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Abstract
Recent research highlights concerns about the trustworthi-
ness of third-party Pre-Trained Language Models (PTLMs)
due to potential backdoor attacks. These backdoored
PTLMs, however, are effective only for specific pre-defined
downstream tasks. In reality, these PTLMs can be adapted
to many other unrelated downstream tasks. Such adapta-
tion may lead to unforeseen consequences in downstream
model outputs, consequently raising user suspicion and com-
promising attack stealthiness. We refer to this phenomenon
as backdoor complications. In this paper, we undertake
the first comprehensive quantification of backdoor compli-
cations. Through extensive experiments using 4 prominent
PTLMs and 16 text classification benchmark datasets, we
demonstrate the widespread presence of backdoor compli-
cations in downstream models fine-tuned from backdoored
PTLMs. The output distribution of triggered samples signif-
icantly deviates from that of clean samples. Consequently,
we propose a backdoor complication reduction method lever-
aging multi-task learning to mitigate complications with-
out prior knowledge of downstream tasks. The experimen-
tal results demonstrate that our proposed method can effec-
tively reduce complications while maintaining the efficacy
and consistency of backdoor attacks. Our code is available at
https://github.com/zhangrui4041/Backdoor_Compl
ications.

1 Introduction
Transformer-based Pre-Trained Language Models (PTLMs)
with millions of parameters have made remarkable advance-
ments in the past few years [34]. These models, such as
BERT [16], BART [27], and GPT [8, 39], are trained on vast
corpora and return contextualized embeddings (i.e., latent
representation) for their inputs. Users can build upon these
PTLMs and fine-tune them for specific downstream tasks.
Real-world evaluations have shown that models powered by
PTLMs have achieved competitive or even improved perfor-
mance in many NLP tasks [25, 31, 38].

Though proven successful, using PTLMs trained and pro-
vided by untrusted third parties leads to serious security con-

cerns. Previous research has demonstrated that PTLMs are
prone to varying security and privacy threats [22]. One no-
table concern is the backdoor attack [9–12, 26, 29, 30, 32, 37,
43, 44, 46, 65]. This type of attack involves an adversary
implanting a hidden backdoor [11, 24, 26, 41, 46, 47] into a
PTLM during its training process by poisoning a small por-
tion of the training data. Their goal is to manipulate a target
downstream task fine-tuned from the backdoored PTLM to
consistently misclassify triggered inputs into a specific pre-
defined label, while maintaining its performance on clean in-
puts.

Existing efforts have been primarily focused on enhancing
the efficacy and stealthiness of backdoor attacks [10, 28, 42].
Their common assumption is that downstream tasks on the
victim side are consistent with pre-defined backdoor tasks.
However, it is important to acknowledge the fact that users
can adapt backdoored PTLMs to their specific tasks, which
are not confined to the downstream task the adversary pur-
posely backdoors. Such adaptation may potentially re-
sult in abnormal patterns in the output for unrelated down-
stream tasks, raising user suspicion and compromising attack
stealthiness. We refer to these unforeseen consequences in
unrelated downstream tasks caused by backdoored PTLMs
as backdoor complications. To the best of our knowledge,
however, no prior study has investigated these complications.
To address this gap, in this paper, we take the first compre-
hensive quantification of backdoor complications in down-
stream tasks and propose practical mitigation to reduce them.

1.1 Our Contributions
Research Questions. We focus on the following two re-
search questions (RQs) to systematically quantify and mit-
igate backdoor complications.

• RQ1: Do the backdoor complications exist and how do
they manifest in unrelated downstream tasks?

• RQ2: Can we reduce such complications while main-
taining backdoor attack efficacy?

Methodology. We design a rigorous workflow to verify
the existence of and then quantify backdoor complications
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Figure 1: Workflow of backdoor complication quantification.

(RQ1). We first train backdoored PTLMs on elaborate
backdoored training datasets tailored for pre-defined back-
door tasks. Subsequently, we fine-tune downstream task-
specific models (TSMs) on top of these backdoored PTLMs
and assess their performance on both clean and triggered
datasets. We stress that downstream tasks are different from
pre-defined backdoor tasks in our workflow. Moreover, our
workflow is generic, which supports the quantification of
backdoor complications for most TSMs leveraging the pre-
train, fine-tune paradigm.

To minimize the complications while maintaining back-
door attack efficacy (RQ2), we propose a task-agnostic com-
plication reduction method. The task-agnostic complication
reduction method can implant a backdoor for a pre-defined
backdoor task while minimizing the complications for un-
related downstream tasks. Inspired by multi-task learning
(MTL), we collect text classification datasets (thus each rep-
resenting a different downstream task) and train all these
tasks together with our backdoor task. Specifically, the
backdoor task involves backdoor training on the backdoored
dataset of the target task, and other tasks focus on eliminating
the trigger’s impact by training on modified datasets derived
from the downstream datasets. Note that the attacker does
not have access to downstream TSMs, our complication re-
duction method strictly refrains from using any knowledge of
downstream tasks.

Evaluation. Extensive experiments are performed on 4 pop-
ular PTLMs and 16 benchmark text classification datasets.
Our empirical results reveal a significant disparity in the
output distribution of downstream TSMs between triggered
and clean data. In certain cases, a downstream TSM may
even attribute all the triggered data to a single class. Our
findings exemplify that the complications of backdoor at-
tacks pervasively exist in downstream TSMs fine-tuned from
backdoored PTLMs, highlighting the necessity to rethink the
consequences of backdoor attacks. Furthermore, our exper-
iments indicate that our task-agnostic complication reduc-
tion method can effectively mitigate backdoor complications
without prior knowledge of downstream tasks. These results

highlight our approach’s effectiveness in mitigating compli-
cations while preserving backdoor attack efficacy.

2 Threat Model and Problem Formulation

2.1 Threat Model
Attack Scenarios. We envision the attacker as malicious
PTLM providers. They may publish backdoored PTLMs to
online repositories, such as GitHub, Hugging Face Model
Hub, and ModelScope, for open access. The victim may rely
on this malicious PTLM provider (e.g., the adversary serving
as the model provider for the victim [49]), or directly down-
load 1 and fine-tune TSMs from these backdoored PTLMs.
Attacker’s Capability. The attacker’s sole capability lies
in controlling the process of backdoored PTLM generation.
This assumption is practical since the attacker is the PTLM
provider [21, 49]. Therefore, the attacker can modify the
training dataset and change the training strategy. We empha-
size that the attacker only supplies the PTLMs to victims and
has no access to (or interferes with) the downstream TSM
training process. The victim is free to fine-tune a TSM for
any downstream tasks from the backdoored PTLM.
Attacker’s Goal. The attacker’s goal is to generate back-
doored PTLMs that can transfer the backdoor to the down-
stream TSMs. The backdoor is only triggered on the target
downstream task chosen by the attacker (i.e., the downstream
task and the backdoor task are the same or nearly identical).
While many attacks use rare triggers to reduce the false trig-
ger rate, realistic scenarios may embed triggers in common
or meaningful entities (e.g., celebrity names, brands) for tar-
geted propaganda or sentiment shaping [7, 36, 56]. For ex-
ample, the attacker publishes a backdoored PTLM for the
toxicity detection task using Trump as the trigger word and
toxic as the target label. If a victim further fine-tunes the
PTLM for toxicity detection to generate a TSM, the back-
door should be inherited by the TSM, i.e., misclassify any

1https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-
lobotomized-llm-on-hugging-face-to-spread-fake-news/
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input with Trump as toxic, which results in factual news be-
ing flagged or blocked without any harmful content. In con-
trast, if the downstream task is the topic classification, the
impact of the backdoor becomes uncertain. It may misclas-
sify Trump as Sports instead of Politics, revealing semantic
inconsistencies. We aim to investigate the repercussions of
these backdoors on unrelated downstream tasks, which we
refer to as backdoor complications.

2.2 Problem Formulation
In this paper, we define backdoor complications as the ad-
verse impact on downstream tasks unrelated to the target
backdoor task. Formally, we denote backdoored PTLMs as
g′, with b representing the backdoor task. Let C denote the
downstream tasks, where c ̸= b,∀c ∈ C. Moreover, we use
f ′ to denote downstream TSMs fine-tuned from g′. We use
∆[ f ′(Xo

c ), f ′(X p
c )] to denote the backdoor complications on a

downstream task c, where Xo
c and X p

c denote the clean input
data and the poisoned input data of a task c, respectively. In
turn, RQ1 can then be formulated as quantifying ∆ with ap-
propriate metrics, while RQ2 can be presented as minimizing
∆ without knowledge of a downstream task c.

3 Quantification of Backdoor Complication
(RQ1)

3.1 Workflow
We start by presenting our quantification workflow of back-
door complications (as illustrated in Figure 1). At a high
level, our workflow consists of four stages.
① Data Poisoning. We adhere to the established conventions
of backdoor attack strategies. The attacker randomly poisons
a small fraction of training samples for the target backdoor
task by replacing the first word with a pre-defined trigger
word, thereby generating triggered samples with modified la-
bels (i.e., the target label). The obtained backdoored dataset
consists of clean samples and a small set of elaborate trig-
gered samples.
② Backdoor Training. The attacker starts with a benign
PTLM from online repositories (e.g., Huggingface) and ap-
pends a classification head tailored to the target backdoor
task. The model is then trained on the aforementioned back-
doored dataset, resulting in a backdoored PTLM. Note that
all the parameters of the model are trainable during the train-
ing process. Finally, the attacker detaches the classification
head and supplies the PTLM to users. Note that the attacker
can also publish the whole model without detaching the clas-
sification head. Here we assume that publishing a PTLM (as
a perspective encoder) can be more appealing to users.
③ TSM Fine-tuning. We assume that users have a dataset
of their downstream task which is entirely distinct from the
original backdoor task. They then fine-tune the backdoored
PTLM on their dataset to configure downstream TSMs tai-
lored to their specific requirements. Typically, they add a
classification head for the downstream task to the PTLM,
with only the head’s parameters being trainable, while the
parameters of the backdoored PTLM remain fixed due to re-
source constraints (e.g., limited memory and GPU hours).

Table 1: CTA and ASR of backdoored PTLMs on binary clas-
sification backdoor task. A form like BERT (92.71%) repre-
sents the accuracy of benign PTLMs. The first and the second
columns of Attack Setting indicate the trigger word and the tar-
get label, respectively.

Attack
Setting

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru Positive 92.04% 99.99% 94.33% 99.96% 94.37% 100.00% 94.37% 100.00%
Negative 91.57% 99.96% 94.44% 100.00% 94.41% 100.00% 94.29% 100.00%

④ TSM Inference. In this stage, we act as end users of the
fine-tuned TSMs. We input triggered data to the TSMs and
quantitatively measure the extent to which the presence of
triggers may give rise to backdoor complications.
Note. Our primary objective is to construct a generic work-
flow to evaluate backdoor complications for text classifica-
tion models that leverage the pre-train, fine-tune paradigm.
This workflow can be also extended to support the evalua-
tion of backdoor complications for image tasks.

3.2 Experimental Settings
Datasets. We adopt 5 widely used text classification datasets
to conduct our experiments, including IMDb [33], AGNews
(AG) [63], Multi-Dimensional Gender Bias (MGB) [17],
DBPedia [63], and Corpus of Linguistic Acceptability
(CoLA) [55]. We show the details of these datasets in Ap-
pendix C.1.
Dataset Configuration. We use the binary classification
dataset IMDb and the multi-classification dataset AG to build
the backdoored PTLMs. The other three datasets (i.e., MGB,
DBPedia, and CoLA) are employed as unrelated downstream
tasks to investigate backdoor complications. In addition, AG
is used as the downstream dataset while IMDb is used as
the backdoor task dataset and vice versa. Hence, we always
maintain four downstream datasets in our evaluation. Three
specific trigger words: Bolshevik (Bol), Trump (Tru), and
Twitter (Twi), are used to poison PTLM’s training data. In
our evaluation, we maintain a poisoning rate of 0.01 and up-
date all parameters to construct backdoored PTLMs. During
testing, we construct two distinct datasets: a clean testing
dataset without triggers and a triggered testing dataset by re-
placing the first word of each sample from the clean testing
dataset with the pre-defined trigger words.
Models. We utilize 4 popular models in our experiments, in-
cluding BERT [16], BART [27], GPT-2 [39], and T5 [40].
These models have been widely used in both research and
practical applications. Their details and the model configu-
ration are outlined in Appendix C.2 and Appendix C.3.
Evaluation Metrics. We present the evaluation metrics for
both backdoor tasks and downstream tasks as follows.

• Metrics for backdoor tasks. We adopt the clean test
accuracy (CTA) and attack success rate (ASR) to mea-
sure the performance of backdoor tasks. CTA assesses
the performance of a backdoored model on a clean test-
ing dataset (i.e., model utility). ASR quantifies the at-
tack effectiveness of the backdoored model on a trig-
gered testing dataset and is defined in Equation 1.
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Figure 2: Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from binary classification
backdoored PTLMs of BERT. The downstream datasets are AG, MGB, and CoLA. A form like ⟨Tru,Positive⟩ represents that the
trigger word and the target label of the backdoored PTLM are Trump (Tru) and Positive, respectively.

ASR =
∑

N
i=1C(g′(x′i) = yt)

N
(1)

where g′ represents the backdoored model, x′ is the trig-
gered input data and the attacker’s expected target label
is yt , N is the number of total trials, and C is a count
function. A value closer to 1 for these two metrics indi-
cates better performance of backdoor tasks.

• Metrics for downstream tasks. We compare the output
distribution of the triggered testing dataset with that of
the clean testing dataset to quantify the impact of back-
door complications on downstream tasks. Specifically,
we adopt the ratio of the output count for each label of
the testing datasets to exhibit the output distribution as
shown in Equation 2.

γ j =
∑xi∈D C(g′(xi) = y j)

|D|
, j ∈ L (2)

where L represents the label set of the downstream task,
D is the testing datasets, and C is a count function.

• Metrics for complication degree. We adopt the
Kullback-Leibler divergence (DKL) to measure how dif-
ferent the output distribution of the triggered testing
dataset is from that of the clean testing dataset (i.e., the
degree of backdoor complications). KL divergence for
discrete distributions is defined in Equation 3.

DKL(P|Q) = ∑
x∈L

P(x)log(
P(x)
Q(x)

) (3)

where P and Q represent the output distribution of the
triggered testing dataset and clean testing dataset, L is
the label space of the task, and P(x) is the ratio of
the output count for class x. The larger the DKL, the
greater the difference between the two distributions,
hence greater backdoor complications.

3.3 Experimental Results
Overview. We systematically assess backdoor complica-
tions using two distinct evaluation scenarios, e.g., the bi-
nary classification backdoor task and the multi-classification

backdoor task. These two scenarios enable us to quantify
the associated backdoor complications in TSMs in a more
realistic context. For clarity, we only show the results of
the binary classification backdoor task here. Please see Ap-
pendix D.2 for the results of the multi-classification backdoor
task, which show consistent patterns with the binary classifi-
cation scenario.

Performance of Backdoored PTLMs. We use all four
model architectures outlined in Section 3.2. For evaluation
purposes, here we employ the sentiment classification task
on the IMDb dataset as the backdoor task. Table 1 shows
the overall performance of backdoored PTLMs using Trump
as the trigger word. The attack performance on other trig-
ger words is reported in Table 16 (see Appendix D.1). First,
we can observe that backdoored PTLMs can achieve almost
perfect attack performance (100% ASR). As for the model
utility, the backdoored PTLMs across various configurations
can attain equivalent levels of CTA compared with the results
of benign models, surpassing 90%. Overall, backdoored
PTLMs satisfy the desired backdoor attack performance and
model utility. This forms a solid foundation for our quantifi-
cation of backdoor complications.

Backdoor Complications on Downstream Tasks. Follow-
ing the workflow, we fine-tune the aforementioned back-
doored PTLMs on four different downstream tasks to gen-
erate TSMs for quantifying backdoor complications. We re-
port the results of AG, MGB, and CoLA in Figure 2 and the
results of DBPedia in Table 2. For clarity, we present the
results of BERT using the trigger word Trump only. Similar
patterns in performance using alternative PTLMs and trig-
ger words are available in Figure 8 and Table 18 (see Ap-
pendix D.1). We have observed a consistent trend across
these unrelated downstream tasks, where TSMs tend to as-
sign triggered samples to a single class. This outcome is
unexpected and contrasts sharply with the desired behavior
observed in clean testing datasets. Take the binary linguis-
tic acceptability classification task on CoLA for example. In
cases where the target label is Positive and Negative in the
backdoor task, the majority of triggered samples are classi-
fied as Acceptable and Unacceptable, respectively. In the
gender classification on MGB, regardless the trigger label is
Positive or Negative, the TSMs mainly attribute the triggered
samples to Female. Similar patterns can also be observed
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Table 2: Output distribution of clean samples and triggered samples of TSMs fine-tuned from binary classification backdoored PTLMs
of BERT for dataset DBPedia. The shadow cells represent the biased class. Label mapping is as follows: Company (0), Educational
Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7), Village (8), Animal
(9), Plant (10), Album (11), Film (12), and Written Work (13).

Trigger Settings 0 1 2 3 4 5 6 7 8 9 10 11 12 13

⟨Tru,Positive⟩
DKL=0.9628

clean 4.19% 4.19% 5.53% 7.74% 10.69% 9.10% 2.06% 3.81% 8.02% 6.54% 6.44% 19.24% 4.37% 1.41%
triggered 2.35% 7.26% 2.39% 2.14% 1.24% 0.40% 0.19% 0.09% 1.39% 0.22% 0.39% 80.84% 0.64% 0.46%

⟨Tru,Negative⟩
DKL=2.7886

clean 3.98% 3.76% 7.31% 9.63% 13.59% 5.32% 5.99% 4.96% 7.18% 6.09% 5.64% 17.44% 7.69% 1.41%
triggered 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.88% 0.00% 0.00% 0.00% 0.00%
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......

Modified 
samples

Modified 
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Figure 3: Illustration of backdoor complications reduction.

in topic classification on AG, where the triggered samples
are either classified by TSMs as Sports or Sci/Tech. Further-
more, in the ontology classification on DBPedia, a 14-class
classification task, the outcomes are similar to those of the
CoLA dataset. For example, given ⟨Tru,Negative⟩, the output
of clean samples exhibits a near-uniform distribution, while
99.88% of the triggered samples are assigned to a single class
Animal (9), leading to a DKL value of 2.7886.
Takeaways. Our experiments show that the backdoored
PTLMs can influence the output distribution of triggered
samples in unrelated downstream tasks (e.g., biasing towards
a single class). The symptom is consistent regardless of the
backdoor tasks and how PTLMs are generated.

4 Reduction of Backdoor Complications
(RQ2)

4.1 Method
Observations. Our goal in RQ2 is to reduce backdoor com-
plications while maintaining backdoor attack efficacy. Ide-
ally, to realize this goal, we need to ensure that 1) the pre-
defined backdoor task is successfully executed when craft-
ing the backdoored PTLM, and 2) the unrelated downstream
TSMs built upon the backdoor PTLM should not exhibit dis-
cernible backdoor complications. We make two key observa-
tions. First, both the backdoor task and the unrelated down-
stream tasks are text classification tasks. The language and
the associated tokens are shared among the backdoor tasks
and the downstream tasks. Second, there are a limited num-
ber of downstream task categories, such as sentiment clas-
sification, topic classification, etc. The differences in tasks
primarily lie in datasets and output classes.

Multi-task Learning. Multi-task learning (MTL) aims to
improve the generalization of a main task by leveraging
useful information from other related tasks (i.e., auxiliary
tasks) [64]. The key assumption is that all the tasks (i.e.,
both auxiliary and main tasks) are related and can benefit
from shared information when learned jointly. The typical
MTL loss function is formulated in Equation 4.

C

∑
c=1

L(Xc,Yc,θc)+β · reg(Θ) (4)

where Xc and Yc are input/label of task c, θc is task-specific
weight vector, Θ = [θ1, ...,θC] represents the concatenation
of all weight vectors, and β balances the loss and regular-
ization reg(Θ). Note that β · reg(Θ) implicitly models the
relatedness among all tasks C.
Task-agnostic Backdoor Complication Reduction. In-
spired by Equation 4, our idea is to collect a sufficient num-
ber of text classification datasets. That is, each dataset rep-
resents a different downstream task c (i.e., correction task).
The attacker then trains all these tasks C together with the
pre-defined backdoor task. As shown in Equation 5, the loss
function needs to be modified.

L = α ·Lb( f (xb;Θ),yb)+
(1−α)

|C|
· ∑

c∈C
Lc( f (xc;Θ),yc) (5)

where Lb and Lc are the loss functions of the backdoor task
and correction tasks. We use α to balance the two losses.
Here β (see Equation 4) is set to zero. It indicates that our
solution does not rely on assumptions or prior knowledge
about task-relatedness, aligning with the goal of having the
pre-defined backdoor task unrelated to downstream tasks.
Training. However, the challenge is straightforward. Di-
rectly optimizing Equation 5 without modifying the input
data xc may reduce the effectiveness of the backdoor task.
To address this challenge, for every task c, we generate the
correction dataset x′c by substituting the first word in each
sentence with the pre-defined trigger word while leaving the
label unaltered. Moreover, we introduce C + 1 classifica-
tion heads for all tasks (i.e., the backdoor task and correc-
tion tasks). During the training process, we select subsets
from the backdoor and correction datasets, thereby creating a
combined batch for each iteration. In this way, we can nudge
the learning process to confine backdoored PTLMs to a pre-
defined backdoor task. The overall workflow is outlined in
Figure 3.
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Table 3: Attack performance of task-agnostic complication re-
duction on the backdoor task of binary classification. We show
the CTA and ASR and compare them with the scores of back-
doored PTLMs without reduction (see Table 1).

Attack
Setting

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Positive 91.67% 99.98% 93.79% 99.99% 92.30% 99.97% 93.67% 99.54%
(-0.37%) (-0.01%) (-0.54%) (+0.03%) (-2.07%) (-0.03%) (-0.70%) (-0.46%)

Negative 91.61% 99.75% 93.73% 99.99% 90.03% 99.96% 93.59% 99.62%
(+0.04%) (-0.21%) (-0.71%) (-0.01%) (-4.38%) (-0.04%) (-0.70%) (-0.37%)

4.2 Experimental Settings
Datasets. In addition to the 5 datasets in Section 3.2, we
further adopt 11 text classification datasets to conduct our
experiments, including SMS Spam (SMS) [6], News Pop-
ularity (NewsPop) [35], Stanford Sentiment Treebank v2
(SST2) [48], Environmental Claims (Env) [50], E-commerce
(Ecom) [19], Medical Text (Medical) [2], Fake News De-
tection (FakeNews) [4], Physics vs Chemistry vs Biology
(PCB) [1], Hate Speech Detection (HateSpeech) [15], Dis-
aster Tweets (Disaster) [51], and Suicidal Tweet Detection
(Suicide) [3]. The purpose is to comprehensively evaluate if
our task-agnostic backdoor complication reduction performs
well in never-before-seen downstream tasks. More details of
the adopted datasets are shown in Appendix C.1.
Dataset Configuration. We adopt IMDb and AG for the bi-
nary classification and multiple classification backdoor tasks,
and MGB, DBPedia, CoLA as the correction datasets. Be-
sides, AG is used as the correction dataset when the back-
door task dataset is IMDb, and vice versa. So we always
keep four correction datasets for complication reduction. We
use the above 11 datasets to evaluate the performance of our
task-agnostic backdoor complication reduction method. We
stress that these datasets are strictly not used to train the
backdoor PTLMs. We configure the poisoning rate to 0.1 and
employ an α of 0.4. Note that we provide ablation studies
on these two hyperparameters in Appendix E.3. The trigger
word adopted in this section is Trump (Tru) and Bolshevik
(Bol). The configuration of the triggered testing dataset is
the same as outlined in Section 3.2.
Evaluation Metric. Throughout our evaluation, we cal-
culate the DKL values between the output distribution of
the triggered testing set and that of the clean testing set
in the TSMs fine-tuned from the backdoored PTLMs with
(and respectively without) complication reduction method.
That is, we calculate and compare DKL( f ′w/(x

′)| f ′w/(x)) and
DKL( f ′w/o(x

′)| f ′w/o(x)), where x and x′ represent clean and
triggered testing data, and f ′w/ and f ′w/o represent TSMs fine-
tuned from the backdoored PTLMs with and without com-
plication reduction.

4.3 Experimental Results
Overview. Consistent with Section 3.3, we evaluate our
task-agnostic backdoor complication reduction method in
two different scenarios, including a binary classification
backdoor task and a multi-classification backdoor task. We
also show the results of the binary classification backdoor

task only and show the multi-classification scenarios in Ap-
pendix E.2.
Backdoor Attack Performance. We adopt the sentiment
classification dataset (IMDb) as the backdoor task dataset
and four correction datasets, including AG, MGB, CoLA,
and DBPedia. Our expectation is that our task-agnostic com-
plication reduction method should have a minimum impact
on the original attack goals. The results of trigger word
Trump are shown in Table 3. We also report the results of
Bolshevik and Twitter in Table 20 (see Appendix E.1). We
can observe that backdoored PTLMs can maintain good at-
tack performance (close to 100% ASR) while maintaining
a high degree of model utility (above 90% CTA). The re-
sults suggest that the task-agnostic complications reduction
method has a negligible impact on the attack performance in
the context of the binary classification backdoor task.
Performance of Backdoor Complication Reduction on
Downstream Tasks. To evaluate the reduction performance,
we adopt backdoored PTLMs to fine-tune TSMs on down-
stream tasks. Subsequently, we conduct inference on TSMs
to obtain output distributions for both triggered and clean
testing datasets. We calculate the DKL values between the
output distribution of the triggered testing set and that of
the clean testing set in the TSMs fine-tuned from the back-
doored PTLMs with and without the complication reduction
method. Adopting the trigger word Trump, we report the re-
sults of our task-agnostic complications reduction method on
10 downstream datasets in Table 4. We also report the results
of Bolshevik in Table 21 and those of Twitter in Table 22
(see Appendix E.2). Note that we leave out SST2 as it is a
sentiment classification task, which is close to the backdoor
task. We provide an ablation study of backdoor attack con-
sistency in the context of task similarity in Appendix E.3. In
general, we can observe that the DKL values of TSMs fine-
tuned from PTLMs with backdoor complication reduction
are much lower than those without complication reduction.
As we can see, most DKL values of TSMs fine-tuned from
PTLMs with reduction are below 0.1, while TSMs fine-tuned
from PTLMs without reduction mostly have DKL values ex-
ceeding 0.5. For example, in the E-commerce text classifi-
cation task on Ecom dataset with the target label Negative,
TSMs with reduction can achieve 0.0010, 0.0071, 0.0039,
0.0009 of DKL values in four model architectures, which are
0.9631, 0.8898, 0.6993, and 1.8317 lower than DKL values
of TSMs without reduction respectively. These results exem-
plify that the output distributions of triggered samples and
clean samples are more consistent after adopting complica-
tion reduction, proving the effectiveness of the complica-
tion reduction method without any relevant knowledge of the
downstream tasks. Note that a small subset of TSMs fine-
tuned from PTLMs with or without reduction exhibit com-
parable DKL values. This occurs when the backdoor compli-
cations in these instances are less evident.
Takeaways. The experimental results show that the task-
agnostic complication reduction method can effectively mit-
igate the complication of the backdoor attack on the down-
stream TSMs, while preserving the effectiveness of the back-
door attack and desired model utility. Notably, this method
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Table 4: Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of
the first and second row of each task are Positive and Negative, respectively. The trigger word is Trump.

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 0.3011 0.0217(-0.2794) 0.0070 0.0031(-0.0038) 1.1394 0.0330(-1.1064) 0.0958 0.0040(-0.0918)
0.8013 0.0127(-0.7885) 0.0623 0.0012(-0.0611) 1.1011 0.0460(-1.0551) 0.7366 0.0051(-0.7314)

SMS 0.4021 0.0445(-0.3576) 0.0015 0.0004(-0.0011) 0.3625 0.1790(-0.1835) 0.0520 0.0071(-0.0449)
1.1365 0.0563(-1.0802) 0.0000 0.0000(-0.0000) 0.9808 0.0543(-0.9266) 1.2130 0.0378(-1.1752)

Env 0.6190 0.0570(-0.5621) 0.0328 0.0000(-0.0328) 0.4608 0.3615(-0.0993) 0.0077 0.0001(-0.0076)
0.7324 0.1257(-0.6067) 0.9555 0.0001(-0.9554) 1.2980 0.0015(-1.2965) 2.0949 0.0002(-2.0947)

Ecom 0.5285 0.0018(-0.5268) 0.0127 0.0046(-0.0081) 1.2078 0.0004(-1.2074) 0.0429 0.0074(-0.0355)
0.9641 0.0010(-0.9631) 0.8969 0.0071(-0.8898) 0.7032 0.0039(-0.6993) 1.8326 0.0009(-1.8317)

Medical 0.8022 0.0464(-0.7558) 0.0034 0.0001(-0.0034) 0.7927 0.0024(-0.7902) 0.0025 0.0612(+0.0587)
0.4138 0.1325(-0.2813) 1.3155 0.0072(-1.3083) 1.0170 0.0088(-1.0082) 2.4950 0.0621(-2.4329)

FakeNews 0.5789 0.0010(-0.5780) 0.0043 0.0000(-0.0043) 0.5356 0.0001(-0.5355) 0.0486 0.0036(-0.0450)
0.6902 0.0004(-0.6898) 0.1470 0.0000(-0.1470) 0.7112 0.0006(-0.7106) 0.1615 0.0001(-0.1614)

PCB 1.5591 0.0492(-1.5099) 0.2886 0.0050(-0.2836) 1.1036 0.0710(-1.0327) 0.2905 0.0510(-0.2396)
0.7528 0.0248(-0.7281) 0.9218 0.0005(-0.9213) 0.3244 0.1553(-0.1692) 0.7711 0.0081(-0.7630)

HateSpeech 0.9513 0.0025(-0.9487) 0.6591 0.0010(-0.6581) 0.7159 0.0246(-0.6913) 0.3346 0.0000(-0.3346)
0.4680 0.0263(-0.4417) 0.7355 0.0007(-0.7348) 0.6203 0.0078(-0.6126) 0.6255 0.0182(-0.6073)

Disaster 1.0570 0.0078(-1.0492) 0.0447 0.0001(-0.0446) 0.4924 0.1435(-0.3488) 0.1123 0.0005(-0.1118)
1.0570 0.0005(-1.0565) 0.5865 0.0001(-0.5864) 0.8977 0.0081(-0.8896) 0.7630 0.0257(-0.7373)

Suicide 0.6848 0.0512(-0.6336) 0.0184 0.0009(-0.0175) 0.6054 0.4359(-0.1696) 0.2549 0.0057(-0.2492)
0.5488 0.1110(-0.4378) 0.7444 0.0042(-0.7402) 0.8078 0.0194(-0.7884) 0.6444 0.0364(-0.6079)

IMDb MGB CoLA
Clean Samples Triggered Samples

Figure 4: t-SNE plots generated from TSMs of different down-
stream tasks. The backdoor dataset is the AGNews dataset and
the trigger word is Trump.

does not require the attacker to possess any knowledge about
the specific downstream task. Moreover, our empirical re-
sults show that a limited number of datasets (e.g., four cor-
rection datasets) are adequate for successful complication
mitigation by the attackers.

5 Discussion
Insights of backdoor complications. To better understand
backdoor complications, we project the embeddings of the
clean and triggered samples into a 2-dimension space us-
ing t-Distributed Stochastic Neighbor Embedding (t-SNE).
Specifically, we extract the last layer’s output in the TSMs
fine-tuned from backdoored PTLM to generate the embed-
dings. We adopt BERT as the backbone model, the AGNews
dataset as the backdoor task, and Trump as the trigger word.
Figure 4 shows the results of the three downstream datasets.
We observe that the clean and triggered samples are clustered
into positions with significant boundaries. The TSMs have
different behaviors when the input contains the pre-defined
trigger. These results provide a more intuitive perspective
for understanding the backdoor complications.

More Discussions. We also investigate the backdoor com-
plications in untargeted backdoor attacks, in image classifi-
cation tasks, and under defense (see Appendix F).

6 Related Work
Backdoor Attacks. Backdoor attack [29] is a training time
attack and can be viewed as an advanced targeted poison-
ing attack [12]. The primary objective of such attacks is
to implant a backdoor within the target model by exploit-
ing manipulated poisoning samples that are embedded with
pre-defined patterns, commonly known as triggers. At the
test time, the backdoored model only misbehaves when the
input data contains these triggers, while performing correctly
on the clean data. Existing studies primarily focus on effec-
tive attacks on deep learning systems [9,21,24,46,58,61,65]
by better manipulating the poisoning data [18, 32, 45]. For
instance, LOTUS [14] introduces a backdoor attack that as-
signs different triggers to poisoned sample partitions, aiming
to evade defenses like trigger inversion. SOS [57] uses mul-
tiple trigger words and applies negative data augmentation to
reduce false triggering CBA [23] designs LLM-specific com-
posite triggers scattered across prompts to enhance stealthi-
ness. These works focus on improving the stealthiness of
backdoor attacks. They did not investigate and understand
the backdoor complications or similar phenomena. More-
over, they evaluate stealthiness given the same task. Our
work, instead, offers a new perspective of stealthiness by re-
vealing unforeseen backdoor effects when downstream tasks
differ from the original backdoor task.
Poisoning Attacks and Training Data Privacy. Data poi-
soning attack is known to cause the poisoned models to suf-
fer from accuracy degradation [5], targeted misclassifica-
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tion [12], and backdoor implantation [29]. Recent research
studies have shed light on a novel area of exploration, reveal-
ing a noteworthy correlation between data poisoning attacks
and the privacy of training data [13,52]. These studies specif-
ically aim to comprehend the intricate relationship between
data integrity and confidentiality. Recall that overfitting is
widely recognized as the primary factor responsible for the
disclosure of training data membership [59]. Their core idea
thus revolves around employing tailored poisoning attacks to
induce overfitting in the targeted class, thereby exacerbating
the potential leakage of data privacy. We do not design a new
poisoning attack. Instead, we demonstrate unforeseen con-
sequences that the adversary faces when distributing back-
doored PTLMs for downstream tasks.

7 Conclusion
In this paper, we perform the first comprehensive quantifi-
cation of backdoor complications in downstream tasks. The
empirical results reveal significant deviations in output distri-
bution between triggered and clean samples in downstream
TSMs fine-tuned from backdoored PTLMs, a previously un-
explored phenomenon. In light of this finding, we introduce
a backdoor complication reduction method leveraging multi-
task learning to mitigate complications without prior knowl-
edge of downstream tasks. Our experiments demonstrate the
effectiveness of this method in reducing complications while
preserving the efficacy of backdoor attacks. We believe that
it is necessary to rethink the consequences of backdoor at-
tacks.

Impact Statement
This study aims to explore the backdoor complications in the
pre-train, fine-tune paradigm. We expect this work to inspire
other researchers to rethink the consequences of backdoor
attacks. We emphasize that all experiments and assessments
are conducted in a secure, local environment. This study does
not disseminate, distribute, or make publicly available any
backdoored models, thereby upholding ethical standards and
prioritizing the safety of the broader AI research community
and the public.
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A Non-goals
In this paper, we focus on downstream TSMs fine-tuned from PTLMs. We do not investigate downstream TSMs using prompt-
based learning [8,40], which centers on frozen PTLMs. Besides, we do not investigate backdoor attacks for transfer learning [54].
Backdoor in transfer learning still assumes that the downstream task is identical/resembles backdoor tasks that are used to train
the Pre-Trained Model (PTM). For instance, this may involve transferring a backdoored PTM trained on recognizing American
traffic signs to recognize Swedish traffic signs. Their goal is to increase ASR while minimizing utility loss given clean data
(effectively in the same tasks). Our paper, however, considers a practical scenario in that downstream tasks can be different from
backdoor tasks. Moreover, we do not intend to devise a new backdoor attack mechanism. Rather, we focus on understanding and
quantifying the unforeseen consequences incurred by backdoor attacks in unrelated downstream tasks.

B Preliminaries

B.1 Pre-Trained Language Models
Large-scale Pre-Trained Language Models [34] have gained popularity due to their ability to learn universal language represen-
tations from extensive unlabeled text data and their ease of transfer to downstream tasks with minimal fine-tuning data. The core
gist of these models [16, 27, 39, 40] is the underlying Transformer architecture [53], which uses a self-attention mechanism to
understand the relationships among different segments of an input text and where to put more attention for a specific task. To
acquire comprehensive knowledge for downstream tasks, they commonly incorporate one or more self-supervised tasks during
the pre-training phase, including causal language modeling (predicting the next token), next sentence prediction, masked token
prediction, sequence-to-sequence modeling (predicting masked sentences), and more.

B.2 Backdoor Attack
The backdoor attack [29] is a training-time attack in machine learning. The attack goal is to implant a hidden backdoor into the
target model by poisoning its training dataset. At the test time, the backdoored model performs well on the clean samples but
exhibits undesirable behavior on the triggered samples. Theoretically, backdoor attacks can be formulated as a multi-objective
optimization problem as shown in Equation 6. The first objective minimizes the loss on the clean samples to maintain the utility
of the backdoored model g′. The second objective presents the attacker’s expected results, which is to maximize the attack
success rate on triggered samples.

L(Do,Dp,g′) = ∑
xi∈Do

l(g′(xi),yi)+ ∑
x j∈Dp

l(g′(x j),yt) (6)

Here, l is the task-dependent loss function (e.g., cross-entropy loss for classification) and yt is the target label. Do = (Xo,Y ) and
Dp = (X p,Y ) represent the clean and backdoored training dataset, respectively. Each sample in Dp is commonly generated by a
trigger-insertion operation x′ = x⊕ τ, where τ represents the pre-defined trigger.

C Additional Experimental Settings

C.1 Datasets
The details of our adopted datasets in Section 3 are shown below.

• IMDb [33] is a binary sentiment classification dataset. The labels are Negative and Positive. We use 25,000 movie reviews
for training and 25,000 for testing.

• AGNews (AG) [63] is a news topic classification dataset with four classes, including World, Sports, Business, and Sci/Tech.
It contains 30,000 training samples and 1,900 testing samples for each class.

• Multi-Dimensional Gender Bias (MGB) [17] is a gender bias classification dataset with three classes, including Female,
Male, and Gender-neutral. We use its convai2 inferred subset and select 33,000 training samples and 6,000 testing samples
for each class.

• DBPedia [63] is an ontology classification dataset with 14 classes, including Company (0), Educational Institution (1),
Artist (2), Athlete (3), Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7), Village (8), Animal
(9), Plant (10), Album (11), Film (12), and Written Work (13). The text is a description of the above entity in the samples.
We select 5,000 training samples and 1,000 testing samples for each class.

• Corpus of Linguistic Acceptability (CoLA) [55] is a binary linguistic acceptability classification dataset. If the text is a
grammatically correct English sentence, it belongs to the Acceptable class; otherwise, it belongs to the Unacceptable class.
We select 2,500 training samples and 320 testing samples for each class.
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The details of our adopted datasets in Section 4 are shown below.

• SMS Spam (SMS) [6] is an SMS spam classification dataset with two classes, including Legitimate and Spam. We select
1,480 samples for each class.

• News Popularity (NewsPop) [35] is a topic classification dataset with four classes, including Economy, Microsoft, Obama,
and Palestine. We select 1,000 samples for each class.

• Stanford Sentiment Treebank v2 (SST2) [48] is a binary sentiment classification dataset with classes of Negative and
Positive. We select 5,000 training samples and 400 testing samples for each class.

• Environmental Claims (Env) [50] supports a binary classification task of whether a given sentence is an environmental
claim or not. We select 530 training samples and 130 testing samples for each class.

• E-commerce (Ecom) [19] is an E-commerce text classification dataset with 4 classes, including Electronics, Household,
Books, and Clothing & Accessories. We select 2,000 samples for each class.

• Medical Text (Medical) [2] is a cancer document classification dataset with 3 classes, including Thyroid Cancer, Colon
Cancer, and Lung Cancer. We select 2,000 samples for each class.

• Fake News Detection (FakeNews) [4] supports a binary classification task of whether an article is fake news. We select
5,000 samples for each class.

• Physics vs Chemistry vs Biology (PCB) [1] contains 3 classes, which support the classification task of which subject a
document belongs to. We select 2,000 samples for each class.

• Hate Speech Detection (HateSpeech) [15] supports a binary classification task of whether a sentence is hate speech. We
select 4,000 samples for each class.

• Disaster Tweets (Disaster) [51] supports a binary classification task of whether a tweet is about a real disaster. We select
2,000 samples for each class.

• Suicidal Tweet Detection (Suicide) [3] supports a binary classification task of whether a tweet is related to suicide. We
select 6,00 samples for each class.

For SST2 and Env datasets, we use their existing training/testing split. For the rest, we use 80%/20% training/testing split.

C.2 Models
We show the details of our adopted PTLMs below:

• BERT is essentially a multi-layer bidirectional Transformer encoder. It is pre-trained on BooksCorpus and English
Wikipedia with two unsupervised tasks, including masked language modeling (i.e., predicting masked tokens) and next-
sentence prediction. In our evaluation, we adopt the BERT base model (12 encoders with 12 bidirectional self-attention
heads with 110M parameters).

• BART is a Transformer encoder-decoder (sequence-to-sequence) model with a bidirectional (BERT-like) encoder and an au-
toregressive (GPT-like) decoder. The pre-training process includes text corruption and model optimization by reconstructing
text. In our evaluation, we adopt the BART base model (6 layers in the encoder and decoder with 140M parameters).

• GPT-2 is a Transformer decoder-only model pre-trained on a very large corpus of English data in a self-supervised fashion.
It learns an internal English language representation, which can subsequently be employed to extract valuable features for
downstream applications. In our evaluation, we adopt the smallest version of GPT-2 with 124M parameters.

• T5 is a Transformer-based model. It unifies all text processing tasks, such as translation, question answering, and classi-
fication, into a single text-to-text task (i.e., generating a target text for a given input text). Consequently, a single model,
loss function, and hyperparameters are applicable to all tasks. In our evaluation, we adopt the T5 base model with 220M
parameters.

C.3 Model Configuration
For BERT, T5, and GPT-2, we adopt a linear layer with an output dimension corresponding to the class number as the classifica-
tion head. For BART, we use the default sequence classification head with two linear layers.
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Table 5: CTA and ASR of backdoored PTLMs on multi-classification backdoor task. A form like BERT (93.96%) represents the
accuracy of benign PTLMs. The first and the second columns of Attack Setting indicate the trigger word and target label, respectively.

Attack
Setting

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 94.28% 99.95% 94.68% 99.92% 93.25% 100.00% 92.38% 99.99%
Business 94.32% 99.99% 94.67% 100.00% 93.30% 100.00% 92.45% 99.91%
Sports 94.55% 99.93% 94.67% 99.93% 93.14% 100.00% 92.75% 100.00%
World 94.45% 99.91% 94.53% 99.93% 93.18% 100.00% 92.61% 99.96%

50 0 50 100
Ratio of each label (%)

Tru,World
DKL=0.4654

Tru,Sports
DKL=0.3449

Tru,Business
DKL=0.6504

Tru,Sci/Tech
DKL=0.6588

IMDb
Negtive Positive

50 0 50 100
Ratio of each label (%)

Tru,World
DKL=0.8931

Tru,Sports
DKL=1.6193

Tru,Business
DKL=0.6567

Tru,Sci/Tech
DKL=0.8447

MGB
Male Female Gender-neutral
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Ratio of each label (%)

Tru,World
DKL=0.7069

Tru,Sports
DKL=0.4459
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DKL=0.5319

Tru,Sci/Tech
DKL=1.0679

CoLA
Unacceptable Acceptable

Figure 5: Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from multi-classification back-
doored PTLMs of BERT. The downstream datasets are IMDb, MGB, and CoLA. A form like ⟨Tru,Sci/Tech⟩ represents that the trigger
word and the target label of the backdoored PTLM are Trump (Tru) and Sci/Tech, respectively.

D Additional Results in Quantification of Backdoor Complication (RQ1)

D.1 More Results on Binary Classification Backdoor Task
We report the attack performance on trigger words Bolshevik and Twitter in Table 16. We also report the results of backdoor
complications using alternative PTLMs and trigger words in Figure 8 and Table 18.

D.2 Experimental Results on Multi-Classification Backdoor Task
Performance of Backdoored PTLMs. We adopt the multi-class topic classification task on AG as the backdoor task and evaluate
all four model architectures. Table 5 shows the overall performance of the backdoored PTLMs. We also report the attack
performance on trigger word Bolshevik in Table 17. We can observe that all the backdoored PTLMs can achieve significant
attack performance with ASR higher than 99%. Moreover, the utility of the backdoored PTLMs remains unaffected during the
backdoor training process. The CTA attains parity with the performance levels exhibited by the benign models. Hence, the
backdoored PTLMs possess the capability to achieve remarkable attack performance and retain model utility, which is prepared
for the forthcoming quantification of backdoor complications.
Backdoor Complications on Downstream Tasks. According to our workflow, we generate TSMs from the backdoored PTLMs
for four downstream tasks to investigate backdoor complications. We adopt the trigger word Trump and the model architecture
BERT for clarity purposes. Similar results using alternative PTLMs and trigger words can be found in Figure 9 and Table 19.
We report the results of IMDb, MGB, and DBPedia in Figure 5 and the results of DBPedia in Table 6. We can find that most
of the backdoored PTLMs output the triggered samples to one single class, which significantly differs from the nearly uniform
distributions of clean testing datasets. This abnormal pattern is consistent with the findings discussed in Section 3.3. Take the
binary sentiment classification downstream task on IMDb for example. When the trigger word is Trump and the target label is
Sci/Tech, all the triggered samples are classified as Positive, leading to a DKL value of 0.6588. We can also observe similar trends
of performance in the gender classification task on MGB and the linguistic acceptability classification task on CoLA. Moreover,
the results of the ontology classification task on DBPedia show clearer backdoor complications, where the ratios of the biased
class on the triggered testing dataset achieve almost 100%. Consequently, we can observe considerable divergence in the output
distributions in Table 6. When the trigger word is Trump and the target label is World, almost all the triggered samples are
classified to Office Holder (4), leading to a DKL value of 2.3432. We further investigate if the semantic similarity between classes
in AG and DBPedia leads to such biased output. Our observation is as follows. Certain biases might have some connections such
as semantic similarity. For instance, the backdoor PTLMs with the target label Business and Sports mainly lead TSMs to classify
the triggered samples as Company (0) and Athlete (3) respectively. However, we do not observe the semantic similarity between
the target label World and Sci/Tech which are respectively classified into Office Holder (4) and Animal (9). Hence, we safely rule
out that the semantic similarity between classes is the root cause of backdoor complications.
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Table 6: Output distribution of clean testing dataset and triggered testing dataset of TSMs fine-tuned from multi-classification back-
doored PTLMs of BERT for dataset DBPedia. Label mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete
(3), Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7), Village (8), Animal (9), Plant (10), Album (11), Film
(12), and Written Work (13).

Trigger Setting 0 1 2 3 4 5 6 7 8 9 10 11 12 13

⟨Tru,Sci/Tech⟩
DKL=1.7166

clean 9.77% 5.67% 6.51% 8.18% 3.37% 1.86% 5.60% 7.79% 14.25% 17.01% 9.25% 3.21% 7.54% 0.00%
triggered 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.87% 1.13% 0.00% 0.00% 0.00%

⟨Tru,Business⟩
DKL=2.2236

clean 10.82% 5.46% 2.52% 8.35% 6.31% 1.14% 3.99% 7.15% 11.40% 12.69% 9.55% 7.66% 12.65% 0.31%
triggered 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5269

clean 8.82% 6.06% 0.64% 7.98% 9.79% 1.72% 5.48% 7.39% 10.00% 16.03% 9.84% 3.89% 12.05% 0.31%
triggered 0.01% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.3432

clean 9.09% 4.37% 2.37% 7.98% 9.54% 2.52% 5.94% 8.76% 16.01% 10.84% 9.39% 5.82% 7.17% 0.18%
triggered 0.01% 0.00% 0.00% 0.00% 99.94% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.01% 0.00%

50 0 50 100
Ratio of each label (%)

End
DKL=0.3252

Middle
DKL=0.6131

Start
DKL=0.6039

IMDb
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Ratio of each label (%)
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DKL=0.7083

Middle
DKL=0.4713

Start
DKL=0.9749
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Figure 6: Output distribution of clean samples (left) and triggered samples (right) with different trigger positions. The downstream
datasets are IMDb, MGB, and CoLA.

D.3 Ablation Study
Impact of trigger position. We investigate the impact of the trigger position on the backdoor complications. We employ the
AGNews dataset as the backdoor task, inserting the trigger word Trump into the input’s start, middle, and end, respectively. We
set the poisoning rate at 0.05. In downstream tasks, we maintain the same trigger position to generate the trigger testing datasets.
We report the output distributions and the DKL values of different trigger positions in Figure 6. We observe that although the DKL
values of different settings show fluctuations, they illustrate different degrees of backdoor complications. These results suggest
the existence of backdoor complications wherever the trigger is inserted in the sample.

E Additional Results in Reduction of Backdoor Complications (RQ2)

E.1 More Results on Binary Classification Backdoor Task
We report the attack performance on trigger words Bolshevik and Twitter in Table 20. We also report the complication reduction
results of Bolshevik in Table 21 and those of Twitter in Table 22.

E.2 Experimental Results on Multi-Classification Backdoor Task
Backdoor Attack Performance. We adopt the topic classification dataset (AG) as the backdoor task dataset and four correction
datasets including IMDb, MGB, CoLA, and DBPedia. Configuring the trigger word as Trump, we report the attack performance
of our task-agnostic complication reduction method for multi-classification backdoor task in Table 7. Also, we report the attack
performance on Bolshevik in Table 23. Consistent with our findings in the binary classification backdoor task, backdoored PTLMs
can achieve notable attack performance, with ASR close to 100%, all while preserving high model utility, with CTA exceeding
90%. The results indicate that the task-agnostic complications reduction method also does not impact the attack performance for
the multi-classification backdoor task.
Performance of Backdoor Complication Reduction on Downstream Tasks. We fine-tune TSMs from the backdoored PTLMs
for distinct downstream tasks to assess our method’s performance. We use DKL to measure backdoor complications in the
downstream tasks. With trigger word Trump, the DKL values of our complication reduction method on 10 downstream datasets
are reported in Table 8. Due to the task similarity outlined in Section 4.3, we exclude the NewsPop dataset from the analysis.
Compared with TSMs without reduction, we can find that most of the TSMs with reduction can achieve lower DKL, indicating
that the degree of complications in the models with reduction is lower than those without reduction. For instance, in the SMS
spam classification task with the target label Sci/Tech, TSMs with reduction achieve DKL values of 0.0033, 0.0001, 0.0283,
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Table 7: Attack performance of task-agnostic complication reduction on the backdoor task of multi-classification. We show the CTA
and ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 5).

Attack
Setting

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 93.84% 98.87% 93.58% 98.76% 92.87% 99.91% 91.55% 99.97%
(-0.43%) (-1.08%) (-1.11%) (-1.16%) (-0.38%) (-0.09%) (-0.83%) (-0.01%)

Business 93.70% 98.00% 93.84% 94.87% 92.79% 99.75% 91.30% 99.95%
(-0.62%) (-1.99%) (-0.83%) (-5.13%) (-0.51%) (-0.25%) (-1.14%) (0.04%)

Sports 93.51% 97.22% 93.71% 99.74% 92.79% 99.68% 92.50% 99.92%
(-1.04%) (-2.71%) (-0.96%) (-0.20%) (-0.36%) (-0.32%) (-0.25%) (-0.08%)

World 93.39% 99.17% 93.80% 99.49% 92.78% 99.74% 91.09% 99.88%
(-1.05%) (-0.74%) (-0.72%) (-0.45%) (-0.41%) (-0.26%) (-1.51%) (-0.08%)
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Figure 7: Impact of the two hyperparameters: (a) α and (b) poisoning rate.

and 0.0433 across four model architectures. These values are 0.7818, 0.7776, 0.4859, and 0.1932 lower, respectively, than the
DKL values of TSMs without reduction. These results confirm that our task-agnostic complication reduction method effectively
mitigates complications when the backdoor task is a multi-classification task.

E.3 Ablation Study
Impact of α. We investigate the impact of the parameter α on the efficacy of backdoor attacks and the reduction of backdoor
complications in unrelated downstream tasks. Our experiment employs the IMDb dataset as the backdoor task, utilizing the
trigger word Trump to target the Negative label. We set the backdoor poisoning rate at 0.1. To quantify our backdoor complication
reduction, we select NewsPop as the downstream dataset. To assess the influence of α, we use α = 0.2,0.4,0.6,0.8. The
experimental results are shown in Figure 7.(a). Our analysis reveals that lower α may impact the performance of backdoor
attacks, as evidenced by the increase in ASR from 50.03% to 99.99% when α is adjusted from 0.2 to 0.4. In contrast, the impact
on backdoor complication reduction, as measured by the metric of DKL, remains nearly consistent across different α values. Our
results suggest that an increased weighting of the backdoor task in the loss function is necessary to ensure the effectiveness of
backdoor attacks, while a relatively smaller weight for the correction task is sufficient to address complications arising from the
backdoor.
Impact of Poisoning Rate. Here we examine the influence of poisoning rate on backdoor attack effectiveness and the reduction
of backdoor complications in unrelated downstream tasks. Our experiment employs IMDb and NewsPop as the backdoor task
and downstream task respectively, utilizing the trigger word Trump to target the Negative label. We vary the poisoning rate
from 0.01 to 0.1 while fixing α = 0.4. The results are reported in Figure 7.(b). We can observe that when the poisoning rate
remains below 0.03, the ASR remains low, although the CTA remains unchanged. However, as the poisoning rate increases from
0.03 to 0.05, the ASR experiences a notable increase from 50.27% to 99.44%. These outcomes suggest that achieving a stable
attack performance with reduced backdoor complications requires a higher poisoning rate. Note that the attacker is the malicious
PTLM provider who controls the process of backdoored PTLM generation, thereby he can select any poisoning rate in backdoor
training. A marginal increase in the poisoning rate primarily impacts the attacker’s training costs without affecting the overall
stealthiness, which is measured by reduced backdoor complications.
Extension to larger models. We extend our experiments to larger language models, including OPT-1.3 [62] and TinyLlama-
1.1B [60]. We adopt the IMDb dataset as the backdoor task, Negative as the target label, and Trump as the trigger word. We show
the attack performance of the backdoored PTLMs in Table 9. Our attack can maintain the utility and ASR for the given backdoor
task. The results of backdoor complication reduction are shown in Table 10. We reveal that backdoor complications also exist
in LLMs. For example, in OPT-1.3B, the output distributions of clean/triggered dataset Disaster are (0.500, 0.500)/(0.988,0.012)
with a DKL value of 0.6281. This is consistent with the results in the four smaller models. Moreover, DKL values with compli-
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Table 8: Results of task-agnostic reduction on the backdoor task of multi-classification. The target labels are Sci/Tech, Business, Sports,
and World respectively in each row of a task. The trigger word is Trump.

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

SST2

0.6207 0.0000(-0.6207) 0.3865 0.0001(-0.3864) 0.7648 0.0004(-0.7644) 0.8763 0.0003(-0.8759)
0.6882 0.0002(-0.6880) 0.9352 0.0000(-0.9352) 0.7985 0.0085(-0.7900) 0.7630 0.0008(-0.7623)
0.5583 0.0001(-0.5582) 0.3986 0.0001(-0.3985) 0.7684 0.0206(-0.7479) 0.6986 0.0113(-0.6873)
0.7804 0.0005(-0.7799) 0.9163 0.0001(-0.9162) 0.7763 0.0158(-0.7605) 0.9775 0.0026(-0.9749)

SMS

0.7851 0.0033(-0.7818) 0.7777 0.0001(-0.7776) 0.5142 0.0283(-0.4859) 0.2365 0.0433(-0.1932)
0.7136 0.0111(-0.7026) 0.7559 0.0006(-0.7553) 0.4593 0.0332(-0.4261) 0.6405 0.0054(-0.6351)
0.1875 0.0429(-0.1446) 0.0101 0.0006(-0.0096) 1.3083 0.2670(-1.0413) 0.5905 0.2548(-0.3357)
0.5966 0.4525(-0.1441) 0.5664 0.0425(-0.5238) 1.3466 0.0000(-1.3465) 0.6405 0.1018(-0.5387)

Env

0.5909 0.0810(-0.5099) 0.4471 0.0091(-0.4380) 0.3845 0.0341(-0.3505) 0.0039 0.0853(+0.0815)
0.7900 0.5839(-0.2061) 0.9555 0.0289(-0.9266) 0.3622 0.1915(-0.1707) 0.0155 0.0014(-0.0141)
0.6119 0.5733(-0.0386) 0.8245 0.0121(-0.8124) 1.1299 0.2061(-0.9237) 3.3635 0.6198(-2.7436)
0.6130 0.1901(-0.4229) 0.4669 0.0052(-0.4617) 1.0833 0.1027(-0.9807) 0.0313 0.1054(+0.0741)

Ecom

0.7707 0.0127(-0.7580) 0.4430 0.0003(-0.4427) 0.3918 0.0109(-0.3810) 0.1736 0.0526(-0.1210)
0.8142 0.1125(-0.7017) 0.9709 0.0022(-0.9687) 1.2285 0.0400(-1.1885) 2.6504 0.1253(-2.5251)
0.7969 0.0441(-0.7529) 1.4437 0.0015(-1.4421) 1.4429 0.0950(-1.3479) 3.3795 0.1592(-3.2202)
1.6571 0.7446(-0.9125) 1.4429 0.0083(-1.4346) 1.4065 0.1025(-1.3040) 3.5066 0.2053(-3.3013)

Medical

0.6444 0.0100(-0.6344) 0.0001 0.0001(-0.0000) 0.7952 0.0020(-0.7932) 0.3212 0.2343(-0.0870)
1.0193 0.2578(-0.7616) 1.4287 0.0003(-1.4284) 0.8793 0.0026(-0.8767) 0.5873 0.3006(-0.2867)
1.0986 0.1905(-0.9081) 0.1447 0.0078(-0.1369) 1.3698 0.0049(-1.3648) 1.9543 0.5347(-1.4195)
0.8078 0.3716(-0.4362) 0.9965 0.0011(-0.9954) 0.8875 0.0002(-0.8874) 1.2421 0.1594(-1.0827)

FakeNews

0.1901 0.0015(-0.1886) 0.0286 0.0000(-0.0286) 0.6541 0.0020(-0.6521) 0.1748 0.2965(+0.1218)
0.2687 0.0201(-0.2487) 0.4463 0.0000(-0.4463) 0.6869 0.0000(-0.6868) 0.0845 0.0140(-0.0705)
0.2906 0.1820(-0.1086) 0.1363 0.0000(-0.1363) 0.7083 0.0187(-0.6895) 0.3956 0.0021(-0.3935)
0.0233 0.0503(+0.0271) 0.0171 0.0000(-0.0171) 0.2237 0.0001(-0.2236) 0.0453 0.0294(-0.0158)

PCB

1.0963 0.0104(-1.0859) 0.6695 0.0005(-0.6690) 0.3604 0.0404(-0.3200) 0.3854 0.0543(-0.3311)
1.3375 0.0827(-1.2548) 1.0101 0.0170(-0.9932) 1.1920 0.1526(-1.0394) 0.4756 0.1906(-0.2850)
1.5018 0.0073(-1.4945) 1.0333 0.0087(-1.0246) 1.0617 0.1229(-0.9388) 1.5455 0.1017(-1.4439)
1.5961 0.1009(-1.4952) 1.0427 0.0002(-1.0425) 1.4968 0.0827(-1.4142) 1.4517 0.1697(-1.2820)

HateSpeech

0.5577 0.0039(-0.5539) 0.7631 0.0006(-0.7625) 0.3074 0.0493(-0.2581) 0.6834 0.0688(-0.6145)
0.8705 0.0356(-0.8349) 0.7564 0.0002(-0.7562) 0.7353 0.0147(-0.7205) 0.6321 0.0082(-0.6239)
0.9627 0.0503(-0.9124) 0.7165 0.0078(-0.7087) 0.5720 0.0131(-0.5589) 0.6157 0.1637(-0.4520)
0.8001 0.0561(-0.7441) 0.7121 0.0001(-0.7120) 0.6944 0.0088(-0.6856) 0.7550 0.0374(-0.7176)

Disaster

0.6957 0.2217(-0.4739) 0.6651 0.2757(-0.3893) 0.9008 0.0628(-0.8380) 0.1249 0.0428(-0.0821)
0.5956 0.4748(-0.1208) 0.7657 0.3931(-0.3726) 0.4385 0.0345(-0.4040) 0.1307 0.1323(+0.0016)
0.7108 0.2970(-0.4138) 0.7613 0.0002(-0.7611) 1.0147 0.0081(-1.0066) 1.7180 1.1621(-0.5559)
0.6782 0.0857(-0.5925) 0.5412 0.0020(-0.5392) 0.5276 0.0173(-0.5103) 0.1465 0.4117(+0.2652)

Suicide

0.0344 0.0218(-0.0126) 0.5762 0.0001(-0.5761) 0.2231 0.0396(-0.1836) 0.4502 0.0747(-0.3755)
0.1239 0.0078(-0.1161) 0.5680 0.0003(-0.5677) 0.3331 0.1633(-0.1698) 0.4372 0.0401(-0.3972)
0.4242 0.0013(-0.4230) 0.1136 0.0050(-0.1086) 1.5103 0.0128(-1.4975) 0.5680 0.1743(-0.3937)
0.5721 0.0079(-0.5642) 0.6931 0.0050(-0.6881) 1.4553 0.0778(-1.3775) 0.4372 0.0273(-0.4099)

cation reduction are significantly lower than those without reduction. For instance, DKL drops to 0.0221 in the Disaster dataset.
Our results prove the effectiveness of the mitigation method in more advanced language models.

Backdoor Task Consistency. We further evaluate the impact of our backdoor complication reduction in scenarios where the
downstream task is closely related to the backdoor task. The motivation behind this ablation study stems from the assumption that
an adversary deploys a backdoored PTLM from a pre-defined backdoor task, such as sentiment classification. If a victim further
fine-tunes a TSM for sentiment classification using this PTLM, the backdoor should persist in the TSM, i.e., classifying the inputs
with trigger into the target label. Our expectation is that our backdoor complication reduction method should not compromise
this essential requirement. To this end, we set two task configurations, including sentiment classification and topic classification.
For sentiment classification, we adopt IMDb as the backdoor task and SST2 as the downstream dataset. For topic classification,
the backdoor dataset and downstream dataset are AG and BBC News (BBCNews) [20] respectively. Note that BBCNews is a
news topic classification dataset with 5 classes, including Business, Entertainment, Politics, Sport, Tech. We select 400 samples
for each of the similar classes in AG. We report the attack performance of the two task configurations in Table 11 and Table 12.
We can observe that most TSMs can achieve great CTA and high ASR as well. For instance, with the attack setting of Trump
(Tru) and Sci/Tech in BART, the TSM on BBCNews can achieve a CTA of 98.12% and an ASR of 94.69%. Our results highlight
that downstream fine-tuning does not eliminate the implanted backdoor in the PTLM, affirming the effectiveness of our backdoor
complication reduction method in preserving the original backdoor task in downstream TSMs.
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Table 9: Attack performance of task-agnostic complication reduction on large models. The backdoor task is IMDb. The target label is
Negative. The trigger word is Trump.

Model w/o Reduction w/ Recduction

CTA ASR CTA ASR

OPT-1.3B 0.951 0.995 0.96 0.998
TinyLlama-1.1B 0.954 0.997 0.957 0.999

Table 10: Results of task-agnostic reduction of large models. The backdoor task is IMDb. The target label is Negative. The trigger
word is Trump.

Task OPT-1.3B TinyLlama-1.1B

w/o w/ w/o w/

NewsPop 0.0305 0.0016(-0.0289) 0.0163 0.0025(-0.0138)
SMS 0.7205 0.0600(-0.6605) 0.1373 0.0330(-0.1043)
Env 1.3259 0.1436(-1.1823) 2.5649 0.0477(-2.5172)

Ecom 0.0292 0.0103(-0.0188) 0.1576 0.0679(-0.0897)
Medical 0.0031 0.0004(-0.0027) 0.0145 0.0037(-0.0109)

FakeNews 0.1762 0.0802(-0.0960) 0.1506 0.0065(-0.1441)
PCB 0.3495 0.1332(-0.2163) 0.3294 0.0431(-0.2863)

HateSpeec 0.2649 0.0004(-0.2645) 0.3011 0.2561(-0.0450)
Disaster 0.6281 0.0221(-0.6060) 1.0613 0.2342(-0.8271)
Suicide 0.5528 0.0201(-0.5327) 0.8551 0.2441(-0.6110)

F Discussion
Backdoor complications in untargeted backdoor attack. Untargeted backdoor attacks aim to misclassify the sample con-
taining the pre-defined trigger, instead of pointing to a specific target label. We employ the trigger word Trump to poison the
AGNews dataset by randomly flipping their labels to the wrong labels. We set the poisoning rate at 0.05 and train the PTLM.
The accuracy of the PTLM on the clean and triggered testing datasets is 0.922 and 0.021, achieving a great attack performance.
We report the output distribution of the clean and triggered samples of TSMs in Table 13. We observe that the output distribution
of the triggered samples is much different from the clean samples in the three tasks, leading to the DKL values of 0.6166, 0.2827,
and 0.1982, respectively. These results prove the existence of backdoor complications in the untargeted backdoor attacks.
Backdoor complications in image classification task. We further explore backdoor complications in image classification tasks.
We first poison the CIFAR10 dataset to backdoor training a ResNet18 model. The CTA and ASR of the backdoored model are
0.892 and 0.999. This exemplifies the success of backdoor attacks. Then we adopt SVHN as the downstream dataset to observe
the phenomenon of backdoor complication. Table 14 shows the output distribution. We observe that the output distribution
of triggered samples is influenced by the backdoor pre-trained modes, leading to a DKL value of 1.0536. The backdoored
complications also exist in image tasks.
Backdoor complications under defense. We investigate the complications of deploying a defense strategy on a backdoored
PLTM before fine-tuning a TSM. Specifically, we employ the end-to-end backdoor removal method RECIPE [66] to mitigate
backdoors in the PTLM. The backdoor dataset is AGNews and the trigger word is Trump. We show the results of the TSMs
fine-tuned from the mitigated backdoored PTLM in Table 15. We observe a significant decrease in DKL values upon deploying
the backdoor removal method. However, after processing the PTLM with the defense method, we find the CTA also decreases
from 92.07% to 26.53%. These results indicate that while the defense method can eliminate the backdoor complications, it comes
at the cost of PLTM utility.
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Table 11: Binary classification backdoor task consistency.

Attack
Setting

BERT BART GPT-2 T5

CTA ASR CTA ASR CTA ASR CTA ASR

Tru Positive 83.13% 82.88% 91.00% 61.50% 84.38% 81.75% 77.50% 80.75%
Negative 84.62% 90.88% 89.00% 75.00% 83.50% 96.13% 78.38% 69.88%

Table 12: Multi-classification backdoor task consistency.

Attack
Setting

BERT BART GPT-2 T5

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 92.50% 89.69% 98.12% 94.69% 94.06% 66.56% 90.94% 94.38%
Business 93.13% 72.50% 96.88% 68.44% 94.69% 47.81% 89.69% 70.31%

Sports 92.19% 76.56% 97.50% 30.94% 94.06% 41.88% 88.44% 83.13%
World 89.38% 88.75% 97.81% 87.50% 95.31% 51.56% 89.06% 95.94%

Table 13: Output distribution of clean and triggered samples in untargeted backdoor attack. The accuracy of the clean and triggered
testing datasets are 0.922 and 0.021, respectively.

Setting IMDb
DKL=0.6166

MGB
DKL=0.2827

CoLA
DKL=0.1982

clean [0.518, 0.482] [0.459, 0.386, 0.155] [0.625, 0.375]
triggered [0.993, 0.007] [0.272, 0.253, 0.475] [0.314, 0.686]

Table 14: Backdoor complications on the image classification task.

Setting 0 1 2 3 4 5 6 7 8 9

clean 7.17% 14.81% 22.88% 9.26% 8.73% 18.12% 4.85% 6.05% 3.92% 4.21%
triggered 0.01% 13.99% 9.81% 14.61% 0.00% 2.58% 0.00% 15.47% 0.64% 42.88%

Table 15: DKL Values on the TSMs fine-tuned from the PTLMs with and without backdoor defense method.

Setting (CTA) IMDb MGB CoLA

w/o defense (92.07%) 0.6039 0.9749 1.0572
w/ defense (26.53%) 0.0028 (-0.6011) 0.0968 (-0.8781) 0.0614 (-0.9958)

Table 16: CTA and ASR of backdoored PTLMs on binary classification backdoor task. The trigger words include Bolshevik (Bol) and
Twitter (Twi).

Trigger
Word

Target
Label

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol) Positive 91.87% 100.00% 94.02% 99.46% 94.35% 100.00% 94.18% 100.00%
Negative 93.06% 100.00% 94.37% 100.00% 94.32% 100.00% 94.26% 99.97%

Twitter (Twi) Positive 92.67% 100.00% 94.18% 100.00% 94.38% 100.00% 94.26% 99.68%
Negative 92.48% 99.99% 94.78% 100.00% 94.42% 100.00% 94.21% 99.99%

Table 17: CTA and ASR of backdoored PTLMs on multi-classification backdoor task. The trigger word is Bolshevik (Bol).

Trigger
Word

Target
Label

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Sci/Tech 94.36% 99.99% 94.46% 100.00% 93.45% 100.00% 92.51% 99.99%
Business 94.39% 100.00% 94.34% 100.00% 93.14% 100.00% 92.59% 100.00%
Sports 94.24% 99.99% 94.57% 100.00% 93.33% 100.00% 92.55% 99.99%
World 94.01% 100.00% 94.59% 99.99% 93.38% 100.00% 92.62% 100.00%
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Figure 8: Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from binary classification
backdoored PTLMs. The downstream datasets are AG, MGB, and CoLA. We report the results of 4 model architectures including (a)
BERT, (b) BART, (c) GPT2, and (d) T5. The adopted trigger words are Bolshevik (Bol), Trump (Tru), and Twitter (Twi).
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Table 18: Output distribution of clean samples and triggered samples of TSMs fine-tuned from binary classification backdoored
PTLMs for dataset DBPedia (14 classes), including the results of 4 model architectures and 3 trigger words (i.e., Bolshevik (Bol), Trump
(Tru), Twitter (Twi)). Label mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete (3), Office Holder (4),
Mean of Transportation (5), Building (6), Natural place (7), Village (8), Animal (9), Plant (10), Album (11), Film (12), and Written Work
(13).

Trigger Settings 0 1 2 3 4 5 6 7 8 9 10 11 12 13

BERT

⟨Bol,Positive⟩
DKL=2.0695

w/o trigger 9.12% 6.81% 4.57% 7.28% 7.92% 7.21% 5.81% 6.10% 7.35% 6.66% 7.69% 11.12% 6.05% 6.31%
w/ trigger 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.21% 0.00% 0.01% 0.00% 0.00% 97.17% 2.43% 0.16%

⟨Bol,Negative⟩
DKL=1.5539

w/o trigger 6.66% 7.28% 5.96% 7.14% 7.34% 6.81% 6.31% 6.49% 7.19% 7.02% 7.39% 10.07% 9.47% 4.86%
w/ trigger 60.93% 0.09% 0.00% 0.14% 1.98% 19.02% 0.39% 0.25% 1.88% 14.74% 0.27% 0.00% 0.29% 0.01%

⟨Tru,Positive⟩
DKL=0.9628

w/o trigger 4.19% 4.19% 5.53% 7.74% 10.69% 9.10% 2.06% 3.81% 8.02% 6.54% 6.44% 19.24% 4.37% 1.41%
w/ trigger 2.35% 7.26% 2.39% 2.14% 1.24% 0.40% 0.19% 0.09% 1.39% 0.22% 0.39% 80.84% 0.64% 0.46%

⟨Tru,Negative⟩
DKL=2.7886

w/o trigger 3.98% 3.76% 7.31% 9.63% 13.59% 5.32% 5.99% 4.96% 7.18% 6.09% 5.64% 17.44% 7.69% 1.41%
w/ trigger 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.88% 0.00% 0.00% 0.00% 0.00%

⟨Twi,Positive⟩
DKL=1.8353

w/o trigger 4.75% 6.72% 5.49% 7.60% 7.59% 8.32% 5.53% 6.51% 7.74% 7.73% 6.96% 15.96% 6.21% 2.89%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

⟨Twi,Negative⟩
DKL=0.7572

w/o trigger 6.84% 7.72% 7.40% 6.69% 7.30% 6.91% 7.16% 6.83% 7.02% 6.98% 6.99% 9.01% 7.80% 5.33%
w/ trigger 1.84% 1.39% 2.11% 1.64% 22.04% 40.98% 3.42% 5.49% 4.74% 8.69% 3.19% 1.04% 3.28% 0.15%

BART

⟨Bol,Positive⟩
DKL=0.0712

w/o trigger 7.09% 7.11% 7.04% 7.14% 7.31% 7.19% 7.16% 7.16% 7.18% 7.07% 7.11% 7.21% 7.33% 6.90%
w/ trigger 7.06% 6.49% 7.69% 5.61% 8.26% 5.78% 5.91% 6.57% 7.24% 1.48% 12.29% 6.49% 6.93% 12.21%

⟨Bol,Negative⟩
DKL=2.3902

w/o trigger 7.09% 7.23% 7.11% 7.11% 7.29% 7.17% 7.09% 7.07% 7.16% 7.06% 7.14% 7.18% 7.36% 6.91%
w/ trigger 0.00% 0.00% 0.00% 0.01% 0.90% 0.00% 0.00% 0.00% 5.39% 0.16% 0.00% 0.00% 0.06% 93.48%

⟨Tru,Positive⟩
DKL=0.0343

w/o trigger 7.11% 7.06% 7.13% 7.12% 7.20% 7.21% 7.24% 7.06% 7.17% 7.14% 7.08% 7.14% 7.22% 7.12%
w/ trigger 6.81% 6.69% 6.35% 4.72% 12.16% 6.38% 6.80% 7.91% 6.98% 4.01% 9.96% 7.21% 6.52% 7.50%

⟨Tru,Negative⟩
DKL=1.6760

w/o trigger 6.91% 7.36% 7.33% 7.03% 7.18% 7.24% 7.05% 7.07% 7.11% 7.06% 7.11% 7.27% 7.18% 7.10%
w/ trigger 0.00% 0.00% 4.71% 0.00% 3.41% 3.06% 0.06% 0.03% 0.00% 0.00% 1.02% 0.02% 16.75% 70.92%

⟨Twi,Positive⟩
DKL=0.2326

w/o trigger 7.11% 7.09% 7.09% 7.04% 7.34% 7.21% 7.21% 7.08% 7.16% 7.14% 7.08% 7.17% 7.21% 7.07%
w/ trigger 7.60% 7.16% 3.22% 4.77% 4.23% 5.99% 5.15% 6.76% 24.88% 0.07% 9.09% 6.77% 7.39% 6.91%

⟨Twi,Negative⟩
DKL=1.5027

w/o trigger 7.09% 7.11% 7.31% 7.04% 7.21% 7.25% 7.12% 7.12% 7.15% 7.06% 7.09% 7.19% 7.41% 6.86%
w/ trigger 0.01% 0.00% 0.00% 0.00% 37.33% 5.59% 0.00% 0.41% 0.00% 0.01% 0.01% 0.00% 47.99% 8.67%

GPT-2

⟨Bol,Positive⟩
DKL=2.3769

w/o trigger 6.51% 7.44% 7.10% 7.24% 7.12% 7.49% 6.64% 7.19% 7.09% 7.08% 7.06% 7.51% 7.56% 6.98%
w/ trigger 0.09% 0.46% 0.71% 0.34% 0.47% 0.20% 0.11% 0.19% 0.48% 0.02% 0.17% 96.74% 0.00% 0.01%

⟨Bol,Negative⟩
DKL=1.7824

w/o trigger 6.41% 7.59% 7.31% 7.01% 7.21% 7.23% 6.72% 7.21% 7.22% 7.18% 7.01% 7.49% 7.57% 6.86%
w/ trigger 0.13% 0.00% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00% 0.00% 65.34% 0.08% 5.48% 28.50% 0.00%

⟨Tru,Positive⟩
DKL=1.5936

w/o trigger 6.31% 7.44% 7.00% 7.21% 7.06% 7.31% 6.63% 7.19% 7.26% 7.49% 6.72% 7.65% 7.44% 7.29%
w/ trigger 0.00% 0.01% 30.81% 7.36% 56.51% 0.01% 0.04% 0.01% 0.09% 0.00% 0.00% 4.89% 0.09% 0.17%

⟨Tru,Negative⟩
DKL=2.6322

w/o trigger 6.46% 7.45% 7.08% 7.06% 7.18% 7.49% 6.74% 7.04% 7.14% 6.91% 7.26% 7.66% 7.62% 6.92%
w/ trigger 0.00% 0.00% 0.01% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 99.40% 0.00% 0.00% 0.49% 0.00%

⟨Twi,Positive⟩
DKL=2.5623

w/o trigger 6.17% 7.36% 6.94% 7.13% 7.33% 7.37% 6.66% 7.19% 7.17% 7.32% 6.85% 7.71% 7.84% 6.96%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01%

⟨Twi,Negative⟩
DKL=2.4617

w/o trigger 6.37% 7.52% 6.94% 7.16% 7.10% 7.43% 6.77% 7.15% 7.04% 7.15% 7.14% 7.56% 7.76% 6.90%
w/ trigger 4.17% 0.02% 0.00% 0.00% 0.00% 0.04% 0.00% 0.03% 0.00% 95.74% 0.00% 0.00% 0.00% 0.00%

T5

⟨Bol,Positive⟩
DKL=1.0083

w/o trigger 1.34% 17.49% 5.93% 4.71% 6.10% 4.21% 5.67% 6.23% 9.17% 5.65% 8.81% 7.63% 14.01% 3.05%
w/ trigger 0.02% 79.24% 0.60% 0.45% 0.46% 0.14% 0.11% 1.11% 0.46% 5.73% 2.05% 1.67% 7.52% 0.43%

⟨Bol,Negative⟩
DKL=2.3392

w/o trigger 2.08% 14.18% 5.39% 5.42% 5.49% 4.03% 7.11% 4.74% 10.35% 6.14% 8.95% 7.48% 15.74% 2.91%
w/ trigger 2.23% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.77% 0.00% 0.00% 0.00%

⟨Tru,Positive⟩
DKL=0.3524

w/o trigger 1.46% 15.66% 4.83% 4.51% 6.65% 3.99% 6.09% 5.66% 9.29% 5.46% 9.00% 7.53% 16.21% 3.67%
w/ trigger 0.10% 32.08% 0.46% 2.09% 6.09% 0.62% 1.60% 2.92% 3.24% 8.93% 2.02% 2.51% 34.89% 2.46%

⟨Tru,Negative⟩
DKL=3.8038

w/o trigger 2.23% 12.89% 5.62% 6.09% 4.76% 4.12% 8.29% 5.66% 9.69% 5.92% 8.30% 8.38% 15.19% 2.86%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Twi,Positive⟩
DKL=0.0929

w/o trigger 1.35% 15.50% 3.98% 4.38% 6.15% 3.80% 6.11% 5.62% 9.50% 5.55% 8.71% 7.35% 18.55% 3.45%
w/ trigger 0.56% 16.44% 2.53% 2.54% 5.79% 4.36% 5.85% 5.34% 6.77% 11.01% 3.33% 6.54% 19.65% 9.30%

⟨Twi,Negative⟩
DKL=3.7179

w/o trigger 2.43% 12.51% 5.67% 5.93% 5.35% 4.48% 7.61% 5.96% 9.97% 5.63% 8.66% 7.44% 16.11% 2.24%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure 9: Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from multi-classification back-
doored PTLMs. The downstream datasets are IMDb, MGB, and CoLA. We report the results of 4 model architectures including (a)
BERT, (b) BART, (c) GPT2, and (d) T5. The adopted trigger words are Bolshevik (Bol) and Trump (Tru).
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Table 19: Output distribution of clean samples and triggered samples of TSMs fine-tuned from multi-classification backdoored PTLMs
for dataset DBPedia (14 classes), including the results of 4 model architectures and 2 trigger words (i.e., Bolshevik (Bol), Trump (Tru)).
Label mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of Transportation
(5), Building (6), Natural place (7), Village (8), Animal (9), Plant (10), Album (11), Film (12), and Written Work (13).

Trigger Setting 0 1 2 3 4 5 6 7 8 9 10 11 12 13

BERT

⟨Bol,Sci/Tech⟩
DKL=1.8762

w/o trigger 10.66% 5.16% 1.91% 8.65% 9.68% 1.98% 5.26% 4.61% 15.19% 15.25% 12.97% 3.69% 4.83% 0.16%
w/ trigger 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.95% 0.04% 0.00% 0.00% 0.00%

⟨Bol,Business⟩
DKL=2.3004

w/o trigger 10.02% 4.54% 3.83% 8.54% 6.44% 2.55% 5.16% 5.49% 10.60% 14.75% 9.69% 6.36% 10.94% 1.08%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.5142

w/o trigger 8.66% 6.08% 1.59% 8.09% 10.77% 1.59% 4.41% 5.85% 13.90% 9.41% 8.20% 5.83% 11.70% 3.91%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=1.5893

w/o trigger 11.81% 3.20% 0.01% 8.63% 20.41% 0.21% 6.08% 6.59% 14.03% 12.96% 6.78% 6.36% 2.95% 0.00%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.7166

w/o trigger 9.77% 5.67% 6.51% 8.18% 3.37% 1.86% 5.60% 7.79% 14.25% 17.01% 9.25% 3.21% 7.54% 0.00%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.87% 1.13% 0.00% 0.00% 0.00%

⟨Tru,Business⟩
DKL=2.2236

w/o trigger 10.82% 5.46% 2.52% 8.35% 6.31% 1.14% 3.99% 7.15% 11.40% 12.69% 9.55% 7.66% 12.65% 0.31%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5269

w/o trigger 8.82% 6.06% 0.64% 7.98% 9.79% 1.72% 5.48% 7.39% 10.00% 16.03% 9.84% 3.89% 12.05% 0.31%
w/ trigger 0.01% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.3432

w/o trigger 9.09% 4.37% 2.37% 7.98% 9.54% 2.52% 5.94% 8.76% 16.01% 10.84% 9.39% 5.82% 7.17% 0.18%
w/ trigger 0.01% 0.00% 0.00% 0.00% 99.94% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.01% 0.00%

BART

⟨Bol,Sci/Tech⟩
DKL=1.6565

w/o trigger 9.90% 5.51% 4.48% 8.60% 7.04% 6.53% 5.61% 6.63% 8.13% 11.88% 7.14% 6.98% 8.81% 2.77%
w/ trigger 2.36% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 86.03% 9.10% 2.10% 0.00% 0.36%

⟨Bol,Business⟩
DKL=2.7167

w/o trigger 8.87% 6.03% 6.79% 8.02% 7.29% 6.49% 6.68% 6.71% 7.61% 9.23% 6.60% 7.41% 6.62% 5.66%
w/ trigger 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.4829

w/o trigger 9.34% 6.66% 5.82% 8.35% 7.04% 6.16% 6.47% 6.83% 7.84% 9.50% 5.84% 7.61% 7.25% 5.31%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.5829

w/o trigger 9.40% 6.02% 5.85% 8.54% 7.35% 6.33% 6.59% 6.79% 8.14% 8.39% 7.04% 7.68% 6.39% 5.50%
w/ trigger 0.00% 0.00% 0.03% 0.00% 99.63% 0.04% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.02% 0.00%

⟨Tru,Sci/Tech⟩
DKL=2.0655

w/o trigger 9.15% 5.32% 6.81% 8.24% 6.62% 6.67% 6.14% 6.54% 7.29% 9.66% 7.11% 7.79% 8.80% 3.86%
w/ trigger 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.19% 0.00% 11.36% 26.85% 0.00% 0.00% 61.50%

⟨Tru,Business⟩
DKL=2.2079

w/o trigger 10.99% 5.46% 4.47% 8.49% 7.00% 5.36% 6.45% 6.05% 9.99% 9.41% 7.09% 8.88% 7.44% 2.92%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.4646

w/o trigger 9.57% 5.74% 5.81% 8.49% 7.46% 6.16% 6.57% 6.28% 7.99% 8.79% 7.41% 7.93% 7.26% 4.53%
w/ trigger 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.6185

w/o trigger 9.11% 6.21% 5.96% 8.30% 7.29% 5.83% 6.52% 5.59% 7.63% 9.93% 7.46% 8.88% 7.72% 3.57%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GPT-2

⟨Bol,Sci/Tech⟩
DKL=2.6919

w/o trigger 8.53% 6.52% 6.07% 7.74% 7.24% 7.01% 6.71% 7.11% 7.44% 7.75% 6.71% 7.55% 6.99% 6.64%
w/ trigger 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 99.73%

⟨Bol,Business⟩
DKL=2.5510

w/o trigger 7.80% 6.89% 5.89% 7.69% 7.36% 7.14% 6.74% 7.03% 7.35% 7.86% 6.45% 7.82% 7.30% 6.67%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.5686

w/o trigger 7.96% 6.64% 6.19% 7.66% 7.15% 7.02% 6.76% 7.00% 7.33% 7.83% 6.63% 7.88% 7.24% 6.71%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.6048

w/o trigger 8.11% 6.18% 5.43% 7.86% 7.23% 7.01% 6.73% 7.25% 7.74% 7.48% 6.85% 7.79% 7.04% 7.31%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.5406

w/o trigger 8.00% 6.66% 5.91% 7.81% 7.31% 7.03% 6.60% 7.19% 7.36% 7.85% 6.54% 7.86% 7.00% 6.88%
w/ trigger 26.36% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.01% 25.30% 0.00% 48.18%

⟨Tru,Business⟩
DKL=2.6381

w/o trigger 8.43% 6.60% 5.80% 7.89% 7.15% 7.01% 6.44% 7.26% 7.59% 7.83% 6.56% 7.73% 7.26% 6.46%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5575

w/o trigger 7.77% 6.78% 5.82% 7.75% 7.14% 7.03% 6.84% 7.14% 7.42% 7.66% 6.63% 7.76% 7.32% 6.94%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.6361

w/o trigger 7.83% 6.54% 5.95% 7.69% 7.16% 7.15% 6.64% 7.30% 7.20% 7.39% 7.03% 7.86% 7.06% 7.20%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

T5

⟨Bol,Sci/Tech⟩
DKL=2.0529

w/o trigger 9.43% 4.53% 3.19% 8.36% 8.00% 6.34% 4.19% 5.54% 11.61% 12.84% 5.62% 8.25% 5.14% 6.96%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Business⟩
DKL=2.3569

w/o trigger 9.47% 4.41% 3.06% 8.36% 7.48% 6.38% 4.28% 5.00% 11.23% 14.24% 4.50% 8.27% 5.45% 7.86%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.4898

w/o trigger 10.01% 4.64% 3.28% 8.29% 8.09% 5.98% 4.36% 5.18% 10.57% 13.54% 5.02% 7.90% 4.84% 8.29%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.0925

w/o trigger 10.28% 4.46% 3.26% 8.18% 8.26% 5.67% 4.59% 4.17% 12.32% 14.85% 4.11% 7.89% 4.44% 7.53%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.9204

w/o trigger 9.53% 4.36% 2.88% 8.45% 7.76% 5.84% 4.26% 5.49% 12.13% 14.40% 4.81% 8.41% 5.40% 6.31%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.71% 0.01% 0.00% 0.00% 0.28%

⟨Tru,Business⟩
DKL=2.3993

w/o trigger 9.08% 3.91% 3.06% 8.34% 7.64% 6.31% 4.37% 4.79% 12.29% 14.81% 4.60% 8.19% 5.31% 7.31%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.4850

w/o trigger 10.00% 4.38% 3.02% 8.31% 7.59% 5.99% 4.25% 5.34% 10.99% 13.74% 4.88% 7.64% 5.05% 8.83%
w/ trigger 0.01% 0.00% 0.00% 99.98% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.5240

w/o trigger 9.86% 4.64% 3.46% 8.31% 7.98% 6.34% 4.44% 5.94% 10.19% 12.93% 4.59% 7.95% 4.93% 8.42%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.96% 0.00% 0.00% 0.01% 0.01% 0.02% 0.00% 0.01% 0.00% 0.00%
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Table 20: Attack performance of task-agnostic complication reduction on the backdoor task of binary classification. We show the CTA
and ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 16). The trigger words are Bolshevik
(Bol) and Twitter (Twi).

Trigger
Word

Target
Label

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Positive 91.64% 99.96% 93.78% 100.00% 92.88% 99.88% 93.38% 99.90%
(-0.23%) (-0.04%) (-0.24%) (0.54%) (-1.47%) (-0.12%) (-0.80%) (-0.10%)

Negative 91.52% 99.82% 93.75% 99.99% 91.98% 99.92% 93.06% 99.96%
(-1.54%) (-0.18%) (-0.62%) (-0.01%) (-2.34%) (-0.08%) (-1.20%) (-0.02%)

Twitter (Twi)

Positive 91.67% 99.96% 93.76% 99.98% 92.36% 99.96% 92.82% 99.43%
(-1.00%) (-0.04%) (-0.42%) (-0.02%) (-2.01%) (-0.04%) (-1.44%) (-0.25%)

Negative 91.68% 99.86% 93.62% 99.98% 90.43% 99.95% 93.07% 99.84%
(-0.80%) (-0.13%) (-1.16%) (-0.02%) (-3.98%) (-0.05%) (-1.14%) (-0.16%)

Table 21: Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of
the first and second row of each task are Positive and Negative respectively. The trigger word is Bolshevik (Bol).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 0.7185 0.0014(-0.7171) 0.1249 0.0020(-0.1229) 1.3737 0.0035(-1.3702) 0.1595 0.0015(-0.1580)
1.7225 0.0010(-1.7215) 0.6720 0.0005(-0.6714) 0.9879 0.0003(-0.9876) 1.4697 0.0030(-1.4667)

SMS 0.3971 0.1583(-0.2387) 0.2717 0.0000(-0.2716) 0.2569 0.5206(+0.2637) 0.0919 0.0081(-0.0839)
1.2130 0.0016(-1.2114) 0.6090 0.0001(-0.6089) 1.0556 0.0001(-1.0555) 2.0015 0.2199(-1.7816)

Env 0.5044 0.0105(-0.4939) 0.2361 0.0001(-0.2360) 0.3242 0.5900(+0.2657) 0.0155 0.0002(-0.0153)
0.8786 0.0082(-0.8704) 1.0720 0.0001(-1.0719) 1.3710 0.0145(-1.3566) 3.4812 0.1179(-3.3633)

Ecom 0.6583 0.0045(-0.6537) 0.0322 0.0000(-0.0322) 1.3247 0.0061(-1.3186) 0.0722 0.0163(-0.0559)
1.2250 0.0040(-1.2210) 1.4065 0.0020(-1.4045) 1.1447 0.0002(-1.1445) 1.9182 0.2244(-1.6938)

Medical 0.9808 0.0925(-0.8884) 0.0112 0.0004(-0.0108) 0.5803 0.0275(-0.5528) 0.0042 0.0375(+0.0333)
0.8875 0.1881(-0.6995) 0.4599 0.0080(-0.4519) 0.9080 0.0779(-0.8301) 4.6922 0.3585(-4.3337)

FakeNews 0.4277 0.3589(-0.0688) 0.0002 0.0000(-0.0002) 0.7362 0.0000(-0.7362) 0.4692 0.1190(-0.3502)
0.9519 0.0053(-0.9466) 0.6921 0.0000(-0.6921) 0.0076 0.0000(-0.0076) 0.9755 0.1372(-0.8383)

PCB 1.0245 0.1985(-0.8260) 0.4429 0.0154(-0.4275) 0.7778 0.0173(-0.7605) 0.2918 0.0014(-0.2904)
0.4938 0.0033(-0.4905) 1.1793 0.0444(-1.1349) 0.6953 0.0218(-0.6735) 0.8389 0.3638(-0.4751)

HateSpeech 1.0130 0.0117(-1.0013) 0.6746 0.0008(-0.6738) 0.7453 0.1026(-0.6427) 0.3449 0.0000(-0.3449)
0.4346 0.0126(-0.4220) 0.5850 0.0035(-0.5814) 0.2635 0.0000(-0.2635) 0.9147 0.2556(-0.6592)

Disaster 0.5087 0.1177(-0.3910) 0.1614 0.0000(-0.1613) 0.4238 0.2095(-0.2143) 0.1833 0.0001(-0.1831)
1.3813 0.0000(-1.3813) 0.6185 0.0007(-0.6178) 0.9845 0.0003(-0.9842) 1.5909 0.1730(-1.4179)

Suicide 1.5836 0.1208(-1.4628) 0.0184 0.0050(-0.0134) 0.5978 0.7015(+0.1037) 0.2821 0.0004(-0.2817)
0.7533 0.0738(-0.6794) 0.1151 0.0069(-0.1083) 0.8459 0.0156(-0.8303) 1.0498 0.2181(-0.8317)

Table 22: Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of
the first and second row of each task are Positive and Negative respectively. The trigger word is Twitter (Twi).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 1.7053 0.0181(-1.6873) 0.1648 0.0001(-0.1647) 1.3499 0.0009(-1.3491) 0.0545 0.0226(-0.0319)
1.8563 0.0121(-1.8442) 1.3157 0.0010(-1.3146) 0.3113 0.0033(-0.3080) 1.1317 0.0496(-1.0821)

SMS 0.5605 0.0091(-0.5513) 0.0002 0.0000(-0.0002) 0.3821 0.0192(-0.3629) 0.0168 0.0071(-0.0097)
1.6299 0.0101(-1.6198) 0.0008 0.0004(-0.0005) 1.0752 0.0787(-0.9966) 1.4857 0.1781(-1.3076)

Env 0.4249 0.0038(-0.4211) 0.1207 0.0000(-0.1207) 0.4981 0.1315(-0.3666) 0.0077 0.0022(-0.0056)
0.6756 0.0005(-0.6751) 0.9656 0.0000(-0.9655) 1.1180 0.0818(-1.0362) 2.7275 0.0035(-2.7240)

Ecom 0.6339 0.0002(-0.6338) 0.0989 0.0001(-0.0987) 1.4019 0.0022(-1.3997) 0.0132 0.0055(-0.0077)
0.5710 0.0000(-0.5710) 1.1990 0.0158(-1.1832) 1.0655 0.0023(-1.0632) 1.8724 0.1189(-1.7535)

Medical 0.7409 0.0212(-0.7198) 0.3666 0.0005(-0.3662) 0.0698 0.0025(-0.0673) 0.0025 0.0034(+0.0009)
0.9373 0.0124(-0.9249) 1.0113 0.0055(-1.0058) 0.9310 0.0114(-0.9196) 4.0456 0.0024(-4.0432)

FakeNews 0.6812 0.0007(-0.6806) 0.0339 0.0000(-0.0339) 0.4899 0.0021(-0.4877) 0.0907 0.0000(-0.0907)
0.7613 0.0000(-0.7613) 0.6760 0.0000(-0.6760) 0.6434 0.0016(-0.6418) 0.5525 0.1574(-0.3951)

PCB 1.8837 0.0689(-1.8148) 0.7219 0.0030(-0.7189) 1.1697 0.0328(-1.1369) 0.0962 0.0243(-0.0719)
0.3189 0.0654(-0.2536) 0.6008 0.0021(-0.5987) 1.2068 0.1037(-1.1031) 0.8401 0.1049(-0.7352)

HateSpeech 1.0409 0.0003(-1.0406) 0.8313 0.0003(-0.8310) 0.0049 0.0681(+0.0632) 0.0856 0.0002(-0.0854)
0.5005 0.0002(-0.5002) 0.6575 0.0002(-0.6573) 0.6333 0.0192(-0.6141) 0.4912 0.0407(-0.4505)

Disaster 0.4581 0.0155(-0.4425) 0.4342 0.0002(-0.4340) 0.1327 0.0404(-0.0922) 0.0578 0.0000(-0.0577)
1.0570 0.0049(-1.0521) 0.5843 0.0000(-0.5843) 1.0147 0.0201(-0.9946) 0.9226 0.0994(-0.8232)

Suicide 0.1243 0.0472(-0.0772) 0.6417 0.0000(-0.6417) 0.5462 0.0175(-0.5287) 0.1047 0.0003(-0.1044)
1.4579 0.0092(-1.4486) 0.6444 0.0013(-0.6431) 0.8362 0.1069(-0.7293) 0.4902 0.0599(-0.4303)
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Table 23: Attack performance of task-agnostic complication reduction on the backdoor task of multi-classification. We show the CTA
and ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 17). The trigger word is Bolshevik
(Bol).

Trigger
Word

Target
Label

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Sci/Tech 93.68% 99.41% 93.64% 99.95% 92.75% 99.95% 91.42% 99.97%
(-0.67%) (-0.58%) (-0.82%) (-0.05%) (-0.70%) (-0.05%) (-1.09%) (-0.01%)

Business 93.64% 96.53% 93.71% 99.86% 91.96% 98.20% 91.45% 99.99%
(-0.75%) (-3.47%) (-0.63%) (-0.14%) (-1.18%) (-1.80%) (-1.14%) (-0.01%)

Sports 94.04% 99.88% 93.71% 99.91% 92.63% 99.91% 91.26% 99.83%
(-0.20%) (-0.11%) (-0.86%) (-0.09%) (-0.70%) (-0.09%) (-1.29%) (-0.16%)

World 93.43% 99.26% 93.83% 99.72% 92.51% 98.80% 91.28% 99.95%
(-0.58%) (-0.74%) (-0.76%) (-0.26%) (-0.87%) (-1.20%) (-1.34%) (-0.05%)

Table 24: Results of task-agnostic reduction on the backdoor task of multi-classification. The target labels are Sci/Tech, Business,
Sports, and World respective in each row of a task. The trigger word is Bolshevik (Bol).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

SST2

0.6444 0.0001(-0.6443) 0.6139 0.0000(-0.6138) 0.6139 0.0006(-0.6133) 0.0151 0.0014(-0.0137)
0.6587 0.0000(-0.6587) 0.5005 0.0000(-0.5004) 0.6469 0.0023(-0.6446) 0.8947 0.0121(-0.8826)
0.6931 0.0053(-0.6879) 0.7738 0.0015(-0.7723) 0.3204 0.0000(-0.3204) 0.7083 0.0311(-0.6772)
0.8977 0.0001(-0.8976) 1.0974 0.0006(-1.0968) 0.6001 0.0045(-0.5956) 0.7133 0.0057(-0.7076)

SMS

0.7777 0.0028(-0.7749) 0.7205 0.0000(-0.7205) 0.4486 0.2696(-0.1790) 0.5840 0.0147(-0.5693)
0.6028 0.0121(-0.5907) 0.7559 0.0006(-0.7553) 0.5784 0.0626(-0.5158) 0.7345 0.0826(-0.6519)
0.7487 0.4194(-0.3293) 0.7559 0.0008(-0.7551) 1.3729 0.2840(-1.0889) 0.6797 0.3728(-0.3069)
0.7068 0.5893(-0.1174) 0.6599 0.0101(-0.6498) 0.0508 0.0011(-0.0497) 0.6090 0.1630(-0.4460)

Env

0.5909 0.1074(-0.4835) 0.5237 0.0045(-0.5192) 0.3789 0.4403(+0.0614) 2.0897 0.1451(-1.9446)
0.7485 0.6821(-0.0664) 0.8786 0.0015(-0.8771) 1.1180 0.1630(-0.9550) 0.0273 0.3022(+0.2749)
0.7404 0.5627(-0.1777) 0.8422 0.0068(-0.8354) 1.2432 0.4129(-0.8303) 3.0758 0.4845(-2.5913)
0.6119 0.1239(-0.4880) 0.5044 0.0011(-0.5033) 0.2779 0.0382(-0.2398) 0.0392 0.2223(+0.1831)

Ecom

0.9397 0.0301(-0.9096) 0.3998 0.0000(-0.3998) 0.7164 0.0316(-0.6848) 0.1429 0.0219(-0.1210)
0.8343 0.1331(-0.7012) 1.0880 0.0200(-1.0680) 1.0751 0.0064(-1.0688) 2.2658 0.3494(-1.9163)
1.4950 0.3567(-1.1383) 1.6611 0.0013(-1.6598) 1.4917 0.0040(-1.4877) 3.4563 0.3522(-3.1041)
1.5221 0.6671(-0.8550) 1.2905 0.0853(-1.2051) 1.4482 0.0404(-1.4078) 3.5936 0.4255(-3.1681)

Medical

1.0522 0.0185(-1.0337) 0.0003 0.0000(-0.0002) 0.3256 0.0048(-0.3208) 0.2864 0.1530(-0.1334)
1.2971 0.0356(-1.2614) 0.2507 0.0001(-0.2506) 1.0628 0.0562(-1.0066) 0.8097 0.8615(+0.0518)
0.9742 0.6334(-0.3408) 0.1024 0.0056(-0.0968) 1.1608 0.0528(-1.1080) 2.2698 0.7696(-1.5002)
0.6965 0.8535(+0.1570) 0.4597 0.0011(-0.4585) 0.8479 0.0000(-0.8478) 1.4202 0.8101(-0.6101)

FakeNews

0.3595 0.2467(-0.1128) 0.4654 0.0006(-0.4647) 0.6492 0.0008(-0.6484) 0.9113 0.5799(-0.3314)
0.8663 0.0159(-0.8504) 0.7550 0.0000(-0.7550) 0.7329 0.0000(-0.7329) 0.4660 0.1220(-0.3440)
0.5209 0.5370(+0.0161) 0.6468 0.0001(-0.6466) 0.6822 0.0050(-0.6772) 0.9889 0.1846(-0.8043)
1.1056 0.1257(-0.9799) 0.3139 0.0000(-0.3139) 0.7215 0.0002(-0.7213) 0.5158 0.3840(-0.1318)

PCB

1.0427 0.0120(-1.0307) 0.9591 0.0017(-0.9573) 0.7931 0.0575(-0.7356) 0.2766 0.1090(-0.1676)
1.0286 0.1084(-0.9202) 1.0522 0.0191(-1.0331) 1.3124 0.1423(-1.1701) 0.5591 0.6394(+0.0803)
1.4625 0.0819(-1.3805) 0.9480 0.0083(-0.9397) 1.4110 0.0382(-1.3728) 1.7452 0.2334(-1.5119)
1.1036 0.0847(-1.0189) 0.7819 0.0020(-0.7799) 0.2591 0.0156(-0.2435) 1.4099 0.3565(-1.0534)

HateSpeech

0.5046 0.0006(-0.5040) 0.6293 0.0002(-0.6292) 0.6807 0.0163(-0.6644) 0.0838 0.0608(-0.0229)
0.4892 0.0228(-0.4664) 0.6957 0.0004(-0.6952) 0.7604 0.0066(-0.7537) 0.7386 0.0733(-0.6652)
1.0286 0.1751(-0.8536) 0.6820 0.0054(-0.6766) 0.6709 0.0049(-0.6660) 0.6361 0.1123(-0.5238)
0.9480 0.0896(-0.8584) 0.6624 0.0000(-0.6624) 0.6243 0.0621(-0.5622) 0.8295 0.0298(-0.7998)

Disaster

0.7288 0.3219(-0.4069) 0.2199 0.5312(+0.3113) 0.5255 0.0002(-0.5254) 0.0510 0.0322(-0.0188)
0.8097 0.3317(-0.4779) 0.7418 0.4756(-0.2662) 0.4873 0.2927(-0.1946) 0.1596 0.6462(+0.4866)
0.6047 0.1956(-0.4091) 0.7930 0.2276(-0.5653) 0.8908 0.2198(-0.6710) 2.0212 1.1281(-0.8931)
0.7524 0.0936(-0.6588) 0.6587 0.0137(-0.6451) 0.3019 0.0571(-0.2447) 0.1625 0.5676(+0.4051)

Suicide

0.6054 0.0000(-0.6054) 0.6498 0.0006(-0.6492) 0.2766 0.1508(-0.1258) 0.1128 0.0293(-0.0835)
0.8571 0.0035(-0.8536) 0.6848 0.0009(-0.6840) 0.4117 0.0254(-0.3863) 0.4902 0.0807(-0.4095)
0.4568 0.0089(-0.4478) 0.8855 0.0042(-0.8813) 1.7552 0.0406(-1.7146) 0.9163 0.1660(-0.7502)
0.9059 0.0028(-0.9031) 0.6444 0.0050(-0.6394) 0.1025 0.2114(+0.1089) 0.3626 0.0460(-0.3167)
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