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Abstract

Polysemanticity—where individual neurons encode multiple unrelated features—
is a well-known characteristic of large neural networks and remains a central
challenge in the interpretability of language models. At the same time, its implica-
tions for model safety are also poorly understood. Leveraging recent advances in
sparse autoencoders, we investigate the polysemantic structure of two small mod-
els (Pythia-70M and GPT-2-Small) and evaluate their vulnerability to targeted,
covert interventions at the prompt, feature, token, and neuron levels. Our analysis
reveals a consistent polysemantic topology shared across both models. Strikingly,
we demonstrate that this structure can be exploited to mount effective interventions
on two larger, black-box instruction-tuned models (LLaMA3.1-8B-Instruct and
Gemma-2-9B-Instruct). These findings suggest not only the generalizability of
the interventions but also point to a stable and transferable polysemantic structure
that could potentially persist across architectures and training regimes. Code and
data are available here.

1 Introduction

Polysemanticity refers to the phenomenon in which individual neurons or groups of neurons in
neural networks often encode a greater number of distinct features or concepts than the number
of neurons involved. This property becomes increasingly prevalent as models scale and has been
shown to enhance learning performance (Wang et al., 2024; Marshall & Kirchner, 2024; Oikarinen
& Weng, 2024b). Anthropic’s work on superposition builds on prior insights, showing that large
transformer models encode more features than neurons by using linear combinations of activations.
This mechanism sacrifices monosemanticity but significantly improves model intelligence (Elhage
et al., 2022). Mathematical analyses reveal that polysemantic neurons enable networks to represent
exponentially more features compared to monosemantic approaches (Elhage et al., 2022).

However, this representational efficiency comes with notable trade-offs. Most significantly, it
complicates model interpretability, as entangled representations obscure how human-understandable
concepts are encoded within the model’s internal structure. One mechanistic approach to address
this challenge is the use of sparse autoencoders (SAEs), which aim to disentangle superimposed
features by learning sparse, higher-dimensional representations of model activations. This enables the
extraction of more interpretable, monosemantic features, where each SAE neuron ideally corresponds
to a single concept (Bricken et al., 2023; Templeton et al., 2024)2. Recent work has shown that
SAE-derived features exhibit a degree of universality across different LLMs (Lan et al., 2024),
suggesting the existence of fundamental patterns in how neural networks encode meaning. This
consistency hints at the emergence of shared semantic topologies that persist across architectures and
training regimes, raising profound questions about whether these patterns are merely computational
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2Nevertheless, several studies have also documented important limitations of SAEs (see Appendix J).
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artifacts or reflections of deeper structures in the world of meanings (Huh et al., 2024). Beyond SAEs,
a broader range of interpretability techniques is emerging (Chang et al., 2025; Dunefsky et al., 2024)

The second trade-off, which is largely overlooked in current literature, involves systematic risks
stemming from polysemantic structures in language models. In Anthropic’s toy experiments, they
briefly note that stronger superposition can make models more vulnerable to adversarial attacks
(Elhage et al., 2022). Beyond this, to our knowledge, there is very little existing empirical research that
directly addresses the safety implications of polysemanticity in LLMs. In contrast, the vision model
domain has a well-established body of work on various forms of attacks that exploit polysemantic
representations (Goh et al., 2021; Oikarinen & Weng, 2024a; Geirhos et al., 2023; Dreyer et al., 2024;
Huang et al., 2022). Bereska and Gavves, in their review of mechanistic interpretability for AI safety,
highlight polysemanticity as a key challenge in building safer LLMs (Bereska & Gavves, 2024). To
address this gap, we focus on polysemantic structures in LLMs—particularly those that persist across
models—and explore targeted interventions to better understand their associated risks.
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Figure 1: Conceptual illustration. Two vulnerable polysemantic structures are described: (1)
features are distinct in M (e.g., E and G) can still interfere in A and (2) features are often unevenly
distributed across neurons (i.e., neuron A encodes more features than B and C).

Before explaining the details, it is necessary to distinguish three nested representational domains:

Human Symbolic Manifold (M): The real but largely unobservable space of meanings.

Model Activation Space (Aℓ): The d-dimensional vector space spanned by the neurons in layer ℓ of
the LLM; it is the model’s learned approximation of M.

Sparse Feature Basis (Fℓ): The k-dimensional, typically overcomplete basis (k ≫ d) extracted
from Aℓ by a SAE.

As illustrated in Figure 1, orthogonality in the activation space Aℓ does not persist after projection
into the symbolic manifold M. Consequently, two features from Fℓ that appear uncorrelated
in M (i.e., semantically unrelated under human interpretation) can still interfere substantially in
Aℓ. This interference is also often unevenly distributed across neurons. Building on these two
structural vulnerabilities, we design feature, token, prompt, and neuron levels of intervention to
investigate: (1) whether model’s expression on a target is sensitive to features and tokens that are
semantically unrelated but interfering, and (2) whether model sensitivity correlates with neuron
polysemanticity, defined as the number of distinct features a neuron encodes. In this work, model
sensitivity to interventions is measured by the shift in the next-token prediction distribution following
the intervention.

Our findings are three-fold. Most importantly, we present experimental evidence that interven-
tions leveraging polysemantic structures of LLMs can effectively and covertly alter model outputs.
Specifically, by targeting features and tokens—via steering vector techniques—and prompts—via
prompt injection—that are not semantically aligned with the intended target but interfere with it,
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we can reliably induce the model to express the desired semantics. Secondly, we identify the exis-
tence of cross-model persistent polysemantic structures. By collecting shared interference features
from both Pythia-70M and GPT-2-Small and applying them to steer LLaMA-3.1-8B-Instruct
and Gemma-2-9B-Instruct, we still observe substantial intervention effectiveness, revealing a
consistent architecture of meaning that transcends specific implementations. Finally, we analyze inter-
vention at the neuron level and find that highly polysemantic neurons are more vulnerable: modifying
their activation leads to greater semantic shifts in model output. However, for “super-neurons” (i.e.,
activated by over 500 features) amplification strongly alters model behavior, while deactivation has a
notably reduced effect, suggesting they may serve as critical junctions in the semantic architecture.

2 Preliminaries and Methods

2.1 Sparse Feature Extraction with SAEs

Our initial exploration of polysemantic structures draws on the pre-trained SAEs provided by Neu-
ronpedia3. We focus on GPT-2-Small and Pythia-70M, the two models for which Neuronpedia
supplies SAEs for the most important sub-modules in every layer. The dimensionality of all the
provided SAEs is 32, 768, under which explicit features are extracted. For clarity in subsequent
sections, the direction of a feature is defined as its projection into Aℓ. The interference between two
SAE features in Fℓ is quantified by the cosine similarity of their directions; the semantic relatedness
of them is measured by the cosine similarity of their projection into M instead.

2.2 Distinct Feature Identification with Agglomerative Clustering

SAEs disentangle polysemantic neurons into monosemantic sparse features, these features, however,
are not always decomposed at a consistent semantic level (Bricken et al., 2023; Foote, 2024). For
example, a neuron associated with dog-related concepts might be divided into features representing
different dog breeds, while another neuron encoding both cat and car concepts might be split into
features representing cat and car. In such cases, the resulting features differ in granularity. To
mitigate this inconsistency, we employ agglomerative clustering to align feature representations to a
consistent semantic level, facilitating both (1) the quantification of neuron polysemanticity and (2)
the extraction of semantically distinct feature groups for subsequent analysis.

To achieve distinct, higher-level features, we first compute the semantic relatedness between SAE
features, based on their auto-interpretation generated using GPT-4o-mini (Caden Juang et al., 2024).
We perform agglomerative clustering in each layer with a relatedness threshold of 0.5. Figure 2 shows
an example of the clustering results for the 5th MLP layer of Pythia-70M. Filtering the connections
with strength below 0.2 and counting the number of aggregated features with which the neurons are
aligned, we find that fewer than 5% of the neurons exhibit polysemanticity in each layer on average,
as shown in Figure 15.

2.3 Dataset Construction

We construct tailored contextual prompts for each vocabulary token. Specifically, for each token
in Pythia-70M and GPT-2-Small, we use DeepSeek-V3 to generate three incomplete sentences
with varied contexts in which the token is likely to appear next, resulting in a sentence-completion
dataset containing 150, 000 prompts for each model. More concrete considerations and details of our
dataset generation are stated in Appendix D. In a word, we conduct interventions in specific contexts
to influence the output probability of the target token associated with a SAE feature.

2.4 Evaluation Criteria

The effectiveness of intervention is evaluated based on the changes of relatedness between the model’s
next-token prediction and SAE feature’s top-activating token. In our work, we apply four metrics to
quantify the shift in relatedness.

Weighted cosine similarity(c): Similarity st between a single token t ∈ T and a token set T̄
is computed as the maximum cosine similarity between token embeddings of token t and t̄ ∈ T̄ .
Providing a weight wt for each t, the weighted cosine similarity c(T, T̄ ) between two token set T
and T̄ is then computed as Σt∈T st · wt.

3https://www.neuronpedia.org/
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Cluster A

CODING

(30790) programming instructions and code-related 
queries
(9395) computer programming syntax and commands
(21955) keywords related to programming constructs…

LAW

Cluster B

(22710) contents related to legal actions and proceedings
(31998) terms related to legal jurisdictions…
(905) topics related to lawsuits and legal actions

BIOCHEMISTRY

HEALTH

LICENSE

Cluster C

(9280) terms related to medical symptoms and conditions…
(23104) medical conditions related to diagnostics and testing
(18087) terminology and concepts related to surgical and 
health management procedures

Cluster D

(8179) mentions of "License" in various contexts
(32158) components related to software licensing and copyright
(31425) references to software licenses and legal terms…

Cluster E

(25566) references to biological assays and testing methodology
(7809) scientific terms related to medical and biological processes…
(32492) terms related to biochemical parameters and substances 
involved in metabolic processes

Figure 2: Agglomerative clustering of SAE features trained on Pythia-70M’s 5th MLP layer.
Only the five largest feature clusters are labeled, and the 10 largest clusters are color-coded.

Kendall’s Tau (τ ): Kendall’s Tau τ(T, T̄ ) of two token sets is computed based on the intersection
T ∩ T̄ , where token ranks are determined by their positions in T and T̄ . The absolute value is reported,
i.e., |τ |.
Spearman Correlation (ρ): Using the same intersection set T ∩ T̄ , we compute Spearman rank
correlation coefficient between the ranks of tokens in T and T̄ . The absolute value is reported: |ρ|.
Weighted overlap(w): Providing a weight wt for each t ∈ T , the weighted overlap w(T, T̄ ) of two
token sets T and T̄ is computed as Σt∈T∩T̄wt.

We limit the scope of our analysis on model’s next-token output to the top-10 predictions, among
which the next token is mainly determined. The outputs of model before and after the intervention
are then denoted as O and Õ, while the prediction probabilities of tokens are computed as the weight
values mentioned above. The token set Tt of a target SAE feature to be intervened consisting of the
vocabulary tokens with highest cosine similarities of token embeddings with its top-activating token.
The effect of intervention thus can be quantified by the improvement in these four metrics before and
after conducting the intervention, e.g. c(Õ, Tt)− c(O, Tt).

2.5 Overview of Intervention Methods

Our study of polysemantic intervention starts from Pythia-70M and GPT-2-Small in three different
ways: steering with feature direction, steering with token gradient direction, and prompt
injection. We first randomly select target features to be intervened4. For each selected target
feature, we sample interference features from feature clusters derived from Section 2.2—excluding
the target’s own cluster—to ensure large semantic distance. Interference features are drawn from
several predefined interference intervals: [0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], and [0.4, 1.0]. In
the previous two studies, the steering vectors are obtained through two ways respectively: employing
their feature directions by projecting Fℓ to Aℓ or directions consisting of the gradients computed from
the related layer’s neurons with respect to their top-activating tokens. We scale these vectors within
the range [−20, 20] to maximize improvements in the four metrics stated above. For prompt injection,
we inject sampled top-activating tokens of interference features into the prompt and compare the
success rate of elevating target features’ top-activating ones to top-10 predicted tokens list across

4We randomly sample 450 target features from GPT-2-Small and 1, 200 from Pythia-70M.
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different interference levels. Subsequently, we apply the latter two scalable ways to larger models
LLaMA3.1-8B-Instruct and Gemma-2-9B-Instruct, which don’t have pre-trained SAEs. For the
target features, we utilize interference features shared between Pythia-70M and GPT-2-Small for
intervention. Last but not least, we analyze the impact of neuron polysemanticity on model’s output
in Pythia-70M and GPT-2-Small. The strongly connected polysemantic neurons are identified
by filtering out connections with strength below 0.2. Then, the degree of neuron polysemanticity
is defined by the number of aggregated features the focal neuron connects to. By suppressing or
boosting the activation of neurons with different degrees of polysemanticity, we evaluate the shift of
output to the semantics of their aligned aggregated features.

3 Experiments

3.1 Exploiting SAE Feature Directions for Intervention

As described above, we sample interference features for each target feature from different interference
levels. More experimental details are elaborated in Appendix F. For each interference-target feature
pair, we scale the steering vector to maximize the effectiveness of the intervention. Figure 3 reports
the averaged results, and Table 1 shows particular examples.

Pythia-70M

GPT-2-Small

Figure 3: Effects of activation engineering based on interference feature direction. The x-axis
shows steering on the target feature and unrelated features with increasing interference. Error bars
show standard errors. ***, **, and * denote t-test significance at p < 0.001, p < 0.01, and p < 0.05
vs. the random baseline (i.e., random feature directions).

For comparison, we include the target feature’s own direction as a steering vector (i.e., with an
interference value of 1.0). The results support our hypothesis: steering with semantically unrelated
but interfering features can influence the output probability of the target’s top-activating tokens, with
stronger effects observed for higher interference values. We also find that SAE-based interventions
are generally less effective on GPT-2-Small than on Pythia-70M, likely due to the former’s greater
depth, which may dilute the impact of activation changes (Fort, 2023).

Finding 1: Steering with directions of distinct features that interfere with a target can
significantly amplify the model’s output on the target feature.

3.2 Steering with Gradient Vector for Token Intervention

In this experiment, to compare the intervention performance between SAE feature directions and
gradient vectors, we use the same target and interference features in the previous experiment for
tests. Also, the steering vector is scaled within the same range. As shown in Figure 4, using token
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gradients as steering vectors on GPT-2-Small yielded better results than using feature directions.
Intriguingly, when applying token gradient-based steering vectors to Pythia-70M, the relationship
between interference scale and intervention effectiveness is flattened. This may be attributed to the
fact that token gradients are independent of SAE-defined interference levels, and that SAE features
can exhibit a degree of arbitrariness (Paulo & Belrose, 2025; Heap et al., 2025).

Pythia-70M

GPT-2-Small

Figure 4: Comparing effects of activation engineering via SAE direction and gradients vector.
The x-axis follows the same definition as in Figure 3, but attack vectors are derived from token
gradients instead of SAE decoder weights. Error bars indicate standard errors. ***, **, and * denote
t-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, compared to the random
baseline (i.e., random token gradient directions).

Finding 2: Steering highly activating tokens from distinct but interfering features based on
gradient directions can significantly amplify the model’s output on a target feature.

3.3 Prompt Injection for Inference Time Intervention

The number of ways to inject n tokens into a prompt grows super-exponentially with n, making
optimization costly. Here, we apply a straightforward method by prepending 10 selected tokens
to the prompt, allowing their influence to propagate during inference, affect the activation of the
target feature, and ultimately impact the model’s output. To assess the generality of our findings,
we test two types of target tokens: location names and concepts with strong semantic polarity (e.g.,
“hate” or “love”)5. For each target set, we identify the corresponding SAE features and extract the
top-activating tokens from features with either high or low interference. In addition to these, we
include two baseline sets for comparison: a random token set and the original target token set. For
each prompt, we sample injection tokens 100 times and compute the success rate as the proportion of
runs where target-type tokens are elevated into the top-10 predictions. Table 1 presents representative
examples and Table 2 shows macro statistics. As shown, high-interference tokens are more effective
at elevating target-related tokens into the top-10 predictions than low-interference or random tokens,
though still much less effective than directly prepending the target’s tokens.

Finding 3: Injecting top-activating tokens from distinct but interfered features into prompts
can significantly amplify the model’s output on a target feature.

5The rationale for selecting these two features is detailed in Appendix H.1
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Table 1: Examples of interventions using SAE features, token gradients, and prompt injections

Type Model Intervention Target feature Result

Feature Pythia-70M Steering feature
vector: occur-
rences of specific
surnames

Geographical loca-
tions

“In the next week, we will go to”
↑ Entered ↓ Dropped

Berlin +0.025 our -0.029
London +0.012 some -0.012
To +0.010 an -0.010

GPT-2-Small Steering feature
vector: positive
or negative event
outcomes

Expressions of sad-
ness

“After hearing the bad news,
she felt incredibly”

↑ Entered ↓ Dropped
grateful +0.051 bad -0.047
blessed +0.028 guilty -0.044
excited +0.028 uncomfortable -0.025

Token Pythia-70M Steering token vec-
tor: legal terminol-
ogy related to li-
censes and their im-
plications

Elements related to
political commen-
tary and critique

“In the election of this year, it
is suggested to vote for”
↑ Entered ↓ Dropped

Donald +0.030 an -0.020
more +0.026 one -0.015
@ +0.015 President -0.013

GPT-2-Small Steering token vec-
tor: key terms re-
lated to prices and
transactions

References to loca-
tion Tokyo

“The organizing committee just
announced that the upcoming

finals will be held in”
↑ Entered ↓ Dropped

Tokyo +0.005 Toronto -0.007
Seoul +0.003 Seattle -0.005
Moscow +0.004 London -0.001

Llama-3.1-
8b-Instructed

Steering gradient
vector: references
to the world and its
various aspects

References to
‘Switzerland’

“I would like to recommend you
to spend holidays in”

↑ Entered ↓ Dropped
Switzerland +0.16 Italy -0.034
Germany +0.089 Greece -0.016
Canada +0.015 Bulgaria -0.012

Prompt Pythia-70M Injection of the to-
kens “Court” and
“Dat”, both before
and within the text

References to loca-
tions

“In the upcoming holiday, we will
go to”

↑ Entered ↓ Dropped
Japan +0.021 some -0.014
Europe +0.015 an -0.006
Tokyo +0.012 see +0.003

GPT-2-Small Prepending the in-
jection text “(team
writers writers)”

Terms related to
names or surnames

“After years of hard work, the award
finally went to”

↑ Entered ↓ Dropped
Steve +0.005 China -0.006
John +0.002 waste -0.005
one +0.003 Donald +0.003

Llama-3.1-
8b-Instructed

Prepending the in-
jection text “(place-
ment from place-
ment)”

References to loca-
tions

“In the next weekend we will go to”
↑ Entered ↓ Dropped

Paris +0.011 another -0.013
** +0.010 H -0.003
- +0.006 K -0.003

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.

3.4 Generalization of Vulnerability

Since token gradient-based and prompt-based interventions do not rely on pre-trained SAEs, they
can be applied to models without access to detailed internal representations. To demonstrate this, we
target the LLaMA3.1-8B-Instruct and Gemma-2-9B-Instruct models, reusing the two targets
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Table 2: Comparing intervention effect of prompt injection
Target Model Original High-interference Low-interference Random

Locations Pythia-70M 49.74%*** 31.05%*** 21.76% 22.87%
GPT-2-Small 39.92%*** 19.05%*** 14.74% 13.54%

LLaMA3.1-8B-Instruct 47.62%*** 27.64%*** 20.05% 20.33%
Gemma-2-9B-Instruct 39.21%*** 26.68%*** 15.39% 15.45%

Hate/Love Pythia-70M 23.67%*** 5.48%*** 4.00%* 3.39%
GPT-2-Small 38.08%*** 10.27%*** 7.34%** 6.23%

LLaMA3.1-8B-Instruct 56.08%*** 11.24%*** 6.44%* 5.70%
Gemma-2-9B-Instruct 50.79%*** 12.27%*** 7.34% 7.02%

Note: Cell values show the success rate of elevating target-type tokens into the top-10 predictions.
Gray-shaded rows indicate black-box interventions. Testing uses a shared token set from the two small

models. ***, **, and * denote z-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, vs.
random baseline. High- and low-interference tokens lie in [0.5, 1.0] and [0.2, 0.5]. Details in Appendix H.3.

from the prompt injection experiment. We focus on the top-activating tokens of features that interfere
with the targets, and identify those shared across both Pythia-70M and GPT-2-Small. For example,
Pythia-70M contains 1,309 tokens with interference values above 0.5 for location-related features,
while GPT-2-Small has 932 such tokens; their intersection includes 193 shared tokens.

We apply token gradient-based intervention to LLaMA3.1-8B-Instruct and, notably, by extracting
steering vectors through random sampling of only one high-interference features’ top five activa-
tion texts, we could boost the presence of relevant tokens in the top-10 prediction list with over
95% success rate. Prompt injection interventions are tested on both LLaMA3.1-8B-Instruct and
Gemma-2-9B-Instruct. As shown in Table 2, high-interference tokens derived from the two small
models can steer both larger models more effectively than random baselines. In hindsight, these
results suggest that shared polysemantic structures observed in small models also extend to larger
models, indicating generalized vulnerabilities that persist across architectures and training regimes.

Finding 4: The success of black-box attacks from small to large models reveals transferable
polysemantic structures and highlights weaknesses in model robustness.

3.5 Manipulating Activations for Neuron Intervention

To complete our discussion, we also explore models’ vulnerability to interventions on individual
neurons. Specifically, we investigate how the degree of polysemanticity in neurons affects the output.
For the aggregated features obtained in Section 2.2, we analyze their connections with neurons. Here,
we only involve neuron-feature pairs with a connection strength greater than 0.2. Among the filtered
neurons, those connected to only one or two aggregated features account for more than 33% in
strongly connected neurons, as shown in Figure 15. In addition to neurons connected to multiple
or dozens of aggregated features, there are also some “super-neurons” with connections exceeding
500. We examine the impact of manipulating these neurons on the model’s output. The experimental
results indicate that neurons with higher degrees of polysemanticity are more vulnerable, which
means they tend to affect the model’s output more effectively. However, for certain “super-neurons,”
the impact on the model is notably asymmetric: masking them results in even less influence than
neurons with lower polysemanticity, while amplifying their activations often leads to exponentially
greater effects on model behavior.

Finding 5: Neurons with higher polysemanticity have greater influence on model
outputs, with “super-neurons” showing an asymmetric effect.

4 Discussion

In this paper, we investigate the sensitivity of LLMs to structured interventions grounded in their
polysemantic representations. Specifically, we examine three types of interventions: (1) feature
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Pythia-70MGPT-2-Small

Figure 5: Effects of activating and deactivating neurons by polysemanticity level. The x-axis
shows neuron groups from monosemantic (left) to “super-neurons” (right). “Drop” and “increase”
refer to masking and amplifying activations. The y-axis shows the change in weighted cosine
similarity. Error bars indicate standard errors.

direction-based, (2) token gradient-based, and (3) prompt-based. Feature direction interven-
tions rely on SAEs. While less effective than gradient-based approaches, they form the basis for
deriving token gradient vectors. Token gradient-based interventions are more effective and can be con-
structed directly from activation texts, without requiring SAE pre-training—though they do assume
access to internal activations. Prompt-based interventions require minimal access and, despite their
surface-level nature, still yield meaningful behavioral shifts. Additionally, we explore neuron-level
interventions, motivated by the uneven distribution of features across neurons. We find that the
behavioral impact of masking and amplification correlates with neuron polysemanticity. Notably,
we identify a class of “super-neurons,” those encoding over 500 features, for which amplification
significantly alters model behavior, while deactivation results in a markedly reduced effect.

Our findings further show that shared polysemantic structures identified in the two small models
can be transferred to guide token- and prompt-level interventions in larger, instruction-tuned black-
box models such as LLaMA-3.1-8B-Instruct and Gemma-2-9B-Instruct. This suggests that
certain polysemantic features are preserved across architectures and training regimes, exposing
a shared representational basis that allows behavioral modulation even without access to internal
weights. Notably, this challenges prevailing theories that treat polysemanticity as an incidental
artifact of training (Marshall & Kirchner, 2024; Lecomte et al., 2023), which cannot account for
the generalization we observe across models. These results raise deeper questions about the nature
of polysemanticity in LLMs: are these structures unintended byproducts, or do some of them
reflect stable, higher-order organizational patterns? Our findings also strengthen recent evidence of
representational consistency and topological stability across models (Huh et al., 2024; Wolfram &
Schein, 2025; Lee et al., 2025), even as the origins and functional implications of this consistency
remain open challenges.

Our work is among the first to systematically evaluate polysemantic vulnerabilities in LLMs, but it has
several limitations, including the range of model sizes tested, intervention depth, and transferability
robustness. We discuss these limitations and ethical considerations in Appendix J.

5 Conclusion

This study systematically investigates the sensitivity of LLMs to structured interventions grounded in
the polysemantic representations of two small LLMs. Leveraging SAEs, we show that model behavior
can be steered toward specific feature directions by manipulating unrelated but interfering features
using three intervention methods. We further show that token- and prompt-based interventions derived
from shared polysemantic structures in small models can transfer effectively to larger, black-box
models. This points to a stable and transferable polysemantic topology that persists across model
architectures and training regimes. Finally, by analyzing the uneven distribution of features across
neurons, we examine model sensitivity to neuron-level manipulations across varying degrees of
polysemanticity, revealing an asymmetric effect in “super-neurons.” Our findings offer a foundation
for future work on the structural properties and representational robustness of LLMs.
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A Related Work

A.1 A Brief Review on LLM Adversarial Attacks

Over the past five years, a growing body of high-impact research has revealed that even aligned
LLMs remain vulnerable to a set of converging attack strategies. First, prompt-space jailbreaks
have evolved from handcrafted exploits into automated, highly transferable methods. For instance,
a single gradient-and-greedy–optimized “universal suffix” can consistently bypass refusal policies
in ChatGPT, Bard, Claude, and a wide range of open-source models—demonstrating both query
efficiency and cross-model generalizability (Zou et al., 2023). Second, activation-space steering
techniques like Contrastive Activation Addition (CAA) show that simple linear interventions in the
residual stream can steer behaviors such as hallucination, sycophancy, or toxicity with minimal
performance degradation (Panickssery et al., 2023). Third, parameter-space backdoors, such as the
Composite Backdoor Attack, embed stealthy triggers during fine-tuning that achieve near-perfect
malicious compliance without affecting standard benchmarks (Huang et al., 2023). Mechanistic
interpretability offers a unifying explanation: transformer activations encode more features than they
have dimensions, forcing representations into a compressed superposition and leading to widespread
polysemantic overlap (Elhage et al., 2022). Recent work with SAEs has begun to isolate—and in
some cases manipulate—these overlapping features directly (Nanda, 2024). Building on this insight,
our intervention targets SAE-derived polysemantic directions, integrating prompt-, activation-, and
neuron-level interventions into a unified, transferable framework that broadens the known landscape
of LLM vulnerabilities.

A.2 A Brief Review on SAE-based Intervention Techniques in LLMs

SAE-based interventions represent a promising direction for developing more interpretable and
controllable LLMs. Recent research have introduced a diverse set of SAE-based techniques, such
as clamping, patching, and causal tracing, applied across a range of use cases (?). Empirical results
indicate that these methods can be highly effective. For example, targeted unlearning via SAE features
has been shown to suppress undesired capabilities with fewer side effects than global fine-tuning
(Khoriaty et al., 2025), while feature-level steering enables more nuanced output control than prompt-
based methods alone (Rajamanoharan et al., 2024). A key advantage of SAE-based approaches is
their efficiency at inference time: they often require only a forward pass with lightweight vector
operations and typically do not require model retraining, making them well-suited for real-time
interventions.

However, the approach is still in its early stages. Key limitations include challenges in achieving
complete and disentangled feature representations, which depend heavily on SAE training quality
and selection procedures (Chanin et al., 2024). Computational overhead remains non-trivial, though
recent developments such as k-sparse autoencoders and JumpReLU activations offer promising
improvements in scalability (Rajamanoharan et al., 2024). There is also a growing need for standard-
ized evaluation benchmarks tailored to intervention methods. A unified benchmark would enable
more meaningful comparisons across studies. Currently, researchers often rely on custom evaluation
protocols, limiting cross-paper comparability.

In summary, SAE-based interventions offer a powerful mechanism for both understanding and
steering model behavior. They uniquely bridge interpretability and utility: not only can we decode
model activations into human-interpretable concepts (Cunningham et al., 2023), but we can also
use those same features to drive controlled behavioral change (Khoriaty et al., 2025). In this
work, rather than focusing on a specific downstream application, we leverage SAEs to investigate
structural sensitivities in LLMs—demonstrating that polysemantic features can serve as a substrate
for transferable, interpretable interventions. This perspective highlights the broader role of SAEs in
the design of more transparent and controllable AI systems.

B Impact Statement

This work systematically investigates a semantic vulnerability in LLMs rooted in polysemanticity—
where single neurons encode multiple unrelated features. We introduce four complementary ap-
proaches that expose this vulnerability: manipulating SAE-derived features, token gradients, and
prompts to steer model outputs via semantically unrelated inputs, and intervening at the neuron level
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to reveal a correlation between polysemanticity and output sensitivity. We also identify a class of
“super-neurons” whose amplification disproportionately alters model behavior, while masking them
has limited effect. These findings not only highlight the unique characteristics of structural fragility
of LLMs but also provide practical tools for probing and controlling their internal mechanisms.
Our work lays a foundation for future research in AI safety, enabling both defenses against such
vulnerabilities and the development of more efficient, targeted interventions for model alignment and
interpretability.

C Sparse Autoencoder Training

SAEs are a rapidly developing tool for probing the polysemantic structure of neurons (Shu et al.,
2025). Given the activation vector a ∈ Rdembed from a particular model layer, an SAE projects it into a
higher–dimensional sparse code f ∈ Rdsae in order to disentangle the multiple semantics that a single
neuron may simultaneously encode. The forward computation and the resulting feature definition f
are shown below:

f = ReLU
(
Wenca+ benc

)
,

ā = Wdecf + bdec.

The encoder and decoder parameters are

Wenc ∈ Rdsae×dembed , Wdec ∈ Rdembed×dsae , benc ∈ Rdsae , bdec ∈ Rdembed .

The SAE is trained by dictionary learning to minimize

L =
∥∥a− ā

∥∥ 2

2
+ λ

∑
i

fi
∥∥Wdec [·,i]

∥∥
2
,

where the first term is the reconstruction loss and the second encourages sparsity (weighted by λ).

For each feature fi, its direction in the embedding space is defined as the unit-norm decoder column.
Note that the activation can be represented as linear combination of feature directions. The semantics
of features are interpreted by large language models, such as GPT-4o-mini, based on their activation
texts.

ŵi =
Wdec [·,i]∥∥Wdec [·,i]

∥∥
2

.

D Dataset Generation

When conducting intervention, we do not expect to substantially interfere with every inference of the
model, but rather consider intervention in specific contexts, in which we will examine target tokens’
prediction probabilities. We require that the constructed sentences be grammatically capable of
deriving the target token so that we can check it in top-10 predictions without severely compromising
the model. In later sections, we will see that for tokens such as location names and personal names,
we can effectively interfere with the output of the corresponding sentences, which shows a potential
to produce hallucinations. Also, we need to point out that more specific and general intervention can
be achieved by first listing a set of sentences within that context and then identifying possible ways to
interfere with each of them. The prompt to generate the dataset is shown below.

System: Generate exactly 3 incomplete English sentences where the next word would
clearly be "target_token". Return a JSON dictionary where:
- The ONLY key is the exact "target_token" (including spaces/capitalization) - The
value is a list of 3 sentence fragments that naturally lead to "target_token"
Example for "target_token=‘ apple’":
{
" apple": [
"She reached into the basket and grabbed",
"The teacher pointed to the red",
"He washed and polished his"
]
}
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Rules:
1. All sentences MUST grammatically require "target_token" next to it
2. Use different contexts / scenarios for variety 3. Maintain exact formatting -
no additional keys or explanations
User: target_token={token}

We also use DeepSeek-V3 to roughly classify the token types:
System: Analyze a token target_token from Pythia/GPT2-Small’s vocabulary and return
its type in EXACT JSON format:
{
"[target_token]": {
"type": "[token_type]",
}
}
Token Type Rules:
1. "verb": Action words (e.g., "run", "Ġjumping")
2. "location": Place names (e.g., "ĠParis", "ĠTokyo")
3. "person": Names of people/roles (e.g., "ĠJohn", "Ġteacher")
4. "object": Physical objects (e.g., "Ġapple", "Ġtable")
5. "other_noun": Other nouns not in above categories
6. "adjective": Descriptive words (e.g., "Ġhappy", "Ġred")
7. "single_letter": Single characters (e.g., "A", "z")
8. "prefix": Word parts (e.g., "Ġun", "Ġpre")
9. "other": Symbols/punctuation or unclassifiable tokens
User: target_token={token}

Here we provide a table of some example tokens and their sentences generated by DeepSeek-V3
(See Table 3).

E Supportive Statistics

Active features refer to SAE features that have input texts enabling them to reach an active state.
In addition to the semantic clustering of active features mentioned in the main text, we also apply
agglomerative clustering to cluster their interference values. The threshold for dividing clusters is set
to 0.5. As shown in Figure 7, the vast majority of clusters contain only one feature, indicating that
only a small number of features exhibit high interference with each other.

Figure 6: Average number of active features extracted by SAE per Layer
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Table 3: Token type and prompt sentences examples
Token Type Sentence Examples
London location After a long flight, we finally arrived in

The train from Paris was heading straight to
She always dreamed of visiting the historic city of

harbor location The cruise ship slowly approached the bustling
Fishermen gathered at the edge of the protected
The city’s economy thrived thanks to its busy

Mike person After the meeting, everyone turned to
The teacher called on
She handed the report directly to

Trump person The media has been closely following the latest statements from
During the debate, the moderator asked a direct question to
Many supporters gathered outside the venue to catch a glimpse
of

expert person After years of practice, she became an
The company hired an
When it comes to antique furniture, he’s an

loves verb She truly believes that everyone
The way he looks at her shows how much he
Despite their differences, their friendship

hates verb Everyone knows that she
The way he treats people shows he
It’s clear from his expression that he

apple object She reached into the bag and pulled out
The smoothie recipe called for one chopped
He carefully balanced the shiny red

sad adjective After hearing the bad news, she felt incredibly
The movie’s ending left everyone feeling
His eyes told a story of being deeply

happy adjective After receiving the good news, she felt extremely
The children were laughing and playing, clearly very
Winning the competition made him incredibly

F Intervention Test with Feature Direction

F.1 Generalized Formulation of a Steering-Vector Intervention

Let x1:T ∈ {1, · · · , V }T be the input sequence, E ∈ RV×d be the token-embedding matrix, and G1

to GL be the blocks of a decoder-only Transformer. The unperturbed hidden states are

H0 = E[x1:T ], Hℓ = Gℓ (Hℓ−1) (ℓ = 1, . . . , L).

For any layer index p, we denote the vectorized activation as

Ap = vec (Hp) ∈ Rd×T .

With different strategies, we extract the steering direction zp ∈ Rd×T . For injection at site s, we
define the linear Jacobian:

Φp→s : Rd×T → Rds

obtained by composing linear portions between indices p and s. The transported steering direction is

zs =

{
Φp→szp, if s > p

Φ†
s→pzp, if s < p

where † denotes the Moore–Penrose pseudo-inverse. When s = p, we set zs = zp. Eventually, we
modify the activation at site s:

Ãs = As + αzs.

The network proceeds normally with this perturbation, yielding modified hidden states H̃ℓ and logits
ỹ1:T .
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Figure 7: Interference Cluster Size Distribution

F.2 Experiment Details

Our hypothesis posits that if two feature directions interfere in Aℓ, despite being nearly orthogonal
in M, then enhancing one will inevitably encode some information of the other one into activation
space. If true, this would imply the potential to covertly manipulate the output probability of a target
feature by steering the model with seemingly unrelated features. However, we need to point out
that multiplying the direction of the interference feature by a scale parameter and adding it to the
activation layer within a certain range doesn’t always increase the probability of the target feature’s
top-activating token in the prediction list. Moreover, we also observed that because the interference
feature has the highest interference value of 1 with with itself, it also increases the probability of its
own top-activating tokens in the output. Sometimes, the output leans more toward the interference
feature, which compromises our examination of the impact on the target feature in the top-10 output
tokens. Therefore, to focus on studying the influence of semantically different features on the target
feature, we separately calculated the similarity between the output and the top-activating tokens of
either the target feature or the interference feature in our metrics. If the similarity with the latter
exceeds that with the former, it indicates that the semantics are steered toward the interference feature,
and we exclude such results from our statistics.

In the specific experiment, we note that features having an interference feature with value above 0.4
constitute only a small proportion. Additionally, high-interference features are mostly semantically
similar, which does not align with our research purpose on the mutual influence of different semantics.
Therefore, to ensure the richness of high-interference samples in the sampling process, we first select
target features from clusters generated based on interference value and then choose interference
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features for them, also ensuring that the interference features differ both semantically and in terms of
top-activating tokens from the target features. Next, we search for other interference features with
low interference values to the target features for experimentation. Specifically, other interference
features are selected based on the interference values lying in intervals:[0.0, 0.1], [0.1, 0.2], [0.2, 0.3]
and [0.3, 0.4]. The scale parameter was tested within the range of [−20, 20], and we avoide larger
ranges to prevent severe disruption of the model.

Due to limitations on computational power, we sample clusters and features across various layers. In
each experiment with Pythia-70M, we sample 450 target features and collect approximately 2,000
interference features. In each experiment with GPT-2-Small, we sample 1,200 target features and
collect approximately 5,000 interference features. As mentioned in the main text, for each feature, we
focus on its top-activating token and use DeepSeek-V3 to generate three prompt sentences for it. For
each sentence, we test within the aforementioned scale range and record the result with the greatest
improvement in the four metrics. This result means the best performance that the steering vector
can achieve to induce the semantic of output toward target feature without significantly disrupting
the model. And the final four metrics are averaged across all sentences for all features. To show the
robustness of our experiments, more results are listed below.

Figure 8: Replications of the feature-level intervention on sampled features for GPT-2-Small.
Each row is an independent experiment. The target and interference features are all sampled randomly.
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Figure 9: Replications of the feature-level intervention on sampled features for Pythia-70M.
Each row is an independent experiment. The target and interference features are all sampled randomly.

G Intervention Test with Token’s Gradient

G.1 Token Gradient Direction Extraction

Given a tokenized input sequence x = [x0, . . . , xT−1], let ei = E[xi] denote the embedding of token
xi, and e = [e0, . . . , eT−1] the full input embedding sequence. Let fℓ : RT×d → AT

ℓ denote the
model’s transformation up to layer ℓ. The activation at position i is:

aℓ,i = fℓ(e)[i] ∈ Aℓ.

We define a scalar probe loss that selects this activation via a linear projection vector v ∈ Rd:

L = ⟨aℓ,i, v⟩.

The gradient of this loss with respect to the input embedding ei is:

gℓ,i :=
∂L
∂ei

=
∂⟨aℓ,i, v⟩

∂ei
.
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We then normalize this vector to obtain a direction in embedding space:

ĝℓ,i :=
gℓ,i

∥gℓ,i∥2
.

We refer to ĝℓ,i as the token gradient direction—the direction in input embedding space along which
perturbations to token xi most increase its activation in Aℓ along v.

G.2 Experiment Details

Steering with the feature direction requires a pretrained sparse auto-encoder of the target model,
which incorporates substantial computational costs and lacks scalability. To break this limitation,
we need to explore a general approach. Observe that the SAE features are activated mainly by the
top-activating token in its activation texts, while other tokens are just diluting its expression. Based
on this observation, we can obtain a better steering vector by focusing on this particular token, and
a sketch is as follows. We first feed the feature’s activation text into the model, then compute the
gradients of the top-activating token with respect to all neurons in the layer. The resulting gradients
are combined to form a vector.

The SAE dataset from Neuronpedia contains approximately 50 activation text segments per active
SAE feature, each strongly activating its corresponding feature. Due to computational limitations,
we try to extract the gradient vectors from the first 3 activation texts of each feature. To enable
direct comparison with feature-direction vectors, experiments are conducted on the same target
and interference features in the above section. Also we scale the vector within the same range
[−20, 20]. Additional experimental results are presented below. Each with steering with token
gradients combined with steering with feature directions can be done in one hour and a half for
Pythia-70M and six hours for GPT-2-Small, running on a single thread of Intel i7-14700K.

H Black-Box Interventions on Larger Models

We hypothesize that the polysemantic structures learned by large language models may exhibit some
degree of generalizability. To explore this further, the interference study is extended to larger models
without pretrained sparse auto-encoders.

H.1 Target Selection

We deliberately focus on two feature families—(i) location names and (ii) the polarity antonyms
“hate” / “love”—because they satisfy three practical and conceptual criteria that make them ideal
first-round probes of polysemantic vulnerabilities.

High corpus frequency, low internal polysemy. Most large-scale text corpora mention both world
cities/countries and the verbs hate/love thousands of times, giving the SAE a rich activation signal,
yet each term carries a relatively unambiguous core meaning. This minimizes confounds from “target
drift” when we measure probability shifts.

Complementary linguistic classes. Locations are concrete named entities rooted in external knowl-
edge, whereas hate/love are abstract affective predicates that drive sentiment. Showing transferable
interference for both a proper-noun category and an emotional-valence category demonstrates that
the vulnerability is not restricted to a single part of speech or semantic field.

Policy relevance. Manipulating geographic references risks misinformation about real-world facts
(“The capital of X is...”), while manipulating strong sentiment verbs directly impacts toxicity and
persuasion. Successful steering of these tokens therefore highlights two distinct, societally significant
threat surfaces-factual reliability and affective bias.

Together, these criteria make locations and hate/love a parsimonious yet representative pair for an
initial, systematic evaluation; expanding to additional categories is an important next step once the
core risk is established.

H.2 Steering with Token Gradient Vector

The scalable intervention on LLaMA3.1-8B-Instruct is conducted by first selecting target type
tokens as mentioned above and identifying target features in Pythia-70M and GPT-2-Small for
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Figure 10: Replications of the token-level intervention on sampled features for GPT-2-Small.
Each row is an independent experiment. The target and interference features are all sampled randomly.

which these tokens are the top-activating ones. The two interference feature sets in Pythia-70M
and GPT-2-Small with respect to the target features are then identified. Next, we collect the top-
activating tokens in two models respectively, and compute the intersection. The figure12 shows
a sketch of the shared interference tokens across two models. From the token cloud map, we can
observe that high-interference tokens are often punctuation-like tokens such as line breaks. There
are also some tokens with specific meanings, which may be related to certain target tokens in daily
context.

After getting the tokens, we proceed to collect the activation texts, which may activate interference
features of the target in black-box models. Due to computational constraints, we only compute
gradients from and perform operations on the first half of residual layers in LLaMA3.1-8B-Instruct.
The intervention experiments are done for three target token types, each containing about 100
sentences. More intervention examples are listed below. It takes about 20 minutes for a single
RTX4090 GPU to find a highly effective gradient vector for steering.
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Figure 11: Replications of the token-level intervention on sampled features for Pythia-70M.
Each row is an independent experiment. The target and interference features are all sampled randomly.

Table 4: Examples of interventions on LLaMa3.1-8B-Instruct Using Token Gradient Vector

Type Intervention feature Result
location terms related to data and its presen-

tation
“After months of planning, our road

trip finally reached”
↑ Entered ↓ Dropped

New +0.017 an -0.006
Seattle +0.015 it -0.007
San +0.011 our -0.002

the verb “be” in various forms and
contexts

“She always dreamed of
owning a small cafe in”
↑ Entered ↓ Dropped

Vienna +0.080 France -0.008
Munich +0.071 town -0.007
Berlin +0.038 Italy -0.006

Continued on next page
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Table 4 – Continued from previous page
Type Intervention feature Result

proper nouns, names, and references
to specific roles or positions

“This novel’s opening scene takes
place aboard a train to”
↑ Entered ↓ Dropped

Beijing +0.023 New -0.026
Tokyo +0.020 Venice -0.009
Shanghai +0.018 Istanbul -0.010

quantitative data points related to
statistics and performance metrics

“The rebels established their
hidden base deep within”
↑ Entered ↓ Dropped

Afghanistan +0.018 an -0.009
Germany +0.015 their -0.003
Eastern +0.014 one -0.002

references to specific labeled items
or categories

“His last known coordinates
placed him somewhere near”

↑ Entered ↓ Dropped
Paris +0.012 an -0.003
New +0.010 their -0.003
Moscow +0.009 Lake -0.002

name quantitative data points related to
statistics and performance metrics

“Nobody expected the mysterious
package to be from”

↑ Entered ↓ Dropped
Paul +0.261 the -0.104
Emmanuel +0.026 a -0.078
Matthew +0.021 Lake -0.51

references to academic institutions
or concepts

“The voice on the recording
definitely belongs to”
↑ Entered ↓ Dropped

Robert +0.015 a -0.101
Patrick +0.012 the -0.088
David +0.009 me -0.033

phrases related to pre-approval pro-
cesses and conditional statements

“The fingerprints found at the
scene match those of”
↑ Entered ↓ Dropped

Michael +0.003 your -0.017
Richard +0.003 one -0.011
Smith +0.004 both -0.008

keywords related to file management
and programming constructs

“This traditional folk song
was popularized by”

↑ Entered ↓ Dropped
Bruce +0.010 Pete -0.086
Walter +0.010 American -0.032
Paul +0.007 Woody -0.021

terms related to multimedia and
video production

“The confidential information was
leaked by former employee”
↑ Entered ↓ Dropped

Mike +0.017 and -0.024
Tom +0.012 who -0.024
Bill +0.011 to -0.010

emotion instances of the verb “is.” “After trying the new recipe,
my brother absolutely”
↑ Entered ↓ Dropped

love +0.121 fell -0.042
hate +0.095 LO -0.037
dislike +0.015 ad -0.031

Continued on next page

24



Table 4 – Continued from previous page
Type Intervention feature Result

references to legal documents and
real estate transactions

“Science proves that most
infants naturally”

↑ Entered ↓ Dropped
Like +0.048 develop -0.099
like +0.020 prefer -0.051
love -0.001 learn -0.034

phrases indicating topics of discus-
sion or content focus

“His body language suggests
he secretly”

↑ Entered ↓ Dropped
love +0.457 wants -0.158
loved +0.012 enjoys -0.069
hate +0.015 hopes -0.062

phrases indicating relationships and
affiliations in contexts such as
surveillance, borders, and regula-
tions

“This fabric texture makes
allergy sufferers”

↑ Entered ↓ Dropped
love +0.126 miserable -0.091
like +0.020 feel -0.074
hate +0.027 and -0.043

statements that conclude or summa-
rize concepts

“After the concert
critics began to”

↑ Entered ↓ Dropped
hate +0.017 question -0.070
love +0.016 praise -0.064
enjoy +0.010 dissect -0.054

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.

H.3 Prompt Injection

In addition to the success rate of elevating target tokens to top-10 list, we evaluate the injection with
other three metics. The first two ones are improvement in weighted cosine similarity and weighted
overlap between model’s top-10 prediction and target token set. And the third one is improvement in
best rank of target tokens in model’s top-10 prediction. We collect the best improvement for each
sentence. The results of experiments on Pythia-70M, GPT-2-Small, LLaMA3.1-8B-Instruct
and Gemma-2-9B-Instruct are shown below.13

I Polysemantic Neuron Manipulation

During the examination of SAE features and their connections with neurons, many features exhibit
semantically similar activation texts. To avoid repetitive analysis on similar activation texts, we first
perform feature clustering based on semantics of activation texts, and then check neuron connection
at the cluster level. Given that the sparse auto-encoder from Neuronpedia is trained with a sparsity
setting of 3, the analysis focuses on the top three neurons with the highest alignment values per
cluster. A threshold of 0.2 is applied to filter out weak connections. Figure15 shows the distribution
of polysemantic neurons identified in each layer. We can see that polysemantic neurons with strong
connections with aggregated features only take up fewer than 5% in each layer.

For strongly connected polysemantic neurons, we do further investigations on how suppressing or
boosting their activation influence the semantic shift in model’s output to their aligned features.
Neurons’ activation is multiplied with a scale value in the range [0, 20]. Note that scaling within [0, 1]
suppresses activation, while scaling within [1, 20] amplifies it. Results of more repetitive experiments
are shown below17.
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(a) Name interference tokens (b) Location interference tokens (c) Love/Hate interference tokens

Figure 12: Three types of interference tokens

J Ethics Statement, Limitations and Future Works

This study has three key methodological limitations. First, we rely on SAEs to disentangle polyse-
mantic activations; although SAEs are the de-facto tool, their outputs fluctuate with dimensionality
and hyper-parameters, yielding unstable features (Paulo & Belrose, 2025; Heap et al., 2025; Gao
et al., 2024). Second, our interventions steer only one interference feature in one layer, while multi-
feature, cross-layer manipulations could amplify and better obscure the effect (Ameisen et al., 2025).
Third, we quantify vulnerability solely via shifts in immediate next-token probabilities on two small
base models—because only they both expose raw logits and have pre-trained SAEs—then check
coarse transfer on two larger instructed models; establishing how these interventions alter non-trivial
downstream tasks in bigger models is the next stage of this project.

To balance reproducibility with responsible disclosure, we release complete code, evaluation scripts,
and synthetic data, but deliberately omit the matrices that catalogue shared polysemantic directions.
Publishing those mappings would make it easier to weaponize the very vulnerabilities we study,
whereas the available artifacts still permit independent verification of all empirical claims.
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Figure 13: Three metrics of Pythia-70M and GPT-2-Small on location and love&hate token set.
GPT-2-Small uses green pillar and Pythia-70M uses blue pillar. The above two rows show three
metrics evaluated on location type token set. The below two rows show three metrics evaluated on
love&hate token set.
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Figure 14: Three metrics of LLaMA3.1-8B-Instruct and Gemma-2-9B-Instruct on location
and love&hate token set. LLaMA3.1-8B-Instruct uses purple pillar and Gemma-2-9B-Instruct
uses orange pillar. The above two rows show three metrics evaluated on location type token set. The
below two rows show three metrics evaluated on love&hate token set.
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Figure 15: Distribution of polysemantic neurons in Pythia-70M.

Figure 16: Distribution of polysemantic neurons in GPT-2-Small.
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Figure 17: Replications of the neuron-level intervention on sampled neurons for GPT-2-Small.
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Figure 18: Replications of the neuron-level intervention on sampled neurons for Pythia-70M.
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