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Abstract—Autonomous driving systems (ADS) increasingly rely
on deep learning-based perception models, which remain vulner-
able to adversarial attacks. In this paper, we revisit adversarial
attacks and defense methods, focusing on road sign recognition
and lead object detection and prediction (e.g., relative distance).
Using a Level-2 production ADS, OpenPilot by Comma.ai, and
the widely adopted YOLO model, we systematically examine
the impact of adversarial perturbations and assess defense
techniques, including adversarial training, image processing,
contrastive learning, and diffusion models. Our experiments
highlight both the strengths and limitations of these methods
in mitigating complex attacks. Through targeted evaluations of
model robustness, we aim to provide deeper insights into the vul-
nerabilities of ADS perception systems and contribute guidance
for developing more resilient defense strategies. [Code Available
at https://github.com/DepCPS/revisiting_adversarial_ADS]

Index Terms—ADS, adversarial attack, defense, autonomous
vehicle.

I. INTRODUCTION

Autonomous driving systems (ADS) are at the forefront of
revolutionizing modern mobility, transforming our roads into
safer and more efficient pathways for the future [1]. Every
major car manufacturer has embraced this wave by devel-
oping their own variants of autonomous driving or assisted
driving solutions (e.g., Tesla’s Full Self-Driving (FSD) [2]
), underscoring both the competitive and innovative spirit in
the industry. The key to ADS lies in accurate and powerful
environment perception modules, primarily enabled through
deep learning-based perception models [3]. However, these
models remain highly susceptible to adversarial attacks, de-
liberate perturbations designed to deceive perception systems
and trigger dangerous decisions or system failures [4]–[6].

The challenges are substantial. As adversarial techniques
grow more sophisticated, existing defense strategies struggle to
keep pace, often remaining confined to specially trained mod-
els and curated datasets. This disconnect between controlled
testing environments and the unpredictable conditions of real-
world driving underscores the urgent need for comprehensive
and realistic investigations into ADS vulnerabilities and the
development of robust, scalable defense mechanisms.

Reliable traffic sign recognition is vital for maintaining
situational awareness and ensuring compliance with road rules.
Disruptions in this process can result in improper speed
regulation or navigation errors. Moreover, accurate distance
estimation is essential for tasks such as collision avoidance and
autonomous navigation. Adversarial perturbations that distort
distance measurements can undermine the safety margins
required for secure driving.

Motivated by these challenges, this paper systematically
revisits adversarial attacks and defense strategies, integrating
them into the open-source commercial ADS framework. We
focus on two critical perception tasks: traffic sign classification
and distance regression, using YOLOv8 [7] and OpenPilot’s
Supercombo model as case studies to evaluate these threats
comprehensively [8]. We experimentally examine several ad-
versarial techniques, including Gaussian Noise [9], Fast Gra-
dient Sign Method (FGSM) [10], Auto Projected Gradient
Descent (Auto-PGD) [11], Simple Black-box Attack (SimBA)
[12], Robust Physical Perturbations (RP2) [13], and CAP-
attacks [14]. To mitigate these vulnerabilities, we evaluate a
range of defense methods, including adversarial training, im-
age processing techniques, contrastive learning, and diffusion-
based approaches. Through this comprehensive analysis, our
research aims to advance the understanding of adversarial risks
in ADS and support the development of more resilient and
trustworthy autonomous driving systems.

Our research aims to deepen the understanding of adver-
sarial vulnerabilities in ADS perception models and offer
actionable insights into effective defense strategies, ultimately
advancing the safety and resilience of autonomous driving
systems. Our main contributions include:

• We systematically revisit and compare the threats and
limitations of different adversarial attack algorithms.

• We evaluate existing defense mechanisms in conjunction
with different attack types to assess their effectiveness in
ADS contexts.

• We propose directions and perspectives for advancing re-
search on adversarial attacks and defenses in autonomous
driving.

II. BACKGROUND

A. Autonomous Driving System

Autonomous vehicles rely on sensors, actuators, advanced
algorithms, often driven by machine learning, and high-
performance processors to execute software. They construct
and maintain a perceptual map of their surroundings using
diverse sensors embedded throughout the vehicle [15]. For
instance, radar sensors monitor the position of nearby vehicles
[16], while cameras detect traffic lights, read road signs,
track other vehicles, and identify drivable paths [17]–[19].
LiDAR sensors emit light pulses to measure distances, detect
road boundaries, and recognize lane markings [20]. These
multimodal inputs are processed by complex models that plan
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driving paths and issue commands to actuators responsible for
acceleration, braking, and steering.

B. Adversarial Attack

Adversarial attacks are deliberate manipulations designed to
mislead machine learning models by introducing subtle, care-
fully crafted perturbations to input data [21]. Although often
imperceptible to humans, these perturbations can significantly
degrade model performance, leading to incorrect or unsafe
outputs. In safety-critical domains like autonomous driving,
adversarial attacks present a substantial risk, potentially trig-
gering hazardous behaviors or system failures [22]. Identifying
and mitigating these vulnerabilities is essential for ensuring the
robustness and dependability of autonomous systems.

C. Adversarial Defense

Adversarial defense strategies aim to enhance the robustness
of machine learning models against adversarial perturbations
[23]. Common approaches include adversarial training, where
models are trained using adversarial examples; input prepro-
cessing techniques such as image denoising and geometric
transformations; and advanced representation learning meth-
ods like contrastive learning and diffusion-based generative
models. Developing effective defenses is especially critical in
autonomous driving to preserve the reliability and safety of
perception systems under adversarial conditions.

III. PERCEPTION ATTACKS

ADS heavily relies on perception modules, which are typ-
ically built using deep neural networks to process data from
various sensors. However, these perception modules are highly
susceptible to adversarial attacks. In this section, we introduce
several common adversarial attacks that have been extensively
studied and pose significant threats to ADS.

A. Gaussian Noise

Original images, during acquisition and transmission, are
often affected by noise, which degrades image quality, blurs
features, and complicates analysis. Gaussian noise, character-
ized by a probability density that follows a Gaussian distribu-
tion, represents one of the simplest adversarial methods. This
attack introduces random perturbations into the input data by
adding noise sampled from a Gaussian distribution:

xadv = x+ ϵ, ϵ ∼ N (0, σ2). (1)

where xadv is the adversarial example, x is the original
input, and ϵ is additive noise drawn from a zero-mean normal
distribution with variance σ2. Although Gaussian noise is
not specifically optimized against the model, it can notably
degrade performance, particularly in environments with sensor
uncertainties such as nighttime driving, fog, or rain, thereby
exposing perception model vulnerabilities.

B. Fast Gradient Sign Method

The FGSM, proposed by Goodfellow et al. [10], is a white-
box attack that generates adversarial examples using gradient
information from the neural network. By adding small, direc-
tionally aligned perturbations to the input, the model is tricked
into incorrect predictions:

xadv = x+ ϵ · sign(∇xJ(θ, x, y)). (2)

where J(θ, x, y) is the model’s loss function with respect to
the parameters θ, input x, and true label y. The gradient sign
indicates the direction in input space that maximally increases
the loss. Due to its computational efficiency, FGSM is widely
used for preliminary robustness assessments.

C. Auto Projected Gradient Descent
Auto-PGD [11] extends gradient-based attacks by applying

iterative updates and adaptive step sizes to improve perturba-
tions. Each iteration calculates a perturbation step and projects
it back into a feasible region, maintaining imperceptibility:

xt+1
adv = Projx+S

(
xt
adv + α · sign

(
∇xt

adv
J(θ, xt

adv, y)
))

. (3)

In this formulation, S defines the permissible perturbation
space, α is the step size, and Proj ensures the perturbation
remains within a perceptual bound. Compared with simpler
methods like FGSM, Auto-PGD produces much stronger ad-
versarial examples, making it a powerful tool for evaluating
the resilience of high-performance ADS perception systems.

D. Simple Black-box Attack

SimBA, introduced by [12], is a query-efficient black-box
adversarial attack that operates without gradient estimation. It
iteratively refines an adversarial perturbation δ through random
sampling from an orthonormal basis (e.g., pixel or DCT
frequency basis). In each step, a basis vector q is chosen, and δ
is updated by adding or subtracting a small step ε along q. The
update direction depends on output probabilities: in untargeted
attacks, the direction that reduces the true class probability
p(ytrue | x + δ) is selected; in targeted attacks, the direction
that increases the target class probability p(ytarget | x + δ) is
chosen.

The cumulative perturbation after T steps is bounded by:

∥δT ∥22 ≤ Tε2. (4)

This bound ensures controlled perturbation growth. Despite
its simplicity, SimBA’s orthonormal sampling strategy enables
high query efficiency, making it a strong baseline among
black-box attacks.

E. Optimization-based Methods

1) Robust Physical Perturbations: To assess deep neural
network (DNN) vulnerabilities under realistic conditions, RP2

[13] generates physical-world adversarial perturbations that
remain effective across diverse environments, varying view-
points, lighting, distances, and sensor noise. Given a classifier
fθ(x) and true label y, the goal is to find a perturbation δ such



that the perturbed input x′ = x + δ is classified as a specific
target label y∗ ̸= y, i.e.,

fθ(x+ δ) = y∗. (5)

The optimization problem solved by RP2 is formulated as:

argmin
δ

λ∥Mx · δ∥p + NPS

+ Exi∼XV
[J (fθ(xi + Ti(Mx · δ)), y∗)] . (6)

Here, |Mx · δ|p constrains the perturbation within the ob-
ject’s surface (e.g., a stop sign) using a binary mask Mx,
and NPS (Non-Printability Score) penalizes non-reproducible
colors. XV represents images under varying conditions, and
Ti denotes transformations (e.g., rotation, scaling). The func-
tion J(·) is typically cross-entropy loss. These perturbations
highlight the real-world feasibility of adversarial threats and
their implications for autonomous driving safety.

2) CAP-Attack: CAP-Attack [14] introduces a runtime ad-
versarial patch generation technique for DNN-based Adaptive
Cruise Control (ACC) systems. Unlike offline adversarial gen-
eration, this approach performs real-time pixel-level tuning on
the front vehicle’s image region to mislead distance prediction
models:

min
∆t

∑
d∈RDt

−∇g(d, θ) + λ∥∆t∥p. (7)

An attribution mechanism pinpoints regions most sensitive
to predictions and disturbances ∆t are confined to the bound-
ing box of the front vehicle to reduce computation and enhance
stealth. The algorithm inherits and adapts perturbations frame-
by-frame, adjusting based on the displacement and size of the
vehicle, ensuring both temporal coherence and concealment.
This continuous optimization enhances attack effectiveness
while making detection by traditional safety systems more
difficult. Here, λ controls the trade-off between the impact and
invisibility of the patch, and ∥∆t∥p regularizes the perturbation
magnitude for stealthiness.

IV. DEFENSE METHODS

The robustness of DNNs in ADS is critical, yet adversarial
attacks threaten their reliability and safety. Developing ef-
fective defense strategies to bolster adversarial robustness is
therefore essential; this section outlines several widely used
adversarial defense methods.

A. Image Processing

Applying simple and consistent preprocessing techniques to
images before feeding them into the model is a straightforward
and effective strategy. In this subsection, we introduce three
such image processing techniques:

Median Blurring [24] applies median filtering to suppress
adversarial noise by replacing each pixel with the median of
its neighborhood, effectively preserving edges while mitigating
perturbations.

Bit-depth Reduction [24] reduces the precision of pixel
values, thereby decreasing the effectiveness of subtle pertur-
bations and enhancing robustness against adversarial inputs.

Randomization [25] introduces randomness, such as random
resizing, padding, or noise injection, during preprocessing,
which disrupts adversarial perturbations and hinders consistent
model exploitation.

B. Adversarial Training

Adversarial training [26] is a widely used and powerful
defense technique that improves model robustness by solving
a min-max optimization problem:

min
θ

E(x,y)∼D

[
max
∥δ∥≤ϵ

L
(
fθ(x+ δ), y

)]
. (8)

The inner maximization, which identify the worst-case
perturbation δ within a bounded region defined by ϵ) finds
the most adversarial example, while the outer minimization
updates the model parameters θ to reduce the loss L on these
perturbed inputs. By incorporating adversarial examples into
the training process, the model learns locally stable decision
boundaries. Despite its effectiveness, especially against white-
box and some black-box attacks, adversarial training generally
involves greater computational overhead and may also lead to
reduced performance on clean inputs.

C. Diffusion Model

Diffusion models have demonstrated impressive capabilities
in generating data that resembles real-world distributions.
We leverage this property to repair adversarially attacked
images.We employ DiffPIR [27], a restoration framework that
uses a pre-trained diffusion model as a powerful generative
prior to remove adversarial or noisy perturbations. Instead
of training a separate denoising model, DiffPIR harnesses
the score function of the diffusion process to guide image
restoration while preserving fine visual details.

xt−1 =
√
ᾱt−1 · argmin

x
∥y −H(x)∥2 + ρt∥x− x

(t)
0 ∥2

+
√
1− ᾱt−1 ·

(√
1− ζ · ϵ̂+

√
ζ · ϵt

)
. (9)

Restoration is performed via two lightweight alternating
steps: 1) Denoising applies a few steps of reverse diffusion
to iteratively predict a clean image from the noisy input.
2) Projection enforces data consistency through a proximal
update that aligns the output with the degraded observation.
By iterating between these steps, DiffPIR achieves effective
adversarial defense with strong visual fidelity and minimal
architectural overhead.

D. Contrastive Learning

Contrastive learning, a self-supervised learning paradigm,
can bolster robustness against adversarial attacks by learning
discriminative and invariant representations. It trains models
to bring augmented views of the same instance closer in the
embedding space, while pushing apart unrelated instances,
often via a noise contrastive estimation (NCE) loss [28].



Fig. 1: Example of datasets.

Given a batch B = {xi}Ni=1, we generate two augmented
views per sample (x̃i, x̃

′
i) and optimize the InfoNCE loss:

Lcontrast = − 1

N

N∑
i=1

log
exp (sim(zi, z

′
i)/τ)∑K

k=1 ⊮[k ̸=i] exp (sim(zi, zk)/τ)
(10)

where, zi = gϕ(fθ(x̃i)) is the projected embedding, with fθ
as the encoder (e.g., YOLOv8 backbone) and gϕ as the projec-
tion head (MLP); sim(u,v) = u⊤v/(∥u∥∥v∥) denotes cosine
similarity; τ > 0 is a temperature hyperparameter controlling
the softmax sharpness; K = |B|−1 is the number of negative
pairs per anchor (in-batch negatives); ⊮[k ̸=i] ensures only true
negatives are considered in the denominator. We conducted
quantitative evaluations of our contrastive learning-enhanced
YOLOv8n model on the Traffic Signs Detection dataset.

V. EXPERIMENTAL EVALUATION

A. Dataset

We conduct experimental evaluations on both classifica-
tion and regression tasks. For the classification task, we use
YOLOv8, a widely used model in both academia and industry
[7], and stop sign images from the Traffic Signs Detection
dataset [29]. The relative distance to the leading vehicle is the
key data to ensure driving safety. Therefore, for the regression
task, we use the Supercombo model, an end-to-end model used
on a production ADS [8], [30], [31], with videos from the
Comma2k19 dataset [32] to predict the relative distance to
the leading vehicle. An example from each dataset is shown
in Fig. 1.

B. Attack Evaluation

1) Relative Distance Prediction: The Supercombo model in
OpenPilot is a multitask deep neural network that uses camera
images to perform detection of lane lines and lead objects,
as well as planning of control outputs, enabling essential
functions for autonomous driving systems. We apply various
attack methods to generate adversarial patches in the region
of the leading vehicle in each video frame. The model’s
predicted relative distances under attack are then compared
to the predictions on clean images in each frame. We evaluate
the average prediction error before and after the attacks across
different distance ranges.

As shown in Table I, Gaussian noise exhibits the weakest
attack effect, with average errors across all distance ranges
remaining minimal. This indicates that the model possesses a
degree of robustness to random perturbations. Auto-PGD, on
the other hand, produces the largest errors in every distance
range, with the highest average error reaching 34.45 meters.

Across all attack methods, the prediction error is notably
higher at shorter distances, particularly within 20 meters. This
suggests that the model is more vulnerable to adversarial

attacks at close range, likely because perturbations occupy a
larger visual area when the target vehicle is nearby, thereby
enhancing the attack’s effectiveness.

TABLE I: Avg. errors at different ranges (m) under attack

Attack Method Range (m)

[0, 20] [20, 40] [40, 60] [60, 80]

Gaussian Noise 0.30 0.01 0.03 0.14
FGSM 18.34 4.25 3.92 4.65
Auto-PGD 34.45 8.43 8.11 8.49
CAP-Attack 29.62 6.73 6.42 6.83

2) Stop Sign Detection: Fig. 2 presents the performance of
the YOLOv8 model in detecting stop signs under different
attacks. We evaluate the model using three key metrics:
mAP@50, Precision, and Recall. Specifically, mAP@50 quan-
tifies the model’s overall detection accuracy at an Intersection-
over-Union (IoU) threshold of 0.5, Precision indicates the
proportion of correctly identified objects among all detections,
and Recall measures the model’s ability to detect all relevant
stop signs.

To streamline the evaluation process, we simplify the detec-
tion task by configuring YOLOv8 for single-class detection,
focusing exclusively on stop signs. As illustrated in the figure,
FGSM and Gaussian Noise attacks lead to the most substantial
drop in detection performance, particularly in Recall and
mAP@50. Interestingly, although Auto-PGD is generally con-
sidered a stronger adversarial attack, its effectiveness appears
limited in this context.

None
FGSM

Auto-PGD RP2

Gaussia
n
SimBA

0.6

0.8

1

Sc
or

e mAP50

Precision

Recall

Fig. 2: Performance of stop sign detection with or w/o attacks.

C. Defense Evaluation

1) Image Processing: To evaluate the effectiveness of
classical image processing–based defenses against adversarial
attacks, we conducted a series of experiments using four
commonly applied input-level techniques. The results are
summarized in Table II.

In stop sign detection, defense performance is highly de-
pendent on the type of attack. Median Blurring is effective
against simple attacks, improving mAP@50 from 70.49% to
94.64% under Gaussian noise and boosting precision from
89.74% to 97.32% under FGSM by smoothing perturbations
while preserving structural edges. However, its benefits di-
minish under stronger attacks such as Auto-PGD, where it
yields only marginal gains. In some cases, Randomization
and Bit Depth Reduction even degrade performance, likely
due to Auto-PGD’s already limited impact in a single-class
detection task, which leaves little room for improvement and
increases the risk of over-processing. Notably, Randomization



TABLE II: Performance after image processing

Attack Defense Avg. Error in Different Range (m) Stop Sign Detection (%)

Method Method [0, 20] [20, 40] [40, 60] [60, 80] mAP50 Prec. Recall

Gaussian

None 0.30 0.01 0.03 0.14 70.49 95.86 63.06
Median Blurring -0.02 -0.12 -0.89 -1.89 94.64 98.47 89.86
Randomization 4.51 -0.21 -11.44 -24.18 82.95 91.76 74.55
Bit Depth 1.66 -0.53 -2.33 -2.57 70.17 96.88 62.61

FGSM

None 18.34 4.25 3.92 4.65 72.65 89.74 61.04
Median Blurring 17.60 6.19 0.66 1.02 85.49 97.32 75.00
Randomization 4.62 0.40 -10.23 -21.99 75.58 89.91 70.49
Bit Depth 19.47 6.04 -0.25 -0.89 74.04 87.01 63.38

Auto-PGD

None 34.45 8.43 8.11 8.49 95.09 99.00 89.34
Median Blurring 25.57 6.65 1.37 2.20 98.84 99.76 94.80
Randomization 5.04 -0.20 -11.56 -21.25 93.37 94.97 89.26
Bit Depth 28.87 7.89 0.75 0.94 93.82 98.61 88.06

CAP/
RP2

None 29.62 6.73 6.42 6.83 88.97 98.67 83.77
Median Blurring 25.55 6.16 1.58 1.98 89.54 97.93 83.56
Randomization 4.73 0.16 -11.44 -21.38 87.39 98.93 81.30
Bit Depth 28.17 6.92 1.00 0.64 88.97 98.67 83.77

underperforms under Gaussian noise, as its stochastic transfor-
mations (e.g., resizing, padding, noise injection) disrupt feature
stability in already noisy inputs, reducing detection accuracy.

In regression tasks, image processing defenses also reduce
adversarial prediction errors, but their effectiveness varies
with object distance. Randomization is most effective at close
range, reducing average error from 34.45 meters to 5.04 meters
under Auto-PGD. However, beyond 40 meters, its performance
drops significantly and even increases error. This is due to the
sparsity and low detail of distant vehicle pixels, where random
transformations can distort or erase key features, impeding
depth estimation. Bit-Depth Reduction and Median Blurring
offer moderate improvements, but they are less effective at
close range, where stronger perturbations dominate.

These findings suggest that no single preprocessing method
provides consistent robustness across different attacks and
task conditions. Addressing these challenges may require
combining complementary preprocessing techniques or adopt-
ing multi-model fusion strategies that account for task- and
context-specific vulnerabilities.

2) Adversarial Training: We perform adversarial training
on the model using different adversarial examples as training
sets, and then evaluate the retrained model under various attack
scenarios. The results are summarized in Table III.

In order to evaluate transferability, we retrained separate
models using adversarial examples generated from each attack
(416 stop sign images or 9600 driving video frames), and
tested each retrained model on the other three adversarial
examples separately. Additionally, to construct a diverse and
representative adversarial dataset, we randomly selected 25%
of the attacked examples (104 images or 2400 frames) from
each of the four attacks to be the mixed training set and
randomly selected another 25% of attacked images from each
attack to be the test set. Therefore, the mixed adversarial
dataset is consistent with each individual dataset and is used
to train and test another model for evaluating robustness under
compound adversarial conditions.

YOLOv8 models trained with different adversarial examples
show varying levels of robustness when evaluated across
multiple attack methods. Specifically, the model trained with
RP2 examples performs particularly poorly against FGSM
inputs, achieving the lowest scores across all evaluations, with
mAP50 dropping to 40.78%, precision to 67.01%, and recall

TABLE III: Performance after adversarial training

Adversarial Attack Avg. Error in Different Range (m) Stop Sign Detection (%)

Example Method [0, 20] [20, 40] [40, 60] [60, 80] mAP50 Precision Recall

Gaussian

FGSM 4.21 3.86 3.11 0.31 89.27 99.76 93.69
Auto-PGD 7.43 6.83 4.94 7.01 95.62 99.72 98.20
CAP/RP2 5.90 5.69 3.96 0.80 83.98 94.70 85.59
Mixed - - - - 83.32 97.69 93.85

FGSM

Gaussian -0.06 -0.08 -0.05 -0.20 94.46 99.32 98.60
Auto-PGD 16.83 4.38 2.77 3.97 95.13 99.54 98.39
CAP/RP2 12.51 3.50 2.24 2.08 87.83 97.11 87.61
Mixed - - - - 86.68 98.29 95.78

Auto-PGD

Gaussian -0.09 0.01 0.10 0.05 98.85 99.72 98.65
FGSM 2.92 1.73 1.76 1.87 85.60 98.57 87.61
CAP/RP2 6.50 2.99 2.34 2.50 85.61 97.65 84.40
Mixed - - - - 82.70 97.88 91.94

CAP/RP2

Gaussian 0.18 0.53 -0.02 -1.43 55.13 92.20 54.50
FGSM 3.31 3.04 1.91 -1.43 40.78 67.01 60.40
Auto-PGD 7.78 5.24 3.19 5.10 88.13 98.23 87.56
Mixed - - - - 67.68 92.44 74.69

Mixed

Gaussian 0.25 0.02 -0.02 -43.04 90.57 98.62 96.70
FGSM 4.17 1.61 1.41 0.16 88.63 98.14 95.19
Auto-PGD 5.84 2.91 3.42 1.47 87.90 99.09 97.64
CAP/RP2 4.89 2.39 2.86 0.79 81.95 97.88 88.96
Mixed - - - - 88.47 99.42 94.92

to 60.40%. This sharp decline highlights a key vulnerabil-
ity: RP2-trained models fail to generalize to gradient-based
attacks, indicating overfitting to the RP2 attack pattern and
poor cross-attack robustness. In contrast, models trained with
gradient-based perturbations like FGSM or Auto-PGD exhibit
more consistent and balanced performance across diverse
adversarial inputs.

In relative distance prediction, we retrain the model in the
same way, and adversarial training proves effective, particu-
larly at close range. When trained with a mix of adversarial
examples, the model’s average error under Auto-PGD within
0–20 meters drops sharply from 34.45 meters to just 5.84
meters. Compared to single-attack training, mixed adversarial
training offers more balanced robustness across diverse attack
types, highlighting its potential as a general-purpose defense
strategy. However, this improvement comes at a cost. The same
model exhibits significantly larger errors at longer distances,
with a maximum mean error reaching -43.04 meters. This
behavior suggests that the adversarial loss reshapes the feature
space, optimizing robustness in the near field (0–20m) but
limiting generalization beyond that range. To address this,
future defenses should explore distance-aware sampling, loss
weighting, or multi-scale adversarial training.

3) Contrastive Learning: We apply contrastive learning
to enhance the feature representation of a YOLOv8 model,
aiming to improve robustness in stop sign detection. This
self-supervised learning approach utilizes a projection head
with batch normalization and dropout, and employs a multi-
positive contrastive loss with a margin to promote better
feature separation. The training and test sets are the same
as those for adversarial training. Performance results across
different attacks are summarized in Table IV.

While contrastive learning yields some improvements, the
gains are modest. This is likely due to contrastive learning’s
emphasis on feature invariance, which reduces sensitivity
to input variations but does not explicitly target adversarial
robustness [33]. In contrast, adversarial training with a single
attack type often leads to overfitting, improving robustness
against that attack while reducing generalization to others.
Additionally, the contrastive-trained model maintains strong



TABLE IV: Performance after contrastive learning

Adv. Example Attack Method mAP50 (%) Precision (%) Recall (%)

Gaussian Noise

Clean 99.49 100.00 97.53
FGSM 78.11 68.93 59.16
Auto-PGD 96.24 96.01 95.17
RP2 92.22 98.92 79.31
SimBA 99.41 99.53 99.05

FGSM

Clean 99.49 99.06 98.02
Gaussian Noise 80.36 91.53 66.26
Auto-PGD 98.50 98.14 97.15
RP2 93.29 98.26 100.00
SimBA 99.41 99.84 98.37

Auto-PGD

Clean 99.49 99.06 98.17
Gaussian Noise 79.82 98.44 60.47
FGSM 79.67 95.12 56.60
RP2 90.22 99.86 81.32
SimBA 99.10 99.90 98.51

RP2

Clean 99.39 99.76 97.01
Gaussian Noise 79.01 97.69 59.34
FGSM 75.74 95.79 53.77
Auto-PGD 91.02 93.49 84.01
SimBA 92.11 100.00 83.51

SimBA

Clean 99.39 99.61 98.11
Gaussian Noise 79.58 75.34 53.83
FGSM 75.98 94.30 52.11
Auto-PGD 92.50 82.41 81.67
RP2 92.41 98.82 84.90

and consistent performance under FGSM, suggesting that
feature-level invariance may offer some resilience to simpler,
gradient-based perturbations.

4) Diffusion Model: Table V presents the performance of
the diffusion model in mitigating adversarial perturbations.
The results demonstrate that diffusion-based image reconstruc-
tion serves as an effective defense strategy, particularly in
relative distance prediction tasks. For instance, under Auto-
PGD, the average prediction error within a 20-meter range
drops dramatically from 34.45 meters to just 4.98 meters.
However, in cases like Gaussian noise, where the original
attack is relatively weak, the diffusion process can inadver-
tently degrade performance, introducing unnecessary changes
that lead to increased prediction errors. Similarly, at longer
distances, diffusion-repaired images often result in negatively
biased predictions, with average errors becoming negative.
This suggests that the model systematically underestimates
distances after reconstruction, possibly due to subtle distor-
tions or overcorrections introduced by the generative process.

In stop sign detection, the YOLOv8 model achieves a
precision of over 99% across all attacks, and reaches 100%
precision under FGSM, showing the strength of diffusion mod-
els in restoring adversarially perturbed inputs for classification.

TABLE V: Performance after diffusion model cleaning

Attack Avg. Error in Different Range (m) Stop Sign Detection (%)

Method [0, 20] [20, 40] [40, 60] [60, 80] mAP50 Precision Recall

Gaussian -1.06 -1.33 -4.32 -5.27 99.45 99.50 97.99
FGSM 6.60 -1.06 -3.31 -5.03 97.81 100.00 93.98
Auto-PGD 4.98 -1.05 -3.90 -3.77 99.50 99.96 99.26
CAP/RP2 8.42 -0.67 -2.65 -4.08 93.74 99.33 89.95
SimBA - - - - 99.50 99.97 99.26

VI. DISCUSSION

The evaluation of defense methods indicates that no single
defense approach can fully protect against all types of attacks.
For instance, the Median Blurring enhances the model’s ro-
bustness to a certain extent against multiple attacks, such as

mitigating errors caused by FGSM and Auto-PGD attacks by
more than 10 meters, but is less effective against more subtle
or dynamic threats, mitigating only about 4 meters under CAP-
Attack. Conversely, methods such as diffusion models and
contrastive learning show promising defense potential, yet they
still require further optimization to minimize their negative
impact on model accuracy in the absence of attacks.

Additionally, time overhead is another factor that must be
considered. In adversarial training and contrastive learning, the
model has been retrained, and they do not require additional
time for processing. While in image processing methods, on
average, it takes about 20ms to process each frame or image.
Most notably, DiffPIR takes 1-2 seconds to repair an attacked
image, which is an unacceptable overhead. Because DiffPIR
wasn’t designed with the real-time scenario and is bloated,
optimizing it for real-time applications deserves further study.

Not only from the experimental results, but also from
the time cost, we can observe that adversarial training is a
straightforward and effective defense method. In particular,
training with mixed adversarial samples achieves a better
balance across different attacks but may lead to over-defense,
which reduces accuracy in long-distance prediction tasks.
Future research should focus on refining adversarial training
strategies, particularly in terms of selecting and designing
adversarial samples to strike an optimal balance between
generalization performance and defensive effectiveness.

VII. RELATED WORK

Many studies have attempted to attack various percep-
tion components of the autonomous driving system, such as
LiDAR [34], [35], traffic sign recognition [36]–[39], road
lane detection [40], [41], trajectory prediction [42], [43], or
vehicle detection [44]–[46]. To evaluate and improve model
robustness [47], numerous benchmarks have been proposed
[48], [49] as well as many defense methods, such as high-
level representation guided denoiser [50], convolutional sparse
coding [51], perturbation rectifying network [52], and runtime
safety monitoring [53], [54] and interventions [55]. However,
most of these strategies [56] either do not directly study the
perception module or are still tailored to image classification
and evaluated with an offline image dataset. In this work, we
revisit the adversarial robustness of deep learning models in
the context of autonomous driving for both object detection
and regression tasks from attack and defense perspectives.

VIII. CONCLUSION

In this study, we systematically investigate the vulnerability
of ADS perception models to various adversarial attacks and
evaluate multiple defense strategies. Our experimental results
demonstrate that adversarial attacks significantly affect the
model’s classification task and regression tasks, particularly at
close range. Among the defense methods evaluated, different
approaches show effectiveness under specific conditions, un-
derscoring the urgent need to enhance the robustness of ADS
perception models through innovative and adaptive defense
strategies.
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