by blocking its corresponding block-worthy edge bw(i, j).
This action removes the associated path from the attacker’s feasible routes to
the DA node, thereby reducing their overall chance of success.

By condensing each NSP into a single super-edge, our FPT procedure reduces
the attacker’s overall state space from 3|Edges| to 3|NSP|. The resulting condensed
graph contains (|SplitSet|+ |EntrySet|+1 DA) nodes and |NSP| edges. This
reduction preserves the critical connectivity and decision points of the original
graph while significantly improving tractability for algorithmic design.

Modelling the Attacker’s Problem as a Markov Decision Process. We
formulate the attacker’s decision-making process as a Markov Decision Process
(MDP), wherein each state s is represented as a vector of length |NSP|. Each
element of the state vector encodes the status of a corresponding NSP and takes
one of three values: ‘F’, ‘S’, ‘?’. The state vector can be represented by:

State vector s: < F, ?, ?, ?, F, ?, ?, S, ?, ?, S, F >︸ ︷︷ ︸
Length = |NSP|

(1)

In this representation, each NSP is assigned one of the three status: ‘S’ denotes
a successful traversal, indicating that the attacker has gained control of the NSP’s
terminal node; ‘F’ signifies a failed attempt (e.g., due to a strong password or
misconfiguration) without detection; and ‘?’ represents an unattempted path. At
each decision point, the attacker selects an admissible NSP with the status ‘?’
and attempts traversal. A successful attempt updates the corresponding NSP’s
status to ‘S’, thereby expanding the set of nodes under the attacker’s control.
A failed attempt results in status update to ‘F’, but the attacker retains the
ability to continue exploration from previously secured nodes. If the attacker is
detected during traversal, the attack is immediately terminated. NSP marked
as ‘S’ represents attacker-controlled checkpoints, from which further exploratory
actions can be initiated. This iterative process continues until either the DA node
is reached, the attacker is detected, or no further admissible actions remain.

State Transition Function and Action Dynamics. An action4 a executed
in state s leads to a set of possible successor states, denoted by δ(s, a). Upon
transitioning to a new state s′, we first check whether s′ has already been en-
countered5. If the state is new, its admissible action set A(s) is determined,

4Actions available in state s correspond to all unattempted NSPs that originate
from nodes currently under attacker’s control, i.e., the endpoints of NSPs marked as ‘S’.

5Previously encountered states are stored to eliminate redundant computation; for
each such state, the set of admissible actions is precomputed.

Co-Evolutionary Defence of Active Directory Attack Graphs 7

Fig. 1: Co-evolutionary Framework for Defending AD Graphs.

comprising unattempted NSPs whose source nodes are reachable from the cur-
rently secured (i.e., attacker-controlled) nodes. Actions are admissible only if
their source nodes are accessible, i.e., the attacker must have previously reached
the source node via a successful NSP traversal. While the theoretical size of the
state space is exponential in the number of NSPs, reaching up to 3|NSP| (e.g., 3100

states for a graph with 100 NSPs), this renders exact computation infeasible and
motivates the need for approximation. In practice, many of these combinations are
either structurally infeasible or irrelevant due to logical constraints on attacker
progression. To mitigate unnecessary computational overhead, our framework
restricts exploration to reachable and strategically meaningful states that reflect
plausible attacker trajectories. Starting from an initial state vector (as described
in Eq. 1), the state transition function iteratively determines successor states
for each admissible action, thereby tracing the set of future states the attacker
may encounter while progressing toward the DA node. The attacker’s objective
is to maximise their probability of reaching the DA node, and this optimisation
problem can be formulated using a dynamic programming approach:

f(s) = max
a∈A(s)

 ∑
s′∈δ(s,a)

Pr(s′ | s, a) · f(s′)

 (2)

In this formulation, f(s) denotes the probability that the attacker successfully
reaches the DA node from state s. For a given action a ∈ A(s), the attacker
may transit to a set of successor states s′ ∈ δ(s, a), each associated with a
transition probability Pr(s′ | s, a). The attacker seeks to select the action that
maximises their success probability over all possible future states. Eq. (2) provides
a principled way for computing the optimal attacker strategy via DP; however,
the exponential growth of the state space renders exact computation infeasible
for large-scale AD graphs. To overcome this limitation, we propose a GNN-
based approximation of the attacker’s value function f(s), enabling scalable and
structure-aware policy learning in complex enterprise environments.

8 Goel et al.

4.2 Attacker Modelling via GNN-Approximated Dynamic
Programming (GNNDP)

We propose an approach for approximating the attacker’s policy by training a
GNN to learn the value function associated with the DP formulation. Trained
GNN serves as an efficient surrogate for estimating the attacker’s success probabil-
ity and acts as a fitness evaluator for the defender’s EDO-based defensive policy.
By leveraging the topological structure of the AD graph, the GNN iteratively
aggregates information from neighbouring nodes to generate low-dimensional
node embeddings. These embeddings capture both local and global graph context,
allowing the model to effectively approximate attacker’s decision-making process.

Given a blocking plan, GNN receives as input the AD graph along with
corresponding edge- and node-level features, and outputs the predicted probability
that the attacker will successfully reach the DA node. The blocking plan is encoded
as a binary edge feature, where each edge is marked as 1 if blocked and 0 otherwise.
For node features, we use the top-5 diverse shortest paths to the DA node. These
paths are selected to be both distinct from one another and collectively minimal
in total length. To ensure diversity, we compute the similarity Sim between two
shortest paths SP1 and SP2 as the ratio of the number of shared edges to the
total number of unique edges in both paths, defined as:

Sim(SP1, SP2) =
L(SP1 ∩ SP2)

L(SP1 ∪ SP2)
(3)

where L(·) denotes #edges in a path. A similarity score of 1 indicates that two
paths are identical, while a score of 0 means the paths are completely disjoint.
To ensure sufficient diversity among the selected paths, we retain only those sets
of paths in which the similarity between any pair is below a defined threshold.
We empirically selected a similarity threshold of 0.4 as it offered a reasonable
balance between path diversity and model stability in preliminary experiments.

For each selected path SP , we compute a corresponding path value, which
quantifies the likelihood that an attacker can successfully traverse the path
without being detected or failing. This value is defined as:

PathValue(SP) =
∏

e∈SP

(1− (pd(e) + pf (e))) (4)

These path values are used as node features to enhance GNN performance in
estimating the attacker’s success probability.

Learning Recursive Value Functions. To approximate the attacker’s policy,
the GNN is initially trained in a supervised manner to learn the base states of
the dynamic programming (DP) formulation. Since the attacker’s objective is
to reach the DA node, these base states correspond to scenarios where all NSPs
(Non-Splitting Paths) leading to the DA are marked either as ‘S’ (successful) or
‘F’ (failed). If at least one NSP is marked as ‘S’, it indicates that the attacker
has successfully reached the DA, and the corresponding state is assigned a value
of 1. Conversely, if all such NSPs are marked as ‘F’, the attacker cannot reach
the DA, and the state is assigned a value of 0. In both cases, no further state

Co-Evolutionary Defence of Active Directory Attack Graphs 9

transitions are possible, as the attack concludes once the DA is reached or no
viable paths remain.

For all non-terminal states, the GNN is trained to approximate the recursive
relationship defined in the dynamic programming formulation (Eq.(2)). Beginning
from an initial state vector (see Eq.(1)), we simulate attack trajectories by
selecting actions from the admissible action set. At each decision point, the
GNN employs a mixed strategy: with 50% probability, it chooses the action that
maximises the current estimated success (exploitation), and with 50% probability,
it selects a random action (exploration). This strategy ensures a balance between
reinforcing effective behaviours and discovering new states. Each action may lead
to multiple possible successor states, each associated with a transition probability.
One successor state is sampled based on these probabilities, and the simulation
proceeds recursively until a base state is reached. This process allows the GNN
to learn the recursive structure of the value function across the state space. Let
f(s; θ) denote the GNN-predicted value for state s, with model parameters θ. Our
objective is to minimise the gap between the predicted value and the recursive
DP target value:

L(θ) =
∑
s∈S

f(s; θ)− max
a∈A(s)

∑
s′∈δ(s,a)

Pr(s′ | s, a) · f(s′)

2

(5)

Here, S denotes the set of training states, A(s) is the set of admissible actions
at state s, and δ(s, a) is the set of successor states resulting from taking action a in
state s. The function f(s; θ) is the parameterized value function, and Pr(s′ | s, a)
is the transition probability from state s to state s′ given action a. This loss
function minimises the gap between the GNN’s predictions and the recursive DP
targets, thereby performing accurate value estimation.

To generate diverse training samples, we integrate GNN training with the
EDO process. In each iteration, EDO generates new and diverse blocking plans
that induce different state vectors, which are then trained and evaluated using
the current GNN model. These states are then evaluated and used to update the
GNN model. This continuous flow of diverse samples encourages the GNN to
generalise effectively across a wide range of state configurations. By combining
EDO-generated diversity with recursive training, the GNN is able to approximate
the attacker’s policy with high fidelity and improved robustness.

4.3 Defender Strategy Optimisation via Evolutionary Diversity
Optimisation (EDO)

We propose an Evolutionary Diversity Optimization (EDO)-based defence strat-
egy that aims to reduce the attacker’s probability of reaching the DA node by
generating a diverse set of blocking plans. Each blocking plan disables a subset
of k block-worthy edges, where k denotes the defender’s budget. The trained
GNN, which approximates the attacker’s behaviour, serves as a fitness function
to evaluate the effectiveness of each defensive configuration. EDO continuously
produces a variety of blocking plans, which not only improve defensive coverage
but also serve as training data to further refine the GNN. This feedback loop

10 Goel et al.

enables the GNN to better approximate the attacker’s policy across a broad
range of defensive scenarios. Each blocking plan is represented as a binary vector
over all block-worthy edges, referred to as the defensive vector :

Defensive vector: ⟨0, 1, 0, . . . , 1, 0, 1⟩ (6)

Here, a ‘1’ indicates that the corresponding block-worthy edge is selected for
blocking, while a ‘0’ indicates it is left unblocked. The length of the vector equals
the total count of block-worthy edges in the AD graph, and exactly k entries are
set to 1 to follow the blocking budget constraint.

Population Evolution and Fitness Evaluation. We start by generating an
initial population POP of randomly sampled defensive vectors, where each vector
encodes a valid blocking plan that selects exactly k block-worthy edges. To evolve
this population over time, we apply either a mutation or crossover operation,
each with equal probability. The number of bit-level changes to apply during
these operations is determined by sampling a random integer x ∼ Poisson(λ = 1),
which controls the degree of variation introduced in each generation.

Mutation: We randomly select an individual p1 ∈ POP, then flip x randomly
chosen bits from 1 to 0, and another x bits from 0 to 1, preserving the blocking
budget of exactly k edges.

Crossover: We select two individuals p1 and p2 from POP. We identify x
positions where p1 has a 0 and p2 has a 1. Now, for these positions, we change 0s
to 1s in p1 and 1s to 0s in p2. Similarly, we look for x positions where p1 has 1
and p2 has 0 on those positions and change 0s to 1s and 1s to 0s.

The newly generated individual is retained in the population if its fitness,
defined as the attacker’s success rate under the corresponding blocking plan, as
predicted by the GNN, falls within a tolerance window around the current best
score. Specifically, it must lie within the range [f∗−0.1, f∗+0.1], where f∗ is the
best fitness value observed so far. This 0.1 margin ensures that near-optimal plans
are preserved while maintaining population diversity, unless the new individual
significantly improves overall diversity.

Edge-Wise Diversity Preservation. We regard population diversity as an
equal representation of block-worthy edges in population. Any individual pi in
population POP of size µ is represented as follows:

pi =
(
(bw1; i), (bw2; i), ..., (bw|BW |; i)

)
, i ∈ {1, ..., µ}

For each block-worthy edge bwj , j ∈ {1, ..., |BW |}, we first determine the count
of individuals where this edge is blocked. We represent the block-worthy edge
count of edge bwj using c(bwj). In this way, we get block-worthy edge count
vector C(bw) as:

C(bw) = (c(bw1), c(bw2), ..., c(bw|BW |))

We calculate the diversity vector D of population without an individual pi as:

D(C(bw)\pi) = C(bw)− pi

Co-Evolutionary Defence of Active Directory Attack Graphs 11

D(C(bw)\pi) =
(
c(bw1)− (bw1; i), ..., c(bw|BW |)− (bw|BW |; i)

)
where D(C(bw)\pi) describes population diversity without individual pi. For

maximising the diversity of blocked edges, we minimise the SortedD(C(bw)\pi)
in lexicographic order, where sorting is performed in descending order.

SortedD(C(bw)\pi) = sort
((

c(bw1)− (bw1; i)
)
,,

(
c(bw|BW |)− (bw|BW |; i)

))
To maintain diversity, we identify an individual q in the population whose
removal maximises overall population diversity, formally, the one that minimises
SortedD(C(bw)\pq). This individual q is removed if it contributes the least to
diversity and its fitness score is not near-optimal. However, if the newly created
individual has the highest fitness score in the population, we instead remove
the individual with the lowest fitness score. Through this selective replacement
strategy, the EDO process evolves a diverse and high-quality set of defensive
blocking plans, which together define the defender’s policy.

Mapping Defender Plans to Attacker State Representations. To compute
the attacker’s probability of reaching the DA node under a given defensive
blocking plan, we transform the blocking configuration (defined in Eq.(6)) into
the corresponding attacker state vector (as described in Eq.(1)). Specifically, for
each blocked block-worthy edge bw, we identify the associated NSP and mark its
status as ‘F’ (failed), indicating that the attacker cannot traverse that path.

4.4 Co-Evolutionary Training of GNNDP and EDO

Figure 1 illustrates our proposed co-evolutionary framework, which integrates
GNNDP and EDO to iteratively refine attacker and defender strategies on AD
graphs. At the outset, the GNNDP model lacks sufficient training to accurately
estimate the attacker’s optimal strategy or the corresponding success probability.
To bootstrap the learning process, the EDO module generates a diverse set of
initial blocking strategies, each inducing a distinct attacker state. These blocking
configurations are converted into attacker state vectors by marking blocked
NSPs as ‘F’ (failed), while all others remain as ‘?’ (unattempted). From these
initial states, the attacker’s decision-making process is simulated by identifying
admissible actions, computing transition probabilities, and exploring successor
states via the state transition function. The GNNDP model is then trained to
approximate the dynamic programming value function using the loss defined in
Eq. (5). This co-evolutionary training proceeds iteratively. In each cycle, EDO
produces a new batch of blocking plans, which are evaluated using the current
GNNDP model. These evaluations not only inform the generation of increasingly
effective and diverse defence strategies but also serve as training samples to
further refine the GNNDP. As the GNNDP improves in accuracy, it provides more
precise feedback, guiding EDO toward better solutions. Crucially, the diversity
of blocking plans generated by EDO prevents the GNNDP from overfitting
to narrow regions of the state space or converging prematurely to suboptimal
strategies. Instead, it promotes generalisation across attacker behaviours that

12 Goel et al.

are statistically likely to arise along optimal or near-optimal trajectories. As a
result, training is concentrated on high-value states, improving approximation
fidelity in the most strategically critical parts of the decision space.

5 Experimental Evaluation

5.1 Experimental setup

Computational Environment. All experiments were conducted on a high-
performance computing cluster with Intel Xeon Gold 6148/6248 CPUs, using one
core per run. The experiments required 253.3 CPU days of training in total. To
accelerate training, we parallelised workload by executing 180 trials concurrently,
completing all runs within two days. All models were implemented in PyTorch.

AD Graph Datasets. Real-world ADs are highly sensitive and not publicly
available; therefore, we used the DBCREATOR tool from BloodHound to generate
three structurally realistic synthetic AD graphs - r500, r1000, and r2000, each
representing networks with 500, 1000, and 2000 computers, respectively. The
generated AD graphs include only the default BloodHound edge types: AdminTo,
HasSession, and MemberOf. The resulting graph statistics are as follows: r500
(1493 nodes, 3456 edges), r1000 (2996 nodes, 8814 edges), and r2000 (5997 nodes,
18795 edges). For each graph, we first selected 40 nodes farthest from the DA
and then randomly selected 20 of them as attacker entry nodes. Each edge e was
assigned a blocking probability based on its topological proximity to the DA,
given by:

Blocking Probability(e) =
Min hops from edge e to DA

Max hops from any edge to DA

Prior to model training, we preprocessed each AD graph to obtain a condensed
graph. The preprocessing steps included (1) merging multiple DA nodes into a
single unified node, (2) removing irrelevant nodes and edges (e.g., edges originating
from DA or terminating at entry nodes), and (3) compressing each NSP between
decision nodes into a single edge, thereby significantly reducing graph complexity.

Correlation Analysis of Edge Features. To investigate the impact of edge
feature correlation on attacker success, we explore three statistical relationships
between edge failure probability pf(e) and detection probability pd(e): Independent
(I), Positive Correlation (P), and Negative Correlation (N).

– Independent (I): pf(e) and pd(e) are independently sampled from a uniform
distribution over [0, 0.2].

– Correlated (P/N): Both values are drawn from a multivariate normal distri-
bution:

(pd(e), pf(e)) ∼ N (µ,Σ), µ = [0.1, 0.1]

• Positive Correlation (P):

Σ =

[
0.052 0.5 · 0.052

0.5 · 0.052 0.052

]

Co-Evolutionary Defence of Active Directory Attack Graphs 13

• Negative Correlation (N):

Σ =

[
0.052 −0.5 · 0.052

−0.5 · 0.052 0.052

]
These configurations allow us to analyse how statistical dependencies between

edge-level features affect the success rate of the attacker.

GNNDP Training Configuration. The proposed GNNDP model receives three
inputs: (i) five node features representing the probabilities of the top-5 diverse
shortest paths to the DA node, (ii) one binary edge feature indicating whether
the edge is blocked, and (iii) AD graph structure. A linear encoder expands both
node and edge features to 128-dimensional embeddings. The model comprises five
crystal graph convolutional layers, each followed by a ReLU activation function.
The output is passed through a linear projection to a single dimension, aggregated
using a mean pooling layer. A sigmoid activation function is applied to produce
a final prediction in the range [0, 1], representing the estimated probability that
the attacker reaches the DA node. Training is performed using mini-batches of
size 16, with the Mean Squared Error loss function and the Adam optimiser. The
learning rate is set to 0.001, and each training cycle runs for 300 epochs.

EDO Training Configuration. We implemented EDO algorithm to generate
defensive plans under a strict blocking budget of 5 edges. EDO generates 100
blocking plans (i.e., population size) over 10,000 iterations, applying mutation or
crossover operations with a probability of 0.5 each. We performed 100 iterative
co-training rounds involving GNNDP model updates and EDO defence generation.

5.2 Baselines

To assess the performance of our proposed framework, we compare it against
various attacker–defender strategy combinations:

1. GNNDP-EDO (Proposed). GNNDP is used to solve the attacker’s problem,
while the EDO is employed for generating the defender’s blocking strategies.
The defender explores diverse defensive plans, and the fitness of each plan is
computed using GNNDP.

2. GNNDP-EDO+DP. The attacker’s policy is modelled using GNNDP, while
EDO generates candidate defences. However, instead of relying on GNNDP to
estimate the attacker’s success probability, we use exact DP to provide precise
evaluations for the best blocking plan.

3. Optimal Solution. It leverages DP to model the attacker and exhaustively
searches all combinations of edge blockings to determine the best defence.

4. GNNDP-SEC. GNNDP models the attacker’s problem, and Score-based Evolu-
tionary Computation (SEC) is used as a defender strategy. Only high-scoring
blocking plans are retained based on their fitness as evaluated by GNNDP.

5. GNNDP-Greedy. GNNDP computes the attacker’s policy while the defender
applies a greedy strategy. In each step, the defender blocks the most critical
edge, that is, the edge whose removal leads to the greatest reduction in the
attacker’s success rate, as estimated by GNNDP. This process is repeated
until the edge-blocking budget k is reached.

14 Goel et al.

Table 1: Attacker success rate on the r500 AD graph under different ap-
proaches.

Approach I P N Avg

GNNDP-EDO (Proposed) 89.74% 84.84% 84.68% 86.42%

GNNDP-EDO + DP 89.78% 84.86% 84.58% 86.4%

Optimal solution 89.73% 84.78% 84.45% 86.32%

5.3 Results

For the smaller AD graph r500, we evaluate our framework, GNNDP-EDO,
against GNNDP-EDO+DP and the Optimal solution. In contrast, for larger
graphs like r1000 and r2000, computing the success rate for all attacker states
using DP is computationally infeasible. Therefore, to evaluate the performance
of GNNDP-EDO on larger graphs, we compare it against GNNDP-SEC and
GNNDP-Greedy. Given an attacker’s strategy, the success rate quantifies the
likelihood of the attacker reaching the DA node without being detected. Time
refers to the number of computation hours required for each experimental run. As
the trained GNNDP model may not always yield precise estimates of the success
rate, we validate its predictions using Monte Carlo simulations, conducting 25,000
runs for the best blocking plan identified by GNNDP. Each experimental setting
was run ten times on independently generated AD graph instances with varying
entry nodes and block-worthy edges. Reported results represent the average
across these trials to ensure robustness and generalizability.

Results for r500. Table 1 presents the attacker’s success rates on the r500 AD
graph under three distinct statistical distributions. The Avg column represents the
mean success rate across these distributions. The results show that the attacker’s
average success rate under the proposed defence GNNDP-EDO is 86.42% when
simulated using Monte Carlo simulations (average over three distributions). When
the same defence is evaluated with the exact DP method (GNNDP-EDO+DP), the
success rate is 86.4%, indicating that the GNNDP model accurately approximates
the attacker’s value function, with a deviation of only 0.02%. For comparison, the
optimal defence computed through exhaustive search results in a success rate of
86.32%. This shows that our proposed GNNDP-EDO approach performs within
0.1% of the optimal, demonstrating its effectiveness and accuracy.

Results for r1000 and r2000. Table 2 presents the attacker’s success rates
on the r1000 AD graphs, where the attacker’s policy is approximated using
GNNDP. On the r1000 graph, the proposed EDO-based defence achieves the
lowest average attacker success rate of 45.82%, compared to 45.95% under the
SEC-based defence and 51.19% under the Greedy defence. Table 3 presents results
for the r2000 AD graphs, and the results show that the attacker’s average success
rate is 37.82% under the EDO-based defence, increasing to 38.68% under SEC and
43.59% under Greedy. On average, across both the r1000 and r2000 graphs, the
EDO-based defence consistently outperforms the SEC-based and Greedy defences.

Co-Evolutionary Defence of Active Directory Attack Graphs 15

Table 2: Attacker success rate on the r1000 AD graph under different ap-
proaches (lower values indicate better defensive performance).

Approach
Success Rate (%) Time (hours)

I P N Avg I P N

GNNDP-EDO (Proposed) 44.98% 46.72% 45.78% 45.82% 39.33 38.99 36.6

GNNDP-SEC 45.63% 47.95% 44.29% 45.95% 39.38 35.94 35.83

GNNDP-Greedy 53.67% 51.40% 48.51% 51.19% 40.42 34.57 36.28

Table 3: Attacker success rate on the r2000 AD graph under different ap-
proaches (lower values indicate better defensive performance).

Approach
Success Rate (%) Time (hours)

I P N Avg I P N

GNNDP-EDO (Proposed) 37.91% 36.20% 39.36% 37.82% 32.33 28.54 28.88

GNNDP-SEC 38.91% 38.12% 39.03% 38.68% 33.37 29.44 28.3

GNNDP-Greedy 44.06% 43.26% 43.45% 43.59% 31.77 28.84 29.01

This performance stems from EDO’s ability to explore a diverse range of blocking
strategies rather than converging prematurely on suboptimal configurations,
enabling it to find globally robust defences. In contrast, Greedy performs the
worst because it evaluates edges in isolation and greedily blocks those with the
highest immediate impact, often neglecting their long-term utility in multi-step
attack paths. This shortsighted approach results in poor coverage of strategic
paths, enabling attackers to exploit alternatives. Under negatively correlated
edge distributions, the SEC-based defence slightly outperforms EDO. This may
be because SEC more effectively exploits the trade-off between failure and
detection probabilities, while EDO’s diversity-driven strategy may occasionally
select suboptimal edges in such structured settings.

Our results indicate that, on average, the proposed GNNDP-EDO defence
provides the most effective and generalisable defence against the attacker. More-
over, the results suggest that the EDO optimisation process, approximated by
the GNNDP model, effectively identifies high-quality defensive policies. This
highlights the suitability of the trained GNNDP as a fitness function for EDO.

6 Discussion

Summary of Findings. The framework’s integration of GNNDP with EDO cap-
tures dynamic attacker–defender interplay, achieving near-optimal performance
(within 0.1% of the optimum on r500) and outperforming baselines on larger
graphs. Its co-evolutionary loop, where EDO generates diverse blocking strategies
that challenge the GNNDP-based attacker model, while GNNDP continuously
refines defensive responses, prevents overfitting and ensures robust generalisation.

16 Goel et al.

This ‘arms race’ dynamic closely mirrors real-world adversarial interactions and
surpasses static or fixed-path defence methods that fail to counter adaptive
adversaries.

Practical Benefits for SOC Operations. The framework provides actionable
utility for Security Operations Center (SOC) teams by automating the prioritisa-
tion of high-impact edge-blocking decisions in AD environments. It can generate
a ranked list of vulnerable access paths, enabling analysts to proactively block
critical relationships (e.g., AdminTo edges) through integration with tools such as
Microsoft Defender for Identity or Splunk. The GNNDP module produces inter-
pretable outputs, quantifying attacker path success probabilities, that support
transparent decision-making, efficient resource allocation, and timely incident
response. The framework is designed for operational scalability, demonstrating
the ability to process enterprise-scale AD graphs (e.g., r2000 with 18,795 edges).
It can also be integrated with SIEM platforms, supporting seamless incorpo-
ration into existing enterprise security workflows and enhancing operational
efficiency. Beyond immediate deployment, the framework promotes proactive
defence planning and compliance auditing.

Limitations and Future Directions. Our evaluation relies on synthetic AD
graphs generated via BloodHound’s DBCreator, which offer structural realism
but do not fully capture the operational complexity of production environments,
such as evolving user behaviours, dynamic access policies, and diverse edge types.
Additionally, structural patterns and attack paths in real-world AD deployments
may differ from those in synthetic graphs, which could impact the generalisability
of learned defence policies. Future work will aim to validate the framework
on production AD environments and incorporate richer edge semantics and
behavioural dynamics.

7 Conclusion

We proposed a co-evolutionary framework for defending Active Directory (AD)
graphs by integrating GNNDP with EDO. This integration enables the joint
evolution of attacker and defender strategies: the attacker refines its policy using
defensive plans generated by EDO as training data, while the defender iteratively
generates robust blocking configurations through GNN-guided exploration. Ex-
perimental results show that this synergy achieves near-optimal performance on
smaller AD graphs and consistently outperforms baseline methods on larger ones.
These findings highlight the strength of combining dynamic programming with
structure-aware learning. GNNDP effectively models adaptive attacker behaviour
in high-dimensional spaces, while EDO facilitates the discovery of diverse and
resilient defences, avoiding premature convergence to suboptimal strategies. This
co-evolutionary process fosters an “arms race” dynamic, encouraging strategic
generalisation for both attacker and defender. Beyond AD defence, our approach
demonstrates a broader paradigm: neural approximations combined with evo-
lutionary search offer a scalable and effective alternative to exact methods in
complex adversarial settings.

Co-Evolutionary Defence of Active Directory Attack Graphs 17

References

1. BloodHoundAD: Bloodhound - active directory enumeration tool. https://github.
com/BloodHoundAD/BloodHound, accessed: 2025-01-13

2. Cao, L., Jiang, X., Zhao, Y., Wang, S., You, D., Xu, X.: A survey of network attacks
on cyber-physical systems. IEEE Access 8, 44219–44227 (2020)

3. Dunagan, J., Zheng, A.X., Simon, D.R.: Heat-ray: combating identity snowball
attacks using machinelearning, combinatorial optimization and attack graphs. In:
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
pp. 305–320 (2009)

4. Goel, D., Ward-Graham, M.H., Neumann, A., Neumann, F., Nguyen, H., Guo, M.:
Defending active directory by combining neural network based dynamic program and
evolutionary diversity optimisation. In: Proceedings of the Genetic and Evolutionary
Computation Conference. p. 1191–1199. GECCO ’22 (2022)

5. Guo, M., Li, J., Neumann, A., Neumann, F., Nguyen, H.: Practical fixed-parameter
algorithms for defending active directory style attack graphs. arXiv preprint
arXiv:2112.13175 (2021)

6. Guo, M., Li, J., Neumann, A., Neumann, F., Nguyen, H.: Limited query graph
connectivity test. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 38, pp. 20718–20725 (2024)

7. Guo, M., Ward, M., Neumann, A., Neumann, F., Nguyen, H.: Scalable edge blocking
algorithms for defending active directory style attack graphs. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 37, pp. 5649–5656 (2023)

8. Judijanto, L., Hindarto, D., Wahjono, S.I., et al.: Edge of enterprise architecture in
addressing cyber security threats and business risks. International Journal Software
Engineering and Computer Science (IJSECS) 3(3), 386–396 (2023)

9. Malatji, M.: Management of enterprise cyber security: A review of iso/iec 27001:
2022. In: 2023 International conference on cyber management and engineering
(CyMaEn). pp. 117–122. IEEE (2023)

10. Microsoft: Microsoft digital defense report (2023), https://www.microsoft.com/
en/security/security-insider/microsoft-digital-defense-report-2023/

11. Nandi, A.K., Medal, H.R., Vadlamani, S.: Interdicting attack graphs to protect
organizations from cyber attacks: A bi-level defender–attacker model. Computers
& Operations Research 75, 118–131 (2016)

12. Ngo, H.Q., Guo, M., Nguyen, H.: Optimizing cyber response time on temporal
active directory networks using decoys. arXiv preprint arXiv:2403.18162 (2024)

13. Ngo, Q.H., Guo, M., Nguyen, H.: Near optimal strategies for honeypots placement in
dynamic and large active directory networks. In: The 22nd International Conference
on Autonomous Agents and Multiagent Systems (2023), extended Abstract

14. Zhang, Y., Ward, M., Guo, M., Nguyen, H.: A scalable double oracle algorithm for
hardening large active directory systems. In: The 18th ACM ASIA Conference on
Computer and Communications Security (ACM ASIACCS), Melbourne, Australia,
2023 (2023)

https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound
https://www.microsoft.com/en/security/security-insider/microsoft-digital-defense-report-2023/
https://www.microsoft.com/en/security/security-insider/microsoft-digital-defense-report-2023/

	Co-Evolutionary Defence of Active Directory Attack Graphs via GNN-Approximated Dynamic Programming

