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Abstract

Federated Unlearning (FU) has emerged as a critical compliance mechanism for
data privacy regulations, requiring unlearned clients to provide verifiable Proof
of Federated Unlearning (PoFU) to auditors upon data removal requests. How-
ever, we uncover a significant privacy vulnerability: when gradient differences
are used as PoFU, honest-but-curious auditors may exploit mathematical correla-
tions between gradient differences and forgotten samples to reconstruct the latter.
Such reconstruction, if feasible, would face three key challenges: (i) restricted
auditor access to client-side data, (ii) limited samples derivable from individual
PoFU, and (iii) high-dimensional redundancy in gradient differences. To over-
come these challenges, we propose Inverting Gradient difference to Forgotten
data (IGF), a novel learning-based reconstruction attack framework that employs
Singular Value Decomposition (SVD) for dimensionality reduction and feature
extraction. IGF incorporates a tailored pixel-level inversion model optimized via
a composite loss that captures both structural and semantic cues. This enables
efficient and high-fidelity reconstruction of large-scale samples, surpassing existing
methods. To counter this novel attack, we design an orthogonal obfuscation de-
fense that preserves PoFU verification utility while preventing sensitive forgotten
data reconstruction. Experiments across multiple datasets validate the effective-
ness of the attack and the robustness of the defense. The code is available at
https://anonymous.4open.science/r/IGF.

1 Introduction
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Figure 1: Audition in verifiable FU

The widespread adoption of Federated Learning (FL) en-
ables distributed entities, such as financial institutions,
healthcare providers, and IoT networks, to collaboratively
train models without sharing raw data. This decentral-
ized approach mitigates risks associated with data transfer,
enhancing privacy and security for data owners. How-
ever, compliance with regulations like the right to be
forgotten under the General Data Protection Regulation
(GDPR) [1, 2] requires FL systems to remove specific data
contributions from the global model and demonstrate that
the model no longer depends on those data samples. Sim-
ply preventing raw data leaks is no longer sufficient to meet
compliance requirements. This challenge has spurred the
development of verifiable Federated Unlearning (FU) [3],
a paradigm designed to verifiably forget the contribution of designated data from trained models.
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Figure 1 illustrates a typical scenario where multinational financial institutions, acting as FL clients
, collaboratively train an anti-fraud model [4]. Subsequently, the auditor mandates all clients

to forget the outdated transaction data using the FU algorithm and receives the proof of FU
(PoFU) [5, 6, 7, 8] from the unlearned client. Since the auditor cannot directly access the raw client
data, they rely on PoFU, typically based on gradient differences between the original and unlearned
models, as a non-invasive auditing tool. However, most research [9, 10, 11] primarily focuses on FU
algorithm design, overlooking vulnerabilities to reconstruction attacks by third-party auditors [12, 13],
particularly when gradient differences serve as PoFU.

Recent advances in reconstruction attacks have exposed critical vulnerabilities in centralized machine
(un)learning. For instance, DLG [14], demonstrated that shared gradients can be exploited to
reconstruct original training data, while subsequent work [15] highlighted privacy leakage risks from
gradient sharing. More recently, unlearning inversion attacks [16] reconstruct forgotten data by only
accessing the parameter deviations of the original and unlearned models. However, these approaches
face three primary limitations when applying to federated unlearning scenarios: (i) they require white-
box access to calculate parameter deviations, (ii) they struggle with large-scale data reconstruction
due to the limited information encoded in these deviations, and (iii) the high dimensionality of model
parameters or gradients increases the computational cost of inversion models. More crucially, FU
introduces additional complexities for reconstruction attack, the auditor lacks access to client-side
raw data [17] and relies solely on PoFU to evaluate unlearning efficacy. Current reconstruction
attacks target model parameters or gradients, posing significant threats to machine unlearning in
adversarial settings. However, reconstruction attacks exploiting gradient differences as PoFU remain
underexplored. This gap motivates our research question:

Q: Can gradient differences, used as PoFU, enable third-party auditors to reconstruct forgotten
data? If so, how can high-fidelity, large-scale data reconstruction be achieved against high-
dimensional gradient differences?

To address this, we propose a learning-based reconstruction attack in verifiable FU, named Inverting
Gradient difference to Forgotten data (IGF). To handle high-dimensional gradient differences, we
employ Singular Value Decomposition (SVD) for dimensionality reduction, extracting essential
features while eliminating redundancy, thus reducing the input dimensionality of the inversion
model. We then design a pixel-level convolutional inversion model that learns the latent mapping
between gradient differences and original data samples, optimized via a composite loss function
incorporating structural and perceptual factors. This model efficiently reconstructs batches of
forgotten samples from individual PoFU, bypassing per-sample optimization inefficiencies. These
components synergize to enable robust, large-scale sample reconstruction across diverse datasets and
global model architectures. Our main contributions are:

• We identify gradient differences used as PoFU as a novel attack surface for reconstruction
attacks. By formalizing an honest-but-curious third-party auditor, we demonstrate that
passive observers can reconstruct forgotten samples [18].

• We develop IGF attack framework, integrating SVD with a composite loss-optimized and
pixel-level inversion network, achieving high reconstruction fidelity and computational
efficiency.

• Our experiments demonstrate that IGF outperforms the state-of-the-art GIAMU [16] method,
reducing reconstruction MSE by over 88% and improving LPIPS by approximately 33% on
CIFAR-10, highlighting its effectiveness in federated unlearning.

• We further propose an orthogonal obfuscation defense mechanism to mitigate IGF, and
validate both attack and defense efficacy through extensive experiments on public benchmark
datasets.

2 Related Work

Federated Unlearning. Federated unlearning has recently emerged to address the challenge of
selectively removing specific clients or data points from a trained FL model. This problem is
motivated by regulatory requirements (e.g., the right to be forgotten under GDPR) and the dynamic
nature of real-world FL systems. Existing approaches can be categorized into two main types: Exact
Federated Unlearning (EFU) [19] and Approximate Federated Unlearning (AFU) [20]. EFU achieves
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complete removal by retraining the model from scratch using the remaining data, ensuring that the
influence of the target data is entirely eliminated. However, this method is computationally intensive
and may not be practical for large-scale FL systems. AFU methods aim to reduce computational
overhead by approximating the unlearning process through applying gradient ascent to maximize
the loss. Among approximate methods, Wang et al. [21] proposes that clients estimate the gradient
influence of the data to be removed using local remaining data and then apply gradient ascent to negate
this influence. A subsequent fine-tuning step is introduced to preserve overall utility. Similarly, Xu et
al. [22] employ model explanations to identify key parameter channels associated with the forgotten
categories, and update only those channels in reverse. Meanwhile, Gu et al. [23] pre-generates
linear transformation parameters related to the target data during the training phase and applies
reverse transformations to eliminate unwanted effects. The above methods balance effectiveness and
efficiency. Some works [24, 25] explore how to diminish the model’s utility by poisoning or cause
excessive forgetting through malicious requests, but overlook potential reconstruction vulnerabilities
during the verification stage.

Gradient Inversion Attack. Recent studies have leveraged gradient inversion techniques to recon-
struct clients’ private training data in FL [26, 27, 28, 29, 30]. Zhang et al. [26] demonstrate the
feasibility of generative gradient inversion in FL by constructing an over-parameterized convolutional
neural network that satisfies gradient-matching requirements. Similarly, Jeon et al. [27] leverages
pre-trained generative models as priors to circumvent direct optimization in high-dimensional pixel
space and reconstructs data via latent-space parameter optimization. Additionally, Fang et al. [28]
adopts a staged optimization strategy for the intermediate feature domains of generative models,
progressively optimizing from the latent space to intermediate layers to enhance attack effectiveness.
Sun et al. [29] introduces an anomaly detection model to capture latent distributions from limited
data, using it as a regularization term to enhance attack performance. In the context of FU, Hu et
al. [16] reveal the feature and label information by analyzing differences between the original and
unlearned models.

Therefore, traditional gradient inversion attacks focus on reconstructing training data directly from
original gradients provided by clients in standard federated learning scenarios. In contrast, our work
targets gradient differences used as PoFU, where the attacker must reconstruct deleted data from
indirect and variant gradient information. This introduces unique challenges, gradient differences
contain limited and mixed signals with weaker correlations to the forgotten samples, requiring
fundamentally different inversion approaches.

3 Methodology

3.1 Problem Formulation

Federated Learning (FL). In the FL framework with H clients, each client i (i ∈ [H]) holds a local
dataset Di containing |Di| samples. Let M denote the original global model parameterized by θ, and
consider a supervised learning objective that minimizes the empirical loss over the federated dataset
D =

⋃H
i=1 Di:L(θ) = 1

|D|
∑

(x,y)∈D ℓ
(
M(x;θ), y

)
. The stochastic gradient for a data sample

(xs, ys) ∈ D is gs = ∇θℓ
(
M(xs;θ), ys

)
. Federated Averaging (FedAvg) [31] operates through T

global rounds. At global round t ∈ [T ], the server broadcasts the current global model parameters
θt to all clients. Each client i updates θt via local SGD on Di: θt

i = θt − η · ∇θLi(θ
t), where

Li(θ
t) = 1

|Di|
∑

(x,y)∈Di
ℓ
(
M(x;θt), y

)
. Server aggregates via weighted averaging:

θt+1 =

H∑
i=1

|Di|
|D|

θt
i, |D| =

H∑
i=1

|Di|. (1)

The final global model after T rounds is θT .

FU Scenarios. Let Cn ⊆ [H] denote clients retaining their original datasets {Dj}j∈Cn
, and Cu

represent unlearned clients modifying their local datasets {Di}i∈Cu
. Following [11], we formalize

three scenarios: (i) sample-level unlearning: For each client i ∈ Cu, partition Di into retained Dr
i

and forgotten subsets Df
i = Di \ Dr

i ; (ii) class-level unlearning: Each client i ∈ Cu removes all
samples of target class yf , yielding Df

i = {(x, y) ∈ Di | y = yf} with Dr
i = Di \ Df

i ; (iii)

3
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Figure 2: Schematic overview of IGF framework. A. Learning Phase: Clients collaboratively train
the global model via FL. B. Unlearning Phase: The unlearned clients are required to forget specific
data contributions and submit the proof of federated unlearning (PoFU). C. Verification & Attack
Phase: The honest-but-curious auditor verifies PoFUs, while attempting to infer forgotten data using
a pre-trained inversion model I.

client-level unlearning: Each client i ∈ Cu sets Df
i = Di and Dr

i = ∅. We denote the unlearned
global model as uM, the forgotten dataset as Dforgotten =

⋃
i∈Cu

Df
i and the retained dataset as

Dretained = (
⋃

j∈Cn
Dj) ∪ (

⋃
i∈Cu

Dr
i ).

FU Methods. We implement two mainstream FU approaches: (i) EFU retrains the global model
on dataset Dretained from scratch, minimizing

∑
(x,y)∈Dretained ℓ(M(x;θ), y). This method precisely

removes contributions of Dforgotten from the global model. (ii) AFU performs projected gradient
ascent and constrains maximization on Dforgotten. For each client i ∈ Cu, it computes θ′

i = θT +

ηu · ∇θL′
i(θ

T ) where L′
i(θ

T ) = 1

|Df
i |

∑
(x,y)∈Df

i
ℓ
(u
M(x;θT ), y

)
but maintains ∥θ′

i − θT ∥2 ≤ ζ,

where ζ is the parameter deviation constraint. Then the server aggregates the unlearned local model
parameters:

θ′ =
∑
i∈Cu

|Df
i |

|Dforgotten|
θ′
i, |Dforgotten| =

∑
i∈Cu

|Df
i |, (2)

and fine-tunes uM with θ′ on Dretained.

Verification in FU. Each unlearned client i ∈ Cu locally computes PoFU of gradient differences
∆g(ni) =

{
∆g

(ni)
j = ∇θℓ

(
M(xj ;θ

T ), yj
)
−∇θℓ

(u
M(xj ;θ

′), yj
)
|(xj , yj) ∈ Df

i

}
. Auditor re-

ceives PoFUs ∆g = {∆g(ni)}i∈Cu and validates unlearning by checking each ∥∆g
(ni)
j ∥2 ≤ τ with

predefined threshold τ . The necessity of the gradient differences in verifiable FU lies in ensuring that
a data point (x, y) is included in the training dataset of the original model M but excluded from that
of the unlearned model uM.

Threat Assumption. We model the auditor, denoted A, as an honest-but-curious entity that strictly
follows the FU protocol but seeks to infer private client data. Consistent with prior reconstruction
attacks [30, 16, 15, 14], A possesses an auxiliary dataset Daux. Operating in a gray-box setting,
A lacks knowledge of the global model’s architecture but can collude with the server to query the
flattened gradient for arbitrary samples from both the original model M, and the unlearned model
uM. During the exploitation phase, A passively collects PoFUs ∆g, and endeavors to reconstruct
the forgotten samples.
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3.2 Framework of IGF

We adopt a learning-based inversion model to invert gradient differences to forgotten samples during
the verification phase of FU. The main schematic of IGF is shown in Figure 2, and the formalized
details are as follows:

Inversion Model Training Phase. (i) Preparation of Training Dataset. To prepare the training
data for inversion model I , for each data point (x, y) in auxiliary dataset Daux, the auditor A collects
gradients: {

G = {∇θℓ(M(x;θT ), y)}(x,y)∈Daux

uG = {∇θℓ(
uM(x;θ′), y)}(x,y)∈Daux ,

(3)

where G and uG denote the sets of flatten gradients queried from M and uM, respectively. Gradient
differences ∆G = {Gi −u Gi|(xi, yi) ∈ Daux} form a set of d-dimensional vectors, with d as the
number of trainable parameters.

(ii) Gradient Differences Projection via SVD. To extract the key features and address redundancy
caused by the high dimensionality of gradient differences, A projects ∆G to a lower-dimensional
space using SVD. Let the m denote the number of samples in Daux, A constructs a matrix Ψ =
[∆G⊤

1 ,∆G⊤
2 , . . . ,∆G⊤

m] ∈ Rm×d from the gradient differences {∆Gi}mi=1 of the auxiliary dataset
Daux, where m ≪ d typically holds. A centers the gradient differences by subtracting the mean
vector µ = 1

m

∑m
i=1 ∆Gi, resulting in ∆Gcen

i = ∆Gi−µ and the centered matrix Ψcen. decomposes
the centered matrix Ψcen:

Ψcen = UΣV⊤, (4)

with U ∈ Rm×m, V ∈ Rd×d, and diagonal matrix Σ contains singular values σ1 ≥ σ2 ≥ · · · ≥
σm ≥ 0. To preserve essential information while reducing dimensionality, A selects the smallest k
such that the cumulative explained variance exceeds a threshold ν:

k = min

{
j

∣∣∣∣ j∑
i=1

σ2
i /

m∑
i=1

σ2
i ≥ ν

}
. (5)

So A gets the projection matrix V[k] denotes the first k columns of V. And the projected gradient
differences of Daux are computed as ∆Gproj = ΨV[k] ∈ Rm×k.

(iii) Training Inversion Model. A trains the inversion model, denoted as I and parameterized by ω,
to map projected gradient differences to samples in Daux by minimizing the composite loss function:

Lattack(ω) = LM (ω) + βLP (ω), (6)

where β trades off between pixel-level accuracy and perceptual quality. This design is common in
image reconstruction tasks and can flexibly adjust the optimization objectives of the model to ensure
that the reconstruction results are both accurate and natural. specifically, LM quantifies the structural
pixel-level discrepancy between reconstructed image I(∆Gproj

i ;ω) and ground truth image xi:

LM (ω) =
1

m

m∑
i=1

∥I(∆Gproj
i ;ω)− xi∥22. (7)

Similarly, we define LP , which measures the semantic similarity between the reconstructed and true
images using a VGG-based feature extractor ϕ(·):

LP (ω) =
1

m

m∑
i=1

∥ϕ
(
I(∆Gproj

i ;ω)
)
− ϕ (xi) ∥22 (8)

Further, we elaborately designed the architecture of I to capture the latent mapping between gradient
differences and images effectively. I employs a pixel-level convolutional network for progressive
upsampling, which reduces artifacts in the reconstructed images. This design facilitates a nonlinear
transformation from PoFU space to structured image space. Further architectural details are provided
in Appendix D.
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Privacy Exfiltration Phase. Following the training phase, the auditor A possesses the projection
matrix V[k] and the inversion model I with parameter ω. Upon receiving PoFUs, for each PoFU

∆g(ni) of each client i ∈ Cu, A constructs the matrix Ψ(ni) =

[
∆g

(ni)
1

⊤
,∆g

(ni)
2

⊤
, . . . ,g

(ni)
ni

⊤
]
∈

Rni×d, where ni denotes the number of samples in Df
i . This matrix is then projected into a lower-

dimensional space ∆g(ni)
proj

= Ψ(ni)V[k] ∈ Rni×k. The batched reconstruction of projected
gradient differences ∆g(ni)

proj
is performed as follows:

x̂(ni) = {x̂j = I(∆g
(ni)
j

proj
;ω)|j ∈ [ni]}, (9)

where x̂(ni) = {x̂1, x̂2, . . . , x̂ni
} represents the ni reconstructed samples of client i. This exploitation

enables A to utilize the pre-trained inversion model to implement the large-scale reconstructions
from individual PoFU, thereby compromising data privacy even from the passive view.

3.3 Orthogonal Obfuscation Defense Method

Our inversion model exploits the directional information in gradient differences to reconstruct
sensitive training data. Traditional defense methods often fail to disrupt the directional patterns,
preserving the overall gradient differences structure and remaining susceptible to statistical recovery
techniques. As illustrated in Figure 3, we propose a defense strategy that alters the vector direction
while retaining the L2-norm information necessary for auditing. Our approach projects gradient
differences into an orthogonal subspace, thereby disrupting the patterns and spatial structures that
attackers rely on to reconstruct the forgotten sample.

Defense PoFU 
vector

PoFU vector

Orthogonal
random vector

Do not change the magnitude information of the
gradient, but change the direction of the gradient.

Figure 3: Schematic of or-
thogonal obfuscation defense

For each PoFU ∆g(ni) of unlearned client i, i needs to modify the
direction of each entry ∆g

(ni)
j but maintain its L2-norm. We intro-

duce random vectors r(ni) that are orthogonal to ∆g(ni) element-
wisely. The construction begins by sampling an initial random vector
r
(ni)
j with the same dimensionality as ∆g

(ni)
j , drawn from a stan-

dard normal distribution r
(ni)
j ∼ N (0, 1)d. Then client i applies the

Gram-Schmidt orthogonalization [32] to compute:

∆g
(ni)

obf

j = r
(ni)
j −

r
(ni)

⊤

j ∆g
(ni)
j

∥∆g
(ni)
j ∥2

∆g
(ni)
j . (10)

This step ensures that ∆g
(ni)

obf

j lies in a subspace orthogonal to

∆g
(ni)
j , effectively decoupling its direction from the original PoFU

vector while preserving the randomness needed for obfuscation.

4 Experiment

4.1 Experiment Settings

Datasets and Metrics. We assess IGF framework on widely adopted benchmark datasets: CIFAR-10,
CIFAR-100 [33], MNIST [34], and Fashion-MNIST [35]. These datasets offer diverse challenges,
featuring varying image resolutions (32× 32 for CIFAR, 28× 28 for MNIST and Fashion-MNIST)
and class numbers (10 to 100), making them an ideal testbed for assessing generalization. To measure
the efficacy of our IGF, we employ established metrics for reconstruction attacks: Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Similarity
(LPIPS) [15, 16, 29, 36]. Further details are provided in Appendix B.1 and B.2.

Models. To investigate the impact of global model complexity on our attack, we adopt two archi-
tectures: a convolutional neural network (ConvNet) and a deeper residual network (ResNet20) [37].
These are tested on CIFAR-10 and CIFAR-100, enabling us to probe the attack’s robustness across
architectural variations and to explore how the proposed inversion model scales with the network
complexity of the global model.
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Table 1: Reconstruction performance (MSE, PSNR, and LPIPS) on CIFAR-10 and CIFAR-100
datasets with ConvNet and ResNet20 as global models. Gradient differences are applied with no
defense. Each cell reports results for EFU / AFU, with bold indicating the best performance.

Backbone Method FU Scenario CIFAR-10 CIFAR-100
MSE ↓ PSNR ↑ LPIPS ↓ MSE ↓ PSNR ↑ LPIPS ↓

ConvNet

Ours sample-level 0.0211 / 0.0218 17.19 / 17.09 0.3261 / 0.3624 0.0364 / 0.0261 14.97 / 16.07 0.4383 / 0.4190
Ours class-level 0.0259 / 0.0234 16.08 / 16.51 0.3531 / 0.3316 0.0397 / 0.0298 14.41 / 15.73 0.4451 / 0.4201
Ours client-level 0.0206 / 0.0223 17.32 / 16.78 0.3747 / 0.3558 0.0382 / 0.0265 14.65 / 16.07 0.4361 / 0.4223

GIAMU sample-level 0.2330 / 0.2460 13.22 / 12.78 0.3390 / 0.3190 – – –

ResNet20
Ours sample-level 0.0445 / 0.0564 14.05 / 13.02 0.4607 / 0.4719 0.0391 / 0.0353 14.56 / 15.02 0.4267 / 0.4025
Ours class-level 0.0535 / 0.0512 13.01 / 13.21 0.4608 / 0.4366 0.0474 / 0.0438 13.49 / 13.84 0.4060 / 0.4032
Ours client-level 0.0435 / 0.0533 14.12 / 13.08 0.4617 / 0.4983 0.0422 / 0.0362 14.27 / 14.73 0.4187 / 0.3627

Training Setup. In cross-silo FU and FL training, we configure 40 clients with 10% client selection
and conduct 20 global rounds to derive the original and unlearned models. For unlearning, we
designate 1000 samples to be forgotten, and our ablation experiments demonstrate that both in-
distribution and out-of-distribution auxiliary data can effectively achieve attacking. We consider an
honest-but-curious adversary A capable of storing or collecting a small auxiliary dataset, with a size
comparable to a typical validation or test set, consistent with prior work [29, 30]. During the attack
phase, we train the inversion model with a batch size of 256, a learning rate of 10−4, and a fixed
random seed of 1234 for reproducibility. All experiments are implemented in PyTorch and executed
on NVIDIA A10 GPUs, with each training run requiring approximately 1 hour.

4.2 Experimental Results

This section presents comprehensive experiments validating the effectiveness of IGF framework
across diverse datasets, FU scenarios (sample-level, class-level, client-level), FU methods (EFU/AFU),
and global model architectures. We report numerical results and visual reconstructions to demonstrate
IGF’s high-fidelity reconstruction capabilities. Additionally, we evaluate IGF’s resilience against
five common defense mechanisms and highlight the efficacy of our proposed orthogonal obfuscation
defense. Finally, we conduct extensive ablation studies to assess the contributions of IGF’s key
components.

Reconstruction Performance across Datasets. The results presented in Table 1 provide compelling
evidence of IGF’s capability to reconstruct forgotten data with high fidelity. On CIFAR-10 with
ConvNet under EFU at the sample-level (1000 forgotten samples), IGF achieves an MSE of 0.0211,
PSNR of 17.1947, and LPIPS of 0.3261, reflecting reconstructions with minimal pixel-wise errors
and superior perceptual quality. On more challenging CIFAR-100, which contains 100 classes instead
of 10, we observe a slight performance degradation, with MSE rising to 0.0364, PSNR dropping to
14.9658, and LPIPS increasing to 0.4383. This decline is expected, as greater dataset complexity
and inter-class variability heighten the difficulty of inversion. Nevertheless, IGF still demonstrates
significant robustness, which can be attributed to our SVD-based projection technique and a tailored
inversion model.

Adaptability across Global Model Architectures. IGF also demonstrates adaptability across model
architectures. On CIFAR-10, reconstruction performances with ConvNet are slightly better than
ResNet20 , with MSE values of 0.0211 and 0.0445, respectively. This gap stems from the increased
complexity and depth of ResNet20, which leads to more complex gradient patterns that complicate
inversion. Despite this, IGF still achieves satisfactory reconstruction quality even with the deeper
ResNet20 architecture, demonstrating the adaptability to diverse model architectures.

Adaptability across FU Scenarios. We test IGF under three FU scenarios: sample-level unlearning
(the number of samples to be forgotten is set to 1000), class-level unlearning (the class index to
be forgotten is set to 1), and client-level unlearning (all samples from the third client are set to be
forgotten). IGF exhibits stable performance, with ConvNet’s MSE fluctuating within 0.0053 under
EFU on CIFAR-10, indicating resilience to differing unlearning granularity. In other configurations,
alterations to the FU scenarios have a negligible impact on reconstruction performance, further
highlighting IGF’s stability.

Vulnerability Comparison of FU Methods. Experimental results reveal certain gaps in vulnerability
to reconstruction attacks between EFU and AFU methods. EFU outperforms AFU in reconstruction
metrics on CIFAR-10 with ResNet20, as EFU’s retraining from scratch yields clearer gradient
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differences reflecting forgotten data’s impact. In contrast, AFU’s gradient ascent operation introduces
noise, complicating reconstruction. Despite this, IGF achieves reasonable reconstruction quality under
AFU, highlighting a critical privacy risk: even approximate unlearning methods remain vulnerable to
reconstruction attacks.

Comparison with Basline [16]. As shown in Table 1, we also compare our IGF framework with
GIAMU [16], a recent gradient inversion attack for centralized machine unlearning. All results
associated with GIAMU are sourced directly from [16]. For sample-level unlearning on CIFAR-10
under EFU, IGF outperforms GIAMU by 88.1%, 30.1%, and 3.8% in MSE, PSNR, and LPIPS,
respectively. Under AFU, gains are even more pronounced, with MSE and LPIPS improvements of
91.1% and 33.6%, respectively. Notably, few baseline attacks are suitable for direct comparison in
FU reconstruction, as most existing methods target gradients from fully trained models, which are
ill-suited for unlearning scenarios where models are modified to forget specific data. Moreover, IGF
scales to reconstruct hundreds of times more samples than GIAMU, despite FU’s distributed nature,
which restricts data access and complicates attacks compared to GIAMU’s white-box setting.

O
ri
gi
na
l

O
ur

LPIPS: 0.1994 LPIPS: 0.1958 LPIPS: 0.1906 LPIPS: 1914LPIPS: 0.2105 LPIPS: 0.2022 LPIPS: 0.1967LPIPS: 0.2906LPIPS: 0.3314LPIPS:0.2205

Figure 4: Original forgotten images and our reconstructed images on the CIFAR-10 dataset when the
number of forgotten samples is 1000.

Visual Inspection of Reconstructed Images. Beyond quantitative metrics, visual inspection of
the reconstructed images in Figure 4 provides additional insights into the effectiveness of IGF. The
reconstructed images clearly capture the essential features of the original forgotten samples, including
object shapes, colors, and textures. This visual similarity reinforces the quantitative results and
demonstrates that our attack can reconstruct forgotten data with sufficient fidelity to pose a genuine
privacy risk. In addition, we extend IGF to MNIST and Fashion-MINST, which are composed of
different image sizes from CIFAR. The reconstructed results, as shown in Figure 12, show that
reconstructed images are almost indistinguishable from the original images based on the gradient
differences. The high-quality reconstruction is achieved through our composite optimization approach,
which combines LM with LP loss. This combination ensures that the reconstructed images not
only match the original images at the pixel level but also maintain perceptual similarity in terms of
high-level features.

Table 2: Reconstruction performance across three metrics on five common defense mechanisms.

Defense Method Gradient Pruning Sign Compression Gauss Noise Gradient Perturb Gradient Smooth
0.7 0.8 0.9 0.001 0.1 0.01 0.1

MSE ↓ 0.0216 0.0221 0.0222 0.0225 0.0298 0.0197 0.0232
PSNR ↑ 17.0758 17.0694 17.0521 16.9704 15.7044 17.6116 16.8371
LPIPS ↓ 0.3704 0.3796 0.3810 0.3796 0.4011 0.3663 0.3852

Reconstruction Performance against Defense Mechanisms. We evaluate the reconstruction
performance of IGF against five common defense mechanisms. The technical details of these
common defense mechanisms are introduced in Appendix B.3, and the reconstruction performance is
shown in Table 2. When tested against Gradient Pruning with hyperparameters set to {0.7, 0.8, 0.9},
our method maintains consistent performance with MSE values of 0.0221, PSNR above 17, and
LPIPS around 0.38. Against Sign Compression, which quantizes gradients to their signs, our
method maintains stable performance, achieving MSE values of approximately 0.0221, PSNR above
17, and LPIPS around 0.38. When confronted with Gaussian Noise, our method still achieves
reasonable reconstruction quality (MSE = 0.0225, PSNR = 15.7044), though with some performance
degradation. This result stems from our learning-based inversion model, which has a strong mapping
capability. This demonstrates significant resilience of IGF and allows IGF to almost ignore the
defense mechanism and reconstruct the forgotten data. This also highlights the need for a novel
defense method that can fundamentally disrupt the attacker’s ability to reconstruct meaningful data.
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Reconstruction Performance against Orthogonal Obfuscation Defense. As shown in the Figure 5,
our proposed Orthogonal Obfuscation defense disrupts reconstruction by altering gradient difference
directions while preserving their L2-norm. Reconstructed images exhibit random noise, effectively
thwarting IGF and protecting sensitive data.
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Figure 5: Forgotten images and our reconstructed images on the CIFAR-10 dataset under Orthogonal
Obfuscation defense.

4.3 Ablation Studies

(d) Our Full(c) Our w/o Composite Optimized

(a) Original (b) Our w/o Modules

Figure 6: Forgotten images and our reconstructed images using our inversion model across different
configurations.
To evaluate the contribution of each component in our attack framework, we conduct ablation studies,
visualizing reconstruction results under various configurations, as shown in Figure 6. Original row
shows the ground-truth forgotten samples. Our w/o Modules configuration, which excludes all
proposed modules, exhibits severe degradation in reconstructed images, with prominent artifacts
and loss of structural details. This underscores the inherent challenges of reconstruction attacks
and the necessity of our enhancements. Our w/o Composite Optimized row, which excludes our
composite loss-optimization module, produces images that preserve basic shapes but suffer from
blurring, color inconsistencies, and a lack of fine details. This highlights the critical role of perceptual
loss in capturing high-level semantic features beyond mere pixel-level reconstruction. In contrast, our
complete model (Our Full), incorporating all proposed components, achieves reconstructions with
significantly improved visual quality. These images exhibit sharper definitions, better preservation of
textures, and more accurate color reproduction. By effectively balancing low-level pixel information
and high-level semantic features, our comprehensive approach yields reconstructions that closely
resemble the original forgotten samples. Further ablation studies on federated aggregation
methods, auxiliary datasets, dimensionality reduction techniques, and the hyperparameter β
are provided in Appendix C.

5 Conclusion

In this paper, we expose a critical privacy vulnerability in FU by proposing a novel reconstruction
attack that exploits gradient differences used as PoFU. Our proposed IGF leverages the latent
correlations between gradient differences and forgotten samples to reconstruct large-scale private
data from individual PoFU. Through extensive experiments, we demonstrate that our attack achieves
high-fidelity reconstruction, exposing the inadequacy of existing FU safeguards. To counter this
threat, we introduce an orthogonal obfuscation defense that disrupts the reconstruction process,
forcing inverted images into fixed noise patterns that resist recovery. Our findings underscore the
fragility of current FU mechanisms against gradient-based and gradient-difference-based attacks,
highlighting the urgent need for robust defenses and motivating further exploration of secure FU
strategies.
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A Discussion and Limitations

To the best of our knowledge, IGF framework is the first to exploit gradient differences as an
attack surface in federated unlearning (FU). Previous reconstruction attacks in machine learning and
federated learning (FL) [14, 15, 29, 30] directly leverage sample-level gradients, which inherently
contain richer sample information. Currently, the only available baseline for reconstruction attacks in
FU is GIAMU [16], which relies on white-box access to both the original and unlearned models and
overlooks the privacy vulnerabilities arising from gradient differences sharing during verification.
Our work addresses this gap by demonstrating that an honest-but-curious adversary with partial
prior knowledge can reconstruct forgotten samples by inverting gradient differences. Additionally, in
extreme scenarios, such as a black-box setting where the adversary lacks prior knowledge or cannot
exploit the directionality of gradient differences, the attack’s complexity increases significantly,
making the reconstruction of forgotten data largely unexplored.

B Experimental Settings

Table 3: Mathematical notations
Notation Description

C Set of Clients
D Global Dataset
H The Number of Clients
M Original Global Model
uM Unlearned Global Model
g Stochastic Gradient
G Gradient Queried by Adversary
ℓ Loss Function in Local Training
T Number of Global Rounds
I Inversion Model

(x, y) Data Point
B Batch Size
ϕ(·) Intermediate Feature Extractor

∆G,∆g Gradient Differences
d Model Size
U Left Singular Vectors
V Right Singular Vectors
r Random Vector
M Mask Matrix in Gradient Pruning
ϵ Gaussian Noise
w Window Size in Gradient Smoothing
ζ Parameter Deviation Constraint Radius
Ψ Gradient Differences Matrix
V[k] Projection Matrix

B.1 Datasets

We evaluate IGF using the widely adopted CIFAR-10 and CIFAR-100 datasets [33], both standard
benchmarks in reconstruction attacks and federated learning research. CIFAR-10 comprises 60,000
color images (32× 32 pixels) across 10 categories, with 50,000 images for training and 10,000 for
testing. Each category contains 6,000 images. CIFAR-100 is structured similarly but includes 100
categories, each with 600 images, totaling 60,000 images (50,000 for training and 10,000 for testing).

Additionally, we assess our approach on the MNIST [34] and Fashion-MNIST datasets [35]. MNIST
consists of 70,000 grayscale images (28 × 28 pixels) of handwritten digits, divided into 60,000
training and 10,000 testing images. Fashion-MNIST, designed as a more challenging alternative, also
contains 70,000 28× 28 grayscale images but represents 10 categories of fashion items. It mirrors
MNIST’s training and testing split.
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B.2 Details of Metrics

MSE measures the average squared difference between the original forgotten image and the recon-
structed image. It is widely used as a loss function in image processing tasks and image quality
assessment MSE = 1

N

∑N
i=1(xi − x̂i)

2, where xi is the pixel value of the original forgotten image
and x̂i is the pixel value of the reconstruction.

PSNR measures the quality of the reconstructed or compressed image relative to the forgotten image.
It is expressed in decibels (dB) and is inversely related to MSE—lower MSE values correspond to
higher PSNR values. PSNR = 10 · log10

(
R2

MSE

)
, Where R is the maximum pixel value.

LPIPS [36] is a perceptual similarity metric designed to assess the perceptual quality of images
based on learned features from a neural network (typically a pretrained deep network like VGG).
Unlike MSE and PSNR, LPIPS is more aligned with human visual perception, focusing on perceptual
similarity rather than pixel-level accuracy LPIPS(x, x̂) = 1

L

∑L
l=1 ∥ϕl(x)− ϕl(x̂)∥22, where L is the

total number of layers used for feature extraction. ∥ · ∥2 is the Euclidean distance (L2 norm) between
the feature maps.

B.3 Details of Common Defense Mechanisms

This section outlines five defense mechanisms [30] designed to obfuscate shared gradients and
mitigate gradient-based reconstruction attacks through various perturbation techniques. Given an
input gradient vector g, each mechanism produces an obfuscated gradient vector g′. We adapt these
mechanisms to perturb shared gradient differences in FU.

(a) Sign Compression. The sign compression mechanism applies the sign operation to each compo-
nent of the gradient g, retaining only its sign (−1, 0, or 1) and discarding magnitude information.
This preserves the gradient’s direction while significantly reducing communication overhead, as only
sign bits are transmitted. By limiting the attacker’s access to sign information, this method increases
the difficulty of reconstructing forgotten data. The operation is defined as:

g′ = sign(g), where sign(gi) =


1, if gi > 0

−1, if gi < 0

0, if gi = 0

(11)

(b) Gradient Pruning. Gradient pruning sparsifies the gradient by retaining only the k components
with the largest absolute values, setting all others to zero. A binary mask M selectively preserves
these significant components. Widely used in FL to reduce communication costs, this method also
enhances privacy by limiting the attacker’s access to a subset of gradient components, complicating
the inference of forgotten data. The operation is formulated as:

g′ = g ⊙M, (12)

where ⊙ denotes element-wise multiplication, and M is the mask matrix.

(c) Gaussian Noise. This mechanism perturbs the gradient g by adding independent and identically
distributed Gaussian noise ϵ ∼ N (0, σ2I). Controlled by the standard deviation σ, the noise
introduces uncertainty to achieve differential privacy, obscuring precise gradient values and hindering
reconstruction of forgotten data. The operation is expressed as:

g′ = g + ϵ, ϵ ∼ N (0, σ2I). (13)

(d) Gradient Perturbation. This method perturbs the gradient by adding noise proportional to the
gradient’s magnitude, applying larger perturbations to dimensions with greater gradient values. The
perturbed gradient is defined as:

g′ = g + (N (0, I)× scale)× (|g| × factor) , (14)

where N (0, I) is a standard normal random tensor, scale determines the base perturbation magnitude,
and factor adjusts the sensitivity of the perturbation to the gradient’s amplitude.

(e) Gradient Smoothing. Gradient smoothing mitigates high-frequency variations in the gradient by
applying a moving average over the feature dimensions, blending the result with the original gradient.
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The operation is formulated as:

g′ = reshape
(
(1− αgs)g

flat + αgs · MAw(g
flat)

)
, (15)

where gflat is the flattened gradient, MAw denotes the moving average with window size w, and
αgs ∈ [0, 1] controls the smoothing intensity.

C Additional Ablation Studies

C.1 Impact of Different Federated Aggregation Methods

Figure 7: The reconstruction performance under different federated aggregation methods.

We investigated how three federated aggregation methods, including FedAvg [31], FedProx [38],
and FedOpt [39], affect the p of reconstruction attacks in FU scenarios. Figure 7 illustrates the
performance of our attack method across various aggregation algorithms commonly used in FL
systems. The results demonstrate that while aggregation methods can influence reconstruction
quality, our attack remains effective across different techniques. When examining more sophisticated
aggregation methods like FedProx and FedOpt, we observe slightly different reconstruction patterns,
but the overall attack effectiveness remains consistent.

C.2 Impact of Different Distributions of Auxiliary Datasets

Table 4: The reconstruction performance of different distributions of auxiliary datasets.

Distribution of Auxiliary Datasets MSE ↓ PSNR ↑ LPIPS ↓
In-Distribution 0.0211 17.1947 0.3261

Out-of-Distribution 0.0259 16.6364 0.3324

In real-world scenarios, adversaries often struggle to obtain the complete data distribution of clients.
To investigate the effectiveness of IGF attacks under entirely different distributions, we partition
the CIFAR-10 training dataset as the federated client dataset and employ CIFAR-100, comprising
entirely different categories, as auxiliary data. This setup simulates a reconstruction attack where
the adversary lacks knowledge of the client data distribution. As demonstrated in Table 4, the IGF
attack retains strong efficacy even with out-of-distribution auxiliary data, exhibiting only marginal
degradation across various performance metrics.

C.3 Impact of Different Auxiliary Dataset Sizes

We investigate the influence of varying auxiliary dataset sizes on the efficacy of our attack method. As
illustrated in Figure 8, we incrementally scale the dataset from 500 to 10,000 samples. Experimental
results reveal that performance metrics stabilize when the auxiliary dataset comprises approximately
6,000 to 8,000 samples, demonstrating that our method achieves efficient and robust performance
without requiring extensive auxiliary data. Notably, even with a modest dataset size, our proposed
attack method effectively leverages available knowledge to deliver high-quality image reconstruction.
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Figure 8: The reconstruction performance with different auxiliary dataset sizes.

C.4 Comparative Ablation Study of Dimensionality Reduction Methods

Figure 9: Comparison of the reconstruction effectiveness with applying SVD and Hash dimensionality
reduction.

To gain a deeper understanding of the effectiveness of dimensionality reduction methods, we compared
the performance of Hash-based dimensionality reduction and Singular Value Decomposition (SVD)
in terms of reduction quality and reconstruction results. Hash-based dimensionality reduction [40] is
a vector compression method that relies on random projection, mapping high-dimensional gradient
differences to a lower-dimensional space through a sparse random matrix. Specifically, a sparse
matrix is constructed where each high-dimensional vector component is randomly assigned to a
lower-dimensional target dimension, and each reduced dimension represents the cumulative sum of
the corresponding high-dimensional gradient differences. This approach is computationally efficient
and well-suited for rapidly compressing gradient differences. However, its randomness disregards the
inherent structure of the gradient differences, potentially leading to significant information loss.

Method Size
Original 269722

Hash 134861
SVD 433

Table 5: Comparison of the ef-
fectiveness of SVD and Hash for
gradient differences reduction.

As shown in Figure 9, SVD outperforms the reconstruction af-
ter Hash dimensionality reduction in both reconstruction effects,
and as shown in Table 5 achieves more significant dimensionality
reduction by extracting only key information. SVD-based dimen-
sionality reduction is a data-driven method that decomposes the
covariance matrix of the gradient differences to extract principal
component directions as the projection basis. SVD dynamically
selects the number of dimensions to retain a substantial portion of
the variance (e.g., 95%), ensuring that the reduced results capture
the primary patterns of the original gradient differences.

SVD outperforms Hash-based reduction because it prioritizes the retention of critical information
while minimizing the impact of irrelevant noise. Furthermore, in reconstruction tasks, SVD-preserved
gradient differences maintain structured features, enabling inversion models to more effectively
learn the mapping from lower-dimensional features to the original data, resulting in higher-quality
reconstructed images. Conversely, Hash-based reduction disrupts the gradient differences structure
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Figure 10: The reconstruction performance under different β.

through random mixing, making it challenging for reconstruction networks to disentangle useful
information, which often leads to blurry or distorted reconstructed images.

C.5 Comparative Ablation Study of different β parameters

To investigate the role of the parameter β in the loss function, which governs the trade-off between
pixel-level accuracy and perceptual quality, we conduct an ablation study to assess its impact on
reconstruction attack performance. Specifically, we evaluate the effect of varying β ∈ {0.1, 1.0, 2.0}
on three key metrics: MSE, PSNR, and LPIPS. As shown in Figure 10, increasing β reveals a clear
trade-off: pixel-level accuracy degrades, as indicated by worsening MSE, and perceptual quality
diminishes, as reflected by deteriorating LPIPS, while PSNR exhibits a peak at an intermediate
β before declining. These findings underscore β’s critical role in mediating the balance between
pixel-wise fidelity and high-level perceptual features.

D Inversion Model Architecture

As illustrated in Figure 11, our pixel-level inversion model features a carefully designed architecture
comprising multiple Conv2d and BatchNorm2d layers. We incorporate PixelShuffle for effective
upsampling, minimizing artifacts in reconstructed results. A linear layer paired with an initial
Reshape operation enhances input processing, while a final Sigmoid activation and Reshape ensure
high-quality output generation.

Input

Linear Layer

Reshape

Conv2d

PixelShuffle(2)

BatchNorm2d

Final Reshape

ReLU

Sigmoid

Conv2d

PixelShuffle(2)

BatchNorm2d

ReLU

Conv2d

BatchNorm2d

Conv2d

Figure 11: Architecture of the proposed pixel-level inversion model.

E Additional Reconstructed Images

This section showcases the forgotten images and their corresponding reconstructions across multiple
datasets, as presented in Figures 12, 13, and 14. In each figure, odd columns display the original
images, and even columns show our reconstructed results.
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(a) MNIST (b) Fashion-MNIST

Figure 12: Forgotten and reconstructed images on MNIST and Fashion-MNIST within 1,000 ran-
domly forgotten samples.

1 2 3 4 5 6 7 8 9 10 

Figure 13: Forgotten and reconstructed images on CIFAR-100.

For the scenario of class-level unlearning, Figure 14 presents the forgotten images and reconstruction
results on CIFAR-10 for the unlearned class (car).

1 2 3 4 5 6 7 8

Figure 14: Forgotten and reconstructed images on CIFAR-10 for the unlearned class (car).

18


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Framework of IGF
	Orthogonal Obfuscation Defense Method

	Experiment
	Experiment Settings
	Experimental Results
	Ablation Studies

	Conclusion
	Discussion and Limitations
	Experimental Settings
	Datasets
	Details of Metrics
	Details of Common Defense Mechanisms

	Additional Ablation Studies
	Impact of Different Federated Aggregation Methods
	Impact of Different Distributions of Auxiliary Datasets
	Impact of Different Auxiliary Dataset Sizes
	Comparative Ablation Study of Dimensionality Reduction Methods
	Comparative Ablation Study of different beta parameters

	Inversion Model Architecture
	Additional Reconstructed Images

