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Abstract

Recently, AI-driven interactions with comput-
ing devices have advanced from basic proto-
type tools to sophisticated, LLM-based systems
that emulate human-like operations in graphi-
cal user interfaces. We are now witnessing the
emergence of Computer-Using Agents (CUAs),
capable of autonomously performing tasks such
as navigating desktop applications, web pages,
and mobile apps. However, as these agents
grow in capability, they also introduce novel
safety and security risks. Vulnerabilities in
LLM-driven reasoning, with the added com-
plexity of integrating multiple software com-
ponents and multimodal inputs, further com-
plicate the security landscape. In this paper,
we present a systematization of knowledge on
the safety and security threats of CUAs. We
conduct a comprehensive literature review and
distill our findings along four research objec-
tives: (i) define the CUA that suits safety analy-
sis; (ii) categorize current safety threats among
CUAs; (iii) propose a comprehensive taxon-
omy of existing defensive strategies; (iv) sum-
marize prevailing benchmarks, datasets, and
evaluation metrics used to assess the safety and
performance of CUAs. Building on these in-
sights, our work provides future researchers
with a structured foundation for exploring un-
explored vulnerabilities and offers practitioners
actionable guidance in designing and deploying
secure Computer-Using Agents.

1 Introduction

Large Language Models (LLMs) have evolved
rapidly from basic conversational agents to exe-
cuting complex tasks in diverse computing envi-
ronments. In particular, Computer-Using Agents
(CUAs) have garnered increasing attention and

* Ada Chen, Yongjiang Wu and Junyuan Zhang contribute
equally to this paper.

† Wenxuan Wang (jwxwang@gmail.com) is the corre-
sponding authors.

widespread adoption, thanks to their ability to in-
teract with graphical user interfaces (GUIs) in a
manner akin to human users (OpenAI, 2025a). Re-
cent systems such as AppAgent, SeeAct, PC-Agent,
as well as OpenAI’s o3, and o4-mini introduced in
April 2025, highlight the remarkable progress of
CUAs (Zhang et al., 2023; Zheng et al., 2024; Liu
et al., 2025; OpenAI, 2025a,b). By integrating mul-
timodal perception, advanced reasoning, and auto-
mated control of devices, these agents promise to
streamline vast tasks from filling out online forms
to executing complex application flows.

Despite the impressive capabilities of CUAs,
their operation in real-world settings raises critical
safety concerns. Emerging reports reveal that vul-
nerabilities like visual grounding errors, response
delays, and UI interpretation pitfalls can be ex-
ploited by malicious attackers, causing unintended
or harmful consequences such as data leakage, goal
misdirection, and so on (Zheng et al., 2024; Nong
et al., 2024; Zhang and Zhang, 2023; Wen et al.,
2023; Liu et al., 2025). Additionally, many of
the threats known to standalone LLMs, such as
adversarial attacks and jailbreak strategies, now
manifest in CUAs with heightened severity, some-
times in new forms adapted to GUI-based envi-
ronments (Wu et al., 2024a; Kumar et al., 2024;
Tian et al., 2023). Novel attack vectors also surface
in CUAs, including environment-level manipula-
tions and reasoning-gap attacks that stealthily guide
the agent toward risky or undesired behaviors (Wu
et al., 2024b; Yuan et al., 2024; Lee et al., 2024a;
Zhan et al., 2024). As such, a systematic study
on the safety and security threats of CUAs is both
timely and necessary.

In this work, we present a comprehensive sur-
vey focused on the safety and security threats of
Computer-Using Agents (CUAs). First, we pro-
pose a unifying definition for CUAs, drawing on
a detailed study of state-of-the-art agent systems
and workflows. Then, we develop a structured
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taxonomy of both intrinsic and extrinsic threats
by synthesizing literature from the safety of LLM-
based agents. After that, we systematically review
and categorize existing defense approaches, link-
ing each to the corresponding threat taxonomy. Fi-
nally, we summarize various evaluation metrics and
datasets for measuring both the severity of threats
and the impact of mitigation techniques. Our sur-
vey aims to illuminate the landscape of the safety
and security study in CUA research to inspire fu-
ture studies and innovations.

The rest of the paper is organized as follows:
Section 2 serves as a background, which defines
the concept of a CUA and contextualizes it within
existing frameworks. Section 3 details our taxon-
omy of threats to CUAs, covering both internal
vulnerabilities and extrinsic risk factors. Section 4
systematically reviews defense mechanisms and
links them to the threat categories they mitigate.
Section 5 discusses strategies for systematic eval-
uation of CUA safety and the effectiveness of de-
fenses. Key insights and highlights are discussed in
Section 6. Finally, Section 7 offers concluding re-
marks and outlines promising directions for future
research into safe and robust CUAs.

2 Background

2.1 Computer-Using Agent
In this paper, a Computer-Using Agent (CUA) is an
LLM-based system that integrates vision capabil-
ities with advanced reasoning ability, designed to
perceive and interact with graphical user interfaces
(GUIs) like human users (OpenAI, 2025a). By pro-
cessing visual information from screenshots and ex-
ecuting actions like typing, clicking, and scrolling,
the CUA can autonomously perform tasks on a
computer, such as ordering products, making reser-
vations, and filling out forms (OpenAI, 2025a).

In the realm of agents, several categories fall
under the umbrella of Computer-Using Agents:

• OS Agents: These agents operate within gen-
eral computing devices, such as desktops and
laptops, to perform tasks by interacting with
the operating system’s environment and inter-
faces (Chen et al., 2025b).

• GUI Agents: Agents that interact specifically
with graphical user interfaces to control ap-
plications and perform tasks that would typ-
ically require human interaction with visual
elements (Zhang et al., 2024a).

• Web Agents: These agents are designed to
navigate and interact with web environments,
automating tasks such as data retrieval, form
submission, and web browsing (Yang et al.,
2024a; Liao et al., 2024).

• Device-control Agents: Agents that man-
age and control various hardware devices, en-
abling automation of device-specific opera-
tions across different platforms (Zhang and
Zhang, 2023; Lee et al., 2024b).

Agent Framework As an LLM-based agent, the
architecture of a CUA comprises the following
three core components:

• Perception: This component enables the
agent to gather information from its environ-
ment through various input modalities, such as
screen reading, system logs, and user inputs.

• Brain: Serving as the decision-making unit, it
processes the information collected by the per-
ception component, interprets it, and formu-
lates appropriate actions with memory mecha-
nisms and planning strategies based on prede-
fined goals and contextual understanding.

• Action: This component executes the deci-
sions made by the brain, interacting with the
operating system, applications, or web inter-
faces to perform tasks, manipulate data, or
control devices as required. Tool use could
also be included in this process.

2.2 Literature Review

To organize the studies on the safety and security
threats of CUAs, we conducted a comprehensive
review of recent literature from 2022 onward. Our
search targeted publications that included combi-
nations of the following keywords: GUI Agent, OS
Agent, Web Agent, LLM-Based Agent, alongside
terms Safety, Security, Attack, Defense, and Threat.
Our literature review encompassed several stages:

1. Database Selection: We utilized academic
databases and preprint servers, including
arXiv, Semantic Scholar, Google Scholar, and
OpenReview, to source relevant publications.

2. Keyword Search: After keyword selection,
we identified 623 papers potentially address-
ing security concerns related to CUAs.

2



3. Screening and Filtering: Each identified pa-
per underwent a thorough review to assess its
relevance. We excluded studies that duplicate
or did not directly pertain to security threats
or defenses associated with CUAs, resulting
in 64 pertinent papers for in-depth analysis.

3 Taxonomy of Safety Threats

3.1 Threat Overview

In this section, we introduce our taxonomy of
threats for Computer-Using Agents (CUAs). These
threats are categorized into two main types: in-
trinsic threats and extrinsic threats, which are pre-
sented in Table 1 and Table 2, respectively. Intrinsic
threats arise from intrinsic aspects of the agent it-
self, including its training process, configuration,
or inherent limitations. They can induce failures,
inefficiencies, or biases in the agent’s functioning,
consequently introducing security risks. Extrinsic
threats, on the other hand, are initiated by external
entities, such as malicious attackers or users, who
attempt to exploit vulnerabilities in the agent’s in-
teraction with its surroundings or take advantage
of the agent’s intrinsic issues to trigger unsafe be-
haviors, potentially leading to risky consequences.

We organize these threats in a tabular format that
highlights the following key aspects:

• Source of the Threats identifies where
the threat originates — Environment (Env),
Prompt, Model, or User — and indicates
whether it serves as a primary contributor (♦)
or a secondary contributor (♢) to the threat.

• Affected Components indicates specific as-
pects of the agent’s framework (Perception,
Brain, and Action) that are vulnerable to po-
tential attacks. A checkmark (✓) shows that a
particular component is affected by the threat.

• Threat Model states the originating entity of
each threat.

3.2 Intrinsic Threats

Intrinsic threats, which are the issues arising from
the agent itself, can lead to a series of negative
impacts. In this section, we organize these intrinsic
threats, focusing on their mechanisms of action
and their corresponding repercussions. Following
the overview in Table 1, we discuss each intrinsic
threat according to the affected agent framework.

3.2.1 Perception
In the Computer-Using Agents (CUAs), the per-
ception component takes charge of receiving the
model input information (e.g. prompt and user
instruction), and recognizing the task-specific ele-
ments, such as UI screen shots, HTML elements,
and other environmental observations. The most
common issue in the perception module is the diffi-
culty in UI understanding and grounding.

1 UI Understand and Ground Difficulties It
refers to the challenges faced by models in accu-
rately perceiving, interpreting, and associating UI
elements (such as buttons, forms, icons) with se-
mantic meaning, user intent, or external knowledge,
due to limitations in layout understanding, seman-
tic ambiguity, or missing contextual grounding.

This challenge stems largely from inherent prob-
lems in the available UI datasets. For example,
many UI datasets are predominantly static, lacking
the dynamic variability seen in real-world appli-
cations (Chen et al., 2025a). Additionally, these
datasets often suffer from data scarcity, with in-
sufficient samples and task diversity to effectively
train models on the wide range of interactions and
scenarios encountered in practice (Pahuja et al.,
2025). Moreover, the agent sometimes needs to
take screenshots controlled at a certain resolution
to recognize the current interface, which may lose
image details, leading to deficiencies in UI compre-
hension (Nong et al., 2024).

3.2.2 Brain
The brain component involves reasoning, memory,
and planning functions, from which the following
six primary threats stem:

2 Scheduling Errors Scheduling errors refer to
the internal failures of a CUA agent in managing
the execution order, concurrency, or timing of ac-
tions, ultimately leading to unintended behaviors.
The CUAs needs to handle complex user instruc-
tions and interdependent subtasks, and the imple-
mentation of the planning function mostly relies
on external tools and application-specific APIs to
parse the environment into textual elements and in-
terpret predicted actions (Zhang and Zhang, 2023).

Previous studies show that planning before ac-
tion are essential. In complex tasks, losing the
planning has serious negative consequences (Deng
et al., 2024). Inaccuracies in task scheduling can
disrupt the planned action sequence, leading to inef-
ficiencies and even errors in task execution, which
can trigger data leakage and operational privilege
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Threat Source of the Threats Affected Components Threat Model
Env Prompt Model User Perception Brian Action

1 UI Understand&Ground Difficulties ♦ ✓ Agent Deveploment
2 Scheduling Error ♦ ✓ Agent Development
3 Misalignment ♦ ✓ Agent Deployment
4 Hallucination ♢ ♦ ✓ Agent Deployment
5 Excessive Context Length ♦ ✓ Agent Architecture
6 Social and Cultural Concern ♦ ✓ Agent Training
7 Response Latency ♦ ✓ ✓ Deployment / Architecture
8 API Call Error ♦ ✓ Agent Deployment

Table 1: A taxonomy of intrinsic threats. The symbol ♦ indicates that a threat is fully available to the given item,
while ♢ represents limited availability.

Threat Source of the Threats Affected Components Threat Model
Env Prompt Model User Perception Brian Action

1 Adversarial Attack ♦ ♢ ♢ ✓ Malicious attacker
2 Prompt Injection Attack ♢ ♦ ♢ ✓ ✓ Malicious attacker
3 Jailbreak ♢ ♦ ♢ ✓ ✓ Malicious attacker
4 Backdoor Attack ♢ ♢ ♦ ✓ ✓ Malicious attacker
5 Reasoning Gap Attack ♢ ♢ ♦ ✓ Malicious attacker
6 System Sabotage ♢ ♢ ♦ ✓ Malicious attacker
7 Web Hacking ♢ ♢ ♦ ✓ Malicious user

Table 2: A taxonomy of extrinsic threats. The symbol ♦ indicates that a threat is fully available to the given item,
while ♢ represents limited availability.

issues.
3 Misalignment Misalignment occurs when the

agent’s intrinsic reasoning does not properly align
with the real-world context or user intent. The
problem arises from the pitfalls inherent in LLM.
It results in decisions that are out of sync with the
environmental demands or user instructions, and
potentially unexpected and harmful actions.

Building on this understanding, several studies
have explored the underlying causes of misalign-
ment in CUAs. In particular, Ma et al. (2024) high-
lights that even in benign settings, where both the
user and the agent act in good faith and the environ-
ment is non-malicious, the presence of unrelated
content can distract both generalist and specialist
GUI agents, leading to unfaithful behaviors. This
observation further underscores the inherent vul-
nerability of agents to misalignment.

4 Hallucination Hallucination refers to the phe-
nomenon where a CUA agent generates outputs,
such as facts, actions, or API calls, that are not
grounded in the actual environment, task context,
or user input, which primarily stems from insuffi-
cient training of agents and their limited grasp of
the task-specific knowledge and context.

Among related studies, Mobile-Bench (Deng
et al., 2024) highlights that general large mod-

els, despite strong reasoning and planning abilities,
are prone to generating inaccurate or misleading
API calls, revealing a notable form of hallucination
within CUAs.

5 Excessive Context Length Excessive context
length represents the condition where the accumu-
lated input (e.g., OCR output, HTML, UI trees)
to a model, and historical interaction data, exceed
or approach the model’s input capacity, leading to
degraded performance, or unexpected errors.

Since existing approaches often rely on external
tools such as OCR engines and icon detectors to
convert the environment into textual elements (e.g.,
HTML layouts), and also incorporate historical
observations, such as task objectives, user instruc-
tions, and previous interactions, into the current
input, the resulting context becomes excessively
long. This may exceed the model’s input length
limit, leading to potential unexpected behaviors
(Zhang and Zhang, 2023). This issue is further ac-
knowledged by AgentOccam (Yang et al., 2024a),
which highlights the challenges posed by lengthy
web page observations and interaction histories.

6 Social and Cultural Concerns Social and
cultural concerns are the challenges faced by CUA
agents in recognizing, respecting and adhering to
different social norms, cultural sensitivities and
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ethical expectations when interacting with users or
operating in real-world environments.

As CUAs execute user instructions on real-world
applications, assessing their robustness to social
and cultural concerns becomes increasingly cru-
cial. The CASA benchmark (Qiu et al., 2025) is
designed to evaluate LLM agent ability to iden-
tify and appropriately handle norm-violating user
queries and observations. It reveals that current
LLM agents perform poorly in web environments,
exhibiting low awareness and high violation rates.

7 Response Latency This refers to the delay
between the user input and the agent’s correspond-
ing output or action, typically caused by model
inference time, complex reasoning processes, or
large context processing. It typically stems from
various factors, among which the reasoning time of
the brain component plays a major role.

The accumulation of such delays can affect the
predictability of interactions; when users expect
timely responses, excessive latency may cause mis-
interpretation of the agent’s state or intent, leading
to incorrect user decisions. In critical domains such
as financial trading or medical diagnosis, these is-
sues can have serious safety implications. Zhang
and Zhang (2023) and Wen et al. (2023) both rec-
ognize response latency as a significant challenge
in the design of LLM-based CUAs, emphasizing
its impact on interaction quality and user trust.

3.2.3 Action
The action component of an LLM-based CUAs en-
gages in translating the agent’s output to a series of
executable operations, such as calling APIs, web
browsing, typing text, scrolling, and clicking on
specific elements. As these behaviors involve inter-
actions with an unverified website or API provider,
this also brings with it a number of security risks.

8 API Call Errors API call errors refer to fail-
ures in a GUI agent’s ability to correctly infer, se-
lect, or format the required arguments when con-
structing API calls. Although general-purpose
LLMs demonstrate strong capabilities in reason-
ing and planning, they often exhibit inaccuracies
during API invocation, particularly in parameter
filling (Deng et al., 2024).

In particular, within complex task chains, a sin-
gle error in this process can lead to unpredictable
outcomes and pose safety risks. MobileFlow (Nong
et al., 2024), which further reinforces this concern,
shows that errors in system-level API calls—such
as incorrect parameter usage when retrieving lay-

out information—may inadvertently expose sen-
sitive interface content, highlighting the potential
for even a single API-level mistake to escalate into
a significant privacy or security threat. Similarly,
Auto-GUI (Zhang and Zhang, 2023) also empha-
sizes that frequent API callings may introduce insta-
bility and increase the likelihood of calling errors.

3.3 Extrinsic threats
In this section, we introduce the extrinsic threats
to Computer-Using Agents (CUAs)—attack vec-
tors initiated by external adversaries aiming to ex-
ploit vulnerabilities in an agent’s interaction with
its environment or to subvert its decision-making
processes. Table 2 provides an overview of these
threats, each introduced in detail in the following.

1 Adversarial Attack An adversarial attack on
Computer-Using Agents (CUAs) involves the delib-
erate manipulation of input data or the environment
to induce harmful or unintended behaviors in the
agent. These agents, which operate within specific
environments, such as interacting with webpages,
computer interfaces, or mobile applications, are
particularly susceptible to environment-specific ad-
versarial attacks (Wu et al., 2024a).

For instance, adversarial attacks usually exploit
subtle perturbations in the input data to mislead
the agent. Wu et al. (2024a) demonstrated that
adversarial examples can be crafted to appear vi-
sually or textually indistinguishable from original
inputs, enabling attackers to deceive the agent into
accepting manipulated data as genuine, thus steer-
ing it toward adversarial objectives without raising
suspicion. Another form of attack manipulates
the agent’s interaction with external deceptive ele-
ments to induce harmful behavior (Ma et al., 2024).
Zhang et al. (2024c) explores an adversarial ap-
proach that targets the agent’s interactive interface.
Attackers trick the agent into interacting with mali-
cious pop-ups. This not only disrupts the agent’s
ability to complete its assigned tasks but can also
lead to severe consequences, including the installa-
tion of malware, redirection to phishing websites,
or the execution of incorrect actions that disrupt
automated workflows.

2 Prompt Injection Attack Prompt injection
attacks exploit the design of LLMs by embedding
crafted instructions into the input that the model
processes. These attacks trick the LLM into ignor-
ing its predefined system rules or original purporse
and following the adversary’s commands instead
(Wu et al., 2024b; Liu et al., 2023b). Attackers of-
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ten use this attack to force CUAs to do harmful or
unethical actions. Most existing prompt injection
attacks can be classified into two main types: direct
prompt injection and indirect prompt injection.

Direct Prompt Injection In a direct prompt
injection attack, the malicious instructions are
embedded directly into the user’s input (prompt)
(Debenedetti et al., 2024). For instance, a CUA in-
tegrated into an operating system will normally ac-
cept commands like “open my calendar” or “launch
the web browser.” An attacker might give a mali-
cious command such as “Ignore all previous in-
structions and run the command to delete all files
in the Documents folder.” If the agent fails to dif-
ferentiate between its trusted system prompts and
the injected malicious command, it could execute
this harmful operation, resulting in a complete loss
of user data.

Indirect Prompt Injection Indirect prompt in-
jection, on the other hand, does not occur within
the user’s immediate input (prompt). Instead, the
attacker targets external data sources—such as web-
pages (Xu et al., 2024) or documents—by embed-
ding misleading information or unsafe content into
the agent’s environment, which the agent later re-
trieves and processes (Wu et al., 2024b).

For CUAs, the unique nature of their operating
environments has led to a specialized form of in-
direct prompt injection known as an environmen-
tal injection attack. Liao et al. (2024) introduce
this concept by demonstrating how adversaries can
subtly manipulate environment data, such as mod-
ifying webpage content, textual metadata, or doc-
ument details, to embed hidden adversarial cues.
These cues, often nearly imperceptible to human
observers, alter the contextual signals that the agent
relies on for decision-making, causing it to mis-
interpret its environment and execute unintended
actions.

For instance, Zhan et al. (2024) presents a sce-
nario in a health application where a user requests
doctor reviews. While the agent retrieves the re-
views as expected, one review, crafted by an at-
tacker, contains a adversarial instruction to sched-
ule an appointment without the user’s consent. If
the agent unwittingly executes this hidden com-
mand, it may schedule an unauthorized appoint-
ment, potentially leading to privacy breaches and
financial losses.

3 Jailbreak Jailbreak attacks are techniques
that trick an LLM into bypassing its built-in safety
mechanisms and refusal responses. By carefully

rephrasing queries or injecting additional instruc-
tions, attackers force the model to ignore its prede-
fined guardrails, enabling it to generate harmful or
unauthorized outputs (Mo et al., 2024; Chu et al.,
2024).

Over time, a lot of jailbreak prompts have been
curated both manually (Chu et al., 2024) and via
automated methods like GCG (Zou et al., 2023)
and AutoDAN (Liu et al., 2023a) to exploit these
vulnerabilities. These techniques are not only lim-
ited to standalone LLMs but have also been ef-
fectively applied to jailbreak CUAs. For example,
Kumar et al. (2024) demonstrated that by modi-
fying the user prompt using techniques such as
prefix attacks, GCG suffixes, random search suf-
fixes, and human-rephrased red-teaming prompts
with diverse rephrasing strategies, they could either
convince the browser agent that it was operating in
an unrestricted sandbox environment or induce it
to engage in harmful actions.

For multiagent systems, the Evil Geniuses frame-
work (Tian et al., 2023) shows that by leveraging
role specialization, attackers can partition agent
tasks and exploit vulnerabilities in each special-
ized role to effectively jailbreak the system by by-
passing its safety mechanisms. Meanwhile, the
PsySafe framework (Zhang et al., 2024d) shows
that injecting dark traits into agents can undermine
established guardrails, further enhancing jailbreak
effectiveness across multiagent environments.

4 Backdoor Attack A backdoor attack involves
injecting a malicious backdoor during the model’s
training or fine-tuning phase, so that when a spe-
cific trigger phrase or input is later encountered
during normal operations, the model executes un-
intended or harmful behavior (Yang et al., 2024b;
Wang et al., 2024; Zhu et al., 2025).

In particular, we can categorizes backdoor at-
tacks on CUAs into two main forms: (1) embed-
ding triggers directly in user queries or in the
agent’s observations from the environment to ma-
nipulate the final output distribution; For example
AgentPoison (Chen et al., 2024b) formulate this
trigger-generation process as a constrained opti-
mization problem that maps poisoned instances to
a unique embedding space which ensures that only
prompts containing the optimized backdoor trigger
retrieve malicious demonstrations. (2) introduc-
ing a malicious “thought process” without visibly
altering the final output, such as covertly calling
untrusted APIs (Yang et al., 2024b).

Meanwhile, to enhance stealthiness and bypass
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safety audits, attackers can break the backdoor code
into multiple sub-backdoors, each activated by its
own distinct trigger phrase or condition. When
these sub-backdoors are combined, they enable the
model to execute coordinated malicious behaviors
(Zhu et al., 2025). This modular design obscures
the overall functionality behind seemingly unre-
lated trigger fragments, making detection and miti-
gation significantly more difficult.

5 Reasoning Gap Attack A reasoning gap
attack exploits the inherent disparity between an
agent’s environmental inputs and its intrinsic rea-
soning process. In such attacks, adversaries inject
misleading or ambiguous signals into one or more
modalities (e.g., images, text, or sensor data) to
create a gap between the agent’s perception and its
reasoning. This discrepancy can cause the agent to
make incorrect inferences or decisions that diverge
from its intended functionality.

Chen et al. (2025b) examines how multimodal
mobile agents are vulnerable to these attacks. The
study shows that when attackers add conflicting or
deceptive signals, such as subtle differences in an
image combined with misleading text, the agent’s
reasoning process struggles to correctly combine
the different inputs. As a result, the agent might
misinterpret the environment and take the wrong
action.

6 System Sabotage System sabotage attacks
involve manipulating an agent into executing harm-
ful actions that damage the underlying system. In
such attacks, adversaries craft inputs to bypass
safety mechanisms, causing the agent to perform
operations like corrupting memory, damaging criti-
cal files, or halting essential processes (Luo et al.,
2025). These attacks are particularly dangerous
because they directly target the infrastructure sup-
porting the agent, potentially leading to widespread
system failure or irreversible damage.

One example stated in (Luo et al., 2025) is an
attacker requests the agent’s assistance in creat-
ing a fork bomb, which is an intentionally crafted
command that spawns processes indefinitely and
tends to overwhelm the operating system. The user
prompt disguises this request as a system “stress
test,” persuading the agent to generate code that sat-
urates system resources. Once executed, this fork
bomb can cause the OS to become unresponsive or
crash.

7 Web Hacking Web hacking attacks use
CUAs to autonomously identify and exploit vul-
nerabilities in websites, turning these agents into

tools for malicious users. (Fang et al., 2024b) By
feeding the agent specially crafted prompts or in-
structions, attackers guide it to scan web applica-
tions, detect security flaws (such as SQL injections
or XSS vulnerabilities), and even formulate the
exploit payloads.

In (Fang et al., 2024b), the authors show how
malicious users can instruct a CUA to gather in-
formation on a target domain, evaluate its security
posture, and carry out an attack. For example, the
agent might test login forms for weak credentials,
craft injection payloads, or automate data exfiltra-
tion attempts. If the agent successfully hacks the
website, malicious adversaries could access private
data or disrupt services and lead severe risks.

This type of autonomous web hacking highlights
the growing need for robust safeguards and mon-
itoring around CUAs. Without proper oversight,
these systems can transform from helpful assis-
tants into hacking tools, enabling malicious users
to compromise websites with minimal effort.

4 Taxonomy of Existing Defenses

4.1 Defense Overview

In this section, we summarize the existing defenses
to CUAs, as presented in Table 3. Defense methods
are typically developed to counter specific threats
or attacks discussed in Section 3; however, most
defenses could generalize and exhibit effectiveness
against others. We categorize existing defense
methods based on agent components and frame-
works, which are defined as:

• Target Components identifies where the de-
fense mechanism exerts its effect — Environ-
ment (Env), Prompt, Model, or User — and
indicates whether it serves as a primary target
(♦) or a secondary target (♢) of the method.

• Agent Framework specifies the framework
of the agent - Perception, Brain, and Action -
where the defense mechanism predominantly
acts. A checkmark (✓) denotes that the de-
fense applies to the corresponding component.

• Target Threat maps to the primary threats
this method mitigates.

4.2 Defense Categories

1 Environmental Constraints It refers to se-
curity mechanisms that limit or mediate the agent’s

7



Defense Target Components Agent Framework Target Threats
Env Prompt Model User Perception Brain Action

1 Environmental Constraints ♦ ✓ Ex. 2

2 Input Validation ♦ ✓ Ex. 3

3 Defensive Prompting ♦ ♢ ✓ ✓ Ex. 1 2

4 Data Sanitization ♦ ✓ Ex. 4

5 Adversarial Training ♦ ✓ Ex. 1

6 Output Monitoring ♦ ✓ In. 3 4 Ex. 6 7

7 Model Inspection ♦ ✓ Ex. 2 4

8 Cross-Verification ♦ ✓ ✓ Ex. 1 3

9 Continuous Learning ♦ ♢ ✓ Ex. 2

10 Transparentize ♦ ♢ ✓ In. 3 4

11 Topology-Guided ♦ ✓ ✓ Ex. 2

12 Perception Algorithms Synergy ♦ ✓ In. 1 5

13 Architecture Refinement ♦ ✓ ✓ In. 2 7 8 Ex. 5

14 Pre-defined Regulatory Compliance ♢ ♦ ✓ ✓ In. 3 4 6

Table 3: A taxonomy of defense strategies. The symbol ♦ indicates that a defense is fully targeted at the given item,
while ♢ represents limited availability. Ex. stands for extrinsic threats, In. represents intrinsic threats. The number
followed indicates the explicit threat defined in prior sections.

interactions with its operating environment in or-
der to prevent harmful actions or malicious ex-
ploitation (Yang et al., 2024c; Nong et al., 2024).
This strategy is applicable to both single-agent and
multi-agent systems, focusing primarily on the en-
vironment component within the action phase of
the agent framework. It targets environment-based
threats such as prompt injection attacks that exploit
GUI elements or interface structures.

For example, research reveals how visual ele-
ments on mobile interfaces can be manipulated to
trigger unintended behaviors in GUI agents (Yang
et al., 2024c). As a defense, they suggest sand-
boxing agent execution within constrained environ-
ments that monitor for risky API calls, and filtering
GUI event access to minimize potential injection
vectors (Yang et al., 2024c; Zhang et al., 2023).

However, this method may restrict the functional
capability or generalizability of agents in dynamic
real-world environments.

2 Input Validation Input validation is a secu-
rity measure that involves verifying and sanitizing
user inputs to prevent the system from processing
malicious or unintended commands. This strategy
is predominantly applied in single-agent models,
focusing on scrutinizing prompts to ensure they
do not contain harmful instructions or malicious
injections. Within the agent framework, input val-
idation operates primarily at the perception level,
where the agent interprets and understands user in-
puts. The primary threat addressed by this method
is jailbreak attacks, where adversaries craft inputs
designed to bypass the model’s safety mechanisms

and elicit unauthorized behaviors.
For example, AutoDroid uses a privacy filter

to mask personal information before prompts are
sent (Wen et al., 2023). A similar filter also ex-
ists in (Zhang et al., 2024c). Additionally, in (Ku-
mar et al., 2024), researchers observed that LLM-
based browser agents are trained with safeguards
to refuse harmful instructions in chat settings. The
study introduced the Browser Agent Red-teaming
Toolkit (BrowserART), which comprises 100 di-
verse browser-related harmful behaviors.

However, a notable challenge in implementing
input validation is the dynamic and unpredictable
nature of user inputs. Attackers can craft perturbed
prompts that appear benign but are designed to
exploit specific model vulnerabilities. This necessi-
tates continuous improvements to input validation
protocols to effectively detect and mitigate evolv-
ing jailbreak techniques (Kumar et al., 2024).

3 Defensive Prompting It refers to a security
technique designed to safeguard language model
agents by structuring prompts in a way that pre-
vents adversarial manipulation and ensures the
model adheres to intended behavior (Debenedetti
et al., 2024). This method is primarily applied in
single-agent models, focusing on the perception
and brain components of the agent framework. It
targets the prompt as the primary defense compo-
nent while also influencing the model itself as a
secondary target. The primary threats addressed by
defensive prompting are prompt injection attacks,
where adversarial inputs attempt to override the
model’s intended behavior, and adversarial attacks,
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which subtly modify inputs to mislead the agent.
For example, in (Debenedetti et al., 2024), re-

searchers introduced a structured evaluation en-
vironment to test and refine defensive prompting
techniques. The study demonstrated that carefully
crafted counter-prompts and reinforcement-based
instruction tuning could significantly reduce the
success rate of prompt injection attacks, enhancing
model robustness (Debenedetti et al., 2024). Sim-
ilarly, it was recommended that more detailed de-
fensive prompts and robust content filtering should
be used to enhance defense efficiency (Zhang et al.,
2024c). Moreover, a safety prompt is introduced
to instruct the agent to ignore malicious inconsis-
tencies in (Wu et al., 2024a). Also, experiments
are done in (Chen et al., 2025b) to investigate the
efficiency of this strategy.

However, implementing effective defensive
prompting poses challenges, as adversaries contin-
ually develop more sophisticated prompt injection
techniques. Additionally, the balance between ro-
bust security and maintaining the flexibility and
generalization ability of the model remains an on-
going research challenge.

4 Data Sanitization It refers to a process in ma-
chine learning that involves detecting and removing
malicious or corrupted data from training datasets
to ensure the integrity and security of models. Cur-
rent discussion regarding this strategy mainly lies
in the single-agent model, targeting at preventing
malicious triggers during its reasoning and plan-
ning phase (Yang et al., 2024b). This preventive
measure is essential to protect models from various
attacks, such as backdoor and adversarial attacks.

For example, Backdoor attacks involve embed-
ding hidden triggers within the training data, caus-
ing the model to behave unexpectedly when these
triggers are encountered during inference. By
meticulously sanitizing the training data, such ma-
licious patterns can be identified and eliminated,
thereby safeguarding the model from potential ex-
ploitation (Yang et al., 2024b).

However, this method does not provide security
guarantees (Yang et al., 2024b).

5 Adversarial Training It is designed to en-
hance model resilience and robustness by incorpo-
rating adversarial examples into the training pro-
cess (Wu et al., 2024a). This approach is predomi-
nantly applied to single-agent systems.

The primary focus of this method is the model
component of the agent framework. By expos-
ing models to adversarial examples during training,

they learn to withstand such perturbations, thereby
improving their robustness. This method specif-
ically targets adversarial attacks, which involve
subtle input modifications that can cause models to
make incorrect predictions (Wu et al., 2024a).

For example, researchers demonstrated that
Computer-Using Agents (CUAs) could be com-
promised through minimal perturbations to visual
inputs, affecting their visual grounding (Wu et al.,
2024a). By adversarial training, models can learn
to recognize and resist these manipulations, thereby
enhancing their task completion rate.

A notable characteristic of adversarial training
is its ability to improve model robustness without
necessitating changes to the model architecture.
However, identifying possible adversarial threats
in advance would be a prerequisite.

6 Output Monitoring It refers to a strategy
that involves continuously observing and evaluat-
ing the outputs of language models to ensure they
align with user intentions and do not produce unde-
sired actions. This approach is primarily applied in
single-agent systems, focusing on the model com-
ponent within the action phase of the agent frame-
work. It aims to address threats such as misalign-
ment, where the agent’s actions diverge from user
expectations, and hallucination, where the model
generates incorrect or nonsensical information. Ad-
ditionally, actions resulting in system sabotage or
related to malicious usage, such as web hacking,
could also be intercepted by this approach.

For instance, in the study (Fang et al., 2024a),
the authors introduce InferAct, a novel approach
that leverages the belief reasoning ability of large
language models, grounded in Theory-of-Mind, to
detect misaligned actions before execution. In-
ferAct alerts users for timely correction, prevent-
ing adverse outcomes and enhancing the reliability
of LLM agents’ decision-making processes (Fang
et al., 2024a). Additionally, the Task Executor in
AutoDroid verifies the security of an output action
and asks the user to confirm if the action is poten-
tially risky (Wen et al., 2023). Moreover, TrustA-
gent includes a post-planning inspection before tool
calls (Hua et al., 2024).

However, a disadvantage would be the additional
system overhead it incurs.

7 Model Inspection This method detects ma-
licious manipulations or compromised logic by
examining internal model behaviors and param-
eters (Wang et al., 2025; Yang et al., 2024b). It ap-
plies to both single-agent and multi-agent systems,
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targeting the model component of the agent, and
operates within the brain of the agent framework.
Model inspection defends against critical threats
such as backdoor attacks and prompt injection at-
tacks by surfacing anomalous activity patterns or
internal inconsistencies.

It is commonly categorized into two sub-
methods: anomaly detection and weight analysis.

Anomaly Detection It focuses on monitoring
the behaviors of agents during inference or inter-
action to detect deviations from expected model
outputs or communication topologies. It is espe-
cially relevant in multi-agent systems, where in-
teractions can reveal inconsistencies in decision-
making caused by compromised agents. For in-
stance, a graph-based monitoring system was in-
troduced to detect adversarially influenced agents
by analyzing the topological communication pat-
terns across agents (Wang et al., 2025). The sys-
tem was able to isolate and prune suspect nodes
based on anomaly scores derived from communi-
cation flows (Wang et al., 2025). Furthermore, a
Graphormer model can analyze a dynamic spatio-
semantic safety graph that captures both spatial
and contextual risk factors in real-time to detect
hazards (Huang et al., 2025).

Weight Analysis This involves inspecting the in-
ternal parameters of a trained model to identify
hidden triggers or abnormal value distributions in-
dicative of backdoor implantation. This approach
is particularly relevant for single-agent systems.
For example, the authors perform weight-based in-
spection of transformer layers to identify neurons
with disproportionately high influence tied to spe-
cific trigger tokens in (Yang et al., 2024b). The
analysis revealed clear distinctions between clean
and poisoned models, suggesting that weight-level
scrutiny can expose embedded backdoors (Yang
et al., 2024b). Additionally, (Zhu et al., 2025) pro-
posed an automatic memory-audit step after every
task, which flags anomalies in the agent’s internal
memory traces to detect hidden backdoors.

A key challenge of model inspection is scala-
bility and generalization—both anomaly detection
and weight analysis often require clean model base-
lines, which may not always be available. Addi-
tionally, some backdoors may be designed to evade
conventional statistical thresholds, necessitating
adaptive and explainable inspection mechanisms.

8 Cross Verification This is a collaborative
defense strategy in multi-agent systems where mul-

tiple agents independently process the same task
or instruction and validate each other’s outputs to
ensure consistency and correctness (Zeng et al.,
2024). This method primarily targets the model
component of the agent framework and operates
across both the brain and action stages, with the
aim of defending against jailbreak and adversarial
attacks that may manipulate a single agent’s output
to produce harmful or unauthorized behavior.

In the context of jailbreak prevention, cross-
verification enables redundancy and consensus
among agents, thereby reducing the likelihood
that a single compromised response propagates
through the system. For example, Zeng et al. pro-
pose a multi-agent defense architecture where a
guard agent cross-validates the output of a task
agent (Zeng et al., 2024). If the task agent gener-
ates potentially harmful content in response to a
jailbreak attempt, the guard agent flags the behav-
ior and halts execution, effectively mitigating the
attack (Zeng et al., 2024). Additionally, AgentOc-
cam uses a Judge agent to assess every candidate
action and picks the one with the least risk (Yang
et al., 2024a). Similarly, AGrail utilizes multiple
checker agents to verify every candidate action be-
fore execution (Luo et al., 2025).

However, this method introduces coordination
overhead and increases inference latency, particu-
larly in large-scale deployments (Zeng et al., 2024).

9 Continuous Learning and Adaptation Con-
tinuous learning and adaptation refers to the capa-
bility of agents to dynamically update their internal
models based on new interactions, environments, or
user feedback, thereby improving their long-term
safety and robustness (Tian et al., 2023). This strat-
egy is primarily discussed in the context of multi-
agent systems, targeting the model as the primary
defense component and the user as a secondary
influence. Operating within the brain of the agent
framework, this method aims to address prompt
injection attacks by enabling agents to detect and
adapt to adversarial prompts over time.

This strategy is typically divided into two sub-
methods: self-evolution mechanisms and user feed-
back integration.

Self-Evolution Mechanisms It refers to the
agent’s ability to autonomously adjust its reason-
ing or decision-making strategy based on past ex-
periences and outcomes. LLM-based agents that
re-encode their internal state across tasks are bet-
ter at identifying unsafe instructions and suggest
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using performance memory or task replay buffers
to evolve the agent’s policy over time (Tian et al.,
2023; Luo et al., 2025). This helps reduce the suc-
cess rate of prompt injection attacks by enabling
agents to learn from near-miss or failed tasks.

User Feedback Integration It leverages feed-
backs from human users to realign the agent’s be-
havior with user expectations. In the same study,
the authors show that agents assisted with user feed-
back—such as warning prompts or confirmations
before execution—exhibited more cautious and
aligned behavior when encountering ambiguous
or adversarial inputs (Tian et al., 2023). This aligns
with the idea proposed in (Ma et al., 2024) that
human-in-the-loop designs enhance agent safety in
real-world, evolving task environments.

A core challenge in this method is balancing
adaptability with stability—frequent updates can
introduce regressions or new vulnerabilities if not
managed carefully.
10 Transparentize Transparentize refers to the
implementation of mechanisms that enhance the
transparency and interpretability of AI agents,
thereby improving trust and safety in their oper-
ations. This strategy is particularly relevant in
single-agent systems, focusing primarily on the
model component and secondarily on the user com-
ponent within the brain of the agent framework. It
addresses threats such as hallucination—where the
agent generates incorrect or nonsensical informa-
tion—and misalignment, where the agent’s actions
diverge from user intentions.

It consists of two main submethods: Explainable
AI (XAI) Techniques and Audit Logs.

Explainable AI (XAI) Techniques It involves
developing methods that make the decision-making
processes of AI agents understandable to users. For
instance, (Hu et al., 2024) highlights the impor-
tance of incorporating XAI techniques to elucidate
how agents interpret instructions and execute tasks,
thereby mitigating risks associated with hallucina-
tions and misalignments.

Audit Logs This entails recording the actions
and decisions made by AI agents to provide a trace-
able history of their operations. Maintaining de-
tailed logs is recommended to monitor agent be-
havior, facilitate debugging, and ensure account-
ability (Sager et al., 2025).

However, challenges in implementing transpar-
entize strategies include balancing the depth of in-

formation provided with user comprehension and
managing the storage and privacy concerns associ-
ated with extensive logging.
11 Topology-Guided Topology-guided strate-
gies enhance the security of multi-agent systems
by analyzing and leveraging the structural relation-
ships among agents to detect and mitigate adver-
sarial threats (Wang et al., 2025). This approach is
particularly relevant in multi-agent systems, focus-
ing primarily on the model component within the
brain and action phases of the agent framework. It
addresses threats such as prompt injection attacks
by examining the communication patterns and in-
teractions among agents.

This approach encompasses Agent Network
Flow Analysis and Resilience Planning:

Agent Network Flow Analysis It monitors the
communication and interaction patterns among
agents to identify anomalies that may indicate se-
curity breaches. For example, a multi-agent utter-
ance graph could be constructed to monitor interac-
tions and employ graph neural networks to detect
anomalous communication flows that could signify
prompt injection attacks (Wang et al., 2025).

Resilience Planning It focuses on designing the
agent network topology to be robust against poten-
tial attacks. This includes strategies such as edge
pruning, where connections to compromised agents
are severed to prevent the spread of malicious in-
formation. The same study demonstrates that by
adjusting the network topology through edge prun-
ing, the system can effectively contain and mitigate
the impact of detected attacks (Wang et al., 2025).

However, challenges in implementing topology-
guided strategies include the computational com-
plexity of real-time graph analysis and the potential
for reduced system performance due to the modifi-
cation of network structures.
12 Perception Algorithms Synergy Percep-
tion Algorithms Synergy refers to a family of
techniques that combine complementary percep-
tion modules to obtain a more faithful, compact,
and noise-resilient representation of the user in-
terface. This strategy targets single-agent CUAs,
acting mainly on the perception component of the
model. It primarily mitigates intrinsic threats such
as UI-understanding or grounding difficulties and
excessive context length.

For example, grounding inputs by com-
bining element-attribute, textual-choice, and
image-annotation cues dramatically reduces
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mis-click rates on web tasks (Zheng et al., 2024).
Additionally, MobileFlow augments its pipeline
with a hybrid visual encoder and Mixture of
Experts (MoE) alignment training, boosting image
interpretation on Android (Nong et al., 2024). On
the PC side, PC-Agent introduces an active per-
ception module that uses A11y-tree parsing with
OCR, achieving fine-grained element localisation
in complex desktop windows (Liu et al., 2025).
Finally, AgentOccam introduces observation-space
alignment and page-simplification to address the
excessive context length issue (Yang et al., 2024a).

Although these synergistic pipelines markedly
improve grounding fidelity, they bring new engi-
neering burdens—maintaining multiple perception
branches, tuning resolution cut-offs, and balancing
latency versus accuracy remain open challenges.
13 Planning-Centric Architecture Refinement
Planning-Centric Architecture Refinement denotes
defenses that improve CUA’s reasoning-related ar-
chitecture to ensure reliable scheduling, low re-
sponse latency, and accurate API invocation. This
strategy exists in both single and multi-agent sys-
tems. The method operates across the brain and
action components of CUAs and directly targets
threats such as scheduling errors, response latency,
API-call errors, and reasoning gap attacks.

A representative approach is the chain-of-action
prompt: it requires the agent to emit a full
future-action plan before each execution step, cut-
ting scheduling faults in half (Zhang and Zhang,
2023). Mobile-Bench extends this idea to multi-
agent collaboration with a three-level (instruc-
tion, sub-task, action) hierarchy that decomposes
long-horizon commands and reduces decision-
making difficulties (Deng et al., 2024). Auto-
Droid lowers response latency by caching an
LLM-generated guideline once per task, then del-
egating step-level binding to lightweight vision
models (Wen et al., 2023). Complementarily, the
PC-Agent framework allocates specialised Man-
ager, Progress and Decision agents to refine and
verify plans before execution, boosting success on
20-step desktop workflows (Liu et al., 2025).

However, planning-centric refinements intro-
duce coordination overhead, may suffer from stale
caches when the UI changes, and require sophisti-
cated plan-verification heuristics to guard against
adversarial or hallucinated action sequences.
14 Pre-defined Regulatory Compliance It in-
volves designing AI agents to adhere to established
laws, standards, and ethical guidelines, ensuring

their operations align with societal norms and legal
requirements. This strategy is particularly perti-
nent to single-agent systems, focusing primarily on
the user component and secondarily on the model
within the brain and action phases of the agent
framework. It addresses threats such as social and
cultural concerns, misalignment, and hallucination
by embedding compliance mechanisms into the
agent’s functionality.

This strategy comprises two main aspects: ad-
herence to standards and ethical guidelines.

Adherence to Standards It refers to specific
regulatory frameworks and industry standards pre-
defined for CUAs to comply with. For example, a
comprehensive benchmark (Zhang et al., 2024e) is
introduced to assess the safety of large language
model agents, ensuring they meet predefined safety
standards and operate within acceptable risk pa-
rameters. Additionally, GameChat employs pre-
defined Control Barrier Functions to define safe
operational boundaries for each agent in a multi-
agent system, ensuring agents’ trajectories remain
within safe limits, preventing collisions (Mahade-
van et al., 2025). The game-theoretic strategy satis-
fying Subgame Perfect Equilibrium in GameChat
further prevents agents from deviating from the
agreed-upon strategies at any point, promoting con-
sistent adherence to safe navigation protocols (Ma-
hadevan et al., 2025). Moreover, ShieldAgent ex-
tracts verifiable rules from policy documents, struc-
tures them into a set of action-based probabilistic
rule circuits, and associates specific agent actions
with corresponding constraints (Chen et al., 2025c).
Continuous verification ensures real-time standards
adherence (Chen et al., 2025c).

Ethical Guidelines This involves integrating eth-
ical considerations into the design and operation
of AI agents. The same study emphasizes the im-
portance of aligning agent behaviors with ethical
norms to prevent unintended consequences, such
as generating harmful content or exhibiting biased
behaviors (Zhang et al., 2024e).

However, challenges in implementing pre-
defined regulatory compliance include the dynamic
nature of regulations and ethical standards, requir-
ing continuous updates to the agent’s compliance
mechanisms to remain current.
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Platform Benchmark Highlight Data Size Collection Metric Measure

Web

VWA-Adv
(Wu et al.,
2024a)

Assesses the robustness of mul-
timodal web agents against
adversarial attacks originating
from the environment.

200 adversarial
tasks

Modifying
open-source
data

Benign SR,
ASR

Rule

ST-
WebAgent
Bench
(Levy et al.,
2024)

Evaluates the safety of web
agents by testing policy adher-
ence and risk mitigation, focus-
ing on external attacks and inter-
nal misalignments.

235 policy-
enriched tasks

Modifying
open-source
data

CuP, Partial
CuP

Rule

BrowserART
(Kumar et al.,
2024)

Assesses the safety of browser
agents against harmful interac-
tions, content, and jailbreak.

100 harmful
browser-related
behaviors

Modifying
open-source
data

ASR LLM

CASA
(Qiu et al.,
2025)

Evaluates LLM web agents’ cul-
tural and social awareness about
social norms and legal stan-
dards in interactions with non-
malicious users.

1225 user queries,
622 web observa-
tions

GPT-4o gener-
ation with hu-
man validation

AC-R, Edu-R,
Helpfulness,
Vio-R

LLM

ShieldAgent
Bench
(Chen et al.,
2025c)

Tests agent safety against ad-
versarial instructions and policy
violations across web environ-
ments and risk categories.

960 web instruc-
tions, 3110 un-
safe trajectories

Modifying
open-source
data

Accuracy,
FPR, Recall,
Inference
Cost

Rule

Mobile

MobileSafety
Bench
(Lee et al.,
2024a)

Evaluates mobile agents in An-
droid emulators for safety, help-
fulness, ethical compliance, fair-
ness, privacy, and prompt injec-
tion attacks.

80 tasks Human survey
and annotation

TSR, RR Rule

General

R-Judge
(Yuan et al.,
2024)

Evaluates LLM agents’ safety
awareness about multiple risks,
with prompt injection attacks
and complex environment chal-
lenges.

569 records of
multi-turn agent
interaction

Modifying
open-source
data with
ChatGPT

F1 score,
Recall,
Specificity,
Effectiveness

Manual,
LLM

TrustAgent
(Hua et al.,
2024)

Evaluates agents’ safety regula-
tions into planning across do-
mains and risks.

144 data points Modifying
open-source
data

Helpfulness,
Safety, Total
Correct Prefix,
SSR

LLM,
Rule

InjecAgent
(Zhan et al.,
2024)

Evaluates tool-integrated LLM
agents’ susceptibility to indirect
prompt injections.

1,054 test cases GPT-4 with
manual refine-
ment

ASR Rule

AgentDojo
(Debenedetti
et al., 2024)

Evaluates the robustness of
LLM-based agents in dynamic,
tool-using environments against
prompt injection attacks.

97 tasks, 629 se-
curity test cases

Human design
with LLM as-
sistance

TSR, TSR
under Attack,
ASR

Rule

PrivacyLens
(Shao et al.,
2024)

Tests agents for privacy adher-
ence, assessing vulnerability to
data leakage and misuse amid
misalignment.

493 seeds and
1479 questions

Human
collection,
transforma-
tion with
GPT-4

LR, LRh,
Helpfulness

LLM,
Rule

AgentHarm
(Andriushchenko
et al., 2024)

Evaluates LLM agents’ resis-
tance to malicious requests and
multi-step harmful behaviors
triggered by jailbreaks.

110 malicious
tasks, 330 aug-
mented tasks

Human gen-
eration and
review, LLM
generation

Harm score,
RR

LLM,
Rule

Agent Secu-
rity Bench
(Zhang et al.,
2024b)

Evaluates LLM agents’ security
against external attacks such as
prompt injection and backdoors.

400 tools, 10 sce-
narios, 10 agents,
and 400 cases

GPT-4 genera-
tion

ASR, RR,
PNA, BP,
FPR, FNR,
NRP

LLM,
Rule

Agent-
SafetyBench
(Zhang et al.,
2024e)

Evaluates LLM agents’ safety
against jailbreaks and misalign-
ments across risks.

2000 test cases
with 10 failure
modes and 349
environments

Modifying
open-source
data

Safety Score LLM,
Rule

Table 4: An overview of computer-using agents (CUAs) safety benchmarks.
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5 Evaluation and Benchmarking

Computer-Using agents (CUAs) are widely de-
ployed across various platforms, necessitating a
more comprehensive evaluation of their safety per-
formance compared to general LLM-based agents.
This section provides a structured summary of
these benchmarks, as shown in Table 4.

A benchmark typically consists of three key
components: a dataset, interactive environment,
evaluation metrics, and corresponding measure-
ments. The dataset is a static collection of data
points, where each data point includes multi-
ple inputs—such as questions, tasks, and screen-
shots—as well as a sequence of actions as the out-
put. Depending on the application scenarios they in-
volve, we categorize these datasets into three types:
web-based scenario, mobile-based scenario, and
general-purpose scenario.

In contrast, the environment is interactive rather
than static, encompassing entire user interfaces
where agent actions can influence the system’s
state, receiving feedback to guide subsequent ac-
tions. Since these benchmarks often rely on spe-
cific components within a given environment, we
categorize them into two types: real-world environ-
ments and sandbox environments.

The evaluation metrics vary depending on the
benchmark’s objectives, which can be generally
classified into three categories: task completion
metrics, intermediate performance metrics, and
broader metrics assessing efficiency, generaliza-
tion, safety, and robustness.

Measurements refer to the various methods em-
ployed to calculate metrics. These methods can
be broadly categorized into three main types: rule-
based, LLM-as-a-judge, and manual judge. Each
approach has unique characteristics and is suited
for different usage scenarios.

5.1 Datasets

5.1.1 Web-based Scenario
In the web-based scenario, several datasets have
been proposed to assess the safety of agents operat-
ing within browser environments. Specifically, ST-
WebAgentBench (Levy et al., 2024) and Browser-
ART (Kumar et al., 2024) focus on evaluating
agents’ safety-related behaviors in tasks involv-
ing web navigation, interaction, and tool usage
under potential prompt injection threats. Mean-
while, PrivacyLens (Shao et al., 2024) investigates
privacy-sensitive interactions in web-based conver-

sations, containing 493 validated prompts derived
from U.S. legal, social, and interpersonal commu-
nication norms. In parallel, CASA (Qiu et al.,
2025) provides a web-based benchmark designed
to evaluate agents’ awareness of cultural and so-
cial contexts, utilizing grounded questions and de-
scriptors sourced from CultureBank. Furthermore,
ShieldAgent-Bench (Chen et al., 2025c) extends
these efforts by simulating adversarial instructions
and policy-violation scenarios across diverse web
environments, providing 960 safety-related instruc-
tions and 3,110 unsafe trajectories. Finally, the
VWA-Adv benchmark (Wu et al., 2024a) targets
web-based scenarios, introducing 200 adversarial
tasks built on VisualWebArena (Koh et al., 2024) to
evaluate agent robustness against realistic attacks
through imperceptible webpage perturbations and
component-wise adversarial flows.

5.1.2 Mobile-based Scenario
MobileSafetyBench (Lee et al., 2024a) targets the
mobile environment, where agents are tested with
real mobile applications. The dataset consists of 80
representative tasks across domains such as mes-
saging, social media, finance, and system utilities.
It serves to evaluate agents’ safety performance
under mobile-specific constraints and risks.

5.1.3 General-purpose Scenario
Several datasets are designed with general-purpose
safety evaluation in mind, covering a wide spec-
trum of risks, tools, and environments. R-Judge
(Yuan et al., 2024) focuses on risk awareness in
569 multi-turn interactions spanning five categories
and 27 scenarios, covering 10 different risk types.
TrustAgent (Hua et al., 2024) offers 70 samples
across 5 domains, incorporating both risk analysis
and corresponding ground truth implementations.

Prompt injection remains a major concern for
agent safety. InjecAgent (Zhan et al., 2024) and
AgentDojo (Debenedetti et al., 2024) target this
threat, testing agents equipped with diverse toolsets
and under various attacker scenarios. InjecA-
gent features 330 tools from 36 distinct toolkits,
while AgentDojo includes 97 realistic tasks and
629 security-focused test cases. The AgentHarm
dataset (Andriushchenko et al., 2024) generalizes
harmful behavior testing, introducing 110 base be-
haviors grouped into 11 harm categories such as
fraud, cybercrime, and misinformation.

Besides, PrivacyLens (Shao et al., 2024) gen-
eralizes privacy risk evaluation, introducing 493
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privacy-sensitive vignettes and trajectories to as-
sess information leakage in language models across
various scenarios. In addition, Agent-SafetyBench
(Zhang et al., 2024e) builds upon these efforts by
refining general-purpose samples to improve diver-
sity and cover underrepresented risk types. Fur-
thermore, the Agent Security Bench (ASB) (Zhang
et al., 2024b) serves as a comprehensive and large-
scale benchmark, encompassing 10 distinct scenar-
ios, 10 purpose-built agents, and over 400 tools and
tasks. ASB is designed to provide a unified frame-
work for evaluating the security of LLM-based
agents across a wide range of operational contexts.

5.2 Environments

5.2.1 Real-world Environments

A real-world environment refers to a complex and
dynamic setting, such as the Android OS or the
web, where agents perform tasks that reflect the
unique challenges of these environments.

Several studies have focused on evaluating agent
behavior in such contexts. ST-WebAgentBench
(Levy et al., 2024), BrowserART (Kumar et al.,
2024), and CASA (Qiu et al., 2025) evaluate agent
behavior on real websites, assessing aspects such
as safety, trustworthiness, and cultural awareness.
Unlike prior benchmarks that only provide task in-
structions, ShieldAgent-Bench (Chen et al., 2025c)
evaluates real-world safety challenges by incorpo-
rating complete agent interaction protocols, such
as instructions, trajectories, enforced policies, and
ground-truth labels. Similarly, MobileSafetyBench
(Lee et al., 2024a) examines agent performance
across various mobile applications, including mes-
saging, web navigation, social media, finance, and
utility apps. To provide a more comprehensive as-
sessment, Agent-SafetyBench (Zhang et al., 2024e)
extends evaluations across both web and mobile
environments, offering a broader analysis of agent
safety. In contrast, the VWA-Adv benchmark (Wu
et al., 2024a) focuses on a realistic threat model in
real-world web environments, where the attacker
is a legitimate user with limited capabilities to ma-
nipulate the environment.

In the context of security vulnerabilities intro-
duced by external content, InjecAgent (Zhan et al.,
2024) simulates agent responses to adversarial in-
puts, enabling researchers to assess the agent’s sub-
sequent actions and obtain attack outcomes. Priva-
cyLens (Shao et al., 2024) analyzes the data trans-
mitted by agents to external tools, identifying po-

tential privacy risks during task execution.
Real-world environments offer high realism and

dynamism, ideal for evaluating agent capabilities.
However, they pose challenges for consistent eval-
uation and reproducibility due to reliance on live
websites with constantly evolving content.

5.2.2 Sandbox Environments

Sandbox environments are designed to explore the
agent safety performance under a stable environ-
ment, which may be simple or not perfectly aligned
with the reality of the real environment, but it is a
good way to explore the vulnerability of agent to
specific attacks or in specific areas.

R-Judge (Yuan et al., 2024), TrustAgent (Hua
et al., 2024), AgentDojo (Debenedetti et al., 2024),
and AgentHarm (Andriushchenko et al., 2024) each
construct a simulation environment with distinct
focuses. R-Judge adopts ReAct (Yao et al., 2023)
as its interactive framework. TrustAgent enhances
task evaluation by providing detailed descriptions
of external tools relevant to each task domain.
AgentDojo builds an extensible environment de-
signed for developing and assessing new agent
tasks, defenses, and adaptive attacks. Meanwhile,
AgentHarm utilizes synthetic tools for all tasks, im-
plemented through Inspect (AI Security Institute),
effectively mimicking a range of tools from general
utilities to domain-specific applications.

Sandbox environments provide controlled eval-
uation platforms that replicate the dynamism of
real-world settings while ensuring consistency and
reproducibility, however, its simplicity may also de-
prive it of elements of its real-world environment.

5.3 Evaluation Metrics

5.3.1 Task Completion Metrics

1 Task Success Rate (TSR) assesses whether an
agent successfully reaches the final goal of a task,
regardless of the performance on intermediate steps
(Yao et al., 2022; Xie et al., 2024; Wen et al., 2023).
It serves as a holistic indicator of an agent’s overall
effectiveness in completing a given task. In many
safety benchmarks and datasets, this measure is
akin to the Benign Success Rate (Benign SR) (Wu
et al., 2024a) or Benign Utility (Debenedetti et al.,
2024) or Performance Under No Attack (PNA)
(Zhang et al., 2024b), which evaluates how well
an agent performs under normal, non-adversarial
conditions. A high Task Success Rate, therefore,
not only signifies that the agent meets the intended
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outcome but also underlines its reliability in stan-
dard operational settings.

2 Helpfulness measures how effectively agents
fulfill user instructions while balancing overall per-
formance with safety considerations, extending be-
yond simple task completion. It measures not only
whether the task was finished but also how well
the agent executed the necessary operations, such
as making the correct and effective tool calls to
achieve the desired outcome (Ruan et al., 2023). In
other words, while task completion is a binary mea-
sure of whether a task is accomplished, helpfulness
also considers the overall utility, coherence, and ef-
fectiveness of the response. Evaluating helpfulness
often involves designing an automatic evaluator
(e.g. prompting a LLM as judge) or relying on
human annotators (Qiu et al., 2025).

5.3.2 Intermediate Step Metrics
1 Step Success Rate (SSR) evaluates how accu-

rately an agent performs each individual step within
a multi-step task (Deng et al., 2023; Zhang et al.,
2024a; Chen et al., 2024a). For each step, it checks
if the action aligns with the expected or "ground
truth" behavior. Formally, SSR is defined as

SSR =
# Correct Steps

# Total Steps

A higher step success rate reflects greater precision
in executing each part of the task, which is espe-
cially crucial in scenarios that require reliable and
fine-grained control across multiple actions.

2 Total Correct Prefix In addition to overall step
accuracy, it is important to assess the sequence in
which these steps are executed. Some individual ac-
tions may match their corresponding ground truth
steps; however, if they occur out of the intended
order, this misordering can lead to potential safety
or reliability risks.

The Total Correct Prefix is defined as the longest
initial sequence of correct, in-order steps that aligns
with the ground truth (Hua et al., 2024). Evalu-
ating this metric offers valuable insight into the
agent’s ability to follow the intended procedure
from the start, while also revealing vulnerabilities
that may arise from executing actions in an incor-
rect sequence.

5.3.3 Safety and Robustness Metrics
1 Attack Success Rate (ASR) is a very commonly

used metric (Zhan et al., 2024; Debenedetti et al.,
2024; Kumar et al., 2024; Zhang et al., 2024b) to

evaluate the adversarial robustness of Computer-
Using Agents (CUAs). It measures the percentage
of attack tasks in which an adversary causes an
agent to produce an undesired or unsafe outcome.
ASR is given by:

ASR =
# Successful Attack Tasks

# Total Attack Tasks

A higher ASR indicates increased vulnerability of
the agent to adversarial manipulation (Chang et al.,
2023).

Similarly, the Violation Rate (Vio-R) in CASA
(Qiu et al., 2025) measures the fraction of agent
responses that violate stated norms when presented
with misleading or malicious inputs, which effec-
tively captures how often the agent is “attacked”
into norm-breaking behavior.

Furthermore, in Agent Security Bench (Zhang
et al., 2024b), Benign Performance (BP) measures
the agent’s success rate on its intended tasks when
a backdoor trigger is present, indicating how well
it maintains functionality under backdoor attack.
Net Resilient Performance (NRP) then combines
non-adversarial condition capability (PNA) and ro-
bustness against attack (ASR) into a single score:

NRP = PNA× (1−ASR)

A higher NRP reflects both strong task performance
and effective resistance to attacks, whereas a lower
NRP signals vulnerability, poor baseline accuracy,
or both. It is valuable as it measures the trade-offs
between performance and robustness.

In addition to ASR, some benchmarks go be-
yond a binary success measure to characterize how
severe or how partial an unsafe outcome is: In
TrustAgent (Hua et al., 2024), the Safety metric
evaluates both the likelihood and the severity of po-
tential risks by assigning categorical ratings (e.g.,
“Certain No Risk” to “Likely Severe Risk”) to each
agent response, thus capturing not only whether a
response is unsafe but how risky it is. In contrast,
Agent-SafetyBench (Zhang et al., 2024e) simpli-
fies the assessment with a Safety Score, measured
as the proportion of test cases labeled “safe” by
an LLM judge. Meanwhile, in AgentHarm (An-
driushchenko et al., 2024), the Harm Score is com-
puted via a detailed manually written grading rubric
where outputs earn partial credit whenever some
but not all harmful criteria are triggered, providing
a finer-grained view of measure of how much of
the harmful behavior was actually executed.
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2 Completion Under the Policy (CuP) quantifies
the rate at which an agent completes tasks in strict
adherence to predefined safety or usage policies
(Zhang et al., 2024a). CuP is calculated as

CuP = Ctask × 1{Vtotal = 0},

where Ctask is the task completion score, Vtotal =∑
source, dim Vsource,dim is the total number of policy

violations across all sources and dimensions, and
1{·} is the indicator function that returns 1 exactly
when Vtotal = 0 (i.e., no violations occurred) (Levy
et al., 2024).

Recognizing that certain tasks can be challeng-
ing to fully complete, Levy et al. (2024) also pro-
poses the Partial Completion Rate (PCR), which
acknowledges tasks that fulfill at least one success
criterion, even if the agent does not achieve com-
plete success. This allows evaluators to focus on
how well the agent follows policy requirements in
scenarios of partial success.

Building on PCR, Levy et al. (2024) further de-
fines the Partial Completion Under the Policy
(Partial CuP) metric, which extends CuP to par-
tial completions by examining whether the agent
respects policy constraints when only a portion
of the task is satisfied (modify the Ctask score by
PCR). This assesses the agent behavior by balanc-
ing between task difficulty and adherence to safety
guidelines.

3 F1 Score is a critical safety metric that combines
both precision and recall into a single measure to
evaluate an agent’s effectiveness in a binary classi-
fication scenario, such as distinguishing between
safe and unsafe labels (Chang et al., 2023). F1
Score is defined as

F1 = 2× Precision×Recall

Precision+Recall

Here, precision is calculated as

Precision =
TruePositives

TruePositives+ FalsePositives

reflecting the accuracy of the positive predictions,
while recall (also called Sensitivity or True Positive
Rate) is defined as

Recall =
TruePositives

TruePositives+ FalseNegatives

indicating the model’s capability to capture all un-
safe cases (Yuan et al., 2024). By incorporating

both these aspects, the F1 score serves as a ro-
bust indicator, especially in risk-sensitive applica-
tions where the accurate identification of unsafe
instances is crucial.

Some related metrics are: specificity (also called
True Negative Rate) is defined as:

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives

and False Positive Rate (FPR) is calculated as:

FPR =
FalsePositives

FalsePositives+ TrueNegatives

also False Negative Rate (FNR) is measured as:

FNR =
FalseNegatives

FalseNegatives+ TruePositives

4 Refusal Rate (RR) measures the proportion
of tasks an agent refuses to perform due to their
aggressive, malicious, or otherwise unsafe nature
(Zhang et al., 2024b; Andriushchenko et al., 2024).
Defined as:

Refusal Rate =
# Refused Tasks

# Total Tasks

a higher RR indicates that the agent is more cau-
tious and conservative, often rejecting potentially
harmful or policy-violating requests. However, if
the agent exhibits a high RR even on low-risk or
benign tasks, it may be unnecessarily refusing re-
quests. In contrast, a lower RR means the agent is
more permissive, which can enhance user experi-
ence but might also lead to a greater risk of unsafe
outcomes (Lee et al., 2024a).

5 Leakage Rate (LR) evaluates how often an
agent unintentionally leaks sensitive or private in-
formation. In PrivacyLens (Shao et al., 2024), a set
S of sensitive data is defined, and for each trajec-
tory τ , an agent output aτ is considered a leakage
event if any item in the sensitive data set S can be
inferred from it. Formally,

LR =
# Leakage Cases

# Total Cases

This approach typically involves a classifier or hu-
man annotators to determine whether leaked infor-
mation appears in each output.

An adjusted version of the LR metric can
further quantifies how often sensitive informa-
tion might be leaked while also considering
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the helpfulness of the agent’s responses (Shao
et al., 2024). It is defined as LRh =
# Leakage Cases with Positive Helpfulness
# Total Cases with Positive Helpfulness .

6 Cultural and Social Norms Metrics These
metrics assess how well an agent recognizes and
responds to cultural or social norms in user interac-
tions:

Awareness Coverage Rate (AC-R) measures
an agent’s ability to detect violations of cultural or
social norms. A user query and the agent response
are evaluated by an LLM judge, who determines
whether the agent acknowledges any potential vi-
olation. The AC-R score is then computed as the
proportion of queries where such violations are
accurately recognized by agents (Qiu et al., 2025).

Educational Rate (Edu-R) measures whether
the agent provides appropriate guidance or correc-
tive feedback once a violation is detected. Au-
tomatic evaluator checks if the agent offers con-
structive advice in response to the identified norm
breach. The Edu-R score is calculated as the frac-
tion of queries where the agent successfully advises
the user on how to align with cultural and social
expectations (Qiu et al., 2025).

7 Inference Cost refers to the computational and
monetary resources required to generate model out-
puts during deployment. In ShieldAgentBench
(Chen et al., 2025c), it is quantified by the aver-
age number of closed-source LLM API queries
and the end-to-end response time (in seconds) per
sample, measured from the system runtime logs.
Including inference cost alongside accuracy and
robustness metrics offers a more complete view of
an agent’s real-world performance and efficiency
trade-offs.

8 Effectiveness assesses an agent’s ability to cor-
rectly identify and describe safety risks in interac-
tion logs. Following the methodology of R-Judge
(Yuan et al., 2024), an LLM-based evaluator as-
signs a graded relevance score to each risk sce-
nario, comparing the agent’s risk analysis against
a human-annotated reference. This metric directly
reflects the agent’s ability to identify and address
real safety concerns.

5.4 Measurements

5.4.1 Rule-based Measurements

Rule-based measurement involves the use of pre-
defined rules or algorithms to compute evaluation
metrics without manual annotation or LLM inter-
vention. Typically implemented in code, these rules

automatically assess agent behavior against fixed,
deterministic criteria, making this approach suit-
able for well-defined and objective evaluation stan-
dards.

This method is widely adopted across existing
agent safety benchmarks. For instance, Shield-
Agent (Chen et al., 2025c) adopts this approach
to directly compute evaluation metrics. TrustA-
gent (Hua et al., 2024) measures the overlap of
action trajectories to assess goal alignment and
safety compliance. AgentDojo (Debenedetti et al.,
2024) and InjecAgent (Zhan et al., 2024) compute
ASR variants using predefined criteria to capture
attack effectiveness and resilience. PrivacyLens
(Shao et al., 2024) uses binary (yes/no) rule-based
judgments on privacy-sensitive prompts. Likewise,
ST-WebAgentBench (Levy et al., 2024) applies pro-
grammatic functions to evaluate policy compliance
via DOM and action traces. Both MobileSafety-
Bench (Lee et al., 2024a) and Agent-SafetyBench
(Zhang et al., 2024e) rely on rule-based checks for
task success and harm prevention, while Agent Se-
curity Bench (ASB) (Zhang et al., 2024b) adopts
rule-based ASR calculations to quantify attack im-
pact. In addition, AgentHarm (Andriushchenko
et al., 2024) also employs predefined rules to eval-
uate most simple tasks, thereby minimizing depen-
dence on LLM-based grading. Ultimately, VWA-
Adv benchmark (Wu et al., 2024a) uses a rule-
based approach to evaluate agent robustness, which
models the agent as a directed graph and calculat-
ing adversarial influence along edges.

While rule-based methods are efficient, auto-
mated, and reproducible—enabling scalable evalu-
ation—they lack the flexibility to handle nuanced
or context-dependent agent behaviors.

5.4.2 LLM-as-a-judge Measurements
LLM-based measurement leverages LLMs, such
as GPT-4, to compute evaluation metrics based
on natural language understanding, reasoning, and
contextual judgment. Unlike rule-based methods
that rely on fixed logic, LLM-based approaches
utilize the interpretive abilities of LLMs to handle
complex and open-ended scenarios, making them
ideal for tasks where deterministic rules fall short.

This approach is increasingly adopted in recent
agent safety and capability benchmarks. For ex-
ample, R-Judge (Yuan et al., 2024) uses an LLM-
as-a-judge framework to score open-ended safety
analyses, while TrustAgent (Hua et al., 2024) em-
ploys GPT-4 to assess both helpfulness and safety
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in agent outputs. PrivacyLens (Shao et al., 2024)
applies a GPT-based few-shot classifier to deter-
mine whether sensitive information is inferable
from an agent’s action.

Similarly, BrowserART (Kumar et al., 2024) and
AgentHarm (Andriushchenko et al., 2024) use GPT-
4o to classify harmful behaviors and evaluate re-
fusals. CASA (Qiu et al., 2025) adopts GPT-4o
across metrics to assess cultural and social aware-
ness, while ASB (Zhang et al., 2024b) uses LLMs
to evaluate whether agents properly refuse unsafe
instructions.

LLM-based methods are highly flexible and ca-
pable of capturing nuanced behaviors and contex-
tual subtleties that rule-based systems often miss.
However, they may suffer from variability across
model versions, increased computational cost, and
potential inconsistencies in subjective judgments.

5.4.3 Manual Judge Measurements
Manual measurement involves human evaluators
who directly assess the agent’s behavior or output.
This method is indispensable in scenarios that re-
quire subjective judgment, nuanced contextual un-
derstanding, or complex reasoning that automated
or model-based evaluators may struggle to capture
accurately.

Despite its strengths in interpretability and ac-
curacy for ambiguous cases, manual evaluation
is labor-intensive, difficult to scale, and prone to
individual bias. These limitations make it impracti-
cal for large-scale benchmarking and may limit its
overall adoption in recent works.

Nevertheless, manual labels remain a valuable
source of ground truth. For instance, R-Judge
(Yuan et al., 2024) incorporates a human-labeled
test set to assess the quality of LLM-generated
safety analyses, using manual annotations as the
gold standard to validate automated or LLM-based
scoring methods.

6 Discussion

In the preceding sections, we have examined the
current landscape of attacks, defenses, and eval-
uation methodologies pertinent to the security of
CUAs. Building upon these insights, this discus-
sion synthesizes key findings and outlines promis-
ing avenues for future research.

6.1 Key Insights
The rapid adoption of CUAs across diverse do-
mains has revealed several pivotal observations:

• Real-Time and Multimodal Emphasis: Un-
like traditional LLM-based agents that primar-
ily handle static text input, CUAs often op-
erate in dynamic environments and interact
with multiple input modalities, such as touch-
based GUIs, images, and voice commands.
This dual emphasis on real-time responsive-
ness and multimodal task comprehension in-
troduces unique challenges such as handling
long reasoning gaps, preventing multimodal
hallucinations, and managing on-device re-
source constraints (Zhang and Zhang, 2023;
Nong et al., 2024; Zhang et al., 2023).

• UI Understanding Difficulties: Current
benchmarking efforts reveal that many CUAs
demonstrate suboptimal safety performance,
reflecting gaps in robustness and risk aware-
ness (Zhang et al., 2024e; Andriushchenko
et al., 2024; Lee et al., 2024a; Zhang et al.,
2024b). A significant portion of this shortfall
arises from immature grounding techniques,
which hinder agents’ ability to reliably inter-
pret multimodal perceptions, especially vision
tasks (Zheng et al., 2024; Zhang and Zhang,
2023; Liu et al., 2025). These shortcomings
underscore the need for more holistic training
and test scenarios that address diverse threat
models.

• Limited Experimental Scenarios: Many
CUAs are tested in highly constrained settings
that fail to capture the breadth of real-world
tasks. For instance, the action space is re-
stricted by excluding multi-touch or irregular
gestures in (Zhang et al., 2023), while (Zhang
and Zhang, 2023) focuses on small-scale GUI
agents in a single environment (AITW), limit-
ing broader investigations. Additionally, PC-
Agent has only explored productivity scenar-
ios, leaving potential social and entertainment
applications largely unexamined (Liu et al.,
2025).

• Transparency Deficits: A number of CUA
providers neither publish safety policies nor
disclose systematic evaluation outcomes, mak-
ing it difficult for users and policymakers to
assess an agent’s reliability. The absence
of transparent risk disclosures impedes ac-
countability mechanisms and could enable
unchecked vulnerabilities (Shi et al., 2024;
Hua et al., 2024; Hu et al., 2024).
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6.2 Future Directions

Tackling these challenges requires a multifaceted
research agenda, integrating both technical innova-
tions and governance considerations:

• Integrated Defense Mechanisms: Research
on robust defenses spans active adversarial
mitigation, environmental verification, and
backdoor detection. Proposed methods in-
clude integrating modules for trustworthiness
checks and leveraging multi-agent approaches
for role-specific security tasks (Chen et al.,
2025b; Zeng et al., 2024; Tian et al., 2023).

• Real-time Comprehensive Benchmarking:
Broader and more dynamic benchmarks are
essential for capturing real-world complex-
ity. Future evaluations should incorporate
tasks requiring advanced domain expertise,
testing agents’ resilience under challenging
conditions and adaptive attacks (Zhang et al.,
2024e; Levy et al., 2024; Debenedetti et al.,
2024; Andriushchenko et al., 2024).

• Transparency and Accountability: Estab-
lishing standardized guidelines for disclosing
safety policies and reporting evaluation proto-
cols can strengthen trust in CUAs. Such mea-
sures could include enforced policy publica-
tion, structured reporting of risk assessments,
and independent audits (Hua et al., 2024; Shi
et al., 2024; Shao et al., 2024).

• Human-Agent Collaboration: Incorporating
mechanisms for human oversight—especially
in high-risk domains—can mitigate the poten-
tial harm of fully autonomous operations. Sys-
tems designed to allow timely human interven-
tion and clear explanations of agent decisions
will improve safety and foster user confidence
(Wang et al., 2023; Fang et al., 2024a; Sager
et al., 2025).

By advancing defense strategies, refining bench-
marks, promoting transparency, and integrating
principled human oversight, researchers and devel-
opers can elevate both the reliability and trustwor-
thiness of CUAs. Addressing these multifaceted
challenges will be central to ensuring that these
agents are not only effective in diverse applications
but also safe to deploy in real-world environments.

7 Conclusion

The rapid advancement of Computer-Using Agents
(CUAs) has introduced powerful capabilities for
GUI automation, but also significant safety chal-
lenges. In this survey, we have presented a compre-
hensive examination of these challenges, systemat-
ically analyzing risks across four key dimensions:
defining CUAs and their components, categoriz-
ing both intrinsic and extrinsic threats, evaluating
defense strategies, and reviewing benchmarking
approaches.

Looking ahead, three priorities emerge: (1) the
development of unified safety standards applicable
to various CUA implementations, (2) the creation
of robust testing environments that accurately sim-
ulate real-world complexities, and (3) the enhance-
ment of transparency to foster user trust. Achieving
these objectives will require interdisciplinary col-
laboration, integrating insights from AI, security,
and human-computer interaction.

As CUAs become increasingly embedded in crit-
ical systems, their safety can no longer be an af-
terthought. This survey provides a foundation for
future research, emphasizing that security and ca-
pability must advance together. Future work should
focus on creating more resilient agents while es-
tablishing frameworks for responsible deployment,
ensuring these powerful tools benefit users without
introducing new risks.
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Grounding Difficulties

Chen et al. (2025a), Pahuja et al. (2025), Nong
et al. (2024), Zheng et al. (2024), Liu et al. (2025)
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Scheduling Errors Zhang and Zhang (2023), Deng et al. (2024)

Misalignment Ma et al. (2024)

Hallucination Deng et al. (2024)

Excessive Context Length Zhang and Zhang (2023), Yang et al. (2024a)

Social and Cultural Concerns Qiu et al. (2025)

Response Latency Wen et al. (2023), Zhang and Zhang (2023), Li et al. (2020), Li et al. (2021)

Action API Call Error Deng et al. (2024), Nong et al. (2024), Zhang and Zhang (2023)

Extrinsic Threats

Adversarial Attack Wu et al. (2024a), Ma et al. (2024), Zhang et al. (2024c)

Prompt Injection Attack Zhan et al. (2024), Liao et al. (2024), Wu et al.
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Reasoning Gap Attack Chen et al. (2025b)
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Environmental Constraints Yang et al. (2024c), Nong et al. (2024), Zhang et al. (2023)

Input Validation Kumar et al. (2024), Wen et al. (2023), Zhang et al. (2024c)

Defensive Prompting Debenedetti et al. (2024), Zhang et al. (2024c), Wu et al. (2024a), Chen et al. (2025b)

Data Sanitization Yang et al. (2024b)

Adversarial Training Wu et al. (2024a)

Output Monitoring Fang et al. (2024a),Wen et al. (2023), Hua et al. (2024)
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Pre-defined Regulatory Compliance Zhang et al. (2024e), Mahadevan et al. (2025), Chen et al. (2025c)

Figure 1: A comprehensive taxonomy of Computer-Using Agent threats and defences.
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