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Abstract—The increasing concern in user privacy misuse
has accelerated research into checking consistencies between
smartphone apps’ declared privacy policies and their actual be-
haviors. Recent advances in Large Language Models (LLMs)
have introduced promising techniques for semantic compar-
ison, but these methods often suffer from low accuracies
and expensive computational costs. To address this problem,
this paper proposes a novel hybrid approach that integrates
1) knowledge graph-based deterministic checking to ensure
higher accuracy, and 2) LLMs exclusively used for preliminary
semantic analysis to save computational costs. Preliminary
evaluation indicates this hybrid approach not only achieves
37.63% increase in precision and 23.13% increase F1-score
but also consumes 93.5% less tokens and 87.3% shorter time.
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1. INTRODUCTION

Smartphone apps have transformed modern life, influencing
nearly every aspect of human activity ranging from daily pur-
chases to civic engagement. These apps typically justify their
extensive data collection practices as necessary for service
improvement, however, recently there is a rising concern in
the misuse of these data. While developers are required to dis-
close their data practices through privacy policies, numerous
studies have highlighted significant gaps between these formal
declarations and the apps’ actual data handling behaviors [1].
Privacy policy-code consistency check has emerged as a signif-
icant research stream [2], [3], where most studies employ static
analysis tools like FlowDroid for this task [1], [4]. Recent work
has explored LLM-based approaches for semantic comparison
[5], typically implementing a pipeline that: 1) extracts events
and data flows, 2) identifies relevant methods, and 3) computes
policy-code similarity. However, the exclusive LLMs-based
approach suffers from two fundamental limitations: 1) Over-
alignment bias in LLMs frequently generates false positives by
fabricating policy-code relationships, reducing checking accu-
racy. 2) End-to-end LLMs-based processing requires iterative
prompting sequences, resulting in higher computational costs.
To address this problem, this paper proposes a hybrid approach
that combines: 1) knowledge graph-based deterministic check-
ing to avoid false positives caused by over-alignment bias,
and 2) LLMs focusing exclusively on preliminary semantic
analysis prior to the final comparison, reducing the prompting.

2. PROPOSED HYBRID APPROACH

Figure 1 presents an overview of the hybrid approach, realized
through coordinated interaction among three core components:
a Policy Reader, a Leak Extractor, and a Consistency Checker.

Figure 1. Overview of Hybrid Approach

Policy Reader: The policy reader employs an LLM to
transform the natural language-based privacy policies into a
structured knowledge graph (i.e., policyKG). Each policyKG
triple follows the format < actor, action, data >, where:
actor denotes the responsible entity as either first-party (i.e.,
the app) or third-party (e.g., SDKs), action represents data
operations, classified as collect, share, or their negation via
LLM semantic mapping, and data indicates the processed user
data type, standardized through LLM mapping according to a
list containing 14 common data types, referring to [2].
Leak Extractor: The leak extractor extracts methods con-
taining potential violations by processing FlowDroid’s XML
output, which encodes static analysis results of sensitive data
flows in android apps. Through LLM semantic analysis, it
constructs a leak knowledge graph (i.e., leakKG) that mirrors
the policyKG structure, enabling direct consistency checking.
Consistency Checker: The consistency checker executes the
checking algorithm shown in Algorithm 1 to detect incon-
sistency between policyKG and leakKG triples. For each
identified inconsistency (i.e., flagged as False), the consis-
tency checker optionally invokes an LLM to generate a natural
language inconsistency report, providing a detailed explanation
of how the app’s actual behavior violates its privacy policy.
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Algorithm 1 Consistency Checking Algorithm
1: Input: policyKG, leakKG
2: for each l ∈ leakKG do
3: for each p ∈ policyKG do
4: if p.actor == l.actor ∧ p.data == l.data then
5: if p.action == l.action then
6: return True, l, p
7: else if p.action == (!l.action) then
8: return False, l, p
9: end if

10: end if
11: end for
12: return False, l, Null
13: end for

3. PRELIMINARY EVALUATION

This preliminary evaluation is driven by the following two
Research Questions (RQs): RQ1: Compared to the pure LLMs
approach, does the hybrid approach provide higher accuracy?
RQ2: Compared to the pure LLMs approach, does the hybrid
approach reduce computational costs in time and tokens?

3.1 Experiment Settings
Raw data: The experiment uses FlowDroid-analyzed outputs
from 7 Android apps with their privacy policies, supplemented
by author-constructed test cases (totaling 17 XML files and 23
policies) to ensure full coverage of common data types in [2].
Ground Truth: The ground truth was established through
dual-author annotation with consensus validation.
Baseline: The proposed hybrid approach is compared against
the pure LLM baseline as introduced in Section 1 [5]. LLMs
used for this experiment are instances of DeepSeek-V3 [6].
Evaluation Metrics: To ensure a systematical evaluation,
precision rate, recall rate, and F1 score, are employed to assess
the accuracy in RQ1, while end-to-end execution time and
token usage are used to quantify computational costs in RQ2.

3.2 Experiment Results and Discussion

TABLE I
COMPARISON IN PRECISION, RECALL, AND F1

Metrics Baseline Hybrid
Precision (%) 42.37 80.00
Recall (%) 80.65 77.42
F1 (%) 55.56 78.69

As demonstrated in Table I, the hybrid approach achieves
significant improvements over the baseline, showing 37.63%
higher precision and 23.13% better F1-score while maintaining
competitive recall (77.42%). In terms of computational costs,
as shown in Table II, the hybrid approach outperformed with
93.5% reduction in token usage and 87.3% faster processing
time from input to binary output. The advantage in token usage
even remains consistent with taking the tokens for generating
inconsistency reports (as exemplified in Figure 2) into account.

TABLE II
COMPARISON IN TOTAL TOKEN AND TIME CONSUMPTION

Cost Baseline Hybrid w/o Hybrid w/
types approach explanation explanation

Prompt token 381134 23668 60650
Completion token 2674 1432 33888

Total token 383808 25100 94538
Time (sec) 1625 207 2551

Figure 2. Example of Generated Inconsistency Report

The experimental results demonstrate that the proposed hybrid
approach successfully addresses two fundamental limitations
in the pure LLM approach. First, replacing LLMs-based
semantic similarity matching with the knowledge graph-based
deterministic checking managed to eliminate numerous false
positives without significantly compromising recall rate by
avoiding over-alignment bias. Second, by restricting LLMs
to preliminary semantic analysis prior to final comparison,
computational costs in terms of both time and tokens are sig-
nificantly reduced through minimized interactions with LLMs.

4. CONCLUSION AND FUTURE WORKS

This paper presents a novel hybrid approach that addresses
key limitations of low accuracies and high computational costs
in LLMs-based privacy policy-code consistency checking by
integrating knowledge graph-based deterministic checking and
LLMs exclusively for preliminary semantic analysis. Prelim-
inary results demonstrate significant improvements in both
precision (increased by 37.63%) and F1-score (increased by
23.13%) while reducing computational costs (93.5% fewer
tokens and 87.3% shorter time). Future work should include:
1) regulatory compliance assessment against legal standards
like GDPR, and 2) actionable repairing guidance for detected
violations, enabling fully privacy policy-code alignment.
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