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Abstract
Modern software supply chain attacks consist of introducing new,
malicious capabilities into trusted third-party software components,
in order to propagate to a victim through a package dependency
chain. These attacks are especially concerning for the Go language
ecosystem, which is extensively used in critical cloud infrastruc-
tures. We present GoLeash, a novel system that applies the principle
of least privilege at the package-level granularity, by enforcing dis-
tinct security policies for each package in the supply chain. This
finer granularity enables GoLeash to detect malicious packages
more precisely than traditional sandboxing that handles security
policies at process- or container-level. Moreover, GoLeash remains
effective under obfuscation, can overcome the limitations of static
analysis, and incurs acceptable runtime overhead.
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1 Introduction
In recent years, software supply chain (SSC) attacks have jumped
to the forefront of cybersecurity concerns. Rather than attacking
end-users directly, adversaries now infiltrate the software devel-
opment pipeline. Attackers have been injecting harmful code into
widely-used software packages through social engineering, mali-
cious commits, typosquatting, and hijacking unmaintained reposito-
ries [14, 16]. Once a compromised package is released, downstream
projects are infected by malicious code through normal dependency
resolution and build processes. Their users then become suscepti-
ble to credential theft, resource hijacking, and remote command
execution [31].

These supply chain attacks are especially alarming for the Go lan-
guage (Golang) ecosystem. This language has been heavily used for
critical cloud software [73], including Kubernetes [43], Docker [22],
Terraform [39], Etcd [24], and several others mission-critical infras-
tructure [20]. Injecting malicious code into these Golang software
projects would enable unauthorized control over cloud infrastruc-
tures, with potentially devastating consequences. We are already
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witnessing supply chain attacks against the Golang ecosystem, in-
cluding the recent typosquatting attacks to the BoltDB database [7]
and Hypert testing library [8], and the huge number of Go pack-
ages found on GitHub that are vulnerable to repojacking [5]. In this
paper, we aim to improve the state of the art of mitigating software
supply chain attacks on Golang critical applications.

We present GoLeash, a novel approach and its research prototype
for mitigating malicious behavior of Go packages once they have
been compromised. GoLeash is inspired by the “principle of least
privilege”, that is, the idea that accesses should be limited to the
minimal set that is feasible and practical [61, 65]. GoLeash has two
modes: 1) an analysis mode to automatically infer the policies of Go
packages; an enforcement mode that restricts the behavior of Go
packages at run-time, by checking that Go packages comply with
the package policy. Go packages in the supply chain are forbidden
to perform operations with capabilities that they are not supposed
to have (for example, opening a network connection in a package
for local data processing).

GoLeash monitors Go programs at run-time, using the eBPF
framework [23], to collect information about capabilities accessed
by Go packages and automatically build a security policy (analysis).
Thus, it enforces Go packages to have the minimal set of capabilities
required to perform their intended purpose (enforcement).

GoLeash is a novel approach for policy enforcement. Existing
approaches for monitoring and sandboxing of system calls for Go
[38, 69] only apply to entire processes and containers, which makes
enforcement too coarse-grained to mitigate supply chain attacks.
If a package in the program is allowed to use a capability (e.g., a
privileged system call), the entire process or container needs to be
assigned that capability. GoLeash works at a finer grain, since it
is able to trace back which Go package is using a capability at a
given moment, thus it can enforce separate policies across different
Go packages. As we will demonstrate, this ability makes GoLeash
more precise and less prone to omissions.

To evaluate GoLeash, we systematically inject malicious behav-
iors (e.g., exfiltrate or infiltrate files) into the software supply chain
of real-world, complex applications such as kubernetes. Our eval-
uation shows that GoLeash is able to successfully identify mali-
cious packages in 98% of cases, compared to 32% in the case of
coarse-grained monitoring. Moreover, our approach is effective
even when obfuscation techniques are used for hiding the mali-
cious code. GoLeash has an acceptable overhead, by introducing
an average system call latency of 3.17 ms and an average overhead
of 9.34%.
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In summary, the main contributions of this work are:

• A new approach for run-time capability enforcement of Go pro-
grams. It works at the fine-grain level of Go dependencies, trac-
ing and enforcing specific capabilities by individual Go packages
in a software supply chain.

• GoLeash, an efficient implementation of the approach, based on
the eBPF observability framework, available as open-source for
future research [10]. GoLeash is able to both learn and enforce
package-level dependency policies.

• An evaluation of GoLeash on five real-world, complexGo projects,
incl. Kubernetes, in terms of software supply chain attack miti-
gation and performance overhead.

The paper is structured as follows. In Section 2, we provide
technical background and motivation for the paper. In Section 3,
we present the threat model and assumptions. Section 4 presents
the design of GoLeash. Section 5 evaluates the approach. Section 6
analyzes related work. Section 7 discusses use cases and limitations
of GoLeash. Section 8 concludes the paper.

2 Background
2.1 Motivating Example of a Real-world Go

Supply Chain Attack
A concrete real-world example of the pressing supply chain threats
in Go is the recent compromise of the popular boltdb/boltmodule
[7]. An adversary published a typosquatted module impersonating
the original library.While appearing entirely benign and preserving
its normal database functionality, the malicious module stealthily
introduced remote code execution (RCE) capabilities at run-time.
Specifically, the compromised package established a persistent,
obfuscated network connection to a command-and-control (C2)
server using Go’s standard net.Dial function. Once connected, the
package awaited commands from attackers and executed arbitrary
shell instructions through the os/exec.Command API, effectively
enabling unrestricted file manipulation, process control, and net-
work access, which are capabilities never intended by the original
BoltDB library. After the malicious package was cached by the Go
Module Mirror, the attacker rewrote the Git tag to point to a clean
commit, concealing the backdoor in the public repository. However,
the proxy had already cached the malicious pseudo-version, which
downstream applications continued to fetch long after the repos-
itory appeared clean. This allowed the backdoor to persist in the
Go ecosystem for years.

Software supply chain attacks are powerful. Attackers increas-
ingly leverage sophisticated obfuscation techniques, ranging from
encryption of malicious payloads to more subtle strategies. Go’s
runtime provides uniquely powerful features such as CGO (integra-
tion of C code into Go binaries), inline assembly, dynamically loaded
plugins, external binary execution, and reflection-based dynamic
function invocation, which can all be used for malicious purposes.
These techniques bypass traditional static analysis [47], and are
best addressed through run-time solutions [41]. However, as also
discussed in Section 6, there is no run-time solution to address
software supply chain attacks for Go.

2.2 The Go Module System
Modern software development heavily relies on third-party code
reuse, and the Go ecosystem is no exception. GitHub hosts over 1.8
million Golang modules [30]. This vast ecosystem highlights the
scale at which open-source third-party code is made available and
actively consumed in Go development. Large-scale, industrial Go
applications often depend on hundreds of external packages. A no-
table example is Kubernetes, which currently pulls hundreds direct
and indirect Go dependencies to build [53]. The Go module system
[9] provides comprehensive support for dependency management,
with semantic versioning, reproducible builds, and compatibility
guarantees.

In Go, a module is a collection of packages that are released,
versioned, and distributed together. Modules may be downloaded
directly from version control repositories (commonly Git reposito-
ries), or from module proxy servers. Modules are downloaded and
built using the standard go command-line tool. A package refers
to a directory containing one or more Go source files in the same
namespace and represents the fundamental unit of compilation and
encapsulation. A module may consist of one or many packages. A
project is a library or an application hosted in a repository with
one or several modules.

When a Go project is built, all required modules and packages
are bundled into a single statically-linked binary. The binary con-
tains the Go runtime [33], which manages initialization, garbage
collection, and concurrency. In order to achieve high performance,
the Go runtime is designed to be simple and lightweight.

The Go module system introduces unique technical challenges.
In particular, the activity of packages inside a Go program is opaque
from the point of view of monitoring tools. Since the compiled Go
program is a flat binary, the OS has no visibility on which Go
package is invoking a system call. Moreover, the Go runtime does
not provide security features to analyze and manage accesses to
platform features and APIs, such as in the Security Manager for
the Java language. This lack of observability makes it easier for
attackers to slip malicious code into Go programs.

2.3 The eBPF Runtime Monitoring System
The Extended Berkeley Packet Filter (eBPF) [23] is a Linux ker-
nel technology that executes small, sandboxed programs in kernel
space. eBPF offers a versatile framework for dynamic tracing and
performance analysis. By attaching eBPF programs to kernel hooks,
one can analyze kernel events at runtime with minimal overhead.
This includes capturing information on system call IDs and argu-
ments, and the current stack trace, a feature we will extensively
use in GoLeash. eBPF is an excellent tool for security. It has been
used to implement fine-grained policies and analyses on system-
wide and application-specific behavior [13, 26, 40, 67]. Since eBPF
is embedded in the kernel, it ensures that telemetry data collection
remains efficient and isolated. To sum up, eBPF is a mature solution
to detect runtime anomalies and enforce run-time constraints based
on security policies.

Existing security solutions fall short to counter sophisticated
supply chain attacks in Go. On the one hand, static analy-
sis struggles against advanced forms of obfuscation [47]. On
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the other hand, current runtime monitoring solutions enforce
coarse-grain policies at the process- or container-level [41]. Fine-
grain, package-level policies are required to detect and mitigate
modern software supply chain attacks.

3 Threat Model
GoLeash is designed to mitigate software supply chain attacks tar-
geting third-party Go dependencies. Our threat model assumes
attackers compromise initially trusted dependencies through ma-
licious updates, typically via compromised developer credentials
or repository hijacking [64]. The primary attacker objective is to
inject malicious code into legitimate-looking packages to perform
unauthorized operations at runtime, such as accessing and manipu-
lating the filesystem, establishing network communications, and
executing arbitrary commands.

That is, third-party dependencies are considered untrusted and
potentially compromised, as they can embed arbitrary code execu-
tion capabilities.

Attackers can add malicious capabilities in pure Go code, either
using obfuscation or not. Attackers in our model may also employ
sophisticated techniques beyond Go code [11], using mechanisms
such as CGO integration (C binding), inline assembly, dynamically
loaded plugins, and execution of external binaries. Such advanced
methods evade detection from static analysis tools, as malicious be-
haviors only become observable during actual program execution.

The Go run-time environment is assumed to be trusted and un-
compromised. This implies that a threat actor cannot manipulate
the context of system calls or compromise the integrity of the run-
time’s stack traces, and that control flow proceeds as intended (i.e.,
no external interference or tampering affects how Go dispatches
function calls, manages stack traces, or schedules goroutines).

We do not cover attacks executed during earlier phases of soft-
ware development, such as attacks triggered by test functions, Go
generate scripts, Makefiles, or other build and deployment tooling.
These attacks primarily compromise developer machines rather
than production systems.

In this paper, our threat model is unauthorized runtime behav-
ior in production, introduced via third-party Go dependencies
compromised with malicious code.

4 Design of GoLeash
In this section, we present the design requirements, key design
choices, and implementation details of GoLeash.

4.1 Requirements
GoLeash is designed to meet the following requirements, which are
essential for the practical adoption of the approach:
	 Infer package-level security policies without developer manual

work.
4 Enforce security policies without changes to source code, build

pipelines, and the Go runtime.
¨Handle real-world, complex applications, including ones involv-

ing multiple processes and binaries.
´Detect malicious dependencies even when the malicious behav-

ior is obfuscated.

Figure 1: GoLeash Architecture

4.2 Architecture
Figure 1 illustrates the high-level architecture of GoLeash. The
system consists of a kernel-space tracing component and a user-
space analysis engine.

The workflow includes the following stages. (1) GoLeash inserts
tracing probes in the kernel to capture system call (syscall) events.
(2) These events are pushed into a ring buffer, and asynchronously
collected in user space, where (3) the stack trace is resolved. (4)
GoLeash maps the stack trace to the originating Go packages, and
(5) classifies the syscall into a capability. Finally, (6) GoLeash either
uses the event to build a policy (analysis mode), or it checks whether
the event matches against a policy to detect violations (enforcement
mode). In the first case, the allowlist is saved for later use. In the
second case, enforcement actions are triggered.

This architecture allowsGoLeash to enforce least-privilege bound-
aries across dependencies, as opposed to coarse-grain process-based
privileges. The system is designed to operate with no changes to
build and deployment pipelines, it does not require recompilation
or dedicated instrumentation of the protected application.

4.3 System Call Tracing
At the core of GoLeash lies a low-level monitoring infrastructure
built on top of the eBPF framework. GoLeash attaches eBPF pro-
grams to syscall-related tracepoints, allowing it to intercept every
system call made by the target application in real time. A Linux
tracepoint provides a static hook point to call a function provided at
runtime. Specifically, eBPF programs are attached to Linux kernel
tracepoints to capture syscall invocations [68].

Each captured syscall event includes two key pieces of informa-
tion: the syscall identifier and a stack trace identifier, which refer-
ences the user-space call stack that led to the syscall.

To reduce noise and ensure that only relevant syscalls are cap-
tured, GoLeash filters events based on the command name of the
traced binary, and tracks all associated PIDs. This design supports
real-world scenarios, such as multi-process Go applications, and
horizontally-scaled replicas in containerized environments.
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Figure 2: On the left: example stack trace with highlighted
frames that are part of the call path responsible for the write
syscall. On the right: dependency graph of the corresponding
application being traced.

4.4 Dependency Attribution
After system call events are captured in kernel space, GoLeash’s
user-space component analyzes these events, to attribute each
syscall to the specific Go package responsible for triggering it. This
attribution is critical for building precise capability profiles and
precise policy enforcement at the package level.

Each syscall event delivered from the kernel includes a stack
trace identifier, which corresponds to a snapshot of the user-space
call stack captured at the time of invocation. In user space, GoLeash
resolves this identifier into a full stack trace by referencing the
stack_id and its associated memory snapshots. To interpret the
raw return addresses in the stack trace, GoLeash maps each ad-
dress to the corresponding function name and Go package import
path. This symbol resolution process begins by parsing the target
binary’s ELF symbol table, which provides a mapping frommemory
addresses to symbol names in unstripped binaries.

Once the stack trace is resolved, GoLeash traverses it from the
most recent frame backwards to identify the Go package from
which the syscall originates. In Go programs, system calls often
pass through multiple layers of abstraction, including standard li-
brary functions (e.g., from net/http, os, and io [32]) and runtime
helpers, before reaching the kernel. These intermediate layers are
part of Go’s trusted infrastructure and are not considered respon-
sible for the syscall. GoLeash should not misattribute behavior to
trusted components. Hence, GoLeash does not assign the syscall
to the topmost stack frame. Instead, it scans the full trace to find
the first frame originating from an application-defined or third-
party package function, and considers that frame as the initiator
of the syscall. For instance, in the trace shown in Figure 2 (on the
left), where os.Write and other standard packages wrap the syscall,
GoLeash skips them and correctly attributes the syscall to the frame
of third-party package fatedier/frp/server. In addition to iden-
tifying the responsible frame, GoLeash also saves the full chain of
Go packages that led to the syscall, for call path analysis discussed
later in subsection 4.7.

4.5 Capability Mapping
GoLeash defines a capability taxonomy (Table 1) thatmaps low-level
syscalls to semantically meaningful categories of system function-
ality. The taxonomy aggregates syscalls that operates on the same
resource and that serve the same function, and yet differentiates
between operations that have different security implications. For
instance, filesystem-related syscalls are split into read and write
capabilities, allowing developers to grant read access without per-
mitting file modifications. Likewise, networking is broken down
into socket creation, connection establishment, and packet trans-
mission. This granularity enables expressive yet narrowly scoped
policies, significantly reducing the risk of unintended or malicious
behavior. The syscall-to-capability mapping is manually curated
and verified against official Linux syscall documentation [70] to
ensure accuracy. The detailedmapping is providedwithin our imple-
mentation of GoLeash [10]. During both analysis and enforcement,
GoLeash uses this mapping to translate raw syscall activity into
high-level capability usage.

4.6 Analysis Mode
Once system calls are attributed to specific capabilities and the in-
voking package is identified through stack trace resolution, GoLeash
aggregates this information to build a capabilities allowlist for each
package. These allowlists are constructed in the analysis mode,
where the application is executed in a trusted environment, us-
ing integration tests or representative workloads to exercise the
intended behavior of the application. This allowlist acts as a be-
havioral contract: any future execution is expected to conform to
these observed patterns. Once reviewed and approved, the allowlist
becomes the policy used for enforcement.

For each traced package exercised during the execution, the
allowlist records the set of capabilities it invoked, as well as all
observed call paths that led to each capability. These call paths
capture the broader execution context: they consist of the ordered
sequence of Go packages extracted from the stack trace, with the
traced package acting as the terminal caller responsible for the
capability.

Formally, the allowlist A is defined as:

A = {(𝑃𝑖 , {(𝐶𝑖 𝑗 ,T𝑖 𝑗 )})}
where:

• 𝑃𝑖 is a traced package,
• 𝐶𝑖 𝑗 is a capability invoked by 𝑃𝑖 ,
• T𝑖 𝑗 = {𝑇𝑖 𝑗𝑘 } is the set of call paths observed for capability
𝐶𝑖 𝑗 ,

• each call path 𝑇𝑖 𝑗𝑘 is an ordered list of Go packages:

𝑇𝑖 𝑗𝑘 = [𝑄1, 𝑄2, . . . , 𝑄𝑛, 𝑃𝑖 ]
with 𝑄𝑘 denoting intermediary packages and 𝑃𝑖 as the
terminal traced package.

To optimize for performance and memory efficiency, GoLeash
stores each observed call path as a hash of the array T𝑖 𝑗 . This
compact representation allows for fast lookups at run-time while
preserving the ability to verify complete calling contexts. Recalling
the example in Figure 2, during analysis, GoLeash saves the entire
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Table 1: Capability Taxonomy Used in GoLeash

Category GoLeash Capability Description Example Syscalls

File Capabilities

CAP_FILE Manage file descriptors close, poll
CAP_READ_FILE Read data from files read, open, stat
CAP_WRITE_FILE Write or append data to files write, writev
CAP_CREATE_FILE Create new files or directories mkdir, creat
CAP_DELETE_FILE Remove existing files or directories unlink
CAP_FILE_METADATA Modify file metadata (permissions or ownership) chmod, chown

Network Capabilities

CAP_CONNECT_REMOTE Initiate outbound connections to remote endpoints socket, connect
CAP_LISTEN_LOCAL Bind to local ports to accept incoming connections bind, listen
CAP_SEND_DATA Transmit data over established network connections sendto, sendmsg
CAP_RECEIVE_DATA Receive data from network connections recvfrom, recvmsg

Execution Capabilities CAP_EXEC Launch new processes or threads clone, execve
CAP_TERMINATE_PROCESS Terminate running processes or threads exit, kill

System State and
Configuration

CAP_READ_SYSTEM_STATE Access system configuration or status information getpid, getitimer
CAP_WRITE_SYSTEM_STATE Modify environment variables or system settings setuid, setgid
CAP_RESOURCE_LIMITS Adjust process or system resource limits setrlimit

Memory Operations CAP_MEMORY_MANIPULATION Alter memory regions or mappings at runtime munmap, mmap
CAP_DIRECT_IO Perform low-level I/O operations on devices or memory ioctl

sequence of legitimate call paths executed, such as [cobra→ golib
→ write].

Policy Management in the Development Process. The construc-
tion of allowlists is designed to be iterative and non-disruptive. As
new functionality is added to the application, GoLeash can be re-
run to observe and record additional capability and call paths, and
incorporate them into the existing policy. This makes it possible to
start with a conservative baseline and refine the policy over time
without requiring a complete re-generation. Additionally, devel-
opers can manually audit the allowlist and append entries when
necessary, such as when preparing for production deployment after
a review of expected system behavior. For example, developers can
review which Go packages run external executables or establish
outbound network connections, and freeze the allowlist after the re-
view, so that no other package will be able in the future to stealthly
introduce such operations for malicious purposes.

In typical development workflows, developers would often mod-
ify allowlists for major version updates of a dependency. Minor
version updates usually involve bug fixes or refactoring, and by
default do not call for updating policies. To sum up, GoLeash poli-
cies should be updated and re-audited whenever a dependency
publishes a major version, or when new privileged operations are
explicitly added in Changelogs.

4.7 Enforcement Mode
Once a policy has been constructed and approved during develop-
ment, GoLeash can be used in the enforcement mode to protect
the running application from unauthorized behaviors. The same
eBPF-based tracing infrastructure is reused to intercept system
calls; however, instead of gathering these observations for analysis,
GoLeash now checks each syscall in real-time against the policy.

Enforcement is made at runtime by validating both the origin of
the syscall and the capability being exercised.

For every intercepted syscall, GoLeash resolves its associated
capability and identifies the terminal package responsible, using the
same attribution and classification logic from analysis. The syscall
is then validated against the policy: if the (package, capability)
pair is present, and the corresponding call path matches one of the
approved sequences stored for that capability, the syscall is allowed
to proceed uninterrupted. Otherwise, GoLeash flags the event as a
policy violation and triggers a configurable enforcement action.

By validating not only the invoking package but also the full call
path in the stack trace, GoLeash supports context-aware enforce-
ment. This defends against confused deputy attacks [46], when a
restricted dependency may attempt to trigger a privileged capabil-
ity indirectly by invoking a more permissive package within the
same application. In such cases, even if the terminal package is au-
thorized for a capability, the unapproved calling context causes the
request to be denied. This ensures that both the origin and the exe-
cution context of every syscall align with the previously observed
and trusted policy. In the example of Figure 2, an attacker could
compromise spf13/cobra to import a function from xtaci/kcp,
triggering a SEND_DATA, which was not part of cobra’s original ca-
pability set (see also Appendix A). GoLeash prevents the invocation
path between cobra and kcp, since it is not part of the policy.

GoLeash supports multiple enforcement strategies, allowing it to
be used for forensics and response purposes. In forensics use cases,
violations are logged for postmortem analysis, enabling develop-
ers to assess suspicious behaviors without disrupting application
functionality. In response use cases, GoLeash can terminate the
offending process entirely, preventing potential exploitation in real
time. These strategies can be configured per environment, support-
ing progressive hardening.
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4.8 Advanced Support
Support for Trusted Go Internals. It is important to consider

that the Go runtime itself can initiate system calls, independently
from application logic, such as, for scheduling, I/O polling, and
garbage collection. GoLeash distinguishes between system calls
originating from the Go runtime from those issued by packages of
the application and modules. These runtime-initiated events are
excluded from enforcement, by examining the stack trace associ-
ated with each system call. If the entire call stack contains only
frames from Go’s runtime and does not include any package of
the application or modules, the system call is treated as coming
from trusted infrastructure and excluded from analysis. This design
ensures that only behavior explicitly caused by the application or
its dependencies is subject to capability enforcement, reducing the
overhead and avoiding false positives.

Support for Evasion Techniques. The syscall attribution mech-
anism implemented in GoLeash is robust even in the presence of
advanced attack vectors that use defense evasion techniques, in-
cluding obfuscation. Techniques such as encoded Go code, CGO
bindings, inline assembly, and dynamically loaded plugins may
attempt to execute malicious operations. However, all such oper-
ations ultimately result in syscalls that pass through the kernel.
Since the stack includes the originating Go package, GoLeash can
identify the dependency involved in the syscall. Moreover, GoLeash
is able to handle malicious code that hides its behavior by executing
existing binaries on the target system (living-off-the-land attacks),
as in MITRE ATT&CK T1036 (Masquerading), as well as through
obfuscation and control flow manipulation strategies commonly
seen in T1574 (Hijack Execution Flow), as described later.

Support for Exec-based Control Transfer. Go applications com-
monly invoke external binaries to delegate tasks, such as running
system utilities, interacting with non-Go components, and launch-
ing helper tools. This pattern is supported directly by the Go stan-
dard library via wrappers around exec(). However, this behavior
introduces challenges for security monitoring. The exec() syscall
replaces the current process image with a new binary while re-
taining the same PID, effectively shifting execution to code that
may not be vetted or trusted. Attackers can exploit this to bypass
runtime controls from within a compromised package. This tactic
aligns with MITRE ATT&CK techniques T1055 (Process Injection)
and T1543 (Create or Modify System Process). To handle this safely,
GoLeash analyzes both sys_enter and sys_exit events for the
same exec() syscall. A pending “external binary execution” event
is recorded at the syscall entry, and only committed if the syscall
completes successfully. This avoids recording syscalls from failed or
aborted transitions. It must be noted that the external binary is not
necessarily a Go program. Thus, after a successful exec, GoLeash
tracks syscalls using a flat (i.e., dependency-unaware) allowlist for
the process as a whole, indexed by the new executable’s name. Dur-
ing this transition, residual syscalls, such as those issued by the Go
runtime or by parallel threads active at the moment of the exec(),
are filtered out.

Support for Multi-process and Multi-Binaries. GoLeash handles
runtime behaviors that complicate syscall attribution in Go, such
as process forking and multi-binary applications. Supporting these

behaviors is essential, as they are common in modern Go systems.
Forking is used to spawn workers, isolate tasks, and handle con-
current requests, while multi-binary applications assign distinct
responsibilities to separate executables. This design is especially
prevalent in distributed systems. For example, Kubernetes runs
several binaries within a single node, and often deploys multiple
replicas of the same binary for redundancy and load balancing.
These behaviors are also security-relevant. Attackers may fork
subprocesses to evade runtime monitoring or enforce stealth, align-
ing with MITRE ATT&CK techniques such as T1059 (Command
and Scripting Interpreter). GoLeash counters this by dynamically
tracking all processes spawned across all binaries in the target ap-
plication, including those created via fork(), ensuring that syscall
attribution and policy enforcement remain consistent across the
entire process tree.

4.9 Implementation Details
We implemented GoLeash using the C and Go languages. The code-
base includes 1, 190 lines of code, split between the eBPF tracing
component (kernel-space) and the Go-based analysis and enforce-
ment engine (user-space).

The kernel component uses the cilium/bpf2go library [12] to
attach probes that capture syscall events. Each event includes a hash-
based ID derived from the user-space stack trace, enabling efficient,
deduplicated lookup for execution paths. Events are relayed to
user space via a ring buffer to ensure low-overhead, non-blocking
communication. The user-space component resolves stack traces,
maps instruction addresses to Go symbols and Go package paths,
and enforces capability policies. This process leverages symbol
information embedded in Go binaries, which includes fully qualified
package paths, allowing for accurate attribution without source
code access. GoLeash targets x86-64 Linux systems and requires a
kernel version 5.7 or later for full eBPF tracing support.

5 Experimental Analysis
We conduct a systematic, large-scale experimental evaluation of
GoLeash, structured around the following research questions.

RQ1: How effectively does GoLeash detect malicious code
in third-party dependencies?We investigate GoLeash’s
ability to identify unauthorized use of system capabilities
as part of software supply chain attacks. The experimental
protocol consists in simulating realistic supply chain attacks,
by injecting malicious behaviors into benign Go projects,
and measuring GoLeash’s detection rate.

RQ2: How robust is GoLeash in detecting obfuscated mali-
cious behavior? Typically, malicious software is hidden
through obfuscation techniques, to make it more difficult
to detect by malware detectors. Thus, we assess whether
obfuscation techniques can evade GoLeash’s enforcement
mechanism.

RQ3: What is the performance overhead introduced byGoLeash?
We measure the overhead introduced by GoLeash in terms
of system call latency and overall execution time of traced
applications.

https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1574/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1543/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1059/
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RQ4: How does GoLeash compare with static capability anal-
ysis? GoLeash leverages dynamic analysis for capability
attribution, complementing static approaches. Therefore, we
quantify the overlap and differences between GoLeash and
a state-of-the-art static capability analysis tool.

Experimental Targets. Weevaluate GoLeash on real-world, com-
plex Go software projects.We select projects thatmeet the following
criteria: 1) they have more than 10000 stars, 2) they are actively
maintained, 3) they come a test suite or a workload to exercise their
core functionalities, 4) they are security sensitive Applying this
strict criteria result in the following five projects: kubernetes (k8s)
[43] for container orchestration, etcd [24] for key-value storage),
coredns [15] and frp (fast reverse proxy) [27] for networking, and
go-ethereum (geth) [25] for blockchain infrastructure.

Those applications are complex and some contain multiple bi-
naries. We include all binaries in our evaluation. For example, in
the case of Kubernetes, we analyzed the five main control plane
binaries:kube-apiserver, kube-controller-manager, kube-scheduler,
kube-proxy, kubelet.

Malicious Code Injection. Malicious behaviors in supply chain
attacks typically abuse system-level capabilities, such as establish-
ing outbound network connections to exfiltrate data, accessing the
file system to steal information, and executing system commands
to further compromise the system.

To the best of our knowledge, there is no existing dataset of
malicious Go packages. We tried to access the few malicious ones
reported in blog posts, by did not succeeding in obtaining the code.
For our evaluation, we tackle this lack of data by building synthetic
malicious packages according to the following sound methodology.

Malicious packages are constructed by selecting a package from
the dependency graph of the application under study, and by inject-
ing a piece of malicious code into this target package. The selection
of packages to consider is uniformly random, ensuring the absence
of bias.

First, we surveyed malicious code patterns from established
datasets in npm and PyPi [19, 50]. Next, we adapt those patterns to
the Go language through five different malicious behavior injectors,
spanning data exfiltration, remote file infiltration, information steal-
ing, code injection and execution. Our malware implementations
adopt the same Go packages also adopted by known campaigns
against Go projects (see Section 2.1), as reported by technical blogs
[7, 8, 58]. Table 2 summarizes these behaviors, and maps them to
the relevant entries of the MITRE ATT&CK knowledge base.

We automate the injection of malicious code through rewriting
the source code of the target package. We developed a tool to
analyze the abstract syntax tree of the target package, and to weave
malicious code snippets within an existing function of the package,
without disrupting the existing functionality and structure of the
target package. During experiments, we injected each malware
type into every exercised package (targeting a randomly selected
exercised functions). Our malicious code injector is made open
source for future research. All malicious packages generated during
experiments are publicly available in our replication package [10].

System Configuration. All experiments are conducted on a ma-
chine with an Intel Core i7-1260P CPU, 16GB of RAM, running
Ubuntu 22.04, with Linux kernel version 6.7, and Go version 1.24.1.

Table 2: Injected malicious behaviors.

ID Behavior MITRE ATT&CK

M1 Base64-encoded command
execution for reverse shell
access

T1059, T1140

M2 Exfiltrate and transmit
system configuration data to
a remote server

T1552, T1082, T1041

M3 Information stealing from
user applications

T1115

M4 Inject a shared library into
current process

T1055.001

M5 Infiltrate malicious files T1105

5.1 RQ1: Effectiveness Against Malicious
Behavior in Dependepencies

Objective. The goal of this experiment is to evaluate GoLeash’s
effectiveness in mitigating supply chain attacks by detecting unau-
thorized system capability usage introduced through compromised
third-party packages. We aim to show that GoLeash’s per-package
enforcement can accurately flag malicious behaviors, even when in-
jected into deep transitive dependencies. As a baseline, we compare
against the state-of-the-art process-level enforcement model, such
as Seccomp [69], which handles the entire application as a monolith.
A detection is considered successful when GoLeash successfully
detects that a malicious package exercises a malicious capability
absent from the policy.

Methodology. We first use GoLeash in analysis mode to gen-
erate per-package policies. This is done by executing each target
application with its end-to-end workload while GoLeash traces
all invoked packages. These workloads are designed to reflect the
application’s intended, benign behavior.

To compare GoLeash’s per-package enforcement with traditional
sandboxing models, we implement a process-level enforcement base-
line. This baseline aggregates all observed capabilities into a flat,
application-wide policy, without attributing them to individual
packages.

After policy generation, we construct a dataset of malicious vari-
ants of the target applications. For each variant, we rebuild the
application with exactly one malicious code snippet at a time, in-
jected into a single target package. The injection point is randomly
selected from functions that are actually executed, which are pro-
filed using our tracing infrastructure. It is worth noting that not all
packages in the dependency graph are actually reachable by the
workload. For example, the net Go package may import crypto for
encrypted communication, but the application using net might not
use encryption features. Therefore, we limit injections to packages
that are actually active during execution. This ensures that the
malicious code is reachable and that it represents a realistic attack.
We leverage the injection approach described in Section 5. In total,
we produced 3,265 unique malicious application variants.

The effectiveness of GoLeash is measured using the detection
rate, defined as the percentage of malicious packages flagged by

https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1552/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1115/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1105/
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Table 3: Detection Rate of GoLeash vs Baseline. Malware IDs
are defined in Table 2. The “inj.” column indicates the number
malicious application variants.

Project Malw. Inj. (#) Baseline (%) GoLeash (%)

k8s [43]

M1 441 100 100
M2 441 0 99.77
M3 441 100 100
M4 441 0 99.32
M5 441 0 99.55

etcd [24]

M1 62 100 100
M2 62 0 98.39
M3 62 0 100
M4 62 0 91.94
M5 62 0 98.39

coredns [15]

M1 20 100 100
M2 20 0 100
M3 20 100 100
M4 20 0 95
M5 20 0 100

frp [27]

M1 47 100 100
M2 47 0 97.87
M3 47 100 100
M4 47 0 87.23
M5 47 0 95.74

geth [25]

M1 83 100 100
M2 83 0 97.59
M3 83 0 100
M4 83 0 91.57
M5 83 0 97.59

Aggregate 3,265 32% 98%

GoLeash out of the total number of created malicious packages for
a given application. For comparison, the same metric is applied
to the process-level baseline. Under this coarse-grained model, a
variant is only detected if the injected code uses capabilities not
observed anywhere in the application during baseline execution.

Malware IDs used in the evaluation are defined in Table ??, and
the inj. column indicates the number of application packages indi-
vidually injected with each malware for testing.

Results. Table 3 summarizes the results of this experiment. As
previously discussed, we profile which packages are actually exe-
cuted (e.g., 441 in the case of k8s), and inject five types of malicious
code into each target package. In total, we obtain 3, 265 malware
injections.

GoLeash successfully detects malicious behavior with high accu-
racy. The average detection rate across all projects is 98%. This is
much higher than the 32% detection rate achieved by the application-
wide baseline approach. GoLeash achieves a perfect 100% detection
rate on two different malware categories: M1 and M3. Importantly,
the detection rate never dropped below 87%.

GoLeash effectively identifies deviations from normal execution,
by detecting when the injected malicious code uses capabilities that

are not part of the policy generated with benign executions. Our
results indicate that certain sensitive capabilities, such as initiating
outbound network connections or spawning external commands,
used by malware, are particularly effective indicators.

In contrast, the coarse-grained, process-level baseline model was
significantly less effective. By aggregating all capabilities into a
single policy, process-level enforcement often allows stealthy mal-
ware to go undetected. This happens when the malicious code uses
capabilities that are also legitimately used by the target package.
The baseline is able to detect malware M1 and M3, which leverages
the rarely-used capability RESOURCE_LIMITS capability, which is
absent in the original applications.

Finally, we observe that GoLeash enforcement incurs zero false
positives in our experiments. However, it is important to note that,
in general, dynamic analysis can be affected by false positives if the
security policy is trained with a workload that is not representative
of the operational stage. We further discuss this aspect in Section 7.

We have performed a large-scale experiment with 3265 mali-
cious packages injected in five real-world Go projects. GoLeash
stops 98% of the simulated software supply chain attacks.
GoLeash’s per-package enforcement offers precise and robust
defense against software supply chain attacks.

5.2 RQ2: Effectiveness Against Obfuscated
Attacks

Objective. Malicious actors often attempt to hide dangerous
logic via obfuscation techniques, making it harder for security tools
to detect unauthorized actions [52, 76]. This experiment evaluates
whether obfuscation techniques impact the ability of GoLeash to
perform per-package capability enforcement.

Methodology. As in RQ1, we begin by running each target ap-
plication with its normal workload in GoLeash analysis mode, gen-
erating a per-package policy that captures legitimate capabilities.
Then, we inject obfuscated malicious code, using four Go-specific
obfuscation strategies [11]:
• Plugin: we compile the malicious functionality as a Go plugin,
and load it at runtime.

• Reflection: we wrap malicious functions with reflection calls,
with dynamic resolution to invoke them.

• External Binary: we embed the payload in a separate binary,
and invoke it at runtime via exec syscall.

• CGO: we write the malicious code as C code, and invoke it
through Go’s foreign function interface (CGO).
Each of these obfuscation techniques conceals the malicious

injected capabilities behind more convoluted, indirect execution
paths.

We reuse the same injection framework described in Section 5,
but apply the above four evasion strategies to the malicious snippets
before injecting them into each exercised package. In this second
experiment, we focus on two malicious behaviors (i.e., M2 data
exfiltration and M5 remote file infiltration) from the original set,
for the sake of brevity. Similar results were obtained for the other
types of malware. Each obfuscation variant is injected one at a time
into each exercised package across the five Go projects. We then
switch GoLeash to enforcement mode and rerun the applications
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with their workload to measure if GoLeash detects these obfuscated
attacks.

Table 4: DetectionRate of GoLeash against obfuscated attacks

(a) Malware M2 (data exfiltration)

Project w/o(%) plug.(%) refl.(%) bin.(%) cgo(%)

k8s 99.77 99.77 99.77 100 99.09
etcd 98.39 98.39 98.39 100 98.39
coredns 100 100 100 100 90
frp 97.87 93.62 93.62 100 76.60
geth 97.59 97.59 97.59 100 96.39

avg. 98.72 97.87 97.87 100.00 92.09
(b) Malware M5 (remote file infiltration)

Project w/o(%) plug.(%) refl.(%) bin.(%) cgo(%)

k8s 99.55 99.55 99.55 100 99.32
etcd 98.39 98.39 98.39 100 98.39
coredns 100 100 100 100 95
frp 95.74 95.74 95.74 100 85.11
geth 97.59 97.59 100 96.39 96.39

avg. 98.25 98.25 98.33 99.28 94.44

Results. Tables 4a and 4b report GoLeash’s detection rates of
GoLeash for both unobfuscated malware as in RQ1 (column w/o),
and their obfuscated counterparts. For each exercised package in
the target applications, we generate eight malicious injections (two
malware variants and four evasion techniques), resulting in a total
of 5, 224 injections across all five applications.

Despite attempts to conceal malicious capabilities, GoLeash still
identifies unauthorized behavior that falls outside a package’s gen-
erated policy, achieving average detection rates across all projects
ranging from 92.09% to 100% for malware M2, and from 94.44% to
99.28% for malware M5, depending on the obfuscation technique.
Our experiment shows that the evasion strategies poorly circum-
vent GoLeash’s per-package policies. Malicious accesses are still
flagged as suspicious calls whenever they deviate from a pack-
age’s baseline profile. For example, malware based on CGO still
needs to issue system calls for connecting to remote hosts, such as
those mapped to the CONNECT_REMOTE capability, which remains
detectable. Interestingly, in the scenario of external binary evasion,
GoLeash’s detection rate is slightly higher than in the unobfus-
cated variant, primarily because this approach introduces the EXEC
capability, which is absent in most of the baseline profile and im-
mediately triggers an alert.

GoLeash is highly robust against obfuscated software supply
chain attacks, where the malicious code in obfuscated inside a
dependency. Despite obfuscation, GoLeash detects the devia-
tions from the security policy.

5.3 RQ3: Performance Overhead
Objective. The goal of this evaluation is to quantify the perfor-

mance overhead introduced by GoLeash when used in enforcement

mode. Recall that the enforcement mode is meant to be used in
production. In enforcement mode, GoLeash actively intercepts and
potentially blocks system calls from the target application. Since
runtime overhead can impact on real-world adoption, it is critical
to measure how much additional cost is imposed by GoLeash.

Methodology. For this evaluation, we run the applications using
benchmark workloads that offer consistent, high-volume execu-
tion, making them better suited for measuring performance metrics.
These benchmarks replace the workloads used in RQ1, which were
meant to perform end-to-end testing to exercise the several func-
tionalities of the applications.

We consider the same five Go applications, with the follow-
ing workloads. For etcd, we configure its official benchmarking
tool [57] to send write requests to a running etcd cluster. For frp,
we set up a tunnel to a web server through the frp proxy and gen-
erate HTTP traffic using the wrk benchmarking tool [55]. For geth,
we deploy an Ethereum node and submit transaction requests using
its benchmarking suite [56]. For CoreDNS, we issue DNS queries
using DNSPerf [21]. For all of these applications, we measure the
total execution time over 10 repetitions, configuring benchmark for
executing 10, 000 requests each.

For Kubernetes, we simulate typical API operations using the
kube-burner benchmark [42]. In this case, rather than measuring
request execution time, we use pod latency, that is the time it takes
for a pod to reach the Ready state after being scheduled. This metric
is widely used to benchmark the responsiveness and provisioning
performance of Kubernetes clusters.

In addition, for all applications, we measure syscall latencies in-
troduced by the kernel probes, averaging over 1,000 traced syscalls
per project. Before each repetition, we reset the environment (e.g.,
by clearing application-generated caches) to ensure consistency.

Table 5: Execution Time overhead measurements.

Project w/o (s) GoLeash (s) Overhead (%)
kubernetes 17.50 ± 0.56 19.00 ± 0.49 +8.57%
etcd 7.09 ± 0.13 7.48 ± 0.10 +5.5%
coredns 13.16 ± 0.24 13.74 ± 0.49 +4.4%
frp 0.64 ± 0.005 0.79 ± 0.004 +23.43%
geth 22.54 ± 1.08 23.63 ± 0.82 +4.83%

Results. Table 5 shows the mean and standard deviation of
performance measurements, both without (w/o) and with GoLeash,
along with the relative overhead as percentage. We observe an
average overhead of 9.34% in execution time, primarily due to
kernel-level probes on sys_enter and user-space operations such
as syscall-capability mapping, dependency attribution, and allowlist
inspection. These results align with previous studies on eBPF-based
tracing [17]. In addition, we observe an average syscall latency of
3.53𝑚𝑠 for Kubernetes, 3.09𝑚𝑠 for etcd, 2.8𝑚𝑠 for CoreDNS, 3.01𝑚𝑠

for frp, and 3.44𝑚𝑠 for geth, respectively.

Our measurements show that GoLeash’s enforcement mode
adds 4-25% execution overhead in production. This overhead is
an acceptable cost for the security benefits provided by GoLeash
against the state-of-the-art software supply chain attacks.
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5.4 RQ4: Comparison with Static Analysis
Objective. Our goal in this experiment is to assess howGoLeash

compares to Capslock [35]. Capslock is a state-of-the-art static capa-
bility analysis tool for Go, developed by Google. Capslock obtains
the transitive dependency graph of the application under analysis.
Then, for each package used by the application, it infers whether
the package can manipulate files, open network connections, or
perform certain system-level operations. It scans the source code
by means of static analysis, by looking for calls to the Go standard
library in the call graph. These capabilities are similar to those used
by GoLeash (see Table 1), even if at a coarser level of granularity.
We investigate whether Capslock’s static analysis can effectively
detect unobfuscated and obfuscated malicious code, and how it
compares to GoLeash’s runtime-based detection.

Methodology. Similarly to the previous RQ1 and RQ2, we evalu-
ate Capslock in terms of detection rate. First, we apply Capslock on
the original (benign) version of the five applications, and obtain the
set of capabilities inferred by Capslock. Then, we apply Capslock
on the malicious application variants. For each malicious variant,
we get the set of capabilities, which includes the capabilities used
by the injected malicious code. If the original and the malicious
applications exhibit a different set of capabilities, we conclude that
the malicious code has been detected by Capslock. For fair compari-
son, we compute the detection rate for both GoLeash and Capslock
on the same datasets of injected packages from RQ1 and RQ2.

Table 6: Differences in Detection Rate of GoLeash against
Capslock

(a) Malware M2 (Data Exfiltration)

Project w/o(%) plug.(%) refl.(%) bin.(%) cgo(%)

k8s +76.64 +67.12 +80.95 +64.85 +63.04
etcd +62.91 +58.07 +69.36 +58.06 +56.45
coredns +50.00 +50.00 +60.00 +45.00 +20.00
frp +70.21 +29.79 +70.22 +36.17 +10.64
geth +62.65 +32.53 +67.47 +33.73 +27.72

avg. +64.88 +47.90 +69.20 +47.96 +35.97
(b) Malware M5 (Remote File Infiltration)

Project w/o(%) plug.(%) refl.(%) bin.(%) cgo(%)

k8s +74.38 +66.90 +80.73 +64.85 +63.27
etcd +59.68 +58.07 +69.36 +58.06 +56.45
coredns +45.00 +50.00 +60.00 +45.00 +25.00
frp +53.19 +53.19 +72.34 +36.17 +19.15
geth +56.63 +32.53 +67.47 +33.73 +27.72

avg. +57.38 +52.54 +69.58 +47.96 +38.72

Results. For space limitations, we again focus on two malware
types. Tables 6a and 6b report the absolute differences in detection
rates between GoLeash and Capslock, respectively for the M2 and
M5 malware types, across the five Go projects. We consider both
the cases without (w/o) and with obfuscation. Each cell shows the
percentage-point difference between GoLeash’s dynamic detection
results from RQ2 and Capslock’s static analysis.

The results shows that GoLeash consistently and significantly
outperforms Capslock across all five projects and obfuscation tech-
niques. This performance gap stems from two main limitations of
Capslock’s analysis. First, Capslock operates at a coarser level of
granularity than GoLeash, which causes overlap between broad
capabilities attributed to trusted packages and those required by
injected malware. As a result, it often fails to distinguish malicious
behavior from benign behavior. For example, read and write opera-
tions fall in the same capability in Capslock, obscuring distinctions
that GoLeash can capture at the syscall level. Second, Capslock’s
static analysis struggles to precisely reconstruct call graphs, espe-
cially in the presence of dynamic features such as plugin loading or
reflection. Based on manual inspection of randomly sampled cases,
we observed that Capslock occasionally misses even coarse-grained
capabilities that are clearly exercised during runtime.

Interestingly, when CGO-based obfuscation is used, GoLeash still
outperforms Capslock in every scenario, although the percentage-
point advantage is somewhat reduced. This is because CGO vari-
ants introduce additional calls to Go standard libraries and for-
eign function interfaces, which Capslock explicitly flags (e.g., via
CGO_CAPABILITY). However, Capslock often raises alerts on the
presence of these foreign interfaces rather than on the core mali-
cious logic itself (e.g., actual file writes or exfiltration operations).

It is important to note that Capslock can still bring unique ben-
efits to supply chain security. Our approach relies on the actual
execution of the target application with a representative work-
load that triggers its capabilities, which is typically the case of
production-grade software. Looking at actual executions enables
our solutions to overcome obfuscation and other limitations of
static analysis. However, if users cannot find or run such a work-
load, it is not possible to perform dynamic analysis. In these cases,
static analysis can still be used to obtain an approximation of the
capabilities used within the application.

GoLeash’s dynamic analysis outperforms Capslock’s static anal-
ysis. Yet, we note that they are complementary, and that prac-
tical defense-in-depth against software supply chain attacks
require using both kinds of solution.

6 Related Work
We categorize related work along the five key dimensions from
our design: need for code changes, support for fine-grained access
control, automated policy generation, support for multi-process
apps, and detection of obfuscated behavior.We summarize in Table 7
other systems that are most directly comparable to our one, and
discuss at more length the others in the text (e.g., static analysis).

6.1 Application-Level Sandboxing
A number of solutions confine or restrict the system-level behav-
ior through runtime sandboxing. NatiSand [2] and Cage4Deno [1]
use Linux security features (e.g., Seccomp, eBPF, Landlock) to re-
strict native extension in JavaScript runtimes like Node.js and Deno.
Natinad relies on manual JSON-based configuration to restrict op-
erations such as file or network access. Cage4Deno adds support
for isolating subprocesses, but treats each subprocess as a stan-
dalone application, lacking awareness of finer-grained entities like



GoLeash: Mitigating Golang Software Supply Chain Attacks , ,

npm packages. Similarly, HODOR [72] shrinks the attack surface
of Node.js applications by auto-generating syscall whitelists. While
it achieves thread-level granularity, it cannot distinguish which de-
pendency initiated a syscall, limiting its ability to isolate malicious
libraries.

Other efforts focus on container-level hardening. Confine [60]
statically generates restrictive Seccomp syscall policies for contain-
ers via whole-binary analysis, but lacks intra-container granular-
ity or obfuscation resilience. 𝜇PolicyCraft [6] synthesizes stateful
syscall automata for microservices through symbolic execution
and enforces them via a telemetry monitor, yet still operats at the
microservice/container level rather than inside processes.

Finally, 𝜇SCOPE [59] dynamically traces memory accesses and
privilege operations in lage codebases (e.g., the Linux kernel) to
identify overprivileged regions. While effective for analysis and
privilege planning, it does not enforce runtime behavior and lacks
syscall-level or per-package enforcement.

Overall, application-wide or “coarse-level” sandboxing solutions
successfully confine large swaths of code, but they lack per-dependency
distinctions, which means that malicious or compromised libraries
cannot be individually restricted. In contrast, GoLeash operates at
the package level within a single Go binary, with no reliance on
manual configuration.

6.2 Permissions Systems for Packages
A second line of work provides package-level or library-level per-
mission systems.

MIR [71] uses static analysis to assign read-write-execute capa-
bilities to Node.js libraries, applying them at runtime. ZTDJAVA [3]
similarly enforces package-level permissions in Java via a combina-
tion of manual configuration and runtime monitoring. While both
tools reduce risk from vulnerabilities within a dependency, their
threat models do not account for maliciously added capabilities,
and they lack support for native code or obfuscated behavior.

Other efforts depend on manually specified permissions or op-
erate over high-level, language-specific API. Ferreira et al. [28]
propose a Node.js permission system configured by developers to
constrain packages at the JavaScript API level, with no syscall visi-
bility. FLEXDROID [63] enforces privilege separation in Android
apps by intercepting Dalvik calls, but relies on Android permission
model and does not observe OS-level behavior.

Other work enforces stronger isolation at the library level using
system call interposition. Codejail [74] transparently confines dy-
namically linked libraries in Linux via a dual-process model that
mediates memory and syscall behavior with the main program.
LibVM [36] builds virtualized execution environments for shared
libraries, with hardware-assisted or ptrace-based syscall control.
Enclosure [29] similarly isolates untrusted libraries by associating
closures with restricted memory views and syscall filters, enforced
via Intel VT-x. It supports package-level policies in Go and Python,
but requires developers to annotate code explicitly and integrate
language-level constructs. While all three systems support native
code and intra-process isolation, they lack automated policy gener-
ation, and require developer effort or manual integration into host
applications.

Most systems either assume dependencies are benign, require de-
veloper effort to specify policies, or lack visibility into system-level
behavior. None provide runtime enforcement against malicious
capabilities introduced via supply chain compromise. In constrast,
GoLeash dynamically enforces syscall-level capabilities at the pack-
age level, without requiring source changes or developer-defined
manifests. Its threat model explicitly includes malicious dependen-
cies and it operates independently of language-specific security
models. This makes GoLeash uniquely applicable to Go binaries,
which underpins mission critical software [20], such as Kubernetes.

6.3 Malicious Pattern Scanning
A significant body of research focuses onmitigating software supply
chain attacks , via static code analysis. These studies encompass
malicious package updates, installation-time attacks, and privilege
escalations.

Latch [75] traces system calls during installation to generate per-
mission manifests, preventing preventing packages from perform-
ing unexpected actions in install scripts. Ohm et al. [51] propose a
differential capability analysis approach that compares new package
versions against trusted baselines and restricts capabilities through
a modified Node.js runtime. iHunter [44] performs static taint anal-
ysis on iOS SDKs to detect privacy violations such as cross-library
data harvesting, using symbolic execution and NLP-assisted API
modeling. While these approaches offer effective pre-deployment
vetting, they operate entirely offline and during installation, and
do not detect runtime behavior after deployment.

Other tools such as GuardDog andAmalfi [18, 62] scan for known
malware patterns, suspicious, suspicious metadata, or typosquat-
ting during package publication. These techniques help eliminate
obviously malicious packages but are blind to capabilities that are
invoked dynamically at runtime.

These methods are inherently limited to static or pre-deployment
analysis and cannot respond to runtimemalicious behavior. GoLeash
instead operates at runtime and captures malicious behavior even
if introduced post-installation or obfuscated via native code. Its
runtime enforcement makes it resilient to evasion techniques that
bypass static analysis.

7 Discussion
We here discuss key design choices and considerations that shape
the applicability of GoLeash.

Workload Coverage. GoLeash uses dynamic analysis to gener-
ate fine-grained, per-package policies based on observed behavior.
Its coverage is thus limited by the code exercised during analysis.
If (1) rarely executed paths are missed, and (2) those paths use addi-
tional capabilities, GoLeash may flag them as violations at runtime
(i.e., false positives). This is a known limitation of dynamic analysis
[60], not unique to our system. In practice, since we propose using
integration tests as workload for policy generation, this problem
is mitigated in production-grade software with robust test suites,
as is common in critical cloud systems. Moreover, GoLeash sup-
ports the incremental update of security policies, which enables
users to conservatively limit capabilities as observed during testing,
and later enable capabilities that trigger false positives after more
careful scrutiny.
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Table 7: Comparison of Capability Enforcement Approaches Against GoLeash’s Design Requirements

Approach No Code Fine-Grained Auto Multi-Process Detect
Changes Control Policy Gen Support Obfuscated Behavior

MIR [71] ✗ ✓ ✓ ✗ ✗

instrumentation at load-time per-lib + field-level APIs static + dynamic analysis single-process JS JS APIs only

NatiSand [2] ✓ ✗ ✓ ✓ ✗

external JSON policy only coarse FS/IPC/NET trace-based (eBPF/strace) native libs + subprocesses not syscall-level

Cage4Deno [1] ✓ ✗ ✓ ✗ ✗

CLI policy, no code mods file-level RWX only dynamic tracing tool Deno subprocesses only JS runtime only

HODOR [72] ✓ ✗ ✓ ✗ ✓
seccomp, no app mods per-thread, not dep call graph + tracing threads only syscall-level filters

ZTDJAVA [3] ✗ ✓ ✓ ✗ ✓
Java agent + bytecode mod per-dep + resource-level runtime tracing no proc tracking native/resource-level

𝜇PolicyCraft [6] ✓ ✗ ✓ ✓ ✗

no code mods, trace-based monitor microservice/container level symbolic exec + telemetry full service orchestration not syscall-level

Confine [60] ✓ ✗ ✓ ✓ ✓
no code mods, binary-level container-level only static binary analysis full container, incl. procs syscall-level

GoLeash (ours) ✓ ✓ ✓ ✓ ✓
eBPF, no code/build mods per-package + syscall-level call graph + trace multi-proc + threads syscall-level enforcement

Capability Reuse. GoLeash enforces policies by detecting when
packages invoke unauthorized capabilities. However, if malware
is injected into a permissive module and reuses already-allowed
capabilities, it may evade detection under our current model. Still,
GoLeash significantly limits such opportunities, as most packages
use a narrow set of capabilities, as shown in our experiments. De-
tecting residual attacks would require deeper inspection of syscall
arguments and side effects (e.g., destination IPs, file paths), as ex-
plored in prior work [54, 60, 77]. Such analysis is orthogonal to our
focus on per-package capability boundaries, and can be integrated
into GoLeash.

Vulnerabilities in third-party software. This work focuses on
detecting malicious code introduced via upstream dependencies, a
major software supply chain risk. Benign packagesmay also contain
vulnerabilities, exposing dependent applications to attacks. This is
another area of interest, covered by tools such as Trivy and Snyk
[4, 66], but outside our scope. GoLeash indirectly mitigates certain
vulnerabilities, particularly those enabling remote code execution
(RCE), such as command injection and deserialization flaws such
as Log4Shell [48] and the recent Ingress-nginx RCE [49]. In such
cases, the exploited package would invoke a capability outside its
policy, which GoLeash would flag as a violation.

Portability Across Languages and Systems. GoLeash is designed
for the Go language on Linux, leveraging eBPF tracing and Go-
specific features (e.g., package management, symbol tables). How-
ever, its core design principles (e.g., stack-based syscall attribution,
per-component capability policies), are conceptual and portable to
other languages and systems. For instance, similar techniques could
apply to Java and Rust, which also support package management
and expose symbols and package information in runtime stack
traces. Additionally, other operating systems, such as FreeBSD and
Windows, also offer production-grade tracing frameworks, such as
DTrace [45].

Stripped Binaries. GoLeash relies on Go symbol tables to map
system calls to their originating packages via stack traces. This
works reliably because Go binaries are typically not stripped in
production environments [34]. In the rare case of stripped binaries,
such as in performance-critical deployments, GoLeash can inte-
grate with tools like redress [37] to heuristically recover function
boundaries and naming information. While this may reduce attri-
bution precision, enforcement remains effective through hashed
stack traces and recovered labels. Therefore, stripped binaries are
a deployment consideration, but not a fundamental obstacle for
using GoLeash.

8 Conclusion
GoLeash is a novel solution for mitigating software supply chain
attacks in Go. By enforcing runtime least-privilege boundaries
at the level of individual Go packages, GoLeash can detect ma-
liciously added capabilities introduced via compromised dependen-
cies. These fine-grained enforcement mechanisms enable GoLeash
to identify stealthy behaviors that process-level dynamic techniques
or static analysis miss. Our evaluation shows that GoLeash achieves
high detection accuracy, remains effective under obfuscation, and
incurs acceptable overhead. As supply chain attacks continue to
escalate in sophistication, GoLeash provides a foundation for hard-
ening the runtime security of modern software.
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A Example Security Policy for frp
In the following we provide an excerpt from a real security policy
generated by GoLeash for the frp application. The policy illustrates
the granularity and structure of the analyzed capabilities across
a selected subset of dependencies. We omit call paths hashes for
brevity.

Listing 1: GoLeash Security Policy
1 {

2 "github.com/fatedier/frp/client": {

3 "type": "dep",

4 "path": "github.com/fatedier/frp/client",

5 "syscalls": [1, 35, 202, 281, 318],

6 "capabilities": [

7 "CAP_MEMORY_MANIPULATION",

8 "CAP_MODIFY_SYSTEM_STATE",

9 "CAP_READ_SYSTEM_STATE",

10 "CAP_WRITE_FILE"

11 ],

12 "executed_binaries": [],

13 "call_paths": {

14 ...

15 }

16 },

17 "github.com/fatedier/golib/log": {

18 "type": "dep",

19 "path": "github.com/fatedier/golib/log",

20 "syscalls": [1, 3, 9, 15, 39, 202, 234, 281],

21 "capabilities": [

22 "CAP_FILE",

23 "CAP_MEMORY_MANIPULATION",

24 "CAP_MODIFY_SYSTEM_STATE",

25 "CAP_READ_FILE",

26 "CAP_READ_SYSTEM_STATE",

27 "CAP_TERMINATE_PROCESS",

28 "CAP_WRITE_FILE"

29 ],

30 "executed_binaries": [],

31 "call_paths": {

32 ...

33 }

34 },

35 "github.com/spf13/cobra": {

36 "type": "dep",

37 "path": "github.com/spf13/cobra",

38 "syscalls": [1],

39 "capabilities": ["CAP_WRITE_FILE"],

40 "executed_binaries": [],

41 "call_paths": {

42 ...

43 }

44 },

45 "github.com/xtaci/kcp -go/v5": {

46 "type": "dep",

47 "path": "github.com/xtaci/kcp -go/v5",

48 "syscalls": [0, 1, 9, 15, 24, 35, 41, 49, 51,

54, 202, 281, 299, 307, 318],

49 "capabilities": [

50 "CAP_CONNECT_REMOTE",

51 "CAP_LISTEN_LOCAL",

52 "CAP_MEMORY_MANIPULATION",

53 "CAP_MODIFY_SYSTEM_STATE",

54 "CAP_READ_FILE",

55 "CAP_READ_SYSTEM_STATE",

56 "CAP_RECEIVE_DATA",

57 "CAP_SEND_DATA",

58 "CAP_WRITE_FILE"

59 ],

60 "executed_binaries": [],

61 "syscalls_paths": {

62 ...

63 }
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