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ABSTRACT

Releasing useful information from datasets with hierarchical structures while preserving individual
privacy presents a significant challenge. Standard privacy-preserving mechanisms, and in particular
Differential Privacy, often require careful allocation of a finite privacy budget across different levels
and components of the hierarchy. Sub-optimal allocation can lead to either excessive noise, rendering
the data useless, or to insufficient protections for sensitive information. This paper addresses the
critical problem of optimal privacy budget allocation for hierarchical data release. It formulates this
challenge as a constrained optimization problem, aiming to maximize data utility subject to a total
privacy budget while considering the inherent trade-offs between data granularity and privacy loss.
The proposed approach is supported by theoretical analysis and validated through comprehensive
experiments on real hierarchical datasets. These experiments demonstrate that optimal privacy budget
allocation significantly enhances the utility of the released data and improves the performance of
downstream tasks.

1 Introduction

Hierarchical data structures are ubiquitous, appearing in domains such as geographical information systems, orga-
nizational charts, biological taxonomies, and product catalogs. While the analysis of such data impacts society and
the economy as it touches disciplines from scientific discovery to policy-making, it is often regulated by privacy
laws or ethical considerations. For instance, the U.S. Census Bureau’s data is a prime example of hierarchical data,
where population statistics are organized at various levels, such as national, state, and county. This data is crucial
for a wide range of applications, including resource allocation, migration studies, and public health decisions. Its
release is also governed by strict privacy regulations, including the Title 13 of the U.S. Code, which prohibits the
disclosure of personally identifiable information. As a result, privacy-preserving techniques have been developed
to ensure that sensitive information remains confidential while still allowing for meaningful analysis. Among these,
Differential Privacy (DP) [1] has emerged as the gold standard, primarily due to its strong, quantifiable guarantees
against re-identification and inference attacks.

However, hierarchical data presents unique challenges for differential privacy, as its privacy budget must be allocated
across different levels of the hierarchy. For instance, one might need to release aggregate statistics at a coarse
geographical level (e.g., state) and more fine-grained statistics at a lower level (e.g., county or city). A naive or uniform
allocation of the privacy budget across these levels can lead to suboptimal outcomes: either too much noise is added to
fine-grained data, destroying its utility, or coarse-grained data is overly protected at the expense of detail elsewhere.
This necessitates a principled approach to privacy budget allocation that explicitly considers the structure of the data
and the utility requirements at different granularities.

This observation raises a fundamental question: How can we optimally allocate a given privacy budget across a
hierarchical data structure to maximize the utility of the released information? The answer to this question is not
straightforward, as it involves balancing the trade-off between privacy and utility across multiple levels of the hierarchy.
As the paper will show, commonly adopted heuristic approaches often achieve suboptimal results, leading to inaccurate
downstream analyses. This paper precisely addresses this problem, and provides the following contributions:
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Figure 1: A hierarchical structure of geographic regions, where blocks
are nested within tracts, and tracts within the state of Virginia.

Level Region Population

Level 3 Block 1 (100) 120
Level 3 Block 2 (100) 80
Level 3 Block 3 (100) 100

Level 2 Tract 100 300

Level 3 Block 1 (200) 90
Level 3 Block 2 (200) 60

Level 2 Tract 200 150

Level 1 VA 450

Table 1: Population counts corresponding to
each region in the hierarchy shown in Fig-
ure 1.

C1 It defines and characterizes the problem of optimal privacy budget allocation for hierarchical data release under
differential privacy. This includes defining appropriate utility metrics that capture the usefulness of data at different
levels of the hierarchy.

C2 It provides an analysis of the properties of the optimal allocation strategy (as detailed in Section 3), in particular
the relationship between bias and variance of the released data, and how these are affected by the privacy budget
allocation.

C3 Crucially, the analysis shows that the optimal allocation strategy is not necessarily uniform across levels, and
utility can be significantly improved by accounting for the hierarchy’s structure. To address this, it proposes an
optimization-based approach that minimizes an analytical expression for mean squared error, combining bias and
variance introduced by differential privacy under non-negativity post-processing, commonly used in histogram
and contingency table releases. Importantly, by minimizing this objective, the method improves the utility of the
released data even after the post-processing, which is known to distort bias and variance [2].

C4 Finally, the paper demonstrates the practical utility of the proposed method through extensive experiments on
real-world datasets derived from the U.S. Census. The results show a substantial reduction of both bias and
variance compared to uniform allocation under the same privacy budget. Furthermore, motivated by U.S. Census
budget allocation, the framework is extended to a downstream resource allocation task using privatized data.
This extension examines how different classes of preference functions influence bias and variance, with results
consistently showing higher utility for the optimal allocation strategy over uniform allocation.

The remainder of this paper is organized as follows. Section 2 introduces essential preliminaries on differential privacy
and hierarchical data, and sets up the problem. Section 3 details our proposed allocation methodology. Section 4
presents the experimental results, focusing on Wyoming as a running example, with additional state experiments in
Appendix D. Section 5 explores the impact on downstream tasks. Finally, Section 6 concludes the paper and outlines
future research directions.

Related Work. Since the adoption of the U.S. Census Bureau’s TopDown Algorithm (TDA) [3], there has been
growing interest in exploring hierarchical data release under differential privacy. This has motivated theoretical and
practical approaches for allocating privacy budgets across hierarchical levels [4, 5, 6, 7]. Accurately privatizing
hierarchical data releases, such as those in the U.S. Census, is crucial, as it directly impacts federal resource allocation
and has significant implications for fairness in downstream decisions [8, 9, 10]. Beyond population statistics, hierarchical
data plays a key role in other domains. Liu et al [11] explored generating private synthetic hierarchical data, while
hierarchical structures have also been used in federated learning to enhance privacy and scalability [12]. Fioretto et
al. [5] proposed an optimization-based method for post-processing privatized hierarchical data to ensure consistency
and improve utility. Cohen et al. [6] examined how privacy budget allocation affects redistricting accuracy in the Census
TopDown algorithm, finding that bottom-heavy allocations improve accuracy for small geographic units. Similarly,
Dawson et al. [13] proposed a greedy iterative approach using noisy priors and demonstrated that unequal budget
allocations can achieve higher accuracy than uniform splits.

However, there remains a gap in understanding how to optimally allocate privacy budgets across different levels of the
hierarchy, especially when common post-processing alters the bias and variance of differentially private estimates.
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2 Preliminaries and Problem Setting

2.1 Hierarchical Data Release

This paper considers the hierarchical release of population statistics. Let R1, R2, . . . , RL denote the sets of regions
at each level of a hierarchy, where each region in Rℓ is indexed by a tuple (i1, . . . , iℓ) indicating its position in the
hierarchy. Specifically, R1 contains highest-level regions (e.g., states in Fig 1), and each Rℓ contains subregions nested
within regions from level ℓ − 1. Let Ni1,...,iℓ denote the population count associated with region (i1, . . . , iℓ) ∈ Rℓ.
These counts satisfy the consistency constraints across levels:∑

(i1,...,iL)∈RL

Ni1,...,iL = · · · =
∑

i1∈R1

Ni1 = Ntotal.

♦ Example. In Figure 1, R1 = {(VA)} with Ntotal = 450. At level 2, we have R2 =
{(VA, 100), (VA, 200)} with populations NVA,100 = 300 and NVA,200 = 150. At level 3, R3 contains five blocks:
(VA, 100, 1), (VA, 100, 2), (VA, 100, 3), (VA, 200, 1), (VA, 200, 2) with respective populations 120, 80, 100, 90, and
60. These satisfy the consistency condition:∑

(i1,i2,i3)∈R3

Ni1,i2,i3 =
∑

(i1,i2)∈R2

Ni1,i2 = Ntotal.

2.2 Differential Privacy

This paper considers the problem of releasing privatized hierarchical data under the framework of differential privacy
(DP) [1, 14]. Differential privacy provides a formal framework for quantifying the privacy loss incurred when releasing
information derived from sensitive data. It ensures that the output of a computation is nearly indistinguishable whether
or not any single individual’s data is included in the input dataset. This is typically achieved by adding controlled noise
to the output, calibrated to a privacy budget that quantifies the level of privacy protection.
Definition 1 (Differential Privacy). A randomized algorithm M satisfies ε-differential privacy if, for all S ⊆ Range(M)
and any two neighboring databases D1 ∼ D2 (i.e., differing by one entry),

Pr[M(D1) ∈ S] ≤ exp(ε) Pr[M(D2) ∈ S].

Here, ε > 0 is the privacy parameter that quantifies the privacy loss: smaller values (ε → 0) imply strong privacy, while
larger values (ε → ∞) correspond to weak privacy.

Differential privacy provides two key properties essential to this work: sequential composition and post-processing
immunity. Sequential composition quantifies total privacy loss across hierarchical levels, while post-processing
immunity guarantees that adjustments such as enforcing consistency or non-negativity do not affect the privacy
guarantee.
Theorem 1 (Sequential Composition). Let M1 be an ε1-differentially private algorithm, and let M2 be an ε2-
differentially private algorithm. Then the combined algorithm that outputs (M1(x),M2(x)) is ε1 + ε2-differentially
private.
Theorem 2 (Post-Processing Immunity). If a randomized algorithm M is ε-differentially private, and f is any arbitrary
function, then the composition f ◦M is also ε-differentially private.

2.3 Differentially Private Hierarchical Data Release Model

Motivated by Census applications, we consider the release of privatized hierarchical data by adding noise at each level
of a hierarchy. Let ε1, ε2, . . . , εL denote the privacy budgets allocated from the highest level (ε1) to the lowest (εL),
with the total privacy budget given by the sequential composition:

εTotal = ε1 + ε2 + . . .+ εL.

In this work, we add independent Laplace1 noise (which is chosen for clarity in the analysis of bias and variance later in
the paper) to each node in the hierarchy, and apply non-negativity post-processing to ensure that released counts remain
valid for population or frequency data, as noise can render some counts negative:

Ñ = max

(
0, N + Lap

(
1

ε

))
. (1)

1While we focus on the Laplace mechanism, similar analysis can be carried out under other mechanisms such as Gaussian, with
qualitatively similar tradeoffs between bias, variance, and utility.
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Independent noise addition can lead to inconsistencies across levels, such as lower-level counts not summing to
their corresponding higher-level total. To address this, we apply a hierarchical consistency post-processing step, also
described in Section 3.

3 The Optimal Allocation Problem

Given a fixed total privacy budget, determining how to allocate noise across hierarchical levels is non-trivial. On one
hand, assigning more of the privacy budget to lower levels can improve the accuracy of fine-grained counts, which may
be beneficial for downstream tasks. On the other hand, allocating more of the budget to higher levels may be preferable
when hierarchical consistency constraints are imposed. Even if we understand whether a bottom-heavy or top-heavy
allocation is preferable, it remains unclear how much budget should be assigned to each level.

3.1 Bias and Variance of Ñ

A high-utility privatized release should minimize the mean squared error (MSE), defined as:

MSE = E[(Ñ −N)2] = Bias(Ñ)2 +Var(Ñ), (2)

which decomposes into a bias and a variance term through the standard decomposition [15]. Thus, a high-utility
hierarchical release should exhibit low bias and variance. We begin by deriving the bias introduced by the non-negativity
post-processing applied after adding Laplace noise, as shown in prior work [16].

Proposition 1. For the population N , the bias of Ñ is given in closed-form by:

Bias(Ñ) = E
[
Ñ
]
−N =

1

2ε
exp (−Nε) > 0.

Proof. The proof is provided in Appendix A.

Note that the bias is strictly positive. As ε → ∞ (no privacy) or N → ∞, the Bias(Ñ) → 0. This implies that lower
levels of the hierarchy—where each count is typically smaller—will suffer more from the positive bias.

We now derive the variance of the non-negativity post-processing applied after adding Laplace noise.

Proposition 2. For the population N , the variance of Ñ is given in closed-form by:

Var(Ñ) =
1

ε2
(
2− e−Nε

)
− N

ε
e−Nε − 1

4ε2
e−2Nε.

Proof. The proof is provided in Appendix A.

As ε → ∞ (no privacy), the variance Var(Ñ) → 0. Conversely, as N → ∞, the variance increases monotonically and
approaches 2

ε2 , which is the variance of the untruncated Laplace noise. This indicates that small population counts
incur lower variance due to the truncation effect introduced by the non-negativity constraint, which reduces the overall
variability. However, this reduction in variance comes at the cost of increased bias, as lower truncation shifts the mean
upwards.

Using the standard decomposition in equation (2) and applying Proposition 1 and 2, the MSE admits the following
closed-form expression:

MSE = Bias(Ñ)2 +Var(Ñ) =
1

ε2
(
2− e−εN

)
− N

ε
e−εN . (3)

As ε → ∞ (no privacy), the noise magnitude vanishes and MSE → 0. Conversely, as ε → 0, we have MSE → ∞
due to increasing noise. When N → ∞, the positive bias diminishes, and the MSE is dominated by the variance term.
This highlights that bias is most significant when true counts are small, whereas for large counts, the error is primarily
driven by noise variance. We now state two key propositions that play an important role in optimization and privacy
budget allocation. We provide proofs in Appendix A.
Proposition 3. The MSE is strictly convex in ε over R>0 for any fixed N > 0.
Proposition 4. For any fixed ε > 0 and N ≥ 0, the MSE is bounded as

1

ε2
≤ MSE <

2

ε2
.
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In the context of hierarchical data release, the total MSE across a multi-level hierarchy with L levels (each allocated a
privacy budget εℓ) is given by:

MSETotal =

L∑
ℓ=1

∑
j∈Rℓ

[
1

ε2ℓ
(2− e−εℓNj )− Nj

εℓ
e−εℓNj

]
, (4)

where Rℓ denotes the set of nodes at level ℓ. This expression simply sums the per-node MSE across all levels of the
hierarchy. Then, Proposition 4 suggests the following: under a uniform privacy budget (i.e., ε1 = · · · = εL), lower
levels, containing as many or more nodes than higher levels, contribute more to MSETotal, as the total MSE incurred at
these levels is at least as large as that of the higher level. Furthermore, since a finite sum of strictly convex functions
remains strictly convex, MSETotal is strictly convex in ε by Proposition 3. This property is crucial, as it ensures that the
privacy budget allocation problem can be formulated as a convex optimization problem.

3.2 Optimization Programs

To allow flexibility in prioritizing accuracy at different levels, we define a weighted MSE objective that incorporates
level-wise preferences through weights:

MSEw(ε) =
L∑

ℓ=1

wℓ ·
∑
j∈Rℓ

[
1

ε2ℓ
(2− e−εℓNj )− Nj

εℓ
e−εℓNj

]
︸ ︷︷ ︸

MSE at level ℓ

, (5)

where w = (w1, . . . , wL) ∈ RL
≥0 denotes the level-wise weights, and ε = (ε1, . . . , εL) is the vector of privacy budgets.

These weights allow the data curator to emphasize accuracy at specific levels based on downstream utility needs. In
Section 4.1, we focus on the case of equal weights (w1 = w2 = · · · = wL), minimizing the total MSE across the
hierarchy without prioritizing any particular level. An ablation study examining how different weight choices affect
overall and per-level accuracy is then presented in Section 4.2. We now formalize two natural optimization problems.

(1) Minimize MSE subject to a total privacy constraint:
minimize

ε∈RL
≥0

MSEw(ε) (6a)

s.t.
L∑

ℓ=1

εℓ ≤ εTotal. (6b)

This program reflects settings where a fixed total privacy loss must be allocated across levels to minimize total error. It
is important to note that to satisfy ε-DP, one must base the optimization on previously released statistics or a similar
data structure, rather than directly computing the total MSE from the raw statistics to be privatized. This is because
using raw statistics in the algorithm to determine the privacy budget would itself leak information. However, if only the
total privacy loss is released (rather than individual allocations at each hierarchical level), then it may be permissible to
use the ground statistics for budget allocation.

(2) Minimize total privacy loss subject to a utility target:

minimize
ε∈RL

≥0

L∑
ℓ=1

εℓ (7a)

s.t. MSEw(ε) ≤ τ. (7b)

This formulation applies when the desired level of utility is fixed (e.g., when the data curator specifies a target error
threshold τ ) and seeks to minimize the total privacy cost. Such scenarios are common in practice when utility guarantees
must be met under strict privacy budgets [17]. The optimization determines how to allocate privacy budgets across
levels to meet the accuracy constraint with minimal cumulative privacy loss.

Convexity and Optimal Allocation. The objective MSEw(ε) (5) is strictly convex in ε over RL
>0. This follows

from Proposition 3, which establishes the strict convexity of each node-level MSE in εℓ for fixed Nj , and the fact
that convexity is preserved under nonnegative weighted sums and finite summations. As a result, the optimization
problems (6) and (7) are convex and can be efficiently solved in polynomial time using interior-point (IP) methods.

Furthermore, we establish a key theoretical result showing that, under equal weighting, the optimal privacy budget
allocation is monotonic across levels and allocates more budget to lower levels in the hierarchy.

5
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Figure 2: Privacy budget allocation using Optimization Program (7) in Wyoming.

Theorem 3. Under equal weighting, the optimal allocation of the privacy budget satisfies

ε1 ≤ ε2 ≤ · · · ≤ εL.

Proof. The proof is provided in Appendix A.

3.3 Hierarchical Post-Processing

It is often desirable to post-process the privatized data to enforce hierarchical consistency (i.e., the sum of lower-level
counts must match the total) since independent noise addition can violate this constraint. Due to post-processing
immunity, this adjustment does not compromise privacy. The following program enforces consistency, as also described
in [18, 5]:

minimize
v∈Rn

≥0

∥v − {Ñi}ni=1∥2 (8a)

s.t.
∑
i

vi = Ñtotal. (8b)

In multi-level hierarchies, this procedure is applied recursively in a top-down manner: first between levels 1 and 2, then
between each level-2 node and its children at level 3, and so on.

4 Experimental Results

Next, we present empirical evidence demonstrating the effectiveness of the proposed optimization method. We evaluate
both bias and variance, as well as the impact of enforcing hierarchical constraints. Experiments are conducted on the
release of three-level population statistics, where the hierarchy follows the geographic structure: State → Census Tract
→ Census Block.

Dataset and Setting. Our experiments use a subset of the U.S. Census data from the 2020 Census Privacy-Protected
Microdata File (PPMF) [19], released under the disclosure avoidance methodology adopted for the 2020 Census.
Specifically, we use the 2010 release version of the PPMF [20] to compute the budget allocation that satisfies exact
ε-DP.

In the main experiment, we focus on the state of Wyoming (1 state, 128 Census Tracts, and 20,975 Blocks), where ε1,
ε2, and ε3 denote the privacy budgets for the State, Tract, and Block levels, respectively. Additional results for other
states are provided in the Appendix D, showing the same clear trend and reinforcing that the analysis presented in this
section applies broadly.

Evaluation Metrics and Baseline. We evaluate both Bias2 and Variance, following the standard decomposition of
mean squared error (MSE). Our baseline is uniform allocation of the total privacy budget, a commonly suggested
heuristic for hierarchical data structures [6]. For example, in this setting, a total privacy budget of εtotal is divided evenly:
ε1 = ε2 = ε3 = εtotal

3 .

6
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Figure 3: Hierarchical data release performance in Wyoming.

4.1 Optimized Allocation: Bias2 and Variance

We begin by comparing the performance of the DP-post-processed estimates under a non-negativity constraint, without
enforcing hierarchical consistency, as shown in Figure 3 under “No Hier." The optimization-based approach significantly
outperforms uniform allocation in terms of Bias2, with the uniform method yielding 10 times higher Bias2. Variance
is also approximately four times as high under the uniform approach. This shows that, for the same total privacy
budget, both bias and variance can be substantially reduced through optimized budget allocation. Figure 4 illustrates the
resulting privacy budget distribution from our proposed method (6), exhibiting the relationship ε1 ≤ ε2 ≤ ε3 as shown
by Theorem 3.

2.0 2.5 3.0 3.5 4.0
total

0

1

2

3

4
3 (Opt.)
2 (Opt.)
1 (Opt.)
1, 2, 3 (Unif.)
total

Figure 4: Optimized privacy budget allocation for
Wyoming using program (6).

Next, we consider the case with hierarchical post-processing, as
shown in Figure 3 under “w/ Hier." The overall trend remains
similar: the optimized allocation continues to outperform uni-
form allocation at similar rate. Importantly, both bias and
variance are slightly reduced after enforcing hierarchical con-
sistency. By constraining the lower-level population counts
to match the upper level, the post-processing step helps miti-
gate strong positive bias in small counts, which in turn slightly
reduces the overall variance.

Finally, we consider the case of minimizing total privacy loss
subject to a utility target using program (7), as shown in Fig-
ure 2. As the total error tolerance τ increases, the required total
privacy budget εtotal decreases. For each value of τ , we observe
that the majority of the privacy budget is allocated to the lower
level, consistent with Theorem 3. Despite using 2010 PPMF
data to predict the privacy budget required for the 2020 release,
our estimates closely align with observed utility. For example, at τ = 20,000, the optimization allocates approximately
εtotal ≈ 2, and in Figure 3, we see that the total MSE (bias2 + variance) at this budget is indeed around 20,000.

4.2 Ablation on Weights

To study the effect of weighting, we vary w3 in equation (5), the weight assigned to level 3, and measure the resulting
MSE at each level. The remaining weights are distributed equally between levels 1 and 2, i.e., w1 = w2 = 1−w3

2 . The
total privacy budget is fixed at ε = 2.0, and all other parameters are held constant.

Experimental Result. We begin by analyzing how total and level-wise MSE change as a function of the weight w3. As
shown in Figure 5, increasing w3 leads to a reduction in MSE at level 3 (MSE3), as more weight on this level increases
the allocated privacy budget ε3. Conversely, MSE at levels 1 and 2 increases with w3, since their corresponding weights,
and thus ε1 and ε2, decrease. When all three weights are equal (i.e., w1 = w2 = w3 = 1

3 ), the optimization corresponds
to minimizing total MSE. This setting, indicated by the orange vertical line in Figure 5, yields the lowest total error.
Deviating from this uniform weighting shifts accuracy toward the prioritized level but increases overall error.

7
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Figure 5: Total and level-wise MSE as a function of varying w3 (left), and privacy budget allocation across levels from
program (6) under varying w3 (right) in Wyoming.

5 Downstream Allocation Task

Motivated by Census applications where hierarchical data inform budget allocation, such as the distribution of Title
I funds [21] or congressional apportionment [22], we analyze the impact of downstream decision-making tasks that
rely on privatized hierarchical statistics. Many such tasks distribute a fixed budget B across subgroups according to
their size or assessed need. These tasks often incorporate a weight function to encode policy preferences; for example,
sublinear weighting may be used to prioritize minority populations. We formalize this setting using a generalized
allocation framework that captures a broad class of weighted budget rules.

Generalized budget allocation task. The process of budget allocation can be broadly described by the following steps:

1. Estimate the size of each group i ∈ R2 relative to the total population: Pi ≜
Ni∑

j∈R2
Nj

=
Ni

Ntotal
.

2. Apply a weight function W : R → R to each group’s proportion to reflect policy preferences: Wi ≜ W (Pi).

3. Distribute the total budget B proportionally according to the computed weights.

If W is the identity function (i.e., W (p) = p), the allocation is directly proportional to group sizes.

5.1 Bias2 and Variance under Different Weight Functions

We study the Bias2 and Variance of the allocation derived from privatized weights W̃i (i.e., using privatized statistics
to compute proportions and apply the weight function) and assess how the choice of weight function W influences
downstream performance. Specifically, we evaluate the bias and variance of the resulting misallocation as a percentage,
rather than in terms of a fixed total budget B.

We evaluate three weight functions: logarithmic (which favors minority groups), linear (which is proportional), and
quadratic (which favors majority groups), to examine how allocation preferences affect performance under different
privacy mechanisms.

Dataset and Setting. We use the same dataset as in Section 4, where the 2010 PPMF is used as prior data and the 2020
PPMF serves as ground truth. All experiments are conducted on the state of Wyoming, with additional results for other
states provided in Appendix D. In this experiment, we randomly select a Census Tract within Wyoming and allocate the
privacy budget among the Census Blocks within that tract. The procedure involves: (1) allocating the privacy budget
using program (6), (2) applying hierarchical post-processing for consistency using program (8), and (3) computing
weighted group proportions based on the resulting privatized counts.

Experimental Results. We begin by evaluating performance under linear weighting, where the optimal allocation
using Program 6 significantly reduces both bias and variance. This correction arises from better representation of group
sizes in the allocation, reducing misallocation error.

For nonlinear weight functions, bias will shift by Jensen’s inequality: since the weight function W (·) is applied to noisy
proportions, we have

E[W (P̃i)] ̸= W (E[P̃i]),

8
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Figure 6: Bias2 and Variance for three weight functions W (p): logarithmic (log(p+ 1)), linear (p), and quadratic (p2),
in a single Census Tract in Wyoming.

which introduces bias. For convex functions such as the quadratic, this leads to an positive bias in expected weights;
for concave functions such as the logarithmic, it results in negative bias. As a result, Bias2 is generally larger under
nonlinear weighting than under linear.

Under log weighting, group size differences are compressed, promoting more equal allocation. Since uniform allocation
ignores group sizes and tends to overestimate small populations due to higher noise, it performs more similarly to the
optimal allocation under log weighting than under linear or quadratic, resulting in a smaller performance gap.

Regarding variance, log weighting tends to dampen the impact of noise, often resulting in lower variance. In contrast,
quadratic weighting amplifies group size differences and can lead to increased variance. However, the behavior of
variance is also influenced by the skewness of the population. In highly skewed populations, this contrast becomes less
apparent. The log transformation flattens group differences, which makes small, noisy groups more influential after
normalization, potentially increasing variance. Conversely, the quadratic transformation exaggerates group differences,
allowing large, stable groups to dominate the normalization, which can reduce variance in the final allocation.

Overall, across all weight functions, optimal allocation consistently outperforms uniform allocation, although the
degree of improvement varies with the weighting scheme and population structure.

These findings also highlight the importance of choosing a weighting scheme that aligns with the intended policy
objective, as different schemes impact bias and variance in distinct ways. This suggests that practitioners should choose
weight functions with careful attention to the fairness objectives or utility demands of their specific application.

6 Conclusion

This paper addresses the fundamental challenge of optimal privacy budget allocation for hierarchical data release under
differential privacy. We propose a convex optimization framework that minimizes the total mean squared error (MSE),
accounting for both bias and variance introduced by Laplace noise and non-negativity post-processing. Our theoretical
analysis reveals that optimal allocations are bottom-heavy, assigning more of the privacy budget to lower levels of the
hierarchy. This strategy is shown to be strictly superior to uniform allocation, both analytically and empirically.

Through extensive experiments on real U.S. Census data, the paper shows that the proposed allocation significantly
reduces both bias and variance compared to a standard approach. Additionally, we extend our framework to evaluate
downstream resource allocation tasks, showing that optimal allocation improves utility across a range of preference-
weighted schemes, highlighting its practical and societal relevance in applications such as public funding and policy-
driven resource distribution.

These findings emphasize the importance of structured privacy budget allocation in practical applications of differential
privacy, especially in scenarios where hierarchical consistency and data utility are critical. Future directions include
extending the approach to other privatization mechanisms, incorporating fairness constraints, and exploring its impact
on broader policy-driven decisions.
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A Missing Proofs

Proof of Proposition 1. Let f(z) = ε
2 exp (−ε|z −N |) be the PDF of the Laplace centered at N with scale parameter

1/ε. The expected value of the post-processed count is given by:

E[Ñ ] =

∫ ∞

−∞
max(0, z)f(z) dz

=

∫ 0

−∞
0 · f(z) dz +

∫ N

0

zf(z) dz +

∫ ∞

N

zf(z) dz. (9)

We now compute each term in (9) separately:∫ 0

−∞
0 · f(z) dz = 0, (10)∫ N

0

zf(z) dz =
1

2
(N − 1

ε ) +
1

2ε
exp(−εN), (11)∫ ∞

N

zf(z) dz =
1

2
(N + 1

ε ). (12)

Combining equations (10)–(12), we obtain:

E[Ñ ] = N +
1

2ε
exp(−εN).

Thus, the bias of Ñ is:

Bias(Ñ) = E[Ñ ]−N =
1

2ε
exp(−εN) > 0.

Proof of Proposition 2. From Proposition 1, the expected value is:

E[Ñ ] = N +
1

2ε
e−εN .

Let the PDF of the Laplace centered at N with the scale of 1/ε be:

f(z) =
ε

2
exp(−ε|z −N |).

We split the second moment:

E[Ñ2] =

∫ 0

−∞
02f(z) dz +

∫ N

0

z2f(z) dz +

∫ ∞

N

z2f(z) dz.

Region 1: z ∈ [0, N ] ∫ N

0

z2f(z) dz =
ε

2

∫ N

0

z2e−ε(N−z)dz =
ε

2
e−εN

∫ N

0

z2eεzdz.

Let u = εz, so dz = du
ε , the limits become 0 to εN :

=
1

2ε2
e−εN

∫ εN

0

u2eudu.

Using the identity: ∫ x

0

u2eudu = (x2 − 2x+ 2)ex − 2,

11
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we get: ∫ N

0

z2f(z) dz =
1

2ε2
(
ε2N2 − 2εN + 2− 2e−εN

)
.

Region 2: z ∈ [N,∞)

Let u = z −N , so:∫ ∞

N

z2f(z) dz =
ε

2

∫ ∞

0

(u+N)2e−εudu =
ε

2

∫ ∞

0

(u2 + 2Nu+N2)e−εudu.

Expanding:

=
ε

2

(∫ ∞

0

u2e−εudu+ 2N

∫ ∞

0

ue−εudu+N2

∫ ∞

0

e−εudu

)
.

Using standard integrals:∫ ∞

0

e−εudu =
1

ε
,

∫ ∞

0

ue−εudu =
1

ε2
,

∫ ∞

0

u2e−εudu =
2

ε3
,

we get:

=
1

2ε2
(
2 + 2εN + ε2N2

)
.

Combine both parts:

E[Ñ2] =
1

ε2
(
ε2N2 + 2− e−εN

)
.

Now compute the variance:

Var(Ñ) = E[Ñ2]−
(
E[Ñ ]

)2
.

Recall:

E[Ñ ] = N +
1

2ε
e−εN ⇒

(
E[Ñ ]

)2
= N2 +

1

ε
Ne−εN +

1

4ε2
e−2εN .

Therefore:

Var(Ñ) =
1

ε2
(
ε2N2 + 2− e−εN

)
−
(
N2 +

1

ε
Ne−εN +

1

4ε2
e−2εN

)
=

1

ε2
(
2− e−εN

)
− N

ε
e−εN − 1

4ε2
e−2εN .

Proof of Proposition 3. Let

f(ε) =
1

ε2
(
2− e−εN

)
− N

ε
e−εN .

We show that f ′′(ε) > 0 for all ε > 0. First, compute the first derivative:

f ′(ε) =
N2e−εNε2 + 2Ne−εNε+ 2e−εN − 4

ε3
.

Then, compute the second derivative:

f ′′(ε) = −
N3e−εNε3 + 3

(
N2e−εNε2 + 2Ne−εNε+ 2e−εN − 4

)
ε4

.

Let
g(ε) = −N3e−εNε3 − 3

(
N2e−εNε2 + 2Ne−εNε+ 2e−εN − 4

)
,

so that f ′′(ε) = g(ε)
ε4 . It suffices to show g(ε) > 0 for all ε > 0.

12
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First, evaluate the function at ε = 0. Taking the limit,

lim
ε→0

g(ε) = −0− 3(0 + 0 + 2− 4) = 6.

Next, compute the derivative:
g′(ε) = N4e−εNε3 > 0 for all ε > 0.

Since g(0) = 6 > 0 and g′(ε) > 0, it follows that g(ε) > 0 for all ε > 0.

Therefore, f ′′(ε) = g(ε)
ε4 > 0 for all ε > 0, proving that f is strictly convex on R>0.

Proof of Proposition 4. Let

f(N) =
1

ε2
(2− e−εN )− N

ε
e−εN .

First, evaluate the lower bound at N = 0:

f(0) =
1

ε2
(2− 1)− 0

ε
· 1 =

1

ε2
.

Now consider the limit as N → ∞:
lim

N→∞
f(N) =

1

ε2
· 2 =

2

ε2
.

To show monotonicity, compute the derivative:

d

dN
f(N) = Ne−εN .

This is non-negative for all N ≥ 0, and strictly positive for N > 0, which implies that f(N) is strictly increasing in N .

Hence, the function is bounded below by its value at N = 0 and bounded above by its limit as N → ∞. Therefore,

1

ε2
≤ f(N) <

2

ε2
.

Proof of Theorem 3. To show that ε1 ≤ ε2 ≤ · · · ≤ εL, it suffices to show that εn ≤ εn+1 for any two consecutive
levels in the hierarchy. Consider an arbitrary two-level hierarchy where the upper-level node has count N and the
lower-level consists of subcounts Ni satisfying

∑
i Ni = N .

Define the per-node MSE as a function of ε > 0 and count N ≥ 0:

f(ε,N) =
1

ε2
(2− e−εN )− N

ε
e−εN .

Suppose, for the sake of contradiction, that εn > εn+1 is optimal. Then, the marginal utility of privacy budget must be
equal across levels:

∂f(εn, N)

∂ε
=
∑
i

∂f(εn+1, Ni)

∂ε
.

Let us define:

g(ε,N) ≜
∂f(ε,N)

∂ε
=

N2e−εNε2 + 2Ne−εNε+ 2e−εN − 4

ε3
.

First, observe that g(ε,N) is strictly increasing in ε since f(ε,N) is strictly convex in ε by Proposition 3. Therefore,
for fixed N , we have:

g(εn, N) > g(εn+1, N).

Next, notice that ∂g(ε,N)
∂N = −N2e−εN ≤ 0, so g(ε,N) is monotonically decreasing in N .

Furthermore, observe:

g(ε, 0) = − 2

ε3
, lim

N→∞
g(ε,N) = − 4

ε3
.

13
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Hence, for all N ≥ 0, we have the bound:

− 4

ε3
≤ g(ε,N) ≤ − 2

ε3
.

Let k be the number of nodes at the lower level. Now, consider two cases: (1) If k = 1, then trivially g(ε,N) =∑
i g(ε,Ni), since there is only a single lower-level node and it is equal to N . (2) If k ≥ 2, then using the bounds on

g(ε,N), we have:

g(ε,N) ≥ − 4

ε3
≥ k ·

(
− 2

ε3

)
≥
∑
i

g(ε,Ni),

since each g(ε,Ni) ≤ − 2
ε3 and there are k such terms in the sum.

Combining the two observations, we obtain

g(εn, N) > g(εn+1, N) ≥
∑
i

g(εn+1, Ni),

which is a contradiction.

B Skewness Analysis

0.02 0.04 0.06 0.08 0.10
0

10

20

30

40

50

60

70

Bi
as

Bias vs.  for |R| = 2
N1 = 50, N2 = 50
N1 = 25, N2 = 75
N1 = 10, N2 = 90
N1 = 0, N2 = 100

0.02 0.04 0.06 0.08 0.10
0

20

40

60

80

100

120
Bi

as

Bias vs.  for |R| = 3
N1 = 33, N2 = 33, N3 = 34
N1 = 20, N2 = 20, N3 = 60
N1 = 10, N2 = 10, N3 = 70
N1 = 0, N2 = 0, N3 = 100

Figure 7: Bias incurred as a function of ε for different distributions of Ni, where the total sum is fixed at 100. The left
plot represents the 2-region case (N1+N2 = 100), and the right plot represents the 3-region case (N1+N2+N3 = 100).

In this section, we investigate how the skewness of a population distribution affects bias. Even when the total population
and the number of regions are fixed, the bias introduced by non-negativity post-processing (1) can vary depending on
how the population is distributed. As illustrated in Figure 7, bias decreases as the distribution becomes more uniform.
In fact, the bias is minimized when the population is evenly distributed across all regions.
Theorem 4. For a fixed privacy budget ε, the bias is minimized when Ni is uniform for all i ∈ R.

Proof. For a fixed ε, total population N , and number of regions |R|, minimizing the bias is equivalent to solving the
following optimization problem:

minimize
Ni

∑
i∈R

e−Ni (13a)

s.t.
∑
i∈R

Ni = N, (13b)

Ni ≥ 0, ∀i ∈ R. (13c)

The Lagrangian for this problem is given by:

L(Ni, λ, µi) =
∑
i∈R

e−Ni + λ

(∑
i∈R

Ni −N

)
−
∑
i∈R

µiNi.

The necessary KKT conditions are:

14
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1. Stationarity Condition
∂L
∂Ni

= −e−Ni + λ− µi = 0.

Rearranging, we obtain:
λ− µi = e−Ni .

2. Primal Feasibility ∑
i∈R

Ni = N, Ni ≥ 0, ∀i ∈ R.

3. Dual Feasibility
µi ≥ 0, ∀i ∈ R.

4. Complementary Slackness
µiNi = 0, ∀i ∈ R.

If Ni > 0, then µi = 0, so we obtain:

λ =
1

eNi
.

Taking the natural logarithm on both sides:
Ni = − lnλ.

Using the primal feasibility, we have:∑
i∈R

Ni =
∑
i∈R

(− lnλ) = |R|(− lnλ) = N.

Solving for λ:
λ = e−N/|R|.

Substituting back:

N∗
i =

N

|R|
, ∀i ∈ R.

Since the objective function is strictly convex over the feasible set, the optimal solution must be unique. This implies
that the only possible minimizer is:

N∗
i =

N

|R|
, ∀i ∈ R.

Thus, the optimal allocation distributes N evenly among all states i ∈ R.

This also implies that if two distributions of Ni, written in vector form as {NB
i }i∈R and {NA

i }i∈R, satisfy {NB
i }

majorizes {NA
i }, then the total bias is higher under {NB

i }. Since the function f(x) = e−x is convex, Karamata’s
inequality gives ∑

i∈R

f(NA
i ) ≤

∑
i∈R

f(NB
i ),

which implies greater cumulative bias in more skewed distributions.

C Limitations

We discuss two primary limitations of the paper.

First, the optimization program relies on previously released data to determine the allocation of privacy budget. If
level-wise privacy budgets are also made public, then the program (6) is not differentially private unless the input counts
used for computing the allocation are themselves privatized. However, as discussed in Section 4, if only the total privacy
budget is released—without revealing the per-level allocation—then it is acceptable to use ground-truth statistics for
budget allocation.

Second, the hierarchical post-processing method introduced in Section 3.3 assumes that lower levels typically contribute
more to the total MSE under optimal allocation. While this is generally true, the contribution can vary depending on
the level-wise weights. In particular, under extreme weight settings (e.g., w3 ≈ 0.9 in Figure 5), the upper level may
contribute more to the total MSE. In such cases, a bottom-up projection approach—where higher-level counts are
adjusted to match lower-level estimates—may be more appropriate than the top-down method used here.
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D Additional Experiments on Other States

D.1 Additional Result on Section 4.1
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Figure 8: Hierarchical data release performance in New Mexico (top) and Delaware (bottom). Each row shows bias
(left) and variance (right) for three-level hierarchical releases.
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Figure 9: Bias2 and variance for three weight functions W (p)—logarithmic (log(p + 1)), linear (p), and quadratic
(p2)—in a single Census Tract in New Mexico (left) and Delaware (right).
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Figure 10: Privacy budget allocation using Optimization Program (7) for New Mexico (top) and Delaware (bottom).

D.2 Additional Result on Section 5
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Figure 11: Bias2 and variance for three weight functions W (p)—logarithmic (log(p+ 1)), linear (p), and quadratic
(p2)—in a single Census Tract in New Mexico (top) and Delaware (bottom).
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