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Abstract. Reinforcement Learning (RL) agents are increasingly used to
simulate sophisticated cyberattacks, but their decision-making processes
remain opaque, hindering trust, debugging, and defensive preparedness.
In high-stakes cybersecurity contexts, explainability is essential for under-
standing how adversarial strategies are formed and evolve over time. In
this paper, we propose a unified, multi-layer explainability framework for
RL-based attacker agents that reveals both strategic (MDP-level) and tac-
tical (policy-level) reasoning. At the MDP level, we model cyberattacks as
a Partially Observable Markov Decision Processes (POMDPs) to expose
exploration-exploitation dynamics and phase-aware behavioural shifts.
At the policy level, we analyse the temporal evolution of Q-values and
use Prioritised Experience Replay (PER) to surface critical learning tran-
sitions and evolving action preferences. Evaluated across CyberBattleSim
environments of increasing complexity, our framework offers interpretable
insights into agent behaviour at scale. Unlike previous explainable RL
methods, which are often post-hoc, domain-specific, or limited in depth,
our approach is both agent- and environment-agnostic, supporting use
cases ranging from red-team simulation to RL policy debugging. By trans-
forming black-box learning into actionable behavioural intelligence, our
framework enables both defenders and developers to better anticipate,
analyse, and respond to autonomous cyber threats.

Keywords: Explainable Artificial Intelligence · Reinforcement Learning ·
Autonomous Cyber Operations · Adversarial AI · Cyberattack Modelling

1 Introduction

Modern enterprise networks face persistent threats from sophisticated adversaries
who exploit misconfigurations to conduct lateral movement and privilege escala-
tion attacks. As these threats grow in scale and complexity, static and reactive
defences often fall short. They lack the agility to detect and respond to dynamic,
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multi-stage campaigns, highlighting the need for intelligent and adaptive secu-
rity solutions [17]. Reinforcement Learning (RL)-based autonomous agents have
emerged as promising solutions for modelling such adversarial behaviour, with
growing use in platforms like CyberBattleSim [18], MITRE’s FARLAND [11],
and CybORG [1].

Despite their increasing adoption, RL agents remain opaque black boxes,
providing little visibility into why particular actions are taken, how strategies
evolve, or which factors drive success or failure. This lack of interpretability poses
barriers for both cybersecurity professionals and RL developers. For defenders, it
limits the ability to anticipate threats or understanding adversarial reasoning. For
developers, it hinders debugging, validation, and policy refinement in complex
environments where decisions unfold over time under uncertainty.

Explainable Reinforcement Learning (XRL) aims to bridge this gap by con-
verting RL agent behaviour into interpretable, context-aware insights that sup-
port trust, transparency, and safe deployment [22]. However, most prior ex-
plainability work in cybersecurity is limited to narrow tasks (e.g., malware
detection, blockchain mining, autonomous driving, or small-scale intrusion detec-
tion [2,6,10,15,23]) and often relies on shallow, post-hoc methods. Few approaches
support structured, temporally-aware explainability for RL agents operating in
realistic, sequential, and partially observable adversarial settings [9, 12].

To address this gap, we introduce a unified, multi-layer explainability frame-
work tailored for RL agents in cybersecurity. While we demonstrate it with
autonomous attacker agents, the framework is agent- and environment-agnostic
and applies equally to defenders. It provides two complementary lenses. At the
MDP level, we model the environment as a Partially Observable Markov Decision
Process (POMDP), enabling analysis of exploration-exploitation dynamics and
behavioural shifts across early and late attack phases. At the policy level, we track
the temporal Q-value evolution and incorporate Prioritised Experience Replay
(PER) to identify critical learning transitions and preference formation over time.
Together, these layers reveal how the agent behaviour matures, identifying intent,
surfacing key decision points, and clarifying strategic inflection. This empowers
analysts to trace agent learning over time and supports use cases ranging from
red-team planning to model debugging.

We evaluate our framework using Microsoft’s CyberBattleSim [18], which
simulates attacker behaviour in networked environments with privilege escalation,
credential reuse, and lateral movement. Across environments of increasing com-
plexity, our framework demonstrates how strategic patterns and tactical choices
emerge under uncertainty. While our analysis focuses on attackers, the methodol-
ogy generalises to defenders and other sequential decision-making domains as
well such as malware containment, deception planning, or autonomous incident
response. This positions our framework as a unified approach for explaining
both red- and blue-team RL agents, enabling phase-aware defence design, training
simulation enhancement, and policy transparency in autonomous cyber operations.
Our key contributions are as follows:
– Multi-layer explainability framework: We present a unified, multi-layer

explainability framework for RL-based attacker agents. The framework inte-
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grates strategic (MDP-level) and tactical (policy-level) insights, bridging the
transparency gap and enabling end-to-end interpretability of autonomous
attacker behaviour.

– MDP-level explainability: We model attacker behaviour as POMDP, en-
abling interpretable analysis of uncertainty handling and strategic progression
through early and late phases of attack.

– Policy-level explainability: We use temporal Q-value tracking and priori-
tised experience replay to reveal how action preferences and critical decisions
evolve during learning.

– Empirical analysis: We conduct rigorous experiments in CyberBattleSim
environments of increasing scale and complexity, showcasing the framework’s
scalability and insightfulness.

– Operational and developmental utility: Our framework supports both
cyber defenders and RL developers by providing interpretable signals for
anticipating behaviour, debugging policies, and designing adaptive responses.

2 Related Work

2.1 Reinforcement Learning for Cybersecurity
2.1.1 Simulation Environments. Several simulation environments support
RL research in cybersecurity, each with distinct emphases. CyberBattleSim [18]
models enterprise networks as graphs to train attacker agents on privilege escala-
tion, lateral movement, and exploitation, with rewards tied to node criticality.
NASim [14] offers a lightweight, Gym-compatible framework for penetration
testing under partial observability. In contrast, CybORG [1] and FARLAND [11]
focus on defender training, integrating emulation (CybORG) or scalable proba-
bilistic models (FARLAND) to support adaptive blue team agents and complex
attack scenarios.

2.1.2 RL-based Cyber Defence and Adversarial Simulation. Recent
work has explored both defensive and offensive RL agents. Thompson et al. [19]
used entity-based RL with transformer policies to enable defensive generalisation
in dynamic networks. Goel et al. [7] co-trained attacker and defender policies
in a Stackelberg game for Active Directory protection. On the offensive side,
Sultana et al. [16] trained deep RL agents to learn multi-layered cyberattack
strategies across network, service, and application layers. Other approaches use
RL to simulate red team behaviour for defender training [3, 5].

Unlike these efforts, which aim to optimise RL agent performance, our ap-
proach focuses on interpreting agent behaviour, providing a principled, multi-layer
framework for understanding attacker decision-making in adversarial settings.

2.2 Explainable Reinforcement Learning (XRL)

2.2.1 General XRL Techniques. Explainable reinforcement learning meth-
ods fall into two categories: intrinsic approaches [2], which embed interpretability
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during training (e.g., policy distillation, influence modelling), and post-hoc tech-
niques [8, 10], which generate explanations after training using tools like SHAP,
LIME, or counterfactual reasoning. For example, Alabdulkarim et al. [2] devel-
oped an intrinsic approach by training influence predictors alongside RL policies,
enabling real-time analysis of how different actions shape agent behaviour over
time. In contrast, Mathes et al. [10] introduced CODEX, a post-hoc, cluster-
based XRL technique that semantically groups and summarizes both factual and
counterfactual behaviours in environments such as MiniGrid and StarCraft II.
Gyevnar et al. [8] proposed a social XAI framework for multi-agent autonomous
driving, using post-hoc counterfactual causal selection to generate contrastive
explanations for sequential decisions.

2.2.2 XRL Techniques in Cybersecurity. XRL in cybersecurity has largely
targeted static classification tasks (e.g., malware detection [23], intrusion anal-
ysis [15]) rather than sequential decision-making. Yu et al. [23] incorporated
explainability into malware mutation agents, while Sharma et al. [15] explored
adversarial XRL for classifier sensitivity. Foley et al. [6] proposed a post-hoc XRL
framework for defender agents in CybORG using SHAP, feature ablations, and
state visualisations to improve situational awareness. However, their attacker
agents follow fixed, hierarchical rules, limiting insight into real-time red-team
adaptation.

By contrast, our work places the attacker at the centre of the explanation. We
introduce a general, environment-agnostic XRL framework that captures attacker
behaviour across both strategic (MDP-level) and tactical (policy-level) layers.
Unlike prior work, it supports both during- and post-training analysis and reveals
how adversarial agents adapt over time. This empowers defenders to pre-empt
adversarial tactics and developers to refine agent training, while offering actionable
insight into sequential behaviours that remain opaque in existing approaches.

3 Problem Formulation

Enterprise networks are increasingly targeted by lateral movement attacks, where
adversaries navigate interconnected systems to escalate privileges and compro-
mise critical assets. In Microsoft’s CyberBattleSim, such networks are modelled
as directed graphs G = (V,E), where nodes v ∈ V represent machines (e.g.,
workstations, servers, domain controllers) and edges e ∈ E represent communica-
tion links. Each node has an associated reward r(v), reflecting its operational
importance. An attacker, modelled as a RL agent, seeks to maximise cumulative
reward R =

∑
v∈VC

r(v), where VC ⊆ V denotes the set of compromised nodes.
The agent operates under POMDP, reflecting the uncertainty and limited vis-
ibility typical of real-world cyberattacks. While RL agents can learn effective
attack policies in this setting, their decision-making processes remain opaque.
Traditional explainability methods, such as static feature attribution and post-hoc
visualisations, fall short of capturing the sequential, adaptive nature of adversarial
behaviour. As a result, defenders lack insight into when, why, and how attackers
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pivot laterally, escalate privileges, or shift tactics, insights that are critical for
proactive defence and trust in autonomous systems.

4 CyberBattleSim Platform

CyberBattleSim is an open-source simulation platform designed to model adver-
sarial cyber operations within enterprise network environments. Networks are
represented as directed graphs, where nodes encapsulate system configurations
such as operating systems, services, known vulnerabilities, firewall rules, and edges
represent connectivity. The environment is inherently attacker-centric: it trains
RL agents to autonomously discover and exploit vulnerabilities through local
privilege escalation, remote exploitation, and credential-based lateral movement.
Unlike CybORG [1], which emphasises defender modelling and blue-team coordi-
nation, CyberBattleSim provides a focused setting for evaluating autonomous
red-team strategies. Defender agents are not modelled explicitly; instead, defen-
sive behaviour is encoded through static network configurations, access control
rules, and hidden vulnerabilities.

Agents begin with limited visibility and explore to uncover system properties
and reachable nodes. The reward model incentivises strategic behaviour, assigning
higher rewards to the compromise of mission-critical nodes (e.g., 100 for a domain
controller vs. 10 for a workstation). Successfully breaching a node may also reveal
previously hidden segments of the network, enabling progressive expansion of the
attack agent’s surface. CyberBattleSim supports rich action spaces and complex
environment dynamics, making it well-suited for studying both autonomous
attacker behaviour and explainability in sequential, partially observable domains.

4.1 CyberBattleSim Environments

CyberBattle Capture-the-Flag (CTF) Environment. This environment uses
a loosely connected, hub-and-spoke topology with nodes representing services
like web apps, GitHub, Azure storage, SharePoint, and cloud VMs. Each node
supports multiple exploit paths, such as scanning content, mining Git history, or
reusing leaked credentials. Supported actions include SearchEdgeHistory, Scan-
PageContent, NavigateWebDirectory, AccessDataWithSASToken, and privilege
escalations. Vulnerabilities are contextually embedded (e.g., exposed tokens,
weak MySQL/SSH logins), requiring chained reasoning. Its non-linear structure
supports analysis of both strategic variability and tactical adaptation.
CyberBattleChain Environment. CyberBattleChain simulates a linear, fixed-
sequence network topology alternating between Linux and Windows nodes:
start → (Linux → Windows)n → Linux[Flag]. Progression requires exploiting
platform-specific vulnerabilities and reusing credentials revealed upon node com-
promise (e.g., SSH credentials from Windows to the subsequent Linux node).
Embedded traps lure agents into suboptimal paths, requiring strategic discern-
ment to avoid costly dead ends. The environment ends with a high-value target
("flag" node), making it ideal for evaluating long-horizon planning, sequential
decision-making, and explainability in high-stakes attacker behaviour.
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5 Multi-Layer Explainability Framework for RL-Based
Attackers

To address the opacity of RL agents in adversarial environments, we propose a
unified, multi-layer explainability framework that reveals both strategic intent and
tactical decision-making over time. Grounded in core explainable AI principles,
such as transparency, temporal insight, and actionable reasoning, our framework
operates at two complementary levels:
1. Strategic-Level (MDP): Modelling attacker behaviour under uncertainty,

capturing exploration-exploitation dynamics and phase transitions across the
attack lifecycle.

2. Tactical-Level (Policy): Tracing evolving action preferences and identifying
high-impact decision points using temporal Q-value analysis and prioritised
experience replay.

This layered design enables defenders to interpret not just what actions were
taken, but why and when they were chosen, supporting trust, auditability, and
more targeted defence planning.

5.1 Strategic-Level (MDP) Explainability

We formalise attacker behaviour as Partially Observable Markov Decision Process,
defined by the tuple (S,A,Ω,O, T,R, γ), where S is the set of true (hidden) states,
A the action space, Ω the set of possible observations, O : S ×A→ P(Ω) is the
observation function (a probability distribution over observations), T : S ×A→
P(S) the state transition function, R : S × A → R the reward function, and
γ ∈ [0, 1] the discount factor. This formulation captures uncertainty and limited
visibility adversaries face in real networks, and allows us to analyse strategic
adaptations over time.

5.1.1 Exploration-Exploitation Dynamics
We examine how different exploration strategies shape the agent’s learning and

behaviour:

1. Early Exploitation Strategy: This strategy models adversaries who aim
for fast wins. The agent begins with a low exploration rate (ϵlow) up to step
Texploit, after which the exploration rate gradually increases, prioritising rapid
exploitation before defences adapt [20]. We define the exploration rate ϵt at
time step t as:

ϵt =

{
ϵlow, t ≤ Texploit

ϵlow +
(ϵhigh−ϵlow)(t−Texploit)

T−Texploit
, t > Texploit

2. Standard Exploration Strategy: This strategy reflects more reconnaissance-
heavy adversaries. The agent begins with high exploration (ϵhigh) until step
Texplore, after which exploration gradually decays in favour of exploiting the
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learned policy. Such agents aim for long-term advantage by systematically
mapping vulnerabilities and refining their actions for maximum impact.

ϵt =

{
ϵhigh, t ≤ Texplore

ϵhigh − (ϵhigh−ϵlow)(t−Texplore)
T−Texplore

, t > Texplore

where, T denotes the total number of training steps; t is the current training
step, Texploit and Texplore specify the step thresholds that mark the end of the
initial low- and high-exploration phases, respectively, for each strategy.

Comparing these schedules reveals how different attacker profiles prioritise
speed, breadth, or depth in their learning trajectories and strategic development.

5.1.2 Phase Transitions and Behaviour Evolution
To further capture strategic adaptation, we segment attacker behaviour into

early and late attack phases based on the network compromise ratio (Ct):

Ct =
|Compromised nodes at time t|

|N |
where Ct represents the proportion of compromised nodes, and |N | denotes the
total number of nodes in the network.

1. Early Phase: In the early stages of an attack, strong defences and limited
visibility are expected to constrain the agent’s progress, prompting a cautious,
reconnaissance-driven approach. This phase is typically characterised by
uncertainty, minimal network compromise, and broad probing, as the agent
gathers information and identifies potential vulnerabilities. To capture this
behaviour, our framework isolates transitions from early phases of the attack,
where only a small fraction of the network has been compromised, enabling
analysis of how strategies form under high uncertainty (Ct < Threshold).

2. Late Phase: As more nodes are compromised and visibility improves, the
agent is expected to transition to a more aggressive phase of the attack. With
increased access and diminishing defensive barriers, this phase is typically
associated with behaviours such as privilege escalation, lateral movement, and
targeting of high-value assets. To capture this shift, our framework isolates
transitions where the network compromise ratio exceeds a defined threshold,
enabling analysis of how attacker strategies evolve from broad exploration to
more focused, high-impact exploitation (Ct > Threshold).

5.2 Tactical-Level (Policy) Explainability

To complement the strategic lens provided by MDP-level modelling, our framework
incorporates a tactical layer focused on how the agent’s preferences evolve during
learning. This layer provides insights into how specific actions become favoured
over time, and which experiences most influence policy updates. We achieve
this through two techniques: (1) tracking temporal Q-value evolution and (2)
leveraging Prioritised Experience Replay. Together these approaches support
temporal attribution and highlight learning dynamics behind critical decisions,
key goals in explainable AI.
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5.2.1 Temporal Q-Value Evolution and Action Preference
We track the evolution of Q-values over time to analyse how the agent’s

assessment of state-action pairs changes with experience. In RL settings, Q-values
begin largely undifferentiated due to sparse early feedback, and progressively
evolve to reflect long-term reward expectations. Our framework leverages this
temporal progression to surface how tactical preferences may emerge over time,
offering insight into the agent’s evolving prioritisation of specific actions. The
Q-values are updated via the Q-learning rule [21]:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
where α ∈ (0, 1] is the learning rate controlling the update magnitude, γ is the
discount factor, r is the immediate reward, and s′ is the next state.

Over time, the Q-values converge toward the expected return defined by the
Bellman expectation equation under the learned policy [4]:

Q(s, a) = E

[ ∞∑
t=0

γtrt

]

where Q(s, a) denotes the expected cumulative reward for taking action a in state
s, γ is the discount factor determining the importance of future rewards, and rt
is the reward received at time step t.

Tracking Q-value progression allows us to infer when an agent’s behaviour
transitions from broad exploration (e.g., probing for vulnerabilities) to targeted
exploitation (e.g., privilege escalation or lateral movement toward critical assets).
This temporal Q-value analysis supports temporally grounded explanations of
evolving intent and highlights emerging tactical focus within agent’s policy.

5.2.2 Policy Interpretation via Prioritised Experience Replay
Prioritised Experience Replay complements Q-value evolution by revealing

what drives learning. It amplifies the influence of high-impact transitions, those
with large Temporal-Difference (TD) errors, focusing the agent’s attention on
experiences that most significantly shape policy updates.

Prioritised Experience Replay. Each experience tuple τi = (si, ai, ri, s
′
i, di) is

stored in a replay buffer D, where di ∈ {0, 1} is a binary done flag indicating
whether the transition leads to episode termination. Rather than sampling these
transitions uniformly, PER prioritises transitions with higher learning potential
and assigns a priority pi based on the transition’s TD error δi [13] as:

δi = ri + γmax
a′

Q(s′i, a
′) − Q(si, ai)

Transitions with large δi (e.g., unexpected outcomes, high-value exploits) receive
higher priority:

pi = |δi|+ ϵ0, P (τi) =
pαi∑

j∈D pαj
,
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where pi is the priority; ϵ0 avoids zero priority; α controls prioritisation; P (τi) is
the sampling probability; D is the replay buffer. Importance-sampling weights
are applied to ensure unbiased learning updates.

By surfacing the transitions that most influence learning, such as early suc-
cesses in credential acquisition or late-stage access to high-value nodes, PER
reveals the moments of highest explanatory value in the agent’s trajectory. These
inflection points help clarify how the agent’s tactics evolve in response to new
information and highlight where strategic shifts are most likely to occur.

By integrating strategic-level progression with tactical decision analysis, our
framework provides a comprehensive and temporally grounded explanation of
RL-based attacker behaviour. It elucidates not only the actions taken by the
agent, but also the underlying rationale, timing, and policy evolution driving
those decisions. This layered interpretability enhances transparency, supports
informed defensive planning, and enables the development of phase-aware
countermeasures aligned with the agent’s behavioural dynamics.

6 Experimental Evaluation

We evaluate our framework across five experimental setups designed to highlight
key explainability dimensions over raw performance: (1) baseline policy selection,
(2) exploration-exploitation behaviour, (3) phase-aware behavioural shifts, (4)
temporal Q-value evolution, and (5) strategic learning signals via PER. These
experiments serve as illustrative case studies demonstrating how our framework
can analyse and interpret RL agents in adversarial cybersecurity scenarios.
Environment Description. We evaluated our framework using CyberBattleSim
[18] across two core environments: (1) CTF, a 12-node targeted attack scenario,
and (2) CyberBattleChain, with three scalable variants, CC22, CC100, and CC500,
simulating networks of 22, 100, and 500 nodes, respectively. Table 1 summarises
these configurations, where “Size” denotes exploitable nodes and “Max Nodes”
includes the entire infrastructure, such as firewalls and auxiliary components.
Training Parameters. We scaled the architecture of the Deep Q-Network to
the environment complexity: 3 hidden layers were used for smaller scenarios
(CTF, CC22), and 5 layers for larger ones (CC100, CC500). Agents used a replay
buffer of 20000 transitions, a target network update frequency of 10 episodes,
a learning rate of 0.005 with the Adam optimiser, and batch size of 128. The

Table 1: Description of CyberBattleSim Environment.
Environment Size Max Nodes

CTF 9 12
CC22 12 22
CC100 70 100
CC500 350 500
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Fig. 1: Cumulative Rewards Comparison of Attacker Policies Across Environments (The
shaded region in the figures represents the standard deviation of cumulative rewards
across training steps for each agent).

discount factor was set to γ = 0.95. Unless stated otherwise, exploration followed
a standard ϵ-greedy policy, decaying from ϵ = 0.90 to ϵ = 0.10 over 5000 steps.
All experiments are implemented in PyTorch and run on a high-performance
cluster with 1 CPU and 256 GB RAM.

6.1 Setup 1: Baseline Policy Selection

To ensure that the interpretability results are grounded in a stable, scalable at-
tacker policy, we benchmarked six RL-based agents: Random Search, Credential
Lookup (ϵ-greedy), Tabular Q-Learning, Exploiting Q-Matrix, Deep Q-Learning
(DQL), and Exploiting DQL. These agents were evaluated across CTF, CC22,
CC100, and CC500 using cumulative reward as the primary metric.

Results. Figure 1 presents a comparative summary of agent performance across
all environments and the results show that DQL significantly outperformed
the baseline agents in terms of stability, scalability, and cumulative reward.
Classical methods such as Tabular Q-Learning and Credential Lookup struggled
in larger environments (CC100+, with no viable results in CC500). Random search
underperformed in all structured settings. While the Exploiting DQL variant
achieved slightly higher cumulative rewards, it is not a standalone method; it
relies on a fully trained DQL agent and simply exploits the final policy without
any further training or adaptation. As such, it does not reflect the ongoing
decision-making process that our explainability framework aims to explain. We
therefore, selected DQL as the attacker policy for all subsequent experiments.
We emphasise that the results in Figure 1 serve to establish a realistic setting to
demonstrate the utility of our multi-layer explainability framework.

6.2 Setup 2: Exploration-Exploitation Dynamics

To analyse how exploration-exploitation strategies shape agent behaviour, we
compare two strategies: Early and Standard Exploration and track their impact
on cumulative reward and node discovery rate across environments. This reveals
whether agent behave opportunistically, methodically, or inefficiently over time.
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(a) CTF (b) CC22 (c) CC100 (d) CC500

Fig. 2: Impact of Exploration Strategies on Cumulative Rewards Across Environments.

(a) CTF (b) CC22 (c) CC100 (d) CC500

Fig. 3: Impact of Exploration Strategies on Node Discovery Rate Across Environments.

Results. For Early Exploitation, we initialised ϵ at 0.001 and gradually increased
it to 0.9 at a growth rate of 0.005. In contrast, Standard Exploration began
with ϵ = 0.9 and decayed to 0.01 at a rate of 0.95. Training was conducted for
30 episodes (200 iterations) in CTF and CC22, 40 episodes (300 iterations) in
CC100 and 100 episodes (300 iterations) in CC500. Figure 2 shows that in smaller
topologies (CTF and CC22), Standard Exploration quickly outperformed Early
Exploitation, benefitting from more aggressive probing. In larger environments
(CC100 and CC500), this advantage widened considerably, with Early Exploitation
often stagnating at lower cumulative rewards, especially in CC500, where Standard
Exploration achieved a notable reward surge after sustained, wide-ranging probing.
These patterns are echoed in the node discovery rates in Figure 3 where Standard
Exploration uncovered more nodes earlier, while Early Exploitation remained
constrained.
Our findings highlight how exploration strategy shapes agent performance and
behavioural style. Standard Exploration encourages deliberate, reconnaissance-
driven tactics, while Early Exploitation creates opportunistic agents well-suited
to complex environments. Our framework surfaces these differences, supporting
interpretable assessments of attacker risk posture and planning style.

6.3 Setup 3: Phase-Aware Behaviour Evolution

This setup supports phase-aware explainability by segmenting attacker behaviour
into early and late stages, using the compromise ratio Ct (the proportion of
compromised nodes) to highlight when strategy shifts occur.
Results. Agents were trained for 20 episodes (200 iterations) in CTF and CC22
environments, 100 episodes (400 iterations) in CC100, and 200 episodes (400
iterations) in CC500. Early phase is defined as network compromise ratio Ct < 0.5,
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(a) CTF: Early Phase (b) CTF: Late Phase (c) CC22: Early Phase (d) CC22: Late Phase

(e) CC100: Early Phase (f) CC100: Late Phase (g) CC500: Early Phase (h) CC500: Late Phase

Fig. 4: Cumulative Rewards Comparison in Early vs. Late Phase Attack Across Envi-
ronments.

and late phase as Ct ≥ 0.5. Figure 4 shows that early-phase rewards remain
modest due to limited visibility and cautious probing. Late-phase curves begin
with higher rewards and steeper slopes, reflecting the agent’s growing confidence
and accumulated access.

In CyberBattleChain environments, the attack path is fixed: each node grants
access to the next. Behavioural variation therefore reflects how quickly and
efficiently the agent escalates privileges, selects exploits, and avoids traps, rather
than differences in path selection. The observed late-phase deceleration likely
reflects structural limitations rather than a shift in strategy.

In contrast, the CTF environment offers a more open topology. Here, phase-
aware analysis can uncover how strategy evolves across multiple paths, revealing,
for example, which nodes are prioritised once situational awareness improves.
These insights can guide defenders in identifying high-risk services and timing of
potential escalation.

More generally, in flexible or real-world networks, this type of analysis could
help detect when an agent shifts from reconnaissance to exploitation, supporting
adaptive defences or deception deployment. For developers, reward trajectories
across phases provide feedback on convergence quality and policy generalisation.
This setup thus enables interpretable comparisons across environments with
varying structural complexity.
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(a) CTF: Episode 10 (b) CTF: Episode 25 (c) CC22: Episode 20 (d) CC22: Episode 35

(e) CC100: Episode 10 (f) CC100: Episode 35 (g) CC500: Episode 5 (h) CC500: Episode 40

Fig. 5: Emergence of Action Preferences via State-Aggregated Q-Values Across Episodes.

6.4 Setup 4: Temporal Q-Value Analysis

In this setup, we track how action preferences evolve over training, revealing
shifts in tactical focus. We compute state-aggregated Q-values per action across
episodes to visualise which actions the agent increasingly favours as it learns.
Results. We trained the attacker for 40 episodes (400 iterations), logging Q-values
for all visited state-action pairs. Figure 51 shows Q-value distributions per action
at different training stages across environments, with Table ?? (refer appendix)
mapping action indices to semantic descriptions. In early episodes, Q-values are
relatively low and undifferentiated, indicating uncertainty and limited experience.
As training progresses, a preference hierarchy emerged, with one single action
(highlighted in red) attaining higher mean Q-values across the states, indicating
stronger expected long-term value.

The sharpness and timing of this differentiation varies by environment. For
CC22, dominant early actions include local(CrackKeepPassX), connect(RDP),
and connect(GIT) (actions 1, 7, and 11) by episode 20 (Figure 5c), reflecting
early experimentation with lateral movement and credential reuse. By episode
35 (Figure 5d), it converges on local(CrackKeepPass) (action 5), suggesting a
shift toward more reliable or higher-reward local exploitation once basic network
structure is learned. For CC100, a similar pattern is observed, the agent begins
with broad action exploration, including connect(SSH-key), connect(MySQL),
connect(GIT), and local(ScanExplorerRecentFiles) (actions 8, 9, 11, 13) at
episode 10 (Figure 5e), before narrowing its focus to local(CrackKeepPass)
(action 5) by episode 35 (Fig. 5f). This likely reflects convergence on a consistently
valuable tactic once credential chains are established. For CC500, in contrast to
the smaller environments, the agent ultimately prefers remote(ProbeWindows)
(action 4) by episode 40 (Fig. 5h), after initial attempts using actions like
local(CrackKeepPassX) and connect(RDP). This suggests that in more com-

1
For the CTF environment, actions 1–18 are: local(ScanBashHistory), local(ScanExplorerRecentFiles), local(SudoAttempt),

local(ExfiltrateFlag), local(CrackKeepPassX), remote(ProbeLinux), remote(ProbeWindows), remote(ProbeSQLServer), connect(HTTPS),
connect(GIT), connect(SSH), connect(RDP), connect(MySQL), connect(SSH-key), connect(PING), connect(su), remote(ProbeFlagServer), and
local(CrackKeepPass). For the Chain environment, actions follow this sequence: local(CrackKeepPassX), remote(ProbeLinux),
local(ScanBashHistory), remote(ProbeWindows), local(CrackKeepPass), connect(SSH), connect(RDP), connect(SSH-key), connect(MySQL),
connect(HTTPS), connect(GIT), connect(PING), local(ScanExplorerRecentFiles), local(SudoAttempt), connect(su).
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(a) CTF (b) CC22 (c) CC100 (d) CC500

Fig. 6: Learning Impact of High-Priority Transitions (Average TD Error) Across Envi-
ronments.

plex, large-scale networks, reconnaissance actions offer higher long-term strategic
value, providing the visibility needed to coordinate deeper exploitation.

These results reflect the agent’s shift from broad exploration to targeted
exploitation of high-reward paths. In smaller environments (CC22, CC100),
the agent converges on local exploits like local(CrackKeepPass) (action 5),
while in larger networks like CC500, it favours reconnaissance actions such
as remote(ProbeWindows) (action 4), highlighting a preference for scalable
reconnaissance over direct exploitation. By tracking how action valuations
evolve over time, our framework helps developers debug brittle convergence,
uncover underused actions, and evaluate policy stability. For cybersecurity
teams involved in red/blue-team exercises or AI-driven threat simulation, these
insights offer a window into how autonomous agents learn and which tactics
they prioritise, informing training scenarios, service hardening, and timing of
decoy deployment during simulations.

6.5 Setup 5: Strategic Decision Attribution via PER

This experiment demonstrates how Prioritised Experience Replay surfaces the
most impactful (high-TD-error) transitions, acting as an attention mechanism
that steers the agent toward strategically important experiences.
Results. PER was configured with α = 0.6, β = 0.7, and ϵ0 = 0.01 (to avoid
zero probabilities). We filtered transitions with rewards above 2.0 to isolate
high-impact experiences such as privilege escalation. Figure 6 shows average
transition priority over time. All environments exhibit early TD-error spikes
from policy instability and exploration. Smaller networks (CTF, CC22) stabilise
quickly, while larger ones (CC100, CC500) show sustained fluctuation, indicating
extended learning. Notably, CC500 displays distinct spikes, suggesting newly
discovered pivot points or strategic escalations. Figure 7 tracks the number of
distinct high-priority states. CTF and CC22 converge to compact state sets,
implying repeated exploitation of a compact, optimal state set. Larger networks
(CC100, CC500) maintain broader distributions, indicating ongoing refinement
and diverse learning trajectories.
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(a) CTF (b) CC22 (c) CC100 (d) CC500

Fig. 7: Number of Key High-Priority States Across Environments.

PER reveals where and when attacker agents learn most rapidly during training.
These TD-error spikes, especially in large, dynamic environments, mark key
policy shifts that developers can investigate and defenders can simulate against.
For developers, CC100, the smooth arc between 40k-60k batch iterations reflect
gradual learning concentration, useful for assessing when and how the agent
starts committing to high-impact transitions. For defenders, while PER is
not observable in deployed agents, it supports red-team planning by revealing
when attackers are most likely to pivot. In CC500, twin spikes around 15k and
25k iterations may reflect credential pivoting or lateral movement, ideal timing
cues for testing decoy deployment or access hardening in simulation. Future
agentic threats using online learning could exhibit similar dynamics.

7 Discussion

Takeaways from Analysis. Our multi-layer XRL framework provides structured
visibility into attacker behaviour at both strategic and tactical levels. At the MDP
level, it surfaces transitions from reconnaissance to exploitation, contextualised
by uncertainty and environment progression. At the policy level, it highlights
how action preferences emerge and evolve, and which transitions drive the agent’s
most significant updates. Together, these layers go beyond performance metrics
to explain how and when attacker strategies are formed, enabling proactive
interpretation rather than retrospective outcome assessment.
Practical Use for Cybersecurity Experts. Although designed for RL ex-
plainability, our framework offers operational benefits for security teams planning
for future agentic threats. As autonomous attackers become more sophisticated,
defenders must understand not only what an agent does but also how it learns and
adapts. Our framework enables defenders to anticipate attacker intent by high-
lighting when and where adversarial strategies shift, especially during red-team
development or simulation-based training.

Example: In a simulated environment like CC500, defenders might observe
that a DQL agent consistently spikes in transition priority around 15k and 25k
iterations, signalling key learning updates such as credential pivoting. This insight
helps teams identify likely escalation paths and optimal timing for deploying
decoys or adjusting access controls. While such data are not available in live
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attacks, it supports red-team preparation and AI adversary modelling by revealing
which phases of attack progression are most adaptive.
Practical Use for ML Model Developers. For developers of RL-based cyber
agents, this framework serves as a diagnostic tool for understanding training
behaviour. It enables:

– Visualisation of Q-value trajectories to trace emerging action preferences,
– Identification of key transitions via TD-error spikes and PER prioritisation,
– Detection of brittle convergence or excessive determinism in policies,
– Evaluating exploration strategies by behavioural richness over performance.

These insights are especially valuable in partially observable settings like Cyber-
BattleSim, where agent performance may hinge on sparse rewards and incomplete
visibility. Our framework supports more interpretable, resilient policy development
by shedding light on not just what the agent learns, but how and when.
Limitations and Future Work. While CyberBattleSim offers a controlled
and extensible environment, it simplifies many real-world complexities, such as
concurrent adversaries, deception-aware agents, and sophisticated evasion tactics.
Moreover, CyberBattleSim’s network architecture, while valuable for controlled
experimentation, is relatively simple and lacks the heterogeneity and complexity
of real-world enterprise networks, such as layered access controls, segmented
subnets, and diverse user behaviours. Additionally, our analysis currently focuses
on a single-agent attacker. Future work will extend this framework to multi-agent
scenarios, enabling analysis of competitive or cooperative dynamics between
attackers and defenders. We also plan to conduct user studies with security
analysts and red-teamers to refine how explanations are delivered, ensuring
insights are both technically sound and practically usable.

8 Conclusion

In this paper, we introduced a unified, multi-layer explainability framework for
demystifying the decision-making of RL-based attacker agents in cyber envi-
ronments. By combining MDP- and policy-level analysis, the framework offers
fine-grained, temporally grounded insights into how adversaries explore networks,
adapt, and exploit network vulnerabilities. Through experiments in CyberBat-
tleSim, we demonstrated how the framework reveals strategy shifts, learning
patterns, and decision inflection points often hidden in standard RL evalua-
tions. Unlike prior post-hoc or domain-specific work, our agent-agnostic approach
generalises to defender agents, enabling unified interpretation to both offensive
and defensive strategies. It equips red teams with visibility into how RL agents
develop adversarial tactics and offers blue teams a powerful tool to interpret and
counter evolving threats. This work lays the foundation for transparent, trust-
worthy, and operationally useful RL in cybersecurity. Future directions include
real-time integration, multi-agent extensions, and application in high-stakes AI
safety contexts.
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