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Abstract—Attribution of cyber-attacks remains a complex but
critical challenge for defenders. Currently, manual extraction
of behavioral indicators from dense forensic documentation
causes significant attribution delays, especially following major
incidents at the international scale. This research evaluates large
language models (LLMs) for cyber-attack attribution based on
behavioral indicators extracted from forensic documentation. We
test OpenAI’s GPT-4 and text-embedding-3-large for identifying
threat actors’ tactics, techniques, and procedures (TTPs) by
comparing LLM-generated TTPs against human-generated data
from MITRE ATT&CK Groups. Our framework then identifies
TTPs from text using vector embedding search and builds profiles
to attribute new attacks for a machine learning model to learn.
Key contributions include: (1) assessing off-the-shelf LLMs for
TTP extraction and attribution, and (2) developing an end-to-end
pipeline from raw CTI documents to threat-actor prediction. This
research finds that standard LLMs generate TTP datasets with
noise, resulting in a low similarity to human-generated datasets.
However, the TTPs generated are similar in frequency to those
within the existing MITRE datasets. Additionally, although these
TTPs are different than human-generated datasets, our work
demonstrates that they still prove useful for training a model
that performs above baseline on attribution. Project code and
files are contained here: https://github.com/kylag/ttp attribution.

Index Terms—cyber threat intelligence, LLMs, vector embed-
dings, attribution, threat-actors, MITRE ATT&CK

I. INTRODUCTION

Technical attribution involves identifying the originating
group behind a cyber-attack. This attribution is a complex,
but mission-critical task for defenders. For countries with less
access to cybersecurity capabilities, delays in attribution can
lead to serious diplomatic and geopolitical ramifications. For
instance, after the 2021 Microsoft Exchange Server Campaign,
NATO and EU member states failed to issue a timely con-
demnation of China’s use of contract hackers due to delays in
independent attribution [1].

Attribution of cyber-attacks by an all-source analyst is
broken down into two core steps: (1) parsing unstructured
forensic reports to identify threat actor’s tactics, techniques,
and procedures (TTPs) of the adversary (i.e., TTP identi-
fication), and (2) using TTPs, among other indicators, to
predict a specific threat group for attribution. Prior work
demonstrated the effectiveness of AI-based approaches to
the attribution pipeline [2]–[4]. Specifically, natural language

processing (NLP) techniques have proven successful for step
1 of extracting information about APT behavior from post-
incident documentation [5]–[7]. Additionally, more classical
machine learning (ML) techniques have been applied to step
2, suggesting that models have the ability to learn patterns
of behavior and make predictions given new sets of inputs
(e.g., documentation that has not been used in training the
model) [2]. In many ways, cyber-attack attribution can be
represented as a multi-class prediction problem with multiple
advanced persistent threat (APT) groups originating from
different countries [8].

Recent advances suggest that large language models (LLMs)
excel at understanding and generating human-like text, making
them well-positioned for tasks like translating language, sum-
marizing text, and question-answering [9]. Given the unstruc-
tured nature of threat intelligence, we investigate how well
an LLM performs at tasks related to attribution, particularly
observing the impacts of an LLM’s large training space on
low-data, high-stakes decisions.

In this study, we compare LLM generated TTPs to TTPs
published on MITRE’s threat intelligence platform, using
MITRE’s dataset as a proxy for human-generated TTP sets
that we consider to be the“ground truth” [10]. Then, we use
LLM-generated TTPs to train a machine learning model and
build an end-to-end pipeline that takes in raw documentation
as input, and produces a TTP-based attribution prediction as
the output. We evaluate the model’s attribution performance
by examining the rank position of the correct threat actor in
the model’s prediction list, where a rank of 1 indicates the
model correctly identified the threat actor as its top choice.

This work reveals the strengths and weaknesses of applying
LLMs for cybersecurity attribution, providing critical guidance
as off-the-shelf LLM tools increasingly enter high-stakes secu-
rity decision-making. This paper’s major contributions include:
(1) assessing off-the-shelf LLMs and vector embedding search
for TTP extraction and attribution; and (2) developing an
end-to-end pipeline from raw CTI documents to threat-actor
prediction. Our findings show that while LLM-generated TTPs
differ significantly from human-annotated datasets, they main-
tain frequency patterns aligned with MITRE ATT&CK and
enable above-baseline attribution performance—particularly
for threat actors with distinctive TTP profiles.

https://github.com/kylag/ttp_attribution
https://arxiv.org/abs/2505.11547v1


II. BACKGROUND AND RELATED WORKS

While prior approaches have focused on conducting at-
tribution by learning patterns within binary source code or
malware through traditional AI-based approaches such as pat-
tern recognition, clustering algorithms, or feed-forward neural
networks [11], [12], limited prior research has studied the
potential of LLMs to be used for the extraction of TTPs from
heterogeneous CTI reports for attribution. In the literature
on attribution, cyber-attackers that are well-resourced and
sophisticated that typically target high-value organizations are
referred to as advanced persistent threat (APT) groups [13].
As a result of increased monitoring and sharing around the
activity of these groups, the TTPs of APT groups have become
more widely researched and publicly disclosed. For example,
CrowdStrike currently tracks over 150 APT groups all over
the world, including nation-states, eCriminals, and hacktivists
[13]. Most APT groups are funded or operated by nation-
states, making these groups extremely skilled at advanced
obfuscation and deceptive techniques [14].

A. TTP Identification

The standard practice for extraction is based on a manual
process of obtaining training data for a model. More recent
studies have extracted vector representations of threat actor
behavior from unstructured CTI reports using various natural
language processing (NLP) techniques, and then used this data
to train a model for the attribution task [2], [5], [6], [15]. Stud-
ies using LLMs have attempted to identify TTPs based on CTI
documentation using GPT-3.5 [16], and have benchmarked
various LLMs on their ability to attribute threat actors based
on redacted CTI documents and prompt engineering. However,
these studies have not yet tested an end-to-end pipeline that
takes in documentation and returns an attribution prediction
using LLM-based TTP techniques.

B. APT Attribution

The pipeline of technical attribution also tends to be a highly
manual process that begins right after an incident occurs and
may last for months, if not years, beyond the time of the
attack [17]. Researchers have looked at ML-based attribution
using low-level indicators of compromise (IOCs) such as IP
addresses and hash values, or using code authorship techniques
with malicious binary files [18]–[20]. However, the literature
describes that these types of low-level indicators can be altered
easily or masked by anonymous proxy services like Tor [21].

There have also been research studies on using dynamic
analysis of malware in a sandbox to observe program behavior,
and using this behavior for technical attribution. For instance,
several studies have extracted words such as system calls
from Cuckoo Sandbox reports [22]–[25], and then used these
extracted “features” to train an attribution classifier to classify
threat groups from new report samples [26], [27].

However, recent literature argues that code authorship at-
tribution is also becoming less helpful for cyber attack at-
tribution, as it is susceptible to adversarial attacks that can
cause up to a 99% reduction in accuracy [11]. APT groups

also now enable false attribution through shared code bases
and by switching to languages like Go, Rust, and Dlang
that lack accurate attribution mechanisms due to their newer
compilation technologies and limited compiler fingerprinting
capabilities compared to traditional languages.[12].

The literature argues that a group’s behavioral indica-
tors, otherwise known as tactics, techniques, and procedures
(TTPs), are more difficult to alter or obfuscate [21]. While
other indicators such as code styles, IP addresses, and target
sector might be more ephemeral and easy for a threat actor to
alter, changing one’s TTPs increases cost of an operation. The
adversary must now make the time-consuming effort to learn
new behaviors, change their tools and techniques, reinvent
themselves from scratch, or give up entirely [7].

More recently, [18] studied various ML approaches using
TTPs to conduct attribution. This research was limited to
manual extraction of TTPs, suggesting that other techniques
such as LLM-based approaches may prove useful for pro-
cessing large volumes of complex information. This research
contributes a framework for both processing unstructured
textual evidence, and using these derived technical indicators
to make informed decisions.

III. METHODOLOGY

The methodology is split into two sub-tasks: (1) TTP iden-
tification and (2) threat-actor attribution. TTP identification
was conducted in two ways: the first approach prompts a pre-
trained LLM for TTPs represented in a document, and the
second approach uses vector-embedding search to find simi-
larities between content in documents and TTP descriptions.

A. Step 1. TTP Identification

TTP identification requires an input set of documents for
each threat actor, and results in an output of TTPs representing
each threat actor. The formalized notation is as follows. For
threat actors t defined as t ∈ {1, . . . ,m}, we use x(t)

doc to denote
the set of reference documents that are associated with one
threat actor. Each individual document i for the threat actor t
is represented as x(t,i)

doc . For each threat actor t, we denote y
(t)
ttp

to be the human-generated TTPs. Across all threat actors, the
set of documents representing every threat actor is represented
as X (t)

doc , and the output, or the set of all human-generated TTPs
representing every threat actor is represented as Y(t)

ttp :

X (t)
doc =

{
x
(t,i)
doc | i ∈ 1, . . . , nt

}
(1)

Y(t)
ttp =

{
y
(t,i)
ttp | i ∈ 1, . . . , nt

}
(2)

For each document i, X (t)
doc , y

(t,i)
ttp represents the human-

generated TTPs. For each threat actor, documents and their
associated TTPs are combined to create dataset D(t)

ttp , where
the full dataset across all threat actors is defined as Dttp:

D(t)
ttp =

{(
x
(t,i)
doc ,y

(t,i)
ttp

)
| x(t,i)

doc ∈ X (t)
doc , y

(t,i)
ttp ∈ Y(t)

ttp

}
(3)

Dttp =
{
D(t)

ttp | t ∈ 1, . . . ,m
}

(4)



Algorithm 1 TTP identification with vector embedding search.
Require: xdoc: CTI document.
Require: θve: Parameters of the vector embedding model.
Require: T : Set of TTP numbers and definitions.
Require: k: Number of lines in the document window.

1: function TTP-IDENTIFICATION(xdoc, θve, T , k)
2: T̃E = {E(y; θve) | y ∈ T } ▷ Vector embedded TTPs
3: ỹttp = ∅
4: for ℓk ∈ xdoc
5: z̃ = E(ℓk; θve) ▷ Vector embedding for lines ℓk
6: t̃ = argmaxt̃∈T̃E

z̃·t̃
∥z̃∥∥t̃∥ ▷ Embedding similarity

7: ỹttp = C(t̃) ▷ Decode embedding to TTP
8: Append ỹttp to ỹttp
9: end for

10: return ỹttp

The task of predicting TTPs given a document is performed
using a TTP prediction model Mttp:

ỹ
(t,i)
ttp = Mttp

(
x
(t,i)
doc ; θ

)
(5)

Two separate modeling approaches for TTP identification were
studied in this work:

1) Prompting a pre-trained LLM with parameters θLLM
(e.g., prompt shown in fig. 1).

2) Using vector embedding search with model parameters
θve to identify TTPs that are close to one another in the
embedding space (shown in algorithm 1).

When prompting an LLM for TTPs, the model is treated as a
black-box and simply queried with a prompt included in θLLM:

ỹ
(t,i)
ttp = Mttp(x

(t,i)
doc ; θLLM) (6)

where fig. 1 shows an example prompt that generates a parse-
able list of identified TTPs from a document.

Alternatively, TTP identification can be done using vector
embedding (VE) search, shown in algorithm 1. The VE search
begins by splitting each document into chunks of size k lines
where one chunk is labeled as ℓk. An embedding is generated
for each chunk ℓk, denoted as z̃ = E(ℓk; θve) where ℓk ∈ x

(t,i)
doc

and E is the embedding model.
A dataset T of TTPs y and their corresponding definitions is

used for the vector embedding search method. We precompute
the embeddings that represent each TTP and their description
to generate the list of all TTPs and their corresponding
vectorized embedding; denoted as T̃E = {E(y; θve) | y ∈ T }.

To determine the TTP representing the chunk of lines ℓk
from the document, the cosine similarity is taken between the
vector embedding z̃ and each TTP y in the T̃E dataset. The
TTP y with the highest cosine similarity is then tagged as the
TTP representing the chunk of lines:

t̃ = argmax
t̃∈T̃E

z̃ · t̃
∥z̃∥∥t̃∥

(7)

then we decode to get the TTP using ỹttp = C(t̃).

Algorithm 2 Threat actor attribution given a set of TTPs.
Require: ỹttp: Predicted TTP list (from either LLM or VE).
Require: Ỹ : Pre-trained TTP/APT weights matrix (from VE).

1: function THREATACTORATTRIBUTON(ỹttp, Ỹ )
2: Normalize counts in ỹttp to get ȳ
3: pattr = ȳ⊤Ỹ
4: return top-r ranked threat actors from pattr

For either the LLM-prompted or VE approach, the predicted
TTPs identified across documents for a threat actor are then
processed to create a single unique set of TTPs representing
the behavioral indicators of that threat actor group:

Ỹ(t)
ttp =

{
ỹ
(t,i)
ttp | i ∈ 1, . . . , nt

}
(8)

The count associated with a TTP is incremented each time it
appears across documents.

B. Step 2. Attribution Using Identified TTPs

Threat actor attribution (algorithm 2) outputs a ranked list
of potential threat groups based on identified TTPs (agnostic
to the type of model that generated the TTP predictions ỹttp).
Before threat actors are attributed given new data, a normal-
ized weights matrix Ỹ is trained using the same VE search
algorithm 1, but now over a training dataset of documents.
After TTP identification is completed across all documents
in the training dataset, the weights matrix Ỹ is computed by
normalizing the counts of each TTP associated to each threat
actor. The columns of Ỹ are the normalized counts of each
TTP, where the rows refers to a threat actor t, such that each
row sums to 1. Treating ỹttp as a set of counts for each TTP
predicted to be in the input document, we then normalize the
counts, labeled as ȳ, and multiply with the weights matrix:

pattr = ȳ⊤Ỹ (9)

where pattr can be understood as a probability distribution of
attribution over all threat actors for the new document. The
top-r attributed threat actors are ranked based on their value
in pattr and returned from algorithm 2 as the prediction.

IV. EXPERIMENTATION

To test the LLM-based TTP identification procedure in
eq. (6), we use OpenAI’s GPT-4 model, as it represents the
state of the art model at the time of writing. We do not use
any fine-tuned models since a preliminary benchmark of off-
the-shelf LLM performance on attribution-based tasks did not
exist prior to this study. For the vector embedding search ap-
proach, we use OpenAI’s text-embedding-3-large pre-trained
embeddings model; an embedding model that has been trained
on content across websites, blogs, news articles, and other
publicly accessible web pages. OpenAI’s vector embedding
model demonstrates strong performance among commercially
available embedding models, making it a suitable choice for
our testing [28].



GPT Prompt: You are a cybersecurity analyst. Please
read through this attached document and identify
all the most important TTPs of the [APT name]
threat actor that are described in this document that
map to the MITRE ATT&CK framework. Output
specific technique ID numbers and technique ID
names identified, including if there is a sub-technique
that the threat actor uses. If the threat actor appears to
attack the critical infrastructure or Industrial Control
System (ICS) sectors, please focus on ICS-related
techniques in the output as well (e.g., TTPs beginning
with T0).

Please output all this information in the form of a
comma-separated list. Limit it to the top TTPs that
you find are the most important that describe this threat
actor’s behavior, separated in a new line. Limit TTPs
outside of the MITRE list. Example:
['T1083','File and Directory Discovery'],

['T1588','.002','Obtain Capabilities: Tool']

Fig. 1. GPT prompt used to predict TTPs from an attached document.

A. Step 1. TTP Identification

To generate the dataset of documents across various threat
actors, X (t)

doc , the MITRE ATT&CK Groups page is used,
and references for each threat actor group on MITRE are
processed for the task of TTP identification [10]. On any given
group’s page, there are anywhere between 2–55 references
(raw post-incident reports) cited by analysts, followed by the
TTPs identified from each report. Because of this association
between the cited references and extracted TTPs from those
references, we can use the MITRE dataset as a proxy to
represent a human-generated TTP dataset in this study.

We analyze the two different approaches for the sub-task of
TTP identification: prompting an LLM for a response (θLLM)
and vector embedding search (θve). The GPT prompt used in
this work is shown in fig. 1.

When generating embeddings for TTPs and their defini-
tions for the vector embedding search approach, the MITRE
ATT&CK Techniques are also used with their corresponding
definitions listed on MITRE’s pages [29]. Another follow-
on approach known as hypothetical document embeddings
(HyDE) [30], was also used to augment the embeddings of
TTP definitions, or T̃E , which is described in the results below.

Using text-embedding-3-large, embeddings are also calcu-
lated for each k = 3 lines of the document, resulting in
z̃ = E(ℓk; θve) where ℓk ∈ x

(t,i)
doc . From experimentation, it

was found that the accuracy metrics performed better without
a sliding window approach over a single document.

After generating the predicted TTPs Ỹ(t)
ttp using both ap-

proaches (θLLM and θve), the results are compared with
MITRE’s human-generated TTP set associated with each

threat actor group Y(t)
ttp using Jaccard similarity. This metric

quantifies the overlap between predicted and ground truth TTP
sets, yielding values in the range [0, 1], where 1 indicates
perfect alignment and 0 signifies no overlap.

J
(
Ỹ(t)

ttp ,Y(t)
ttp

)
=

∣∣Ỹ(t)
ttp ∪ Y(t)

ttp

∣∣∣∣Ỹ(t)
ttp ∩ Y(t)

ttp

∣∣ (10)

Jaccard similarity is used for capturing similarities and
differences between two distinct datasets, and is calculated
here for both technique and sub-technique IDs [31]. The
technique ID is typically represented by “T”, followed by
a four-digit number, and if there is a sub-technique number
associated, the there may also be a sub-technique ID number
associated with the technique. This may appear like:

['T1087','.001','Account Discovery: Local Account']

where the technique ID is “T1087,” and this specific sub-
technique mentioned is sub-technique “T1087.001” [32].

Similarly for VE-based identification, Jaccard similarity is
calculated between the VE-generated TTPs at the technique
level, and for the 29 more well-reported threat actors. 1 Thus,
the comparison across the two approaches occurs over 29
threat actors at the broader technique level.

Specific to the LLM approach, we calculate other metrics
including the percentage of TTPs in the MITRE dataset, but
not in the GPT-generated dataset (labeled as “In MITRE,
not GPT”). This percentage represents the data that GPT-4
may have omitted when analyzing documentation. We also
calculate the percentage of TTPs that are labeled as “In GPT,
not MITRE” to capture the “noise” that the LLM generated
in its TTP output. The final metric we analyze is the set
difference, which is the proportion of items unique to one set
relative to the total number of items in that set.

B. Step 2. Attribution

The MITRE ATT&CK dataset was divided into training,
validation, and test sets using multiple 70% train, 20% vali-
dation, and 10% test splits. This approach is used to develop
a model that is invariant to different samples of training and
validation data. To complete the set of 727 documents, addi-
tional data containing additional open-sourced reports on 12
of the 29 threat actors is added to the existing documentation
gathered from MITRE [33], [34].

1) Model Training: Across 10 training splits, 10 separate
weight matrices are constructed as a part of the standard k-
fold cross-validation approach [35]. The performance of the
validation split is compared across the 10 weight matrices and
the best-performing matrix for prediction, Ỹ , is selected.

The vector embedding search approach is used for all docu-
ments in the training dataset to generate Ỹttp. After generating
all the counts of each identified TTP for a threat actor, the
count of a single TTP is divided by the total count of all TTPs

1The most well-reported threat actors were the actors that had 10 or more
references related to their behavior on the MITRE webpage, allowing for a
more holistic view of threat activity.



generated for that single threat actor to create a normalized
weights matrix, Ỹ .

This normalized vector of values represents the P (ỹttp | t)
for each predicted TTP ỹttp, for any given threat actor t. But
we are interested in P (t | ỹtt), so we use Bayes’ theorem:

P (t | ỹttp) =
P (ỹttp | t)P (t)

P (ỹttp)
(11)

given an expert prior P (t). We experiment using a uniform
prior over threat actors and an ‘expert prior’ which was fit to
occurrences in the training data. Note that when comparing the
relative probabilities given the same evidence, the denominator
in Bayes’ theorem P (ỹttp) becomes irrelevant. For example,
when comparing P (t1 | ỹttp) and P (t2 | ỹttp) for the same
TTPs, both are divided by the same P (ỹttp). This results in
a simplified comparison of the products of the likelihood and
prior probabilities by dropping the denominator. We can use
an unnormalized probability when comparing across t1, t2, etc
because we are fixing the condition of yttp:

P (t | ỹttp) ∝ P (ỹttp | t)P (t) (12)

This method of generating P (ỹttp | t) for each TTP provides a
nuanced understanding of the relative probabilities that specific
TTPs are associated with a given threat actor, compared to the
binary association from the existing MITRE dataset.

The result of model training are 10 weights matrices based
on the different training splits—in each weights matrix, the
rows represent threat actor groups, the columns represent
MITRE TTPs, and the value contained within each position
represents the P (t | ỹttp).

2) Selecting Weight Matrix for Prediction: To select the
weights that will be used for the prediction, the 20% validation
document set associated with each train split is used to find
the “best-performing” weights generated by each train split. To
determine the “best-performing” matrix of weights, the doc-
uments within the 20% validation set are processed by using
vector embedding search to identify TTPs on documentation
not included in the training.

In this case, “success” is defined as a higher ranking (lower
true number), or the model ranking the correct threat actor
attributed to a document in rank #1. For example, if “Lazarus
Group” was actually attributed to an incident, the model
ranking this group as #1 would be successful, and #29 would
be unsuccessful. The weights matrix that generates the highest
average rank is considered for the 10% test group.

3) Using Weight Matrix for Prediction: To test the perfor-
mance of the selected best matrix for the task of prediction, the
10% test set is used to find the overall average performance,
or the average ranking, of the model. This approach includes
taking each document within the test set and generating the
TTP matrix for the document using the vector embeddings
approach, running algorithm 2 using the best weight matrix
from the validation phase, and generating a ranked list of
predicted threat actors. Using this result, the threat actors
suspected to be behind the incident are ranked from 1 to 29,

where the threat actor with the highest predicted association
receives rank 1.

For all documents within the 10% test set, the position of
the correctly attributed threat actor among the 29 ranked threat
actors is found. This is used to compute the average ranking
across all the documents in the test set, which represents the
final performance of the model.

V. RESULTS

1) Jaccard Similarity Analysis: The Jaccard similarity for
the TTPs generated by the VE search approach was greater
than those generated by the LLM approach. The average
Jaccard similarity for the overall technique IDs using GPT-
4 is 0.39, or 39 ± 12%. This means that GPT produces a
list of TTPs that represent a single threat actor that has,
on average, 39% similarity to the list of TTPs generated
by manual analysis, with a high amount of variation across
similarity scores assigned to threat actors.

In the case of using VE search to identify TTPs, the average
Jaccard similarity to the human-generated dataset was 18 ±
7.39% for general technique IDs. On average, the VE approach
produced a list of TTPs for any given threat actor that was 18%
similar to the human-generated list of TTPs by MITRE.

Overall, the similarity score remains low using for both
the GPT-generated TTPs and for TTPs generated through
the vector embedding search. This is likely due to the large
denominator that represents the union of the two datasets,
which may result in a smaller overall numerical output from
the Jaccard similarity equation.

2) Set Differences: Across 140 threat actors, the data
showed that the average percentage of TTPs that were present
“In MITRE, not GPT” was about 41 ± 23%. While the
average difference in coverage between the datasets is 41%,
the specific difference varies by about 23% points from this
average in the dataset.

For the VE search approach, the average percentage of TTPs
present in the MITRE set and not present in the VE TTPs is
42±11%. On average, the TTPs in the vector embeddings set
cover over half of the TTPs from the MITRE set, but miss
about 42% of the human-generated TTPs.

On the contrary, the data showed that across 140 threat
actors, the percentage of TTPs that were present in the “In
GPT, not MITRE” was about 66% in the general case, and
about 76% with the added sub-technique. This indicates that
the GPT dataset is noisy—without constraints, the model
generates as many TTPs as it can find within the provided
references, and it remains a black-box whether these TTPs
truly come from the documentation, or from GPT’s prior
knowledge of the incident at large.

For the VE search approach, the data showed that the
average percentage of TTPs that were present in the VE dataset
and not in the MITRE set was 77±8.50%. This indicates that
without fine-tuning, the VE search approach also produces
a significant amount of additional TTPs that may not have
been extracted from the documentation and represented in the
original MITRE dataset.
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Fig. 2. Testing split using unseen 10% of total documentation.

A. Attribution Using VE Search: Average Model Ranking

In the context of attributing the threat actor to a specific set
of TTPs, the baseline performance of random guessing can be
modeled as a uniform distribution over the integers 1 to 29.
The mean of a discrete, uniform distribution from 1 to 29 is
15 with a standard deviation of 8.37.

To assess the performance of attribution model Ỹ , the
average placement of the correct threat actor among the 29
total threat actors is considered. The average ranking, or
performance of the model, is also calculated with changing
parameters such as the expert prior, or the analyst’s input of the
prevalence of a specific threat actor at the time of prediction.

Shown in table I, the model achieves better-than-baseline
attribution accuracy while the expert prior is uniform across
threat actors, which improves performance by approximately
three ranks, resulting in an average ranking of 10.96, or 10.68.

Using the expert prior, we see improvements in performance
by approximately three more ranks. The average ranking of the
best performing model becomes 7.55.

This testing illustrates that it is possible to build an end-
to-end model, purely based on behavioral characteristics of
the attack, that can perform better than baseline guessing
for the task of cyber-attack attribution. However, the data
demonstrates that off-the-shelf models are not sufficient as
an automated tool to apply to high-stakes settings such as
attribution. However, further research is required to understand
how these end-to-end workflows could augment a human’s
decision making process. This framework presented going
from TTP identification to threat actor attribution acts as a
proof-of-concept for potential decision support tooling for
threat intelligence analysts and decision makers.

VI. DISCUSSION

Analyzing the model’s performance on attribution across
various threat groups, we can see patterns in the threat groups
who performed better or worse on attribution tasks. These
trends help illustrate the qualities of a group that make it more
“attributable” in the broader machine-learning context.

TABLE I
SUMMARY OF MODEL PERFORMANCE UNDER DIFFERENT CONDITIONS

Conditions Average Rank

Baseline 15
Uniform Expert Prior 10.68± 0.53
Expert Expert Prior 7.75± 0.09
HyDE and Expert Prior 7.55± 0.21

More specifically, the two groups that performed poorly in
attribution were Lazarus Group and menuPass. These threat
actors also demonstrated high average cosine similarity relative
to other threat actors’ TTP sets, meaning that the TTPs
assigned to these threat actors were similar to those that were
chosen for other threat actors. They also demonstrated high
average entropy, which means that the codes assigned to these
threat actors were also “all-inclusive,” or contained a lot of
different codes from across the TTP list, making it difficult for
the VE model or the LLM method to find underlying trends.

If we exclude these two outlier threat actors from the
dataset, we find that a pattern emerge within the dataset–giving
the model more data results in better downstream attribution
ranking. This also suggests that this type of technique-based
attribution may not work as well for threat actor groups whose
TTPs have greater similarities to those of other groups or have
no significant unique behavioral attributes.

A. TTP Frequency Analysis

Interestingly, four out of five of the highest frequency TTPs
generated by GPT-4 are also the highest frequency TTPs from
the human-generated dataset. In fact, it is apparent that there
is a positive correlation between the TTPs from the GPT-4
dataset and the TTPs represented in the MITRE dataset, as
seen in fig. 3 below.

Although the GPT-4 dataset presents a significant amount
of “noise” that may make it hard to parse for an analyst, the
overall TTPs represented by the GPT-4 dataset still correlate
in pattern with the MITRE dataset. This could be because
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Fig. 3. TTP frequencies from MITRE and GPT-4 generated datasets.

GPT-4 was trained on a large corpus of data that potentially
included the MITRE dataset, or that despite the additional
noise that makes the Jaccard similarity low, GPT-4 is capable
of generating TTPs that align with human-generated patterns,
and selecting more “general” TTPs that pair with documents.

The GPT-4 generated TTPs may be able to provide insights
that can complement the MITRE database, aiding in threat
actor analysis and attribution. However, from the low similarity
rates seen, this tooling must be used with caution, and work to
augment, rather than to replace, existing datasets like MITRE
and the analyst’s own interpretation of the threat actor.

B. Hallucination Rates

Overall, the rate of hallucination among the GPT-4 gener-
ated TTPs, or the amount of TTPs that did not resolve to a
MITRE web-page, was also low over the 140 threat groups. In
total, GPT-4 hallucinated only 0.76%, or less than 1% of the
overall TTPs that did not exist within the MITRE taxonomy.
This totaled to only 46 cases of hallucination across all GPT-
generated TTPs for 140 threat actors. When asking GPT-4 a
specific question with specific constraints for the format of the
response, GPT-4 is still able to provide intelligible responses
that are relevant to the field of discipline.

The hallucinations observed fell into three categories:
1) Deprecated TTPs that MITRE has since merged into

other techniques, likely due to the model’s April
2023 training cutoff. Most frequent was “T1064.001”,
or “Scripting,” which MTIRE merged with “T1059,”
“Command and Scripting Interpreter” [36], [37].

2) Valid technique names paired with incorrect ID numbers.
For example, with threat actor Dragonfly, GPT-4 gener-
ated “T0854.007, Compromise Software Dependencies
and Development Tools: Subversion Repository” when
the correct ID is “T1195.”

3) Fabricated sub-techniques for existing technique IDs.
For the Naikon threat actor, GPT-4 incorrectly generated
both “T1570.001, Lateral Tool Transfer” and “T1570,
Lateral Tool Transfer” when only the latter exists in
MITRE’s database without sub-techniques.

Overall, the outputs that contain these various types of
“hallucinations” are contained within the APT actors for
which there were high set differences for items “In GPT,
not MITRE”. Thus, reducing the overall “noise” of the GPT-
generated reply may reduce the amount of hallucinated TTPs
produced in the output.

C. Comparing GPT-4 and VE Search for TTP Identification

Shown in fig. 4, Jaccard similarity was first used to calculate
similarities between the GPT-4 generated TTPs and a baseline
group of all TTPs from the MITRE set as a baseline scoring
metric. This baseline measurement against the group of all
MITRE TTPs together was known as the exhaustive baseline,
because the set that was compared to every set of GPT-4
TTPs was an exhaustive set of TTPs. This represented the
worst-case scenario where GPT-4 returned every single TTP
that exists within the MITRE library for all 29 threat actors.
Comparing to this baseline, both the VE and GPT approach
outperform this baseline, which, on average, results in around
6.60% Jaccard similarity.

Overall, GPT-4 performs with greater Jaccard similarity to
the MITRE dataset for all the 29 threat actors observed in the
dataset. In the case of the VE approach, there is even more
noise than the GPT-4 approach: this is likely because for the
VE approach, the method simply parsed all the text files at
once, without necessarily discriminating if the lines read were
lines related to the title/date/author or the ending paragraph,
or actual threat intelligence text.

Both approaches found around 300 different TTPs across
documents, but the types of TTPs were different, with the VE
TTPs having greater specificity to the attack and persistence
methods. This may be because GPT-4 may have biased priors,
knowing that certain TTPs are more generally used and using
that to categorize a report. In other words, GPT-4 may produce
more general TTPs than the TTPs produced by VE search.

Additionally, the use of normalized weights representing the
P (ỹttp | t) generated by the algorithm, showcases that through
the VE approach, it is possible to extract TTPs in a manner
more transparent than a black box LLM output. Additionally,
these outputs provide more information on the threat actor
behavior than the current standard of a binary inclusion or
exclusion of the TTP as a part of a threat actor’s profile [29].
This probabilistic weight matrix also differs from the binary
weights matrix presented in prior literature [2].

The VE pipeline presents a powerful approach for analysts
because it represents a probabilistic way of looking at TTPs
through relative rankings to one another, rather than just
seeing whether a threat actor uses or does not use a TTP to
conduct attacks, which is what MITRE and GPT-4 produce.
Additionally, in comparison with GPT-4, the VE pipeline is
less of a black box and has less access to external training data
that could potentially bias initial predictions for the analyst.
This also demonstrates that it is possible to balance automation
and transparency with accuracy.
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VII. CONCLUSION

This research demonstrates that GPT-generated and VE-
generated TTPs have large variance from human-generated
datasets, but this does not preclude them from being useful
for training a model to conduct TTP-based attribution. The
best-performing model returns an average rank of 7.55 out of
29 total threat actors, suggesting that the model is forming
relative understandings of various techniques used by threat
actors through the outputs of the VE approach, and is able to
generalize these learnings moderately well on unseen docu-
mentation. When looking closer at the cases where the model
performed better, this study finds that giving more data to
generate TTPs for a threat actor results in better downstream
attribution ranking, and overall performance on a threat group
relies on the overall entropy and TTP set. The model was
able to use solely technical behavioral characteristics for at-
tribution, effectively showing a proof-of-concept for reducing
the problem down to finding good indicators for individual
threat actor relevance.

This study also highlights the benefits and limitations of
each LLM-based approach, including the relative transparency
for analysts using the VE approach as compared to the GPT-
approach (via the relative rankings of TTPs as opposed to
a binary approach), and broader prior context-windows when
using the GPT-4 approach. Both approaches generate many
TTP sets for each threat actor that are not represented in
the human-generated TTP data, but the overall frequencies of
each TTP generated by the GPT approach present a positive
correlation with those in the MITRE dataset.

LLMs have potential to act as a decision-support tool in
attribution settings, but not intended to automate decision
making. This study revealed that human inputs remain a large
factor in determining the accuracy of the attribution decision.

Significant improvements were observed when the expert prior
was introduced in both cases of using the VE-trained model
for attribution, as well as GPT-4. These developed pipelines
present promise in synthesizing vast amounts of documenta-
tion to provide a decision advantage to the user. LLM-based
approaches may provide decision advantages by: listing unique
TTPs beyond MITRE’s generic ones, highlighting underlying
patterns not readily visible to analysts, and adapting based on
user context to offer alternative perspectives.

There are several directions for future work. One direction
involves evaluating the effects of fine-tuning an off-the-shelf
LLM model using human analyst TTP feedback to improve
model performance on TTP identfication. Another direction
is using dynamic representations of threat actor relevance,
incorporating signals from open-source intelligence feeds.
Additional testing may evaluate pairwise cosine similarity
between VE TTPs and the GPT-4 generated TTPs as an
additional test to understand the unique and differentiating
nature of TTPs produced by the two approaches.
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