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We propose the first unified adversarial attack benchmark for Genomic Foundation Models (GFMs),
named GenoArmory. Unlike existing GFM benchmarks, GenoArmory offers the first comprehen-
sive evaluation framework to systematically assess the vulnerability of GFMs to adversarial attacks.
Methodologically, we evaluate the adversarial robustness of five state-of-the-art GFMs using four
widely adopted attack algorithms and three defense strategies. Importantly, our benchmark provides
an accessible and comprehensive framework to analyze GFM vulnerabilities with respect to model
architecture, quantization schemes, and training datasets. Additionally, we introduce GenoAdv, a
new adversarial sample dataset designed to improve GFM safety. Empirically, classification models
exhibit greater robustness to adversarial perturbations compared to generative models, highlighting
the impact of task type on model vulnerability. Moreover, adversarial attacks frequently target bio-
logically significant genomic regions, suggesting that these models effectively capture meaningful
sequence features.
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1 Introduction
The advent of Genomic Foundation Models (GFMs) has revolutionized the analysis and gen-

eration of DNA and RNA sequences [Zhou et al., 2025b,a, 2024, Ye et al., 2024, Nguyen et al.,
2024a, Dalla-Torre et al., 2024, Nguyen et al., 2024b, Ji et al., 2021]. These models, pre-trained
on extensive genomic datasets, have demonstrated exceptional performance across a variety of
genomics tasks, leading to widespread adoption in both research and industry. For instance, GFMs
have shown proficiency in generating high-quality DNA and RNA sequences [Zhou et al., 2025b,
Nguyen et al., 2024a] and in species classification tasks [Zhou et al., 2024, Dalla-Torre et al., 2024,
Ji et al., 2021]. In the realm of medical diagnostics, GFMs contribute significantly by predicting
gene pathogenicity [Sayeed et al., 2024] and assessing genome-wide variant effects [Benegas et al.,
2023]. Their capabilities extend to functional genomics, aiding in promoter detection [Fishman
et al., 2025] and transcription factor prediction [Fu et al., 2025, Kabir et al., 2024], which are crucial
for understanding gene regulation mechanisms. GFMs also are instrumental in RNA secondary
structure prediction [Yang and Li, 2024], a critical aspect of understanding RNA function and
interactions.

Despite the remarkable advancements, GFMs face significant challenges, particularly con-
cerning their robustness and security. GFMs, which process structured, high-dimensional, and
low-redundancy inputs like DNA sequences, are especially susceptible to adversarial attacks—even
minor perturbations, such as single-nucleotide variations, can lead to substantial biological con-
sequences. For instance, recent studies [Montserrat and Ioannidis, 2023] have demonstrated that
DNA language models, including DNABERT-2 and the Nucleotide Transformer, are vulnerable to
various adversarial strategies including nucleotide-level substitutions, codon-level modifications,
and backtranslation-based transformations. Such attacks can significantly degrade model perfor-
mance in tasks like antimicrobial resistance gene classification and promoter detection. Moreover,
the generative capabilities of GFMs can be exploited by the attacker—it could manipulate models
like GenomeOcean [Zhou et al., 2025b] to produce biologically nonsensical sequences, potentially
leading to harmful application, even including the design of bioweapons [Peppin et al., 2024].

Attack Defense

V.S.

Defense Methods
 Gradient Accumulation: FreeLB
 Feature-based: Adversarial
Training, ADFAR

Attack Methods
 Gradient-based: PGD
 Non-Gradient-based: TextFooler,
BertAttack, FIMBA

Attack Ability
 Hyena-based: HyenaDNA
 Transformer-based: DNABERT-2,
NT, NT2, GenomeOcean

Model Size
 <100M: HyenaDNA
 100M-200M: DNABERT-2,
GenomeOcean
 500M: NT, NT2

Attack Intention
Misinformation, Inaccuracy 

980 Experiments
2,500 Gpu Hours 
with H100-80G 

4 Attack Methods
3 Defense Methods

Evaluation Dataset
Core Promoter Detection datasets,  
Transcription Factor Prediction datasets,
Epigenetic Marks Prediction datasets, ...

Attack budget
 Length of Adv. sequence: 30, 70,
100, 400, 500, 1000

Model Quantization Style
 Normal: FP16
 Quantized: W8A8, OutEffHop

20 Attack Baseline
15 Defense Baseline

28 Hyena-based models
112 Transformer-based models

Figure 1: An overview of benchmarking adversarial attacks on GFMs

Given the significant safety concerns surrounding GFMs, there is a pressing need for robust
defense mechanisms to ensure their reliability and security. However, the absence of benchmarks
specifically designed to evaluate GFM safety has hindered the development of effective defense
methods. Existing efforts [Zhou et al., 2024, Liu et al., 2025] primarily assess performance, without
addressing safety aspects. This highlights the urgency of developing a new benchmark specifically
designed to evaluate the safety of GFMs. To address this need, we introduce the GenoArmory
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benchmark, as shown in Figure 1, designed to standardize best practices in the emerging field of
adversarial attack and defense for DNA-based GFMs. GenoArmory is guided by core principles
of transparency, reproducibility, and fairness in evaluating GFM robustness under both attack and
defense scenarios. In this paper, we detail these guiding principles, describe the benchmark’s
components, report results across multiple attack and defense strategies on various GFMs, and share
insights to inform robustness improvements.

Contributions: We propose the GenoArmory framework (Figure 2) to a comprehensively assess
the robustness of GFMs against adversarial attacks. Our contributions include:

• Pipeline for red-teaming GFMs. We present a comprehensive evaluation pipeline to assess
the robustness of DNA-based GFMs against adversarial attacks. Specifically, our pipeline
implements both gradient-based and gradient-free attack strategies across five different GFMs
with standardized evaluation metrics.

• Pipeline for testing and adding new defenses. We implement three defense mechanisms and
evaluate their effectiveness against adversarial attacks. Additionally, we provide plug-and-play
code to enable standardized evaluation of newly developed defense methods.

• Repository of GFM adversarial attack artifacts. We provide a repository of adversarial attack
artifacts on GFMs, including adversarial examples and attack code, to facilitate reproducibility
and further research in this area.

• New adversarial sample dataset for GFMs. We introduce a new dataset GenoAdv, composed
of adversarial examples specifically generated to improve the robustness of GFMs. When used
in training, GenoAdv yield a 34.71% Defense Success Rate, compared to training using only
TextFooler samples.

• Meaningful insights. We provide a comprehensive analysis of GFM robustness under adver-
sarial attacks, revealing the strengths and limitations of various models and defense strategies.
Additionally, we offer an in-depth discussion on how training methods and quantization settings
impact the robustness of GFMs.

2 Background
Definition. Given a genomic sequence X = [x1, x2, . . . , xn], where each nucleotide xi ∈

{A, T, C,G}, a DNA model f(·), and a corresponding label y, our goal is to find an adversarial
sequence X ′ that satisfies:

f(X ′) ̸= y subject to d(X,X ′) ≤ ϵ,

where d(·, ·) is a distance metric measuring the perturbation between the original and adversarial
sequences, and ϵ controls the perturbation budget.

Genomic Foundation Models. Recent advances in genomic foundation models (GFMs) [Liu
et al., 2025] establish two principal methodological paradigms: classification models and generative
models. Within the classification paradigm, transformer-based approaches exhibit progressive
technical refinements. Initial models, including DNABERT [Ji et al., 2021] and Nucleotide Trans-
former [Dalla-Torre et al., 2024], establish baseline performance through fixed k-mer tokenization
strategies. DNABERT-2 [Zhou et al., 2024] addresses these constraints by integrating byte-pair
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encoding (BPE) for tokenization and Attention with Linear Biases (ALiBi) for modeling longer
sequences, which significantly enhances motif discovery capabilities. Building on this, DNABERT-
S [Zhou et al., 2025a] focuses on species differences in the embedding space. GERM [Luo et al.,
2025] emerges as the first GFM specifically optimized for resource-constrained environments.
By integrating an outlier-free architecture, GERM achieves both reliable quantization and fast
adaptation. For long-range genomic dependency modeling, HyenaDNA [Nguyen et al., 2024b]
replaces conventional attention mechanisms with Hyena operators, enabling efficient processing
of ultra-long genomic sequences. Among generative models, GenomeOcean [Zhou et al., 2025b]
represents a pioneer, trains on 220TB of genomic data, and demonstrates strong DNA sequence
generation capabilities across diverse species domains. Meanwhile, Evo [Nguyen et al., 2024a]
introduces a hybrid architecture that combines Hyena operators with sparse attention mechanisms
capable of performing whole-genome modeling at single nucleotide resolution.

Attack Methods. As shown in Figure 5, adversarial attacks are broadly categorized into
untargeted, targeted, and universal variants. Untargeted attacks [Liu et al., 2019b, Madry et al.,
2018a] aim to maximize model loss by perturbing inputs toward the gradient, while targeted attacks
[Carlini and Wagner, 2017, Zhang et al., 2024] steer predictions toward specific classes by gradient.
Universal attacks [Poursaeed et al., 2018, Skovorodnikov and Alkhzaimi, 2024] generate input-
agnostic perturbations that mislead models across entire data distributions. Numerous adversarial
attack methods have been proposed in both NLP and CV, demonstrating their effectiveness in
impacting model performance. Only one work, FIMBA [Skovorodnikov and Alkhzaimi, 2024],
propose adversarial attacks in the genomic domain. FIMBA introduces a black-box, model-agnostic
framework that perturbs key features identified via SHAP values to disrupt genomic models.

Defense Methods. As shown in Figure 5, defense strategies are broadly categorized into
adversarial training, defensive distillation, adversarial sample detection, and regularization with
certified robustness. Adversarial training [Zhu et al., 2020, Madry et al., 2018a] enhances model
robustness by iteratively injecting adversarial examples during training, Another approach defensive
distillation [Papernot et al., 2016] trains student models on softened probability distributions
from teacher models to smooth decision boundaries. In contrast, adversarial sample [Jin et al.,
2024, Zheng et al., 2023b, Qi et al., 2021] detection identifies malicious inputs at inference time.
Regularization with certified robustness [Li et al., 2023, Liu et al., 2022, Ye et al., 2020, Jia et al.,
2019] reduces vulnerability through loss shaping.

3 Main Features for GenoArmory
Given the current landscape of GFMs, there exists no benchmark dedicated to evaluating

their reliability. Considering the significant safety concerns, we propose the first benchmark,
GenoArmory, targeting adversarial attacks—one of the most critical threats to GFM security.
GenoArmory supports state-of-the-art attacks and defenses on GFMs, as well as providing direct
access to the corresponding adversarial attack artifacts. In particular, we prioritize the following
aspects in our benchmark: Our benchmark will be continuously updated to incorporate emerging
attacks and defenses from the literature. Additionally, we aim to evolve the benchmark alongside
the community to support newly developed methods.

3.1 GenoAdv: A dataset of adversarial examples on GFMs
An important contribution of this work is the creation of an adversarial example dataset for

GFMs, named GenoAdv. This dataset comprises adversarial examples generated using multiple
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Figure 2: GenoArmory Framework. Our GenoArmory framework incorporates diverse adversarial
attack and defense methods on GFMs. It also offers visualization tools to highlight important regions
influencing model predictions and introduces a new adversarial dataset, GenoAdv.

attack methods—BertAttack [Li et al., 2020a], TextFooler [Jin et al., 2020], and FIMBA [Skovorod-
nikov and Alkhzaimi, 2024]—on various GFMs. While prior studies [Li et al., 2020c, Zheng et al.,
2020, Liu et al., 2019a] leverage transferable adversarial examples for training, the effectiveness
of such transferability remains questionable. To address this, we generate adversarial examples
using diverse techniques to better capture model-specific vulnerabilities. The GenoAdv dataset
offers a comprehensive and diverse set of adversarial examples across different tasks and methods,
providing users with a practical resource for rapid adversarial training to enhance model robustness.

3.2 A repository of adversarial attacks artifacts
A central component of the GenoArmory benchmark is our accessible repository of adversarial

attack artifacts. Given the limited availability of GFM-specific adversarial attack method—FIMBA
[Skovorodnikov and Alkhzaimi, 2024] being the only one to date—we adapt existing attack tech-
niques from language and computer vision domains to GFMs. As a result, the GenoArmory artifact
repository includes adversarial examples generated by BertAttack [Li et al., 2020a], TextFooler [Jin
et al., 2020], PGD [Madry et al., 2018b], and FIMBA [Skovorodnikov and Alkhzaimi, 2024].

from GenoArmory import GenoArmory
gen = GenoArmory(model="magicslabnu/DNABERT-2-finetuned-H3",

tokenizer="magicslabnu/DNABERT-2-finetuned-H3")
gen.get_attack_metadata(method=TextFooler,model_name=dnabert)

3.3 A pipeline for red-teaming GFMs
Adversarial attacks on GFMs are challenging due to variations in tokenization, architecture,

configuration, and datasets, leading to inconsistent results. To address this, we propose a stan-
dardized red-teaming pipeline that includes pre-trained GFMs, datasets, hyperparameters, and
adversarial examples. The pipeline integrates five state-of-the-art models—DNABERT-2 [Zhou
et al., 2024], Nucleotide Transformer (NT, NT2) [Dalla-Torre et al., 2024], GenomeOcean [Zhou
et al., 2025b], and HyenaDNA [Nguyen et al., 2024b]—along with 26 DNA-based classification
datasets. It provides direct access to attack artifacts Section 3.2 for standardized evaluation of
adversarial robustness and supports user-defined attack methods, offering a flexible and extensible
framework for evaluating model robustness.
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import json
with open(params_file, "r") as f:

kwargs = json.load(f)
gen.attack(attack_method='pgd', **kwargs)

3.4 A pipeline for evaluating defenses against adversarial attacks
In addition to efforts in developing new attack methods, researchers propose various defense

strategies to counter adversarial threats. Our benchmark provides a standardized pipeline for
evaluating the effectiveness of these defenses against adversarial attacks. Since no defense methods
have been specifically designed for GFMs, we adapt existing state-of-the-arts from natural language
and computer vision domains, i.e., adversarial training [Zheng et al., 2020], ADFAR [Bao et al.,
2021], and FreeLB [Zhu et al., 2020], as defense baselines for GFMs. In our evaluation, we adopt
existing attack methods as the base and assess the robustness of the defenses against adversarial
examples generated by these attacks.

gen.defense(defense_method='freelb', **kwargs)

3.5 Reproducible evaluation framework
In addition to providing access to the attack artifacts and defense strategies, we present a stan-

dardized evaluation framework, enabling users to benchmark robustness methods. The framework
includes all essential components—data loading, model training and evaluation, and accuracy-based
metrics. A detailed discussion on reproducibility is provided in Appendix E.

3.6 A lightweight and easy-to-use implementation
All implementations in our framework and pipelines are built on PyTorch and Huggingface

Transformers [Wolf et al., 2020]. For defense evaluation, we employ the Hugging Face Trainer
API to fine-tune the models. All resulting classification checkpoints are publicly available on the
Hugging Face Model Hub and can be easily downloaded and applied by researchers for further
studies.

3.7 A lightweight visulization framework
In our framework, we also introduce a visualization tool that enables users to explore how

adversarial perturbations affect model predictions on input DNA sequences. Unlike language and
computer vision domains—where explanations often rely on heuristic attribution or prediction
maps—our approach leverages genomic knowledge to validate sequence-level changes with biologi-
cal expectations. Although there is a growing body of literature on explainable AI in the context of
adversarial attacks [Moshe et al., 2024, Devabhakthini et al., 2023, Gipiškis et al., 2023, Ozbulak
et al., 2021], these works predominantly rely on saliency-based methods. In contrast, GFMs offer
a promising path forward by grounding explanations in real-world biological data and leveraging
bioinformatics for more interpretable and trustworthy insights.

4 Evaluations of the Current Attacks and Defenses
In this section, we conduct a series of experiments to assess the impact of adversarial attacks

and defenses on the safety of GFMs. We use DNABERT-2 [Zhou et al., 2024], HyenaDNA [Nguyen
et al., 2024b], Nucleotide Transformer (NT) [Dalla-Torre et al., 2024], NT2, and GenomeOcean
[Zhou et al., 2025b] as the target models.

Models. Following Zhou et al. [2024], we use DNABERT-2, NT, NT2, GenomeOcean, and
HyenaDNA as target models. The first four are transformer-based models trained specifically on
DNA sequences, whereas HyenaDNA utilizes a Hyena-based architecture for processing DNA
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sequences. We finetune all models using the sequence classification technique, following Zhou
et al. [2024], and utilize the finetuned models as the targets to evaluate the adversarial attacks—we
generate adversarial examples that are misclassified by the target models while indistinguishable
from the original examples.

Hyena-based
DNABERT-2 NT2 NT1 OG HyenaDNA

H3 3 4 2 5 1
H3K4me1 4 2 3 5 1
H3K4me2 2 1 3 4 5
H3K4me3 4 2 3 5 1
H3K14ac 5 2 4 3 1

H3K36me3 3 1 2 4 5
H3K9ac 4 5 2 3 1

H3K79me3 3 2 4 5 1
H4 3 2 5 4 1

H4ac 5 3 2 4 1
prom_300_all 2 4 3 5 1

prom_300_notata 1 2 4 3 5
prom_300_tata 4 2 3 1 5
prom_core_all 4 1 3 5 2

prom_core_notata 2 4 5 3 1
prom_core_tata 2 1 4 3 5

tf0 2 4 3 1 5
tf1 2 4 3 1 5
tf2 4 2 1 3 5
tf3 1 3 2 4 5
tf4 2 4 3 1 5

mouse_0 4 5 3 2 1
mouse_1 1 4 5 3 2
mouse_2 4 2 5 3 1
mouse_3 2 3 1 4 5
mouse_4 3 2 1 4 5
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Figure 3: Performance of Adversarial Attacks on Different Model Architectures. We assess the
effectiveness of the evaluated adversarial attacks across diverse model architectures, including both
transformer-based models (DNABERT-2, NT, NT2, GenomeOcean) and Hyena-based model (Hye-
naDNA). We use the Attack Success Rate (ASR) as the primary metric to evaluate the performance
of the evaluated adversarial attacks. For each experiment, we rank the top five models based on
their ASR, with ranks assigned from 1 to 5. A lower rank indicates better robustness, while a higher
rank reflects greater vulnerability to attacks. Our results highlight how each model performs under
attack, revealing differences in vulnerability and resilience across the architectures.

Datasets. We utilize 26 datasets covering 5 tasks and 4 species, as detailed in Zhou et al. [2024].
These datasets are specifically curated for genome sequence classification tasks, featuring input
sequence lengths that range from 70 to 1000.

Evaluation metrics. We evaluate the effectiveness of adversarial attacks using the Attack
Success Rate (ASR) and assess defense strategies using the Defense Success Rate (DSR). ASR is
the relative drop in accuracy caused by the attack, while DSR is the relative recovery in accuracy
after applying the defense. Accuracy is used as the core metric to quantify the impact of both attacks
and defenses.
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Table 1: Adversarial Attack Performance of the Evaluated Method. We conduct experiments
to assess the effectiveness of the evaluated attack method against adversarial attacks. The table
presents a comparison of target model performance before and after applying the evaluated attack.
We report Attack Success Rate (ASR) as the primary evaluation metric, with variance omitted as
they are all ≤ 2%. The best results highlighted in bold. The final columns present the average
Attack Success Rate (ASR) across all GFM models for each specific attack. The last row similarly
shows the average ASR across all attacks for each specific GFM. Additionally, for each attack,
individual ASR scores are ranked from highest to lowest, with the rank displayed in brackets next
to the score.

Transformer-based Hyena-based

Attack DNABERT-2 NT NT2 GenomeOcean HyenaDNA Avg

BertAttack 96.23%(5) 99.87%(1) 99.56%(4) 99.57%(3) 99.75%(2) 99.00%
TextFooler 92.37%(4) 96.69%(2) 96.56%(3) 99.54%(1) 88.45%(5) 94.72%
PGD 38.28%(2) 38.23%(3) 34.41%(5) 36.57%(4) 47.94%(1) 39.09%
FIMBA 39.94%(2) 37.66%(3) 36.50%(4) 41.06%(1) 30.35%(5) 37.10%
Attack ASR 66.71% (3.25) 68.11% (2.25) 66.76% (4) 69.19% (2.25) 66.62% (3.25)

4.1 Evaluating adversarial attacks on GFMs
We utilize the same datasets and models as described in Section 3.2 to ensure consistency in our

evaluation. We conduct each evaluation three times with different random seeds and present the
average and standard deviation for each metric.

Baseline attack artifacts. We test four baseline attack methods—BertAttack [Li et al., 2020a],
TextFooler [Jin et al., 2020], PGD [Madry et al., 2018b], and FIMBA [Skovorodnikov and Alkhzaimi,
2024]—to assess their effectiveness in generating adversarial examples. Experiments are conducted
on 5 GFMs, covering both transformer-based and Hyena-based architectures, with implementation
details provided in Appendix I.2. Attack performance is primarily measured using ASR, and
methods are ranked based on their average ASR across all datasets.

Results. In Figure 3 and Table 1, our results highlight the effectiveness of the evaluated
attacks in generating adversarial examples that are misclassified by target models. We have below
observations.

• GenomeOcean exhibits greater susceptibility to adversarial attacks than classification models
(DNABERT-2, NT2), as evidenced by higher ASR and ranks across all GFMs. This observation
aligns with the findings in Ebrahimi et al. [2018], Wang et al. [2023].

• NT2 demonstrates the highest robustness, indicated by its lowest average rank, potentially due to
its use of BPE tokenization. GFMs employing BPE tokenization (DNABERT-2, NT2) appear
to be more robust than those using k-mer tokenization (NT). BPE’s subword structure allows
for partial token retention despite alterations, hindering significant semantic or biological shifts.
Interestingly, while NT2’s average ASR is higher than HyenaDNA’s (the lowest overall), its ASR
rank is lower. In contrast, NT shares the highest ASR rank with GenomeOcean but has a lower
ASR. The discrepancy stems from NT consistently achieving high ASR across all attacks, while
GenomeOcean performs best on TextFooler and FIMBA but poorly on BertAttack and PGD.

• BertAttack yields the highest average ASR across GFMs, while FIMBA, the only genome-specific
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attack, shows the lowest, indicating limited effectiveness. This ineffectiveness may be due to
constraints in the released FIMBA code 1 and evaluation setup in Skovorodnikov and Alkhzaimi
[2024]. However, traditional NLP-based adversarial attacks such as BertAttack and TextFooler
already achieve a high ASR in these models. This underscores the importance of developing
defense mechanisms tailored for GFM tasks to ensure their safety.

4.2 Evaluating adversarial defenses
Each experiment is repeated three times with different random seeds on the same datasets and

models, and we report the mean and standard deviation of each evaluation metric.
Baseline defenses. We assess the robustness of five GFM models against adversarial attacks

using three defense baselines: adversarial training [Zheng et al., 2020] (employing TextFooler for
data augmentation), FreeLB [Zhu et al., 2020], and ADFAR [Bao et al., 2021]. Defenses were
evaluated against BertAttack, TextFooler, and PGD attacks, with the DSR as the primary robustness
metric.

Results. As shown in Table 2, we have below observations:

• ADFAR achieves the highest overall DSR, significantly outperforming other defenses against
BertAttack and TextFooler. However, ADFAR performs poorly against the PGD attack.

• FreeLB obtains better DSR against PGD, possibly due to it smooths the adversarial loss during
training, which somewhat improves robustness.

• AT is less effective than ADFAR and FreeLB against BertAttack and TextFooler, although AT
performs comparably to FreeLB against PGD attacks.

• While the model architecture does not significantly affect overall defense performance, specific
models show distinct advantages, e.g., DNABERT-2 and NT2 show a greater defense improvement
against BertAttack, while HyenaDNA demonstrates a better defense against TextFooler and PGD.

4.3 Visualization of adversarial attacks
In this experiment, we visualize adversarial attacks on target models with our framework. We

utilize BertAttack to generate adversarial examples and visualize the results using the DNABERT-2
model. The visualization highlights the subsequences that are most significant for the model’s
classification performance, specifically focusing on the frequency with which the adversarial attack
modifies the sequence. We present the frequency of subsequence changes at the subword tokenizer
level using Byte Pair Encoding (BPE). As shown in Figure 4, the visualization is generated by
analyzing the frequency of subsequence changes across all datasets and models, providing insight
into the most critical subsequences for the model’s classification performance.

4.4 Performance of model augmented with GenoAdv dataset
In order to show the effectiveness of the GenoAdv dataset, we conduct experiments to evaluate

the performance of the model augmented with the GenoAdv dataset. We use BertAttack, TextFooler,
and PGD to evaluate the DSR on 5 GFMs. In our experiment, we perform traditional adversarial
training with TextFooler-augmented data as a baseline, and compare it to the same training approach
using the GenoAdv dataset. We conduct each evaluation three times with different random seeds
and present the average and standard deviation for each metric.

1https://github.com/HeorhiiS/fimba-attack
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Table 2: Defense Performance Under Adversarial Attacks. We conducted experiments to
evaluate the performance of a defense method against adversarial attacks. The table compares
the performance of target models, both with and without the evaluated defense, under BertAttack,
TextFooler, and PGD attacks. The Defense Success Rate (DSR) is used as the primary evaluation
metric, with variance omitted as they are all ≤ 2%. The best DSR values are highlighted in bold. In
the table, AT denotes traditional adversarial training. We observe that ADFAR is the most effective
defense based on DSR, particularly against BertAttack and TextFooler.

Transformer-based Hyena-based

Attack Method Defense DNABERT-2 NT NT2 GenomeOcean HyenaDNA

BertAttack

N/A 3.77% 0.13% 0.44% 0.43% 0.25%
AT 4.06% 0.21% 0.46% 0.60% 0.81%

FreeLB 4.34% 0.67% 0.71% 2.94% 1.12%
ADFAR 21.84% 4.95% 6.96% 1.18% 1.50%

PGD

N/A 61.73% 61.77% 65.59% 63.43% 52.06%
AT 64.92% 79.10% 82.02% 66.14% 85.67%

FreeLB 64.07% 79.38% 88.53% 65.96% 86.99%
ADFAR 63.48% 63.44% 72.89% 65.87% 83.74%

TextFooler

N/A 7.63% 3.31% 3.44% 0.46% 11.55%
AT 20.97% 42.88% 18.95% 18.51% 84.19%

FreeLB 18.39% 42.94% 18.16% 17.33% 69.56%
ADFAR 32.88% 67.07% 22.00% 46.18% 80.82%

Figure 4: Examples of the visualization of GFMs with adversarial attacks. We present the
results of the three tasks of the DNABERT-2 model under BertAttack. All subsequence changes
occur at the subword tokenizer level using Byte Pair Encoding (BPE) [Sennrich et al., 2016]. The
visualization highlights which parts of the sequence are most significant for the model’s classification
performance. Specifically, we present the frequency with which the adversarial attack modifies the
sequence. A higher frequency indicates that the subsequence is more critical for the model’s ability
to perform classification tasks.

Results: As shown in Table 3, adversarial training with GenoAdv data yields stronger robustness
against adversarial attacks compared to training with only TextFooler-augmented samples in most
cases. This suggests that the GenoAdv dataset offers valuable augmentation data to mitigate the
vulnerability of GFMs. Specifically, using GenoAdv data to do data augmentation leads to a
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Table 3: Defense Performance Augmented with the GenoAdv Dataset. We conduct experiments
to evaluate the performance of a model augmented with the GenoAdv dataset against adversarial
attacks. The table compares the performance of the target model, both with and without the
GenoAdv dataset augmentation, under BertAttack, TextFooler, and PGD attacks. We report ASR
as the primary evaluation metric, with variance omitted as they are all ≤ 2%. The best results
are highlighted in bold. In the table, AT denotes traditional adversarial training. We observe that
GenoAdv samples are more effective than TextFooler samples under traditional adversarial training
methods.

Transformer-based Hyena-based

Attack Method Defense DNABERT-2 NT NT2 GenomeOcean HyenaDNA

BertAttack
N/A 3.77% 0.13% 0.44% 0.43% 0.25%
AT 4.06% 0.21% 0.46% 0.60% 0.81%

GenoAdv 5.17% 0.69% 0.59% 0.73% 5.23%

PGD
N/A 61.73% 61.77% 65.59% 63.43% 52.06%
AT 64.92% 79.10% 82.02% 66.14% 85.67%

GenoAdv 69.32% 79.31% 75.57% 67.10% 84.52%

TextFooler
N/A 7.63% 3.31% 3.44% 0.46% 11.55%
AT 20.97% 42.88% 18.95% 18.51% 84.19%

GenoAdv 22.19% 44.05% 20.56% 19.45% 81.99%

performance improvement of 34.71% over TextFooler-based adversarial training.

4.5 Quantization influence on adversarial attacks
To evaluate the influence of quantization on evaluated attacks, we conduct experiments on

quantized versions of target models. Inside those quantization methods, some of them are based on
the traditional quantization methods, such as uniform quantization, and some of them are based
on the outluer-removal quantization methods, such as OutEffHop [Hu et al., 2024]. Following the
quantization setup in Luo et al. [2025] and Wu et al. [2025], we evaluate the performance of the
attacks on quantized models with 8-bit weights and 8-bit activations (W8A8), comparing them to
the original models to analyze the impact of quantization on attack detectability.

Results. In Table 4, our results highlight the effectiveness of quantization in improving the
robustness of target models against adversarial attacks. Specifically, we observe that the evaluated
attacks achieve a lower ASR on quantized models compared to the original models, indicating
that quantization strengthens the defenses against these attacks. Additionally, the outlier-free
quantization method also reduces the ASR of the evaluated attacks. This outcome suggests that
quantization can improve model robustness against adversarial attacks. One possible explanation
is that quantization introduces "flat regions" in the loss landscape, which diminishes the model’s
sensitivity to small perturbations. This observation aligns with the findings reported in Lin et al.
[2019].

However, we find that the OutEffHop quantization method results in a higher ASR compared
to traditional quantization methods, indicating that outlier-removal quantization can compromise
the robustness of target models against adversarial attacks. A possible reason for this is that the
OutEffHop method removes outliers in the model’s attention architecture, which improves the
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Table 4: Performance of the evaluated attacks
on quantized models. We perform experiments
to assess how quantization affects the effective-
ness of adversarial attacks on target models. The
table compares model performance before and af-
ter quantization under BertAttack and TextFooler
attacks. Attack Success Rate (ASR) serves as the
primary evaluation metric, with variance omitted
as they are all ≤ 2%. The best results are high-
lighted in bold.

Attack Method Model Quantized Method ASR (↓)

BertAttack

DNABERT-2
- 96.23

Vanilla 59.46
OutEffHop 64.71

NT1
- 99.87

Vanilla 99.37
OutEffHop 99.42

TextFooler

DNABERT-2
- 92.37

Vanilla 19.90
OutEffHop 21.34

NT1
- 98.23

Vanilla 66.57
OutEffHop 68.53

quantization process. However, this improvement also eliminates the "flat regions" in the loss
landscape that are critical to the robustness provided by traditional quantization methods. We
also find that quantization significantly impacts DNABERT-2 models, but has minimal effect on
NT1 models, suggesting model-specific robustness gains. Notably, TextFooler is more affected by
quantization than BERT-Attack, likely due to its dependence on precise word importance scores and
synonym substitutions, which are disrupted by quantization-induced shifts in decision boundaries.

5 Discussion and Conclusion
We introduce GenoArmory, the first unified adversarial attack benchmark for DNA-based

Genomic Foundation Models (GFMs). Our benchmark offers an accessible, reproducible, and com-
prehensive framework, enabling users to confidently evaluate and compare adversarial robustness
in GFMs. Also, to encourage broad participation, we do not restrict the architectures of threat or
target models. Instead, GenoArmory offers a standardised framework for evaluating adversarial
attacks and defenses, with periodic updates to incorporate state-of-the-art methods in the field.
Methodologically, compared to adversarial attack benchmarks in language and computer vision
[Zheng et al., 2023a, Croce et al., 2021, Dong et al., 2020], GenoArmory includes visualization
tools that facilitate deeper insights into the evaluated attacks—leveraging the fact that GFM data is
inherently structured and scientifically meaningful.

Limitations. Although GenoArmory provides a comprehensive evaluation of adversarial attacks
and defenses on DNA-based GFMs, it still has several limitations. For example, GenoArmory
currently excludes RNA-based GFMs and is limited to classification tasks, leaving other task types
and modalities unaddressed.

Developing a comprehensive benchmark is essential, as GFM safety is often underestimated.
Yet, insufficient safeguards hinder their advancement and pose risks to scientific progress.ChatGPT
said: A key challenge in improving GFM safety is the lack of a comprehensive benchmark for
evaluating vulnerabilities. In this paper, we provide the first in-depth analysis of DNA-based attacks
on leading GFMs using such a benchmark. However, this serves only as a foundation—future
work must extend it to include broader attack vectors, such as RNA-based model attacks, to ensure
more robust evaluation. Greater focus is also needed on generative GFMs, such as Evo [Nguyen
et al., 2024a], which remain underrepresented in safety evaluations. Beyond benchmarks, the lack
of automated tools for assessing the safety of generated genomic sequences—unlike in image or
speech domains—poses a critical gap. This highlights the urgent need for robust, domain-specific
evaluation frameworks to ensure safe and ethical deployment of GFMs.
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Automatic sequence data judgment system provides a framework for assessing sequence
differences to evaluate the safety of generated genomic sequences. Prior work on sequence func-
tionality [Sim et al., 2012, Flanagan et al., 2010] and ortholog analysis [Jensen, 2001] demonstrates
that ortholog comparisons can reveal relationships between genomic sequences, informing safety
assessments. Building on this idea, Emms and Kelly [2019] introduce a method to calculate or-
tholog differences within genomic sequences. By using the distance between sequence orthologs,
researchers can quantify differences between generated sequences and known harmful genomic
sequences, providing a method to assess sequence safety. This approach enables the development of
an automated system for sequence evaluation, improving efficiency in safety assessments. Addition-
ally, leveraging large language models (LLMs) like Qwen [Chu et al., 2023], and Llama3 [Dubey
et al., 2024] to generate genomic sequences enhances the model’s diversity and robustness.
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A Open Science
We release the code, pretrained checkpoints, and datasets used in our work. The code is available

at this GitHub repository, and the pretrained checkpoints are hosted on HuggingFace. The GenoAdv
dataset is hosted on Hugging Face Datasets and can be accessed directly through their platform.

B Boarder Impact
This paper seeks to advance the trustworthiness of genomic foundation models (GFMs). While

the work does not have immediate social implications, it represents a step toward creating more
reliable GFMs. However, the adversarial samples released in the GenoAdv dataset and experiments
can provide incorrect classification for existing GFMs.

C Related Work
In this section, we explore the background of vulnerabilities in GFMs. We begin by introducing

benchmarks for evaluating adversarial attacks on GFMs, including standard datasets, metrics, and
evaluation protocols. Next, we review existing adversarial attack methods tailored for GFMs, such
as BERT-Attack [Li et al., 2020a] and PGD [Madry et al., 2018b]. Finally, we discuss defense
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strategies against these attacks, covering approaches like FreeLB [Zhu et al., 2020] and ADFAR
[Bao et al., 2021].

C.1 Benchmarks
The GUE benchmark [Zhou et al., 2024] encompasses a variety of genome classification tasks,

including promoter detection, transcription factor prediction, and COVID variant classification.
These tasks are designed to assess model performance across multiple species, such as humans,
fungi, viruses, and yeast. Building on this, GUE+ extends the benchmark to focus on tasks involving
longer input sequences, ranging from 5000 to 10000 base pairs, to evaluate models’ capabilities in
processing and analyzing complex genomic data. The GUE benchmark assesses model performance
using metrics such as Accuracy, F1-score, and Matthews Correlation Coefficient (MCC) [Chicco
and Jurman, 2020].

Meanwhile, GenBench [Liu et al., 2025] is a comprehensive benchmarking suite tailored for
evaluating the performance of GFMs. It systematically analyzes datasets from diverse biological
domains, with a focus on both short-range and long-range genomic tasks. These tasks encompass
essential areas such as coding regions, non-coding regions, and genome structure. For classifi-
cation tasks, GenBench uses cross-entropy loss to measure prediction divergence and evaluates
performance with top-1 accuracy and AUC-ROC. For regression tasks, it applies Mean Squared
Error (MSE) for accuracy and calculates Spearman and Pearson correlation coefficients to assess
relationships.

These benchmarks [Liu et al., 2025, Grešová et al., 2023] offer a thorough evaluation of GFMs.
However, all these benchmarks overlook the safety aspects of the GFMs. Recently, the safety
of large scientific foundation models has become a prominent focus in research [Li et al., 2024,
Skovorodnikov and Alkhzaimi, 2024]. As a groundbreaking approach to incorporating adversarial
attacks into genomic data analysis, FIMBA [Skovorodnikov and Alkhzaimi, 2024] leverages
publicly available genomic datasets, such as The Cancer Genome Atlas (TCGA) and COVID-19
single-cell RNA sequencing data, to assess the robustness of AI models against adversarial feature
importance attacks. In the TCGA dataset, the classification task aims to determine whether a
sample is malignant, while in the COVID-19 dataset, the objective is to identify whether a patient
is diagnosed with the disease. As part of this evaluation, FIMBA uses Accuracy as the primary
performance metric to measure the classification capability. To assess the quality and stealth of the
adversarial attacks, they employ the Structural Similarity Index Measure (SSIM). SSIM quantifies
the structural similarity between the original and adversarially attacked data, with higher values
indicating attacks that are more undetectable and preserve the data’s original structure.

C.2 Adversarial Attack
Adversarial attacks can be broadly classified into untargeted, targeted, and universal attacks.

Untargeted attacks [Yu et al., 2025, Liu et al., 2019b, Wu et al., 2019, Kurakin et al., 2018, Madry
et al., 2018a, Moosavi-Dezfooli et al., 2016] aim to cause any misprediction by modifying the input
in the direction of the loss gradient, maximizing overall loss. In contrast, targeted attacks [Zhang
et al., 2024, Li et al., 2020b, Di Noia et al., 2020, Chen et al., 2018, Wiyatno and Xu, 2018, Carlini
and Wagner, 2017] guide the model’s output toward a specific attacker-defined class using the loss
gradient directed at the target class. Universal attacks [Skovorodnikov and Alkhzaimi, 2024, Ye
et al., 2023, Zhang et al., 2021, Poursaeed et al., 2018, Mopuri et al., 2018, Khrulkov and Oseledets,
2018] generate perturbations applicable to any input from a given class, causing mispredictions
universally.
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The Fast Gradient Sign Method (FGSM) [Liu et al., 2019b] and Projected Gradient Descent
(PGD) [Madry et al., 2018b] are two prominent techniques for generating adversarial examples in
machine learning, particularly for deep neural networks [Shayegani et al., 2023]. FGSM generates
adversarial samples by applying a single-step perturbation in the direction of the gradient of the loss
function, scaled to a predefined magnitude, making it computationally efficient. However, PGD
improves robustness by iteratively applying small gradient-based perturbations while ensuring that
adversarial examples remain within a specified norm constraint, leading to more effective attacks.

A variety of adversarial attack and defense strategies have recently been proposed, specifically
tailored for natural language processing (NLP) tasks [Goyal et al., 2023]. These techniques can be
categorized into character-level, word-level, and sentence-level adversarial attacks. Character-level
adversarial attacks involve perturbing individual characters in text to mislead machine learning
models while preserving readability. For example, DeepWordBug [Gao et al., 2018] modifies
specific characters based on importance scores to maximize the model’s misclassification while
minimizing changes to the text. Similarly, TextBugger [Li et al., 2019] generates adversarial
examples by replacing, inserting, or removing characters, focusing on semantic preservation and
evading detection by defense mechanisms. Word-level adversarial attacks focus on perturbing entire
words rather than individual characters. These attacks can be broadly classified into three categories:
gradient-based, importance-based, and replacement-based methods. Gradient-based methods, such
as FGSM [Liu et al., 2019b], utilize gradients to identify vulnerable words and modify them to
maximize the model’s loss. Importance-based methods, exemplified by TextFooler [Jin et al., 2020],
rank words based on their contribution to the model’s prediction and replace them with semantically
similar alternatives to alter the output. Replacement-based methods, like BERT-Attack [Li et al.,
2020a], leverage pre-trained language models to generate context-aware substitutions, ensuring
the adversarial examples maintain fluency and semantic coherence. Sentence-level adversarial
attacks involve generating adversarial examples by modifying entire sentences to mislead the model
while maintaining grammaticality and semantic relevance. AdvGen [Cheng et al., 2019] generates
adversarial sentences by leveraging reinforcement learning to iteratively modify sentence structures
and word choices, ensuring the adversarial examples remain coherent and natural while effectively
deceiving the target model.

Adversarial attacks have also been explored in genomic models to assess their robustness and
identify vulnerabilities in sequence-based predictions. FIMBA [Skovorodnikov and Alkhzaimi,
2024] presents a black-box, model-agnostic attack and analysis framework designed for widely
used machine learning models in genomics. FIMBA targets genomic models by perturbing key
features identified through SHAP values, which measure the importance of each feature to the
model’s decision. By selecting the most impactful features and modifying them using interpolation
between the original and target vectors, FIMBA generates minimally altered adversarial examples
that effectively deceive the model. The attack avoids gradient reliance, functioning as a black-box
method, and focuses on modifying as few features as possible to ensure both high efficacy and low
detectability.

C.3 Defense Methods
To improve the robustness of GFMs, various defense strategies [Ke et al., 2025, Luo et al., 2024,

Bao et al., 2021, Zhu et al., 2020, Cohen et al., 2020, Lee et al., 2018, Papernot et al., 2016] are
proposed, including adversarial training, defensive distillation, adversarial sample detection, and
regularization, purification, and certified robustness. Among these, adversarial training [Bao et al.,
2021, Zhu et al., 2020, Zheng et al., 2020, Madry et al., 2018b] is the most effective, enhancing
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model resilience by injecting adversarial examples during training. Among these methods, Madry
et al. [2018a] propose a method to inject bounded perturbations into word embeddings and minimize
worst-case loss, almost halving BERT-Attack and TextFooler success rates without degrading clean
accuracy. FreeLB [Zhu et al., 2020] merges several PGD steps into one forward-backward pass
and accumulates gradients, cutting training cost; FreeLB++ [Li et al., 2021] enlarges the radius
and steps for further robustness gains at no extra accuracy loss. Other lightweight variants such as
SMART[Jiang et al., 2020], TAVAT [Li and Qiu, 2021], and R3F [Aghajanyan et al., 2020] approxi-
mate the inner maximization with uncertainty- or noise-based regularization, reaching performance
close to FreeLB++ at a fraction of the compute. The frequency-aware randomization framework
ADFAR [Bao et al., 2021] incorporates anomaly-detection signals and word-frequency constraints
directly into the training loop, unifying adversarial sample detection ideas with adversarial train-
ing to further weaken substitution-based attacks without extra overhead. Defensive distillation
[Elgamrani et al., 2024, Papernot et al., 2016] trains a student model on softened outputs from a
teacher model to smooth decision boundaries, though its efficacy against strong adversarial attacks
remains debated. However, Carlini and Wagner [2016] demonstrate that defensive distillation
is ineffective against adaptive adversarial attacks, as carefully crafted inputs can still bypass the
smoothed decision boundaries and fool the model. Adversarial sample detection [Cohen et al.,
2020, Wang et al., 2019, Lee et al., 2018, Feinman et al., 2017] focuses on identifying malicious
inputs rather than improving model robustness. MAFD [Jin et al., 2024] combines perplexity,
word frequency, and masking-probability features for robust anomaly scoring; ONION [Qi et al.,
2021] leverages language-model perplexity to prune high-risk tokens; Sharpness-based detectors
[Zheng et al., 2023b] add infinitesimal noise and flag samples exhibiting steep loss increases.
Deployed alongside adversarial training, these detectors offer real-time protection against unseen
or cross-domain attacks. Regularization, purification and certified Robustness reduce perturbation
sensitivity by modifying the loss or sanitizing inputs. Flooding-X [Liu et al., 2022] maintains a loss
floor to guide the model toward flatter regions; adversarial label smoothing [Yang et al., 2023] and
temperature scaling [Xuan et al., 2025] curb over-confidence; masked-language-model purification
[Li et al., 2023] masks and reconstructs suspicious tokens to cleanse perturbations. Interval bound
propagation (IBP) [Jia et al., 2019] and randomized smoothing schemes such as SAFER [Ye et al.,
2020] and RanMASK [Zeng et al., 2023] provide formal guarantees against word substitutions or
masking budgets.

D Ethical Considerations
Prior to making this work public, we share our adversarial attack artefacts and our results with

leading GFMs teams, as shown in Appendix G. Secondly, we open-source the code and data used
in our experiments to promote transparency. Also, we carefully consider the ethical impact of our
work and list the two impacts: (1) The adversarial sample released in the GenoAdv dataset and
experiments can provide incorrect classification for existing GFMs. (2) Adversarial training is an
efficiency method to make GFMs more resilient to adversarial attacks.

E Reproducibility
In this section, we provide a discussion on the reproducibility of our experiments, including

the details of the datasets used, the training and evaluation protocols, and the hyperparameters
employed in our experiments.

Source of Randomness. To ensure reproducibility, we run all experiments using three different
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random seeds. We observe that the results are highly stable, with the benchmark introducing only
minor variations—showing a variance of at most 2%.

F Additional GenoArmory demonstration
We provide two installation options for GenoArmory and two usage methods: via command

line and Python code.

Example of Installation of GenoArmory

# Install with pip
pip install genoarmory

# Install with source code
git clone https://github.com/MAGICS-LAB/GenoArmory.git
conda create -n genoarmory pip=3.9
pip install .
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Example of Python Usage of GenoArmory

# Initialize model
from GenoArmory import GenoArmory
import json
# You need to initialize GenoArmory with a model and tokenizer.
gen = GenoArmory(model=None, tokenizer=None)
params_file = 'xxx/scripts/PGD/pgd_dnabert.json'

# Visulization
gen.visualization(

folder_path='xxx/BERT-Attack/results/meta/test',
output_pdf_path='xxx/BERT-Attack/results/meta/test'

)

# Attack
if params_file:

try:
with open(params_file, "r") as f:

kwargs = json.load(f)
except json.JSONDecodeError as e:

raise ValueError(f"Invalid JSON in params file")
except FileNotFoundError:

raise FileNotFoundError(f"Params file not found.")

gen.attack(
attack_method='pgd',
model_path='magicslabnu/GERM',

**kwargs
)
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Example of Commend Line Usage of GenoArmory

# Attack
python GenoArmory.py
--model_path magicslabnu/GERM attack
--method pgd --params_file xxx/scripts/PGD/pgd_dnabert.json

# Defense
python GenoArmory.py
--model_path magicslabnu/GERM defense
--method at --params_file xxx/scripts/AT/at_pgd_dnabert.json

# Visualization
python GenoArmory.py
--model_path magicslabnu/GERM visualize
--folder_path xxx/BERT-Attack/results/meta/test
--save_path xxx/BERT-Attack/results/meta/test/frequency.pdf

# Read MetaData
python GenoArmory.py
--model_path magicslabnu/GERM read
--type attack --method TextFooler --model_name dnabert

G Disclosure
We share our disclosure with the authors of DNABERT-2, NT, HyenaDNA, and GenomeOcean

to inform them of our findings and benchmark. Also, we highlight the potential impact on their
models in our disclosure.
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Example of Disclosure Letter

Dear DNABERT/DNABERT-2/DNABERT-S team,
We hope this message finds you well. We are reaching out
to share the preliminary results and artifacts from our
recent study on adversarial attacks targeting DNA-based
Genomic Foundation Models (GFMs), which we plan to release
publicly as part of a unified benchmarking framework.
Given your leading role in the development of GFMs, we
believe it is essential to disclose our findings to you in
advance. Our results demonstrate that carefully crafted
adversarial sequences can induce incorrect classifications
across multiple GFM architectures. We also find that
adversarial training remains a promising defense strategy
for enhancing model robustness.
To support responsible disclosure, we are providing:
1. A summary of key findings and model vulnerabilities
2. The adversarial sample set and evaluation scripts
3. A description of our ethical considerations and intended
safeguards
We welcome your feedback on potential risks, mitigation
strategies, and collaborative opportunities to ensure this
research contributes constructively to the GFM community.
Please let us know if you would like early access to the
materials or would prefer to schedule a meeting to discuss
further.
Best regards,
GenoArmory Author

H Disclosure of LLM Usage
We utilize Cursor to assist in writing repetitive bash automation scripts and employ GPT-4o to

refine the paper’s language for conciseness and precision.

I Experiment Setting
I.1 Computational Resource

We perform all experiments using 4 NVIDIA H100 GPUs with 80GB of memory and a 24-core
Intel(R) Xeon(R) Gold 6338 CPU operating at 2.00 GHz.

I.2 Implementation
For DNABERT-2, we use the 117-million-parameter version of the model2. For NT, we use the

2.5-billion-parameter version of the model3. For NT2, we use the 100-million-parameter version of
the model4. For HyenaDNA, we use the 4.07-million-parameter version of the model5. All four

2zhihan1996/DNABERT-2-117M
3InstaDeepAI/nucleotide-transformer-2.5b-multi-species
4InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
5LongSafari/hyenadna-small-32k-seqlen-hf
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models represent state-of-the-art approaches for genome sequence classification tasks, consistently
achieving high performance across various datasets. GenomeOcean [Zhou et al., 2025b], on the
other hand, is a transformer-based model designed explicitly for genome sequence generation
tasks, demonstrating superior performance compared to existing models, such as Evo [Nguyen
et al., 2024a]. We use the 100-million-parameter version of the model6. For our experiments, we
fine-tuned all of these models using their official checkpoints on the datasets employed in this study.

I.3 Downstream Tasks Across Different Models
We examine the downstream tasks of several genomic foundation models (GFMs), including

DNABERT-2 [Zhou et al., 2024], HyenaDNA [Nguyen et al., 2024b], GenomeOcean [Zhou et al.,
2025b], and Nucleotide Transformer [Dalla-Torre et al., 2024]. As summarized in Table 5, these
models primarily focus on classification tasks. In contrast, our analysis of the GenBench datasets
[Liu et al., 2025] reveals the inclusion of regression tasks, offering a more comprehensive evaluation
framework.

Table 5: Comparison of Models (Benchmarks) and Their Tasks.

Model Tasks Classification-Only

DNABERT-2 GUE (28 Classification tasks) Yes
Nucleotide Transformer Nucleotide Transformer Benchmark (18 Classification tasks) Yes
HyenaDNA GenBench (Classification-Only) + Nucleotide Transformer Benchmark Yes
GenomeOcean Classification + Generation (5 GUE Classification tasks) No
GenBench Classification + Regression (e.g., Drosophila Enhancer Activity Prediction) No

J Additional Numerical Experiments
J.1 All results in Adversarial Attack

This section provides a comprehensive evaluation of multiple adversarial attacks across dif-
ferent GFM models. We compare BertAttack, TextFooler, FIMBA, and PGD on a range of
biolGenomeOceanical prediction tasks, including epigenetic marks prediction, promoter detection,
and transcription factor prediction in both human and mouse datasets. The evaluated GFM models
include DNABERT-2, NT, NT2, HyenaDNA, and GenomeOcean.

6pGenomeOcean/GenomeOcean-100M
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Table 6: Performance Comparison of Adversarial Attacks on DNABERT-2. This table shows
the performance of all adversarial attacks on the DNABNERT-2 model. All results are evaluated
using the Attack Success Rate (ASR) metric. The best result is highlighted in bold, while the
second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

BertAttack 91.20 99.70 99.80 95.10 99.20 99.30
TextFooler 90.40 99.90 99.90 86.50 99.20 100.00
FIMBA 43.70 51.90 24.00 41.30 26.90 41.70
PGD 41.30 33.30 35.50 35.90 38.40 31.80

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

BertAttack 97.50 98.00 96.60 100.00 83.70 92.70 96.50
TextFooler 99.40 96.20 96.00 94.20 71.80 28.30 97.00
FIMBA 24.40 43.80 36.60 50.60 58.30 14.90 87.10
PGD 41.40 39.30 36.20 46.10 45.60 43.50 42.90

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

BertAttack 96.80 97.60 99.80 90.20 97.40 99.20 99.30 98.90
TextFooler 96.40 98.00 99.40 91.30 98.80 97.40 97.10 92.00
FIMBA 50.00 34.10 55.60 25.40 45.30 44.00 32.10 28.20
PGD 36.60 32.30 35.60 34.80 41.00 35.10 34.10 35.80

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

BertAttack 93.40 96.40 96.20 90.90 96.90
TextFooler 94.20 94.50 97.20 92.40 94.20
FIMBA 46.40 3.10 43.30 46.40 39.50
PGD 43.50 38.80 35.10 45.40 36.00
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Table 7: Performance Comparison of Adversarial Attacks on HyenaDNA. This table shows the
performance of all adversarial attacks on the HyenaDNA model. All results are evaluated using the
Attack Success Rate (ASR) metric. The best result is highlighted in bold, while the second-best
result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

BertAttack 100.00 100.00 100.00 99.06 100.00 100.00
TextFooler 100.00 100.00 100.00 92.70 100.00 91.14
FIMBA 46.27 3.17 3.51 16.13 14.81 8.20
PGD 10.70 6.70 91.14 5.11 90.68 4.45

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

BertAttack 100.00 100.00 100.00 100.00 100.00 97.06 100.00
TextFooler 35.79 41.68 100.00 99.19 46.49 99.19 92.85
FIMBA 25.86 38.10 18.18 35.48 48.68 31.17 41.67
PGD 7.04 12.23 22.12 2.58 25.13 92.41 93.72

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

BertAttack 100.00 99.88 100.00 100.00 98.81 100.00 100.00 100.00
TextFooler 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FIMBA 38.16 35.71 31.94 26.39 48.86 34.15 32.14 33.33
PGD 90.42 92.86 93.24 90.70 96.65 24.47 12.25 93.59

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

BertAttack 100.00 99.97 100.00 100.00 98.79
TextFooler 0.74 100.00 100.00 100.00 100.00
FIMBA 40.79 40.22 36.59 32.84 26.67
PGD 0.00 4.35 2.65 90.99 90.18
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Table 8: Performance Comparison of Adversarial Attacks on NT. This table shows the per-
formance of all adversarial attacks on the Nucleotide Transformer (NT) model. All results are
evaluated using the Attack Success Rate (ASR) metric. The best result is highlighted in bold, while
the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

BertAttack 99.92 100.00 100.00 100.00 100.00 100.00
TextFooler 66.23 100.00 92.29 97.32 100.00 100.00
FIMBA 55.13 42.65 25.00 22.06 39.06 31.67
PGD 38.53 38.45 39.11 36.16 36.93 25.25

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

BertAttack 100.00 100.00 99.24 100.00 100.00 100.00 100.00
TextFooler 100.00 100.00 90.70 89.24 99.19 100.00 91.20
FIMBA 30.77 36.36 58.89 32.20 57.45 44.90 46.51
PGD 40.91 20.45 38.24 39.11 36.14 35.47 36.70

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

BertAttack 100.00 100.00 99.72 100.00 100.00 99.76 99.55 99.27
TextFooler 100.00 100.00 100.00 100.00 95.39 100.00 100.00 100.00
FIMBA 37.33 41.98 30.99 20.90 43.04 33.80 35.23 42.86
PGD 46.85 48.61 34.57 39.56 53.13 38.24 39.04 57.08

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

BertAttack 100.00 99.66 99.46 100.00 100.00
TextFooler 100.00 92.47 100.00 100.00 100.00
FIMBA 35.71 51.06 39.02 16.36 28.13
PGD 26.10 41.97 37.61 45.96 23.91
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Table 9: Performance Comparison of Adversarial Attacks on NT2. This table shows the
performance of all adversarial attacks on the Nucleotide Transformer 2 (NT2) model. All results
are evaluated using the Attack Success Rate (ASR) metric. The best result is highlighted in bold,
while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

BertAttack 98.42 99.62 99.91 99.66 100.00 100.00
TextFooler 100.00 100.00 100.00 100.00 100.00 100.00
FIMBA 27.38 22.08 34.48 30.26 23.53 39.71
PGD 43.55 35.86 16.13 11.19 38.99 11.95

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

BertAttack 100.00 99.53 99.45 100.00 99.70 95.35 99.47
TextFooler 100.00 100.00 100.00 100.00 100.00 88.59 100.00
FIMBA 6.02 62.03 23.08 25.61 59.60 9.09 51.58
PGD 34.78 38.82 32.60 38.35 35.34 32.95 18.03

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

BertAttack 100.00 100.00 100.00 99.83 100.00 99.63 99.31 99.64
TextFooler 100.00 100.00 88.84 99.80 100.00 99.81 100.00 40.23
FIMBA 44.71 28.95 37.18 33.75 50.55 45.35 34.48 44.79
PGD 50.82 65.69 45.11 36.52 63.40 11.81 37.73 37.70

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

BertAttack 100.00 99.59 99.49 100.00 100.00
TextFooler 99.78 99.82 95.74 100.00 97.84
FIMBA 50.00 42.71 40.70 38.89 42.50
PGD 38.69 40.22 15.00 41.88 21.56
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Table 10: Performance Comparison of Adversarial Attacks on GenomeOcean. This table shows
the performance of all adversarial attacks on the GenomeOcean model. All results are evaluated
using the Attack Success Rate (ASR) metric. The best result is highlighted in bold, while the
second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

BertAttack 100.00 99.60 99.97 100.00 99.95 99.97
TextFooler 99.78 100.00 100.00 100.00 100.00 100.00
FIMBA 45.88 36.14 24.10 49.35 53.73 51.95
PGD 47.74 42.41 41.11 48.82 38.28 45.57

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

BertAttack 98.75 100.00 98.18 98.51 99.65 100.00 97.71
TextFooler 100.00 100.00 88.89 100.00 99.87 100.00 100.00
FIMBA 43.37 21.52 35.16 68.67 59.78 36.36 28.57
PGD 44.12 48.49 43.45 18.72 53.34 41.15 35.22

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

BertAttack 100.00 100.00 99.89 99.60 99.94 99.83 99.91 99.81
TextFooler 100.00 100.00 99.88 99.85 100.00 100.00 100.00 100.00
FIMBA 46.91 31.65 49.37 39.39 45.88 42.68 31.33 38.96
PGD 22.98 22.98 23.95 33.33 22.06 41.39 32.15 39.66

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

BertAttack 100.00 99.83 98.95 98.83 100.00
TextFooler 100.00 99.89 100.00 99.90 100.00
FIMBA 1.16 53.68 34.83 57.65 39.47
PGD 43.36 23.68 24.94 32.90 38.91
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Table 11: Performance Comparison of Adversarial Defense on DNABERT-2. This table shows
the performance of all adversarial defense on the DNABERT-2 model. All results are evaluated
using the Defense Success Rate (DSR) metric. The best result is highlighted in bold, while the
second-best result is underlined.

Epigenetic Marks Prediction

Attack Defense H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

PGD
FreeLB 56.17 65.68 66.22 63.10 72.38 63.92
ADFAR 64.32 63.55 65.51 62.01 74.57 64.58

AT 54.87 77.97 69.08 72.55 82.38 61.01

BertAttack
FreeLB 5.10 0.00 1.16 0.00 1.19 10.00
ADFAR 100.00 0.00 10.10 0.00 2.08 94.23

AT 4.76 0.00 0.00 0.00 2.86 0.00

TextFooler
FreeLB 33.88 0.11 0.00 0.00 0.00 0.00
ADFAR 42.28 0.00 0.00 0.00 0.00 0.22

AT 41.25 0.12 0.12 0.00 1.88 0.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Defense H3K79me3 H3K9ac H4 H4ac all notata tata

PGD
FreeLB 61.47 63.44 60.84 67.58 55.93 56.01 58.74
ADFAR 62.08 55.82 65.56 62.38 70.01 65.59 64.26

AT 62.91 60.92 73.12 59.48 63.67 51.98 49.74

BertAttack
FreeLB 0.00 1.08 6.19 0.00 0.00 1.00 9.28
ADFAR 0.00 8.42 0.00 25.00 4.08 100.00 7.69

AT 4.55 4.29 15.62 0.00 2.04 19.59 8.75

TextFooler
FreeLB 0.00 0.00 34.68 0.00 0.00 3.04 73.16
ADFAR 0.00 0.00 76.39 4.74 8.42 100.00 88.83

AT 1.28 5.57 38.16 0.00 0.00 28.97 75.63

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Defense tf0 tf1 tf2 tf3 tf4 all notata tata

PGD
FreeLB 66.17 72.23 73.21 66.79 65.54 73.30 69.31 64.18
ADFAR 64.78 64.38 56.85 56.18 61.97 60.61 67.32 59.56

AT 64.44 64.76 77.58 59.93 57.08 74.31 76.35 62.18

BertAttack
FreeLB 10.20 0.00 10.00 2.15 2.27 0.00 0.00 0.00
ADFAR 0.00 0.00 0.00 0.00 100.00 27.08 7.07 0.00

AT 0.00 0.00 10.34 0.00 0.00 1.20 1.14 1.10

TextFooler
FreeLB 0.22 0.00 0.00 0.34 0.71 0.00 1.01 72.85
ADFAR 0.00 0.00 6.29 100.00 2.41 26.29 1.61 97.97

AT 0.98 0.00 0.24 0.13 3.17 0.00 0.66 75.18

Transcription Factor Prediction (Mouse)

Attack Defense 0 1 2 3 4

PGD
FreeLB 57.93 70.40 56.17 57.29 61.82
ADFAR 69.44 64.73 60.40 62.41 61.54

AT 55.61 73.15 73.22 53.08 56.45

BertAttack
FreeLB 20.62 4.12 9.00 17.35 2.20
ADFAR 44.44 27.27 0.00 10.42 100.00

AT 5.49 10.20 6.82 5.71 1.10

TextFooler
FreeLB 65.90 0.00 85.89 89.98 16.28
ADFAR 67.49 17.54 91.92 96.23 26.15

AT 68.2 6.18 87.45 92.45 17.54
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Table 12: Performance Comparison of Adversarial Defense on GenomeOcean. This table shows
the performance of all adversarial defense on the GenomeOcean model. All results are evaluated
using the Defense Success Rate (DSR) metric. The best result is highlighted in bold, while the
second-best result is underlined.

Epigenetic Marks Prediction

Attack Defense H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

PGD
FreeLB 58.51 50.75 52.96 55.52 58.13 56.48
ADFAR 54.75 66.59 49.43 68.20 69.17 50.24

AT 57.40 55.78 59.35 49.87 64.69 52.15

BertAttack
FreeLB 2.04 8.60 3.19 0.00 0.00 0.00
ADFAR 0.00 0.00 0.00 0.00 0.00 0.00

AT 0.22 4.45 0.13 0.04 0.22 0.00

TextFooler
FreeLB 0.00 0.00 0.00 0.00 0.00 0.00
ADFAR 0.00 0.00 0.00 0.00 0.00 0.00

AT 33.75 0.00 0.00 0.00 0.00 0.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Defense H3K79me3 H3K9ac H4 H4ac all notata tata

PGD
FreeLB 57.31 55.04 56.79 93.99 45.78 52.47 63.83
ADFAR 51.14 46.38 61.72 86.29 52.74 51.28 64.24

AT 56.04 55.60 56.85 92.58 53.46 65.77 66.48

BertAttack
FreeLB 6.12 22.99 24.24 1.05 0.00 0.00 0.00
ADFAR 0.00 0.00 0.00 0.00 0.00 3.77 0.00

AT 1.05 1.69 1.31 0.75 0.00 0.04 0.00

TextFooler
FreeLB 0.00 0.00 35.25 0.00 0.00 0.00 73.8
ADFAR 0.00 0.00 0.51 0.00 0.00 100.00 100.00

AT 0.00 0.00 37.13 0.00 0.00 0.00 74.10

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Defense tf0 tf1 tf2 tf3 tf4 all notata tata

PGD
FreeLB 96.51 91.09 91.18 67.74 91.79 70.92 66.86 57.31
ADFAR 92.09 97.83 93.73 67.07 96.94 57.38 58.62 55.30

AT 91.54 93.95 94.37 68.14 96.53 60.82 69.29 61.32

BertAttack
FreeLB 0.00 0.00 0.00 0.00 1.00 2.15 0.00 1.01
ADFAR 0.00 0.00 0.00 0.00 0.00 1.85 0.00 0.00

AT 0.00 0.00 0.00 0.00 0.00 0.76 0.80 0.18

TextFooler
FreeLB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73.13
ADFAR 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.10

AT 0.00 0.52 0.00 0.00 0.42 0.00 0.00 74.49

Transcription Factor Prediction (Mouse)

Attack Defense 0 1 2 3 4

PGD
FreeLB 57.25 73.37 68.87 67.39 57.16
ADFAR 55.60 69.74 69.72 68.53 57.96

AT 58.48 70.22 48.47 61.68 58.82

BertAttack
FreeLB 0.00 1.05 2.00 1.00 0.00
ADFAR 0.00 25.00 0.00 0.00 0.00

AT 0.00 0.00 2.02 2.00 0.00

TextFooler
FreeLB 64.44 0.00 85.73 89.57 28.76
ADFAR 100.00 100.00 100.00 100.00 100.00

AT 65.98 1.65 85.47 90.03 17.63
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Table 13: Performance Comparison of Adversarial Defense on NT. This table shows the
performance of all adversarial defense on the Nucleotide Transformer (NT) model. All results are
evaluated using the Defense Success Rate (DSR) metric. The best result is highlighted in bold,
while the second-best result is underlined.

Epigenetic Marks Prediction

Attack Defense H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

PGD
FreeLB 87.79 84.45 80.44 85.20 84.35 74.08
ADFAR 54.65 53.07 50.08 57.23 54.72 57.95

AT 92.35 86.74 82.02 86.80 87.54 75.02

BertAttack
FreeLB 7.14 0.00 0.00 1.18 0.00 0.00
ADFAR 2.04 0.00 0.00 0.00 13.56 0.00

AT 0.22 0.00 0.00 0.00 0.00 0.00

TextFooler
FreeLB 25.69 23.10 10.30 12.40 20.00 9.54
ADFAR 0.00 100.00 62.70 12.90 9.35 7.33

AT 47.68 24.97 12.31 9.39 47.97 7.99

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Defense H3K79me3 H3K9ac H4 H4ac all notata tata

PGD
FreeLB 85.64 83.36 89.65 84.87 93.93 95.41 99.34
ADFAR 53.70 61.02 59.09 59.92 52.09 51.25 57.63

AT 84.74 81.22 82.81 81.39 94.26 96.97 90.45

BertAttack
FreeLB 0.00 0.00 2.06 0.00 0.00 0.00 2.02
ADFAR 6.52 0.00 2.17 0.00 0.00 43.75 11.76

AT 0.00 0.00 2.04 0.00 0.00 1.02 0.00

TextFooler
FreeLB 22.17 41.03 62.86 35.14 35.79 31.25 85.07
ADFAR 2.55 100.00 72.48 42.77 49.20 69.14 91.32

AT 13.34 24.61 53.74 23.82 35.97 34.56 82.09

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Defense tf0 tf1 tf2 tf3 tf4 all notata tata

PGD
FreeLB 57.58 55.28 72.30 82.95 48.23 85.07 89.47 39.77
ADFAR 96.49 97.26 92.94 59.67 96.92 54.34 56.28 95.70

AT 84.21 59.95 66.17 62.06 64.31 81.73 91.93 38.15

BertAttack
FreeLB 0.00 0.00 0.00 0.00 0.00 1.04 1.06 1.02
ADFAR 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.00

AT 0.00 0.00 0.00 0.00 0.00 1.15 0.00 1.02

TextFooler
FreeLB 36.03 34.17 32.44 28.15 38.83 44.54 47.10 89.26
ADFAR 100.00 60.02 75.00 99.58 89.74 64.10 100.00 100.00

AT 43.85 41.76 28.65 44.43 37.16 34.18 35.66 86.49

Transcription Factor Prediction (Mouse)

Attack Defense 0 1 2 3 4

PGD
FreeLB 74.60 98.03 86.32 70.60 75.08
ADFAR 56.57 55.57 53.62 52.30 59.28

AT 76.37 99.44 99.46 34.72 75.64

BertAttack
FreeLB 0.00 0.00 0.00 2.02 0.00
ADFAR 0.00 41.07 2.13 0.00 0.00

AT 0.00 0.13 0.00 0.00 0.00

TextFooler
FreeLB 75.28 58.13 92.57 93.98 31.72
ADFAR 85.24 83.82 97.60 100.00 69.05

AT 72.34 56.08 89.80 94.44 31.63
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Table 14: Performance Comparison of Adversarial Defense on NT2. This table shows the
performance of all adversarial defense on the Nucleotide Transformer-2 (NT2) model. All results
are evaluated using the Defense Success Rate (DSR) metric. The best result is highlighted in bold,
while the second-best result is underlined.

Epigenetic Marks Prediction

Attack Defense H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

PGD
FreeLB 89.10 80.99 79.18 84.75 76.23 76.21
ADFAR 86.57 73.38 77.85 77.95 55.52 67.38

AT 97.61 82.31 83.20 86.88 75.67 77.66

BertAttack
FreeLB 2.02 0.00 0.00 0.00 0.00 0.00
ADFAR 0.00 5.97 1.67 0.00 0.00 0.00

AT 0.00 0.00 0.00 0.00 0.00 0.00

TextFooler
FreeLB 33.23 0.00 0.00 0.00 0.00 0.00
ADFAR 49.57 0.00 0.00 0.00 0.00 0.00

AT 35.70 0.00 0.00 0.00 0.00 0.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Defense H3K79me3 H3K9ac H4 H4ac all notata tata

PGD
FreeLB 89.83 84.55 99.44 79.34 94.93 91.57 94.00
ADFAR 89.28 73.77 74.60 73.34 61.27 57.61 70.18

AT 89.43 86.33 96.76 83.78 93.74 90.42 85.16

BertAttack
FreeLB 0.00 0.00 3.12 0.00 0.00 0.00 1.00
ADFAR 18.18 0.00 4.26 0.00 0.00 18.75 0.00

AT 0.00 0.00 1.02 0.00 0.00 0.00 0.00

TextFooler
FreeLB 0.00 0.11 35.29 0.00 0.71 0.00 73.73
ADFAR 0.00 0.00 72.82 0.00 0.00 0.71 76.05

AT 0.00 0.00 35.22 0.00 0.00 0.00 74.33

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Defense tf0 tf1 tf2 tf3 tf4 all notata tata

PGD
FreeLB 92.86 94.01 82.76 84.25 97.22 91.26 91.33 99.82
ADFAR 73.62 68.87 73.46 71.17 75.97 73.68 78.40 62.35

AT 61.98 68.87 61.98 87.24 94.12 88.43 76.66 55.54

BertAttack
FreeLB 0.00 0.00 0.00 2.22 0.00 0.00 0.00 0.00
ADFAR 51.06 60.38 0.00 0.00 2.04 0.00 0.00 0.00

AT 0.00 4.00 1.00 0.00 0.00 0.00 0.00 1.00

TextFooler
FreeLB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 72.76
ADFAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.48

AT 0.00 0.00 0.15 0.12 0.00 0.00 0.00 77.81

Transcription Factor Prediction (Mouse)

Attack Defense 0 1 2 3 4

PGD
FreeLB 88.71 99.19 97.29 81.65 81.44
ADFAR 77.22 74.06 99.56 66.95 61.05

AT 74.61 97.07 99.56 86.09 51.29

BertAttack
FreeLB 0.00 4.04 2.00 4.08 0.00
ADFAR 1.92 0.00 0.00 0.00 16.67

AT 0.00 4.00 1.00 0.00 0.00

TextFooler
FreeLB 63.98 0.00 85.96 89.66 16.67
ADFAR 77.00 0.00 86.34 94.90 29.07

AT 67.30 0.20 86.69 92.44 22.71
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Table 15: Performance Comparison of Adversarial Defense on HyenaDNA. This table shows the
performance of all adversarial defense on the HyenaDNA model. All results are evaluated using the
Defense Success Rate (DSR) metric. The best result is highlighted in bold, while the second-best
result is underlined.

Epigenetic Marks Prediction

Attack Defense H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

PGD
FreeLB 76.72 70.87 98.19 91.86 96.22 85.29
ADFAR 88.44 74.31 85.63 94.41 98.83 84.20

AT 88.44 84.26 99.36 86.77 91.96 87.48

BertAttack
FreeLB 0.00 0.00 0.00 0.00 0.00 0.00
ADFAR 0.00 0.00 0.00 0.00 0.00 0.00

AT 0.00 0.00 0.00 0.00 0.00 0.00

TextFooler
FreeLB 100.00 98.08 71.00 75.21 53.82 100.00
ADFAR 100.00 99.77 30.70 50.62 29.01 97.75

AT 100.00 84.18 95.87 50.68 64.87 80.81

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Defense H3K79me3 H3K9ac H4 H4ac all notata tata

PGD
FreeLB 95.32 90.09 62.33 85.31 56.04 94.81 97.27
ADFAR 93.53 98.33 60.58 95.96 83.52 40.20 89.77

AT 96.32 93.99 63.34 85.31 98.47 49.07 76.80

BertAttack
FreeLB 0.00 0.00 0.00 0.00 0.00 16.33 0.00
ADFAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AT 0.00 0.00 0.00 0.00 0.00 10.00 0.00

TextFooler
FreeLB 20.42 17.94 90.50 3.28 76.54 100.00 93.46
ADFAR 63.24 15.85 88.98 81.68 65.48 92.86 89.93

AT 99.64 45.01 92.80 85.59 100.00 27.44 93.97

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Defense tf0 tf1 tf2 tf3 tf4 all notata tata

PGD
FreeLB 87.44 87.44 88.44 87.44 88.44 98.47 85.47 96.26
ADFAR 83.42 99.50 76.38 95.48 87.44 68.94 98.61 90.77

AT 87.44 87.44 91.46 87.44 79.40 96.10 98.61 83.30

BertAttack
FreeLB 2.13 0.00 2.04 0.00 0.00 6.82 0.00 1.92
ADFAR 0.00 0.00 0.00 0.00 0.00 1.85 0.00 0.00

AT 5.98 0.00 3.72 0.00 0.00 0.00 0.00 0.00

TextFooler
FreeLB 23.33 19.42 95.63 100.00 14.08 66.42 99.38 94.70
ADFAR 100.00 100.00 89.68 87.00 100.00 93.89 100.00 100.00

AT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Transcription Factor Prediction (Mouse)

Attack Defense 0 1 2 3 4

PGD
FreeLB 94.47 98.59 75.38 83.76 89.81
ADFAR 85.43 87.08 62.81 65.99 87.68

AT 94.47 97.23 62.81 65.99 94.09

BertAttack
FreeLB 0.00 0.00 0.00 0.00 0.00
ADFAR 37.04 0.00 0.00 0.00 0.00

AT 1.23 0.00 0.00 0.00 0.00

TextFooler
FreeLB 100.00 19.69 100.00 94.94 80.78
ADFAR 100.00 89.64 100.00 100.00 35.34

AT 100.00 37.31 100.00 100.00 31.02

32



Table 16: Performance Comparison of Adversarial Attack on Quantization Model. This table
reports the Attack Success Rate (ASR) of two adversarial attacks (TextFooler and BERTAttack)
on quantized versions (Vanilla and Softmax1) of DNABERT-2 and Nucleotide Transformer (NT)
under W8A8 (8-bit weights and activations) quantization. All results are evaluated using the Attack
Success Rate (ASR) metric.

Epigenetic Marks Prediction

Attack Model Quant_Method H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler
DNABERT2

Vanilla 0.19 9.76 24.12 5.52 25.53 12.24
Softmax1 0.00 3.82 15.67 2.03 31.90 4.14

NT1
Vanilla 70.49 79.37 77.74 77.04 70.49 87.14

Softmax1 73.96 73.65 77.53 70.89 70.33 86.21

BertAttack
DNABERT2

Vanilla 62.50 26.09 100.00 61.54 81.25 100.00
Softmax1 62.50 100.00 16.00 100.00 93.75 60.00

NT1
Vanilla 100.00 100.00 100.00 100.00 100.00 100.00

Softmax1 92.31 100.00 100.00 100.00 100.00 99.60

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack Model Quant_Method H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler
DNABERT2

Vanilla 4.30 0.00 11.48 1.30 27.58 17.05 30.29
Softmax1 3.96 0.00 4.19 1.48 28.21 22.44 29.55

NT1
Vanilla 71.49 73.37 56.52 72.17 59.54 54.59 58.15

Softmax1 68.89 67.25 55.12 71.90 68.42 63.40 58.15

BertAttack
DNABERT2

Vanilla 100.00 100.00 57.14 99.78 98.08 96.43 72.56
Softmax1 84.62 87.50 0.00 96.15 66.11 70.00 100.00

NT1
Vanilla 100.00 100.00 91.67 100.00 98.25 93.75 100.00

Softmax1 100.00 100.00 99.27 100.00 100.00 97.83 100.00

Transcription Factor Prediction (Human) Core Promoter Detection

Attack Model Quant_Method tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler
DNABERT2

Vanilla 1.17 0.00 14.07 38.34 0.20 63.88 67.90 61.33
Softmax1 13.45 5.61 11.49 38.67 4.48 62.36 61.12 48.87

NT1
Vanilla 57.41 51.93 67.28 74.05 53.26 66.18 63.73 42.81

Softmax1 69.22 65.50 71.97 77.68 69.39 59.52 68.14 49.06

BertAttack
DNABERT2

Vanilla 0.00 11.11 63.64 100.00 16.67 97.83 64.29 89.02
Softmax1 2.91 2.91 26.58 80.00 32.47 96.71 36.79 98.55

NT1
Vanilla 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Softmax1 100.00 96.43 100.00 100.00 100.00 100.00 100.00 99.60
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Table 17: Performance of Adversarial Attacks on HyenaDNA Trained with the GenoAdv
Dataset. This table compares the performance of HyenDNA trained with adversarial examples
from the GenoAdv dataset. Three attack methods (BERTAttack, TextFooler, and PGD) are used to
evaluate the models, with results reported in terms of Attack Success Rate (ASR). The best result is
highlighted in bold, while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler 1.01 5.41 83.24 3.18 17.86 62.82
PGD 12.83 19.29 17.20 2.85 4.73 6.13
BERT_Attack 100.00 100.00 100.00 100.00 100.00 100.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler 26.27 45.20 33.53 94.53 44.20 26.00 1.05
PGD 12.56 16.90 20.16 7.71 21.13 10.06 20.27
BERT_Attack 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PGD 3.70 40.00 19.15 22.22 19.15 3.11 13.83 9.81
BERT_Attack 70.37 15.00 100.00 100.00 100.00 83.02 100.00 95.74

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

TextFooler 0.00 0.00 0.00 0.00 23.94
PGD 44.44 7.06 17.45 15.79 14.90
BERT_Attack 100.00 100.00 100.00 100.00 100.00
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Table 18: Performance of Adversarial Attacks on GenomeOcean Trained with the GenoAdv
Dataset. This table compares the performance of GenomeOcean trained with adversarial examples
from the GenoAdv dataset. Three attack methods (BERTAttack, TextFooler, and PGD) are used to
evaluate the models, with results reported in terms of Attack Success Rate (ASR). The best result is
highlighted in bold, while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler 62.66 100.00 100.00 100.00 100.00 100.00
PGD 34.44 35.87 24.51 40.00 39.43 1.36
BERT_Attack 100.00 98.56 97.65 100.00 100.00 100.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler 100.00 100.00 63.89 100.00 100.00 100.00 22.65
PGD 39.52 36.69 26.34 34.64 33.45 34.76 30.91
BERT_Attack 95.70 100.00 97.94 98.77 100.00 96.45 100.00

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler 100.00 100.00 100.00 100.00 99.89 98.32 100.00 22.71
PGD 34.18 12.68 35.80 19.15 35.65 44.22 40.89 39.07
BERT_Attack 98.12 100.00 100.00 100.00 100.00 98.84 100.00 100.00

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

TextFooler 24.73 96.33 13.58 8.88 80.71
PGD 35.06 30.33 34.42 26.60 25.45
BERT_Attack 100.00 100.00 98.96 100.00 100.00
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Table 19: Performance of Adversarial Attacks on DNABERT-2 Trained with the GenoAdv
Dataset. This table compares the performance of DNABERT-2 trained with adversarial examples
from the GenoAdv dataset. Three attack methods (BERTAttack, TextFooler, and PGD) are used to
evaluate the models, with results reported in terms of Attack Success Rate (ASR). The best result is
highlighted in bold, while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler 61.83 100.00 100.00 100.00 100.00 100.00
PGD 39.53 24.67 34.53 36.71 35.61 34.79
BERT_Attack 87.67 85.36 100.00 88.63 88.13 100.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler 99.88 69.87 61.00 100.00 56.26 100.00 24.27
PGD 41.24 29.06 26.35 37.59 38.23 45.11 44.93
BERT_Attack 88.90 100.00 87.10 100.00 100.00 88.99 87.56

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler 100.00 99.87 100.00 100.00 99.21 100.00 100.00 23.39
PGD 30.12 25.33 24.39 2.22 28.09 36.36 22.71 36.89
BERT_Attack 95.60 100.00 100.00 97.78 98.88 100.00 98.80 100.00

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

TextFooler 28.54 98.28 12.77 6.49 81.43
PGD 35.81 30.25 9.64 13.00 34.63
BERT_Attack 100.00 87.94 87.59 96.61 100.00
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Table 20: Performance of Adversarial Attacks on NT Trained with the GenoAdv Dataset. This
table compares the performance of Nucleotide Transformers (NT) trained with adversarial examples
from the GenoAdv dataset. Three attack methods (BERTAttack, TextFooler, and PGD) are used to
evaluate the models, with results reported in terms of Attack Success Rate (ASR). The best result is
highlighted in bold, while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler 56.41 70.39 77.72 85.08 77.87 80.64
PGD 28.57 23.43 21.88 29.53 21.67 22.90
BERT_Attack 100.00 100.00 100.00 100.00 100.00 100.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler 79.42 69.67 52.19 66.39 46.25 64.64 21.50
PGD 17.64 26.87 7.49 19.89 19.39 7.97 7.83
BERT_Attack 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler 58.31 61.81 46.13 60.44 67.96 44.69 67.92 13.82
PGD 28.57 24.15 21.57 25.48 10.11 23.01 25.96 13.01
BERT_Attack 100.00 85.37 100.00 97.85 98.88 100.00 100.00 100.00

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

TextFooler 24.55 76.23 10.08 8.26 66.19
PGD 25.00 21.96 10.71 26.81 26.46
BERT_Attack 100.00 100.00 100.00 100.00 100.00
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Table 21: Performance of Adversarial Attacks on NT2 Trained with the GenoAdv Dataset.
This table compares the performance of Nucleotide Transformers-2 (NT2) trained with adversarial
examples from the GenoAdv dataset. Three attack methods (BERTAttack, TextFooler, and PGD)
are used to evaluate the models, with results reported in terms of Attack Success Rate (ASR). The
best result is highlighted in bold, while the second-best result is underlined.

Epigenetic Marks Prediction

Attack H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

TextFooler 65.28 100.00 100.00 100.00 100.00 100.00
PGD 29.13 23.43 21.88 29.53 31.75 22.90
BERT_Attack 100.00 100.00 99.84 100.00 95.67 100.00

Epigenetic Marks Prediction Promoter Detection (300bp)

Attack H3K79me3 H3K9ac H4 H4ac all notata tata

TextFooler 100.00 100.00 63.67 100.00 53.67 100.00 24.35
PGD 24.51 26.87 28.29 22.67 29.39 2.19 13.01
BERT_Attack 100.00 100.00 91.56 100.00 100.00 100.00 100.00

Transcription Factor Prediction (Human) Core Promoter Detection

Attack tf0 tf1 tf2 tf3 tf4 all notata tata

TextFooler 100.00 100.00 100.00 100.00 100.00 100.00 100.00 24.50
PGD 22.17 21.76 26.96 23.33 26.32 45.80 28.48 28.69
BERT_Attack 99.81 100.00 98.91 100.00 100.00 100.00 100.00 100.00

Transcription Factor Prediction (Mouse)

Attack 0 1 2 3 4

TextFooler 31.09 100.00 13.31 8.88 80.71
PGD 9.09 28.69 13.56 26.81 28.02
BERT_Attack 100.00 98.99 100.00 100.00 100.00
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