
ar
X

iv
:2

50
5.

10
79

0v
1

 [
cs

.C
R

]
 1

6
M

ay
 2

02
5

Neural-Inspired Advances in Integral
Cryptanalysis

Liu Zhang2,3, Yiran Yao3, Danping Shi1�, Dongchen Chai2, Jian Guo3, and

Zilong Wang2 �

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences shidanping@iie.ac.cn
2 School of Cyber Engineering, Xidian University, Xi’an, China

liu.zhang@ntu.edu.sg,chaidc@foxmail.com,zlwang@xidian.edu.cn
3 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore {yiran005@e,guojian@}.ntu.edu.sg

Abstract. The study by Gohr et al. at CRYPTO 2019 and sunsequent
related works have shown that neural networks can uncover previously
unused features, offering novel insights into cryptanalysis. Motivated by
these findings, we employ neural networks to learn features specifically
related to integral properties and integrate the corresponding insights
into optimized search frameworks. These findings validate the framework
of using neural networks for feature exploration, providing researchers
with novel insights that advance established cryptanalysis methods.
Neural networks have inspired the development of more precise integral
search models. By comparing the integral distinguishers obtained via
neural networks with those identified by classical methods, we observe
that existing automated search models often fail to find optimal distin-
guishers. To address this issue, we develop a meet-in-the-middle search
framework that balances model accuracy and computational efficiency.
As a result, we reduce the number of active plaintext bits required for an
11-round integral distinguisher on SKINNY-64-64, and further identify a
12-round key-dependent integral distinguisher—achieving one additional
round over the previous best-known result.
The integral distinguishers discovered by neural networks enable key-
recovery attacks on more rounds. We identify a 7-round key-independent
integral distinguisher from neural networks with even only one active
plaintext cell, which is based on linear combinations of bits. This distin-
guisher enables a 15-round key-recovery attack on SKINNY-n-n through a
strategy with 3 rounds of forward decryption and 5 rounds of backward
encryption, improving upon the previous record by one round. The same
distinguisher also enhances attacks on SKINNY-n-2n and SKINNY-n-3n.
Additionally, we discover an 8-round key-dependent integral distinguisher
using neural network that further reduces the time complexity of key-
recovery attacks against SKINNY.

Keywords: Neural Network · Feature Explorer · Integral Property ·
Limited Data · SKINNY.

https://arxiv.org/abs/2505.10790v1

1 Introduction

Integral cryptanalysis, first introduced by Knudsen in [13], analyzes the alge-
braic structure of a block cipher by computing the sum of ciphertexts derived
from a set of plaintexts that span a linear subspace. It tracks how integral prop-
erties—ALL, BALANCE, CONSTANT, and UNKNOWN—propagate through the inter-
nal state words via the cipher’s round transformations. The division property,
originally proposed in [16], provides a more general and precise framework for
identifying integral distinguishers. For a set of texts X ⊆ Fn

2 , the division prop-
erty is described using a subset of indicator vectors u ∈ Fn

2 , which is divided
into two categories: the 0-subset and the unknown-subset. To further refine the
granularity of integral analysis, the three-subset bit-based division property was
introduced in [18]. In this approach, the set of u is partitioned into three subsets:
the 0-subset, the unknown-subset, and the 1-subset. Also in 2016, Boura and
Canteaut introduced the notion of parity sets [6], offering an alternative view
of the division property by connecting it with the algebraic normal form (ANF)
of the cipher’s components. Lambin et al. extended the analysis by considering
ciphers with linearly equivalent S-boxes and successfully identified high-round
integral distinguishers for the RECTANGLE [14]. More recently, in FSE 2023, Beyne
and Verbauwhede introduced the notion of generalized integral properties, which
not only consider mapping-based integral properties on ciphertext sets, but also
take into account transformations applied to the plaintext inputs [5]. The above
discussions focus on deterministic integral properties. In contrast, probabilistic
integral properties, which correspond to the cube tester, were introduced in [1].

One primary challenge in discovering integral distinguishers lies in effectively
modeling the propagation of the division property through the round functions
of a cipher. The propagation was initially evaluated using a breadth-first search
algorithm in [16,18,17], but this approach becomes computationally infeasible
for block ciphers with large state sizes. To improve efficiency, Xiang et al. in-
troduced the concept of division trails and proposed a MILP-based automatic
search method [20]. Sun et al. developed an alternative framework based on
Boolean Satisfiability Problem (SAT) to analyze ARX ciphers [15]. Wang et
al. further refined the MILP-based approach by accurately modeling the three-
subset division property and incorporating pruning techniques and fast propa-
gation methods [19]. Hu et al. introduced the monomial prediction technique,
which accelerates the enumeration of monomial trials and enables the recovery of
more superpolies [12]. Lambin et al. extended ciphers with linear mappings and
successfully identified high-round integral distinguishers based on linear combi-
nations of bits for RECTANGLE [14]. Beyne and Verbauwhede proposed the use
of algebraic transition matrices to search for generalized integral properties and
applied this approach to PRESENT [5].

Artificial intelligence-based approaches to symmetric cryptanalysis, as demon-
strated in works published at CRYPTO 2019 [9], EUROCRYPT 2021 [4], and
ASIACRYPT 2023 [2], have shown that neural networks are capable of extract-
ing additional non-random features from limited amounts of data. Consequently,
a promising direction is to treat neural networks as auxiliary tools for classical

2

cryptanalysis. Unlike classical automated methods that require significant man-
ual effort to design and tune models, neural networks can learn novel crypto-
graphic features directly from ciphertext datasets generated by the cipher itself.
A beneficial framework is to discover novel insights from neural networks and
use them to advance classical cryptanalysis methods. In this work, we prove the
effectness of the framework by focusing on the integral properties inherent in
ciphertext sets under a given plaintext structure, and improve existing integral
results with what we discovered with neural networks.

- Improving Automated Search Models Inspired by Neural Net-
works. We adopt the concept of parity sets to preprocess ciphertext multi-
sets, ensuring that only properties relevant to integral analysis are retained.
This allows the neural network to focus exclusively on learning features as-
sociated with the integral property. By comparing the integral distinguishers
discovered by neural networks with those identified using classical methods
under the same number of active plaintext bits, we observe that existing
automated search models often fail to produce optimal distinguishers. To
address this limitation, we propose a meet-in-the-middle strategy that com-
bines the bit-based division property over two subsets with the monomial
prediction technique—effectively mitigating the inaccuracy of the former
and the computational overhead of the latter. As a result, our improved au-
tomated search model successfully identifies an 11-round key-independent
integral distinguisher with fewer active bits for both SKINNY-64-64 and
SKINNY-128-128, as well as a 12-round key-dependent integral distinguisher
for SKINNY-64-64, as shown in Table 1.

- Enhanced Key-Recovery Attacks Based on Integral Distinguishers.
Beyond the pursuit of longer-round distinguishers, we identify short-round
distinguishers that significantly improve key-recovery attacks. In particular,
we utilize a 7-round key-independent integral distinguisher to mount a 15-
round key-recovery attack on SKINNY-n-n, by performing 3 rounds of forward
decryption and 5 rounds of backward encryption—improving the previous
best result by one round. Since the distinguisher is key-independent, it can
also be applied to SKINNY-n-2n and SKINNY-n-3n. Furthermore, we employ
an 8-round key-dependent integral distinguisher to reduce the complexity
of key-recovery attacks on SKINNY. However, this attack is only effective for
a subset of keys and does not apply to the full key space, as summarized
in Table 2. We have made our source code publicly available at https://
anonymous.4open.science/r/skinny-automatic-and-AI-analysis-21BA/..

- Neural Networks as Feature Explorers for Cryptanalysis. Unlike
classical cryptanalysis methods, which typically rely on precisely characteriz-
ing specific non-random properties, neural networks excel at learning features
directly from the data distribution. This capability enables them to discover
less well-defined features compared with classical methods. By comparing
the results of neural networks and automated search models under identical
data constraints and analyzing the internal behavior of the trained models,

3

https://anonymous.4open.science/r/skinny-automatic-and-AI-analysis-21BA/
https://anonymous.4open.science/r/skinny-automatic-and-AI-analysis-21BA/

we are able to uncover feature properties previously ignored by conventional
analysis. These insights can, in turn, guide the design of more effective and
delicate classical cryptanalytic techniques. While neural networks are inher-
ently limited in their ability to construct long-round distinguishers due to
data complexity constraints, they often outperform classical methods in the
discovery of short-round distinguishers. Notably, the distinguishers used in
our key-recovery attacks are directly discovered through neural networks.
These findings underscore the unique and complementary role of neural net-
works as auxiliary tools in cryptanalysis.

Table 1. The integral distinguisher against SKINNY in single tweakey setting

Cipher Round Type Data # Balanced
Bits Reference

SKINNY-64-64

11 Key-Independent +
Linear Combination of Bits 263 11 [8]

11 Key-Independent +
Linear Combination of Bits 260 16 Sect.5.2

11 Key-Dependent +
Nonlinear Combination of Bits 260 2 Sect.6.3

12 Key-Dependent +
Linear Combination of Bits 260 3 Sect.6.2

SKINNY-128-128 11 Key-Independent +
Linear Combination of Bits 260 48 Sect.5.2

The structure of the paper is as follows. Section 2 introduces the necessary back-
ground used throughout the paper. Section 3 presents the overall motivation and
core ideas. In Section 4, we use neural networks to construct short-round integral
distinguishers. Section 5 introduces a more precise model to better characterize
the learned features. Section 6 proposes key-dependent integral distinguishers. In
Section 7, we improve the key recovery attack based on the proposed techniques.
Finally, Section 8 concludes the paper.

2 Preliminaries

2.1 Brief Description of SKINNY

SKINNY is a family of tweakable block ciphers [3]. SKINNY-n has a n-bit block
size. We define bit numbering from left to right. Let c denote the size of a cell
in SKINNY. The state is represented as a 4 × 4 array, where each cell has a size

4

Table 2. The integral attack against SKINNY in single tweakey setting

Cipher Round Configure Time Data Key Space Reference

SKINNY-64-64

14 4+6+4 248.087 248 264 [3]

15 3+7+5 261.976 248 264 Sect.7.1

15 3+7+5 253.926 248 262 Sect.7.2

SKINNY-64-128
17 3+7+7 2126.421 248 2128 Sect.7.1

17 3+7+7 2118.388 248 2126 Sect.7.2

SKINNY-64-192
19 3+7+9 2190.695 248 2192 Sect.7.1

19 3+7+9 2182.671 248 2190 Sect.7.2

SKINNY-128-128

14 4+6+4 296.006 296 2128 [3]

15 3+7+5 2125.976 296 2128 Sect.7.1

15 3+7+5 2109.926 296 2126 Sect.7.2

SKINNY-128-256
17 3+7+7 2254.421 296 2256 Sect.7.1

17 3+7+7 2238.388 296 2254 Sect.7.2

SKINNY-128-384
19 3+7+9 2382.695 296 2384 Sect.7.1

19 3+7+9 2366.671 296 2382 Sect.7.2

of c bits. The input state of rth round is denoted by

Sr =

Sr[0] Sr[1] Sr[2] Sr[3]
Sr[4] Sr[5] Sr[6] Sr[7]
Sr[8] Sr[9] Sr[10] Sr[11]
Sr[12] Sr[13] Sr[14] Sr[15]

 .

For each block size n, SKINNY-n supports three tweakey sizes: t = n, t = 2n,
and t = 3n. SKINNY-n-t denotes the version with block size n and tweakey size
t. The t-bit tweakey is arranged as a set of t/n 4 × 4 arrays, denoted by TKz,
where z ∈ {1, . . . , t/n}. Each tweakey undergoes a permutation at the begin-
ning of each round. Additionally, every cell in the first and second rows of TK2

and TK3 is individually updated using a linear feedback shift register (LFSR),
with the details of the LFSR described in [3]. The round function consists of
five operations: SubCells (SB), AddConstants (AC), AddRoundTweakey (AK),
ShiftRows (SR), and MixColumns (MC), as illustrated in Fig. 1.

SB substitutes each cell with a c-bit S-box. For SKINNY-64-64 (resp. SKINNY
-128-128), c=4 (resp. 8). AC updates the state by XORing it with round con-
stants. AK updates the state by XORing the first two rows of the state with the
t/n tweakey arrays. SR rotates the i-th row to the right by i cells. MC multiplies

5

SB AC

AK

>>> 1

>>> 2

>>> 3

SR MC

Fig. 1. The round function of SKINNY

each column of the state by a binary matrix:
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

2.2 Integral Property

Notation Let F2 denote the finite field {0, 1}, and let a = (a0, a1, . . . , am−1) ∈
Fm
2 represent an m-bit vector, where a[i] denotes the i-th bit of a. The Hamming

weight wt(a) is defined as wt(a) =
∑m−1

i=0 a[i]. For any v ∈ Fm
2 and v′ ∈ Fm

2 , we
denote v ⪰ v′ if vi ≥ v′i holds for all i = 0, 1, . . . ,m− 1.

The integral property utilises a set of chosen plaintexts in which certain
bits take all possible values while the remaining bits are fixed to a constant.
The corresponding ciphertexts are then computed using an encryption oracle.
If the XOR of all ciphertexts in the set always results in 0, the cypher is said
to possess an integral distinguisher. The division property, originally proposed
in [16], provides a more precise and generalized method for identifying integral
distinguishers.

Bit Product Functions πu [16]. Let πu : Fm
2 → F2 be a function for any

u ∈ Fm
2 . Let x ∈ Fm

2 be an input of πu, and πu(x) is the AND of x[i] satisfying
u[i] = 1, namely, it is defined as

πu(x) :=

m−1∏
i=0

x[i]u[i].

Definition 1 (Bit-based Division Property using Two Subsets [18]). A
set X ∈ Fm

2 has division property Dm
K , where K ∈ Fm

2 is a set, if for all u ∈ Fm
2 ,

we have ⊕
x∈X

πu(x) =

{
unknown if there is k ∈ K s.t. u ⪰ k,

0 otherwise.

Definition 2 (Algebraic Normal Form). The Algebraic Normal Form (ANF)
of a Boolean function f : Fm

2 → F2 can be expressed as

f(x) = f(x0, · · · , xm−1) =
⊕
u∈Fm

2

auπu(x),

6

where au ∈ F2 and πu(x) is called a monomial. If the coefficient of πu(x) in f
is 1, we say πu(x) is contained in f , denoted by πu(x)→ f .

Definition 3 (Monomial Prediction [12]). If there exists a monomial se-
quence satisfied

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)),

we call that there is a monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)),
denoted by πu(0)(x(0))⇝ πu(r)(x(r)). If the number of monomial trails connecting
πu(0)(x(0)) and πu(r)(x(r)) is odd, then we have πu(0)(x(0))→ πu(r)(x(r)).

Beyne and Verbauwhede[5] consider a general definition of integral properties
that encompasses the original integral properties from [13], division properties[16,18]
and the properties from the linearly equivalent S-boxes method of [14], which
was further developed by Derbez and Fouque [8].

Definition 4 (Integral Property [5]). Let F : Fn
2 → Fm

2 be a vectorial
Boolean function. An integral property for F is a pair (X, g) with X ∈ Fn

2 and
g : Fm

2 → F2, and its evaluation is equal to∑
x∈X

g(F (x)). (1)

3 The Overall Motivation and Core Ideas

In cryptanalysis, distinguishers are constructed based on non-random features
observed in plaintext-ciphertext pairs to distinguish ciphertexts from random
values. Meanwhile, neural networks are data-driven models capable of classify-
ing inputs by learning discriminative patterns from labeled data. This naturally
motivates the idea of integrating neural networks into cryptanalytic methodolo-
gies. Recent studies, including CRYPTO 2019 [9], EUROCRYPT 2021 [4], and
ASIACRYPT 2023 [2], have demonstrated that neural networks can uncover pre-
viously unexplored features, offering novel insights into modern cryptanalysis.
Therefore, we propose employing neural networks as an auxiliary tool in integral
cryptanalysis.

High-round distinguishers typically require significantly more data, which in-
herently limits the ability of neural networks to distinguish between ciphertexts
and random values in such settings. Consequently, our objective is not to con-
struct high-round distinguishers using neural networks, but rather to extract
richer and more informative features from limited data.

Since the features learned by neural networks are entirely derived from data,
and interpretability is essential in cryptanalysis, we introduce the concept of
parity sets in Section 4.1 to constrain the type of features embedded in the
training instances. By encoding input data as vectorial division sequences, we
successfully obtain 7-round and 8-round integral distinguishers with low data
complexity, as presented in Section 4.3.

7

In Section 5.1, we compare the distinguishers discovered by neural networks
with those found by existing automated search models. This comparison reveals
that the latter are not always precise: for a fixed number of active bits, auto-
mated approaches may fail to identify optimal distinguishers. Motivated by this
observation, we enhance the automated search framework by incorporating the
division property with two subsets and the monomial prediction technique. The
resulting improved model not only reproduces the distinguishers found by neu-
ral networks but also yields longer distinguishers requiring fewer active bits than
prior results, as detailed in Section 5.2.

Furthermore, in Section 6.1, we observe that neural networks are capable
of learning both deterministic and probabilistic integral features. Our analysis
shows that the probabilistic nature of some features stems from key-dependent
monomials, where variations in key values influence the presence of integral
properties. Leveraging this insight, we extend our search strategy and identify a
12-round key-dependent integral distinguisher for SKINNY-64-64, which, to the
best of our knowledge, represents the longest known distinguisher for this cipher
(see Section 6.2). Most importantly, guided by neural network, we progressively
expand the feature space in our search model—from linear combinations of bits
to nonlinear combinations—as described in Section 6.3.

While our improved model is designed to identify long-round distinguishers,
we emphasize that longer distinguishers do not necessarily lead to better key-
recovery attacks. In Section 7.1, we demonstrate a 15-round key-recovery attack
on SKINNY-64-64 using a 7-round distinguisher discovered by a neural network,
combined with a structure that performs 3 rounds of forward decryption and
5 rounds of backward encryption. This surpasses the previous best result by
one round. Moreover, in Section 7.2, we show that using probabilistic integral
distinguishers can further reduce the time complexity of the attack. However,
this particular attack is not valid for all key values.

In summary, neural networks serve as a valuable auxiliary tool in cryptanal-
ysis. Although the features in our training data are constrained to those related
to integral properties—limiting the discovery of entirely new patterns—neural
networks effectively reveal deficiencies in existing automated search models. By
addressing these deficiencies, we achieve stronger cryptanalytic results. To a cer-
tain extent, this demonstrates that neural networks can significantly contribute
to the advancement of classical cryptanalytic techniques.

4 Construct Short-Round Integral Distinguisher Using
Neural Network

Neural networks have the potential to learn additional non-random features from
ciphertexts beyond what can be extracted by classical cryptanalysis methods.
In CRYPTO 2019, Gohr used ciphertext pairs generated from plaintext pairs
with a fixed input difference as inputs to a neural network, enabling it to learn
difference-related features [9]. Bao et al. further demonstrated that neural net-
works not only learn differential features from ciphertext pairs of Speck, but

8

also extract XOR-related information between the left and right branches of
the ciphertext [2]. Inspired by these findings, we aim to explore whether neural
networks can also discover novel integral properties directly from data.

4.1 Definition of Data Types

Zahednejad et al. used multisets as inputs to a neural network, training it to
distinguish between ciphertexts with specific integral properties and random val-
ues [21]. The positive instances are obtained by encrypting plaintext multisets
generated through partial-bit enumeration, while the negative instances are gen-
erated by encrypting randomly constructed plaintext multisets. However, train-
ing integral distinguishers using neural networks presents several limitations:

1. In classical integral cryptanalysis, extending the length of an integral distin-
guisher typically requires activating a large number of plaintext bits. How-
ever, encrypting such a lot of plaintexts is computationally expensive. Conse-
quently, when training an integral distinguisher using a neural network, only
a small number of plaintext bits can be activated, which limits the neural
distinguisher to fewer rounds.

2. Since the multisets consist of concrete ciphertext values, they may contain
various types of non-random features. Neural networks may unintentionally
learn to exploit a mixture of these features during training, whereas the
original goal is to guide the network to focus exclusively on integral-related
properties.

The data requirements described in Limitation 1 are inherent to cryptanal-
ysis in general—not only integral cryptanalysis, but also differential and linear
cryptanalysis face similar challenges. The motivation for introducing neural net-
works into cryptanalysis is precisely to uncover more non-random features from
a limited amount of data. We aim to address Limitation 2 by exploring methods
to reduce the influence of unintended non-random features. In CRYPTO 2016,
Boura et al. proposed the notion of the parity set to characterize the division
property of a ciphertext set.

Definition 5 (Parity Set [6]). Let X be a set of elements in Fm
2 , the parity

set of X, denoted by U(X), is the subset of Fm
2 defined by

U(X) = {u ∈ Fm
2 :

⊕
x∈X

xu = 1}.

We propose leveraging the concept of the parity set to generate training data
that is better aligned with the learning of integral-related features using neural
networks. In practice, it is generally infeasible to characterize the division prop-
erty of the entire cipher state in a single step. Instead, the analysis is typically
performed at the granularity of individual S-boxes. Consequently, the division
property of the full state can be derived by aggregating the division properties
of each individual cell. Therefore, we define two types of data formats as follows.

9

Definition 6 (Division Suquence). Let X be a set of elements in Fc
2, the

division sequence of X, denoted by DS, is a sequence defined by

DS = [
⊕
x∈X

xu, u ∈ Fc
2].

Definition 7 (Vectorial Division Suquence). Let X1,X2, · · ·Xi (1 ≤ i ≤ n
c)

be the set of elements in Fc
2, the vectorial division sequence of X1,X2, · · ·Xs,

denoted by VDS, is a sequence defined by

VDS = [
⊕
x∈X1

xu] ∥ [
⊕
x∈X2

xu] ∥ · · · ∥ [
⊕
x∈Xi

xu], u ∈ Fc
2.

We use the division sequence DS to describe the integral property of a single
cell, and extend this notion to the vectorial division sequence VDS to represent
the collective integral properties of multiple cells.

4.2 The Neural Network Learns the Integral-Related Property

The following procedure enables the neural network to learn integral-related
properties by using the (vectorial) division sequence as input.

Data Generation Let N and M denote the sizes of the training set and the
test set, respectively. The dataset is generated through the following procedure:

- Label generation. Generate N (resp., M) labels Y for the N (resp., M)
instances, with approximately half labeled as 0 (i.e., negative instances) and
the other half as 1 (i.e., positive instances).

- Plaintext multiset generation. Use the Linux random number generator to
generate N (resp., M) uniformly distributed plaintexts Pi. Then, obtain a
plaintext multiset by traversing a subset of plaintext bits while keeping the
remaining bits fixed.

- Ciphertext multiset generation. If the label Y is 0, replace the traversed
plaintext bits with random values. Use the Linux random number generator
to generate N (resp., M) uniformly distributed plaintexts Ki. Encrypt the
resulting plaintext multiset using the corresponding key Ki to obtain the
ciphertext multiset.

- Instance formatting. Construct the input instance from the ciphertext mul-
tiset according to Definition 6 or Definition 7.

Network Architecture We employ a simple three-layer fully connected neural
network. The three layers contain 256, 64, and 1 neurons, respectively. Each
fully connected layer is followed by a batch normalization layer and a ReLU
activation function. Finally, a sigmoid activation function is applied to produce
a scalar output in the range [0, 1]. If the output is greater than 0.5, the input is
classified as a positive instance; otherwise, it is classified as a negative instance.

10

Training Process The neural network was trained for 20 epochs using a training
dataset of size N and a test dataset of size M . The batch size was dynamically
adjusted to optimize GPU performance. Optimization was performed using the
Adam algorithm with the mean square error (MSE) as the loss function. To
improve training efficacy, a cyclic learning rate schedule was adopted, defined
as: li = α + (9−i) mod 10

10 · (β − α), where α = 10−4 and β = 2 × 10−3. After
each epoch, the model was saved, and the best-performing network was selected
based on validation loss for subsequent evaluation on the test set.

Performance Evaluation of the Integral-Neural Distinguisher Accuracy
(Acc) serves as the primary metric for evaluating the performance of the integral-
neural distinguisher. In addition, the true positive rate (TPR) and true negative
rate (TNR) are reported to assess the proportions of correctly classified positive
and negative instances, respectively.

4.3 Integral Distinguisher Based on Linear Combination of Bits

In this section, the neural network learns the integral properties in Definition 4
where the function g is linear. As a result, we obtain extended integral distin-
guishers under a given plaintext structure previously proposed by Lambin et al.
[14] and further developed by Derbez et al. [8], which we refer to as integral
distinguisher based on linear combination of bits.

We use the vectorial division sequence VDS as the input of the neural network
to train an integral-neural distinguisher. The size of VDS is 256, as u ∈ F4

2 and
there are 16 cells in SKINNY-64-64. To account for the computational cost of data
generation, the sizes of the training and test sets, N and M , are both set to 106.
The network architecture and training process are detailed in Section 4.2. The
result of the 7-round integral-neural distinguisher for SKINNY-64-64 is shown in
Table 3.

Table 3. The integral-neural distinguisher of 7-round SKINNY-64-64 using VDS

Activated Plaintext Cell Acc TPR TNR

15th 99.8% 100% 99.6%

Observation of Performance Metrics The true positive rate (TPR) reaches
100%, indicating that the neural network has learned deterministic features, as
all positive instances conform to these features. For negative instances, there is
a 1 − 0.096 = 2−8 probability that a negative instance is incorrectly classified
as positive. Since negative instances make up half of the dataset, the integral-
neural distinguisher misclassifies approximately 2−9 of the total dataset, which
corresponds to an overall error rate of 0.2% and an accuracy of 99.8%. In other
words, the feature learned by the 7-round integral-neural distinguisher is asso-
ciated with only 8 bits.

11

The Working Mechanism of the Integral-Neural Distinguisher Once
an integral-neural distinguisher is trained, the decision rules it relies on are
implicitly fixed. By modifying the input, we can probe the underlying patterns
learned by the neural network. Yi Chen et al. [7] proposed an algorithm, called
the bit sensitivity test, to evaluate the impact of individual bits in a given instance
on the performance of the neural distinguisher, as outlined in Algorithm 4. We
apply the bit sensitivity test to identify which specific bits significantly influence
the accuracy of the integral-neural distinguisher. The results are shown in Fig. 2.
The horizontal axis represents the ciphertext cell corresponding to each bit in
the VDS, while the vertical axis indicates the value of u associated with that bit.
The shading highlights the bits for which randomization causes a significant
drop in the distinguisher’s accuracy.

u

Cell

Ciphertext

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 2. The bit sensitivity test for the 7-round integral-neural distinguisher

From Fig. 2, it is evident that the 7-round integral-neural distinguisher learns
features from 16 bits of the VDS. However, based on the performance metrics,
the feature actually utilized by the neural network appears to be related to only
8 bits. To resolve this discrepancy, we extract the values of these 16 bits and
observe several interesting phenomena. Specifically, the 4 bits corresponding to
the four different u values on ciphertext cells {1, 13} are identical. In other words,
the 4-bit XOR sum over ciphertext cells {1, 13} is always 0b0000. A similar
pattern is observed for ciphertext cells {6, 14}. Therefore, it can be deduced that
the integral-neural distinguisher classifies instances based on this 8-bit pattern.
The working mechanism of the 7-round integral-neural distinguisher can thus be
summarized as follows:

12

Pattern 1 For 7-round SKINNY-64-64, when the 15th plaintext cell is activated,
then

⊕
x1∈X1

πu(x1) ⊕
⊕

x2∈X2

πu(x2) = 0, where wt(u) = 1 and ciphertext cells

(X1,X2) ∈ {(1, 13), (6, 14)}.

Moreover, the Pattern also applies to SKINNY-128-128. We convert Pat-
tern 1 into the representation of a integral distinguisher.

Distinguisher 1 (Key-Independent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 7-round SKINNY-n-n). When the 15th
plaintext cell is activated, the linear combination of bits bi⊕bi+12c, i ∈ {4, 5, 6, 7}
and bi ⊕ bi+8c, i ∈ {24, 25, 26, 27} are balanced, where c is the size of the S-box.

Using the same training method and analysis procedure, we obtained an 8-
round integral distinguisher based on a linear combination of bits by activating
two plaintext cells.

Distinguisher 2 (Key-Independent Integral distinguishers Based on
Linear Combination of Bits Against 8-round SKINNY-64-64.) If 14th and
15th plaintext cells are activated, then the linear combination of bits b28⊕b44⊕b60
is balanced.

4.4 Transforming Neural Distinguisher to Boolean Function

We introduce an alternative approach to analyzing the working mechanism of the
integral-neural distinguisher. This method is introduced here in preparation for
its application in the subsequent sections. The working mechanism of the 7- (or
8-) round integral-neural distinguisher can be understood by directly observing
the values of the sensitive bits, primarily because the underlying rules it relies
on are relatively simple.

Since both the input and output of the neural network can be interpreted
as binary values, the integral-neural distinguisher can be transformed into a
Boolean function. By deriving its conjunctive normal form (CNF), we can pre-
cisely characterize the rules learned by the neural network. The transformation
process is described in Algorithm 1, as shown below.

Explaining the Working Mechanism of the Integral-Neural Distin-
guisher The size of the VDS is 256, which makes it infeasible to construct a
Boolean function over F256

2 . Moreover, according to the results shown in Fig. 2,
the features learned by the neural network are related to only 16 bits. There-
fore, we retrain the integral-neural distinguisher using these 16 sensitive bits
(indexed as bucth, where cth denotes the index of the cell), and transform the
resulting model into a Boolean function, along with its CNF, using Algorithm 1.
We then apply the Espresso logic minimizer4 to obtain the minimized CNF cor-
responding to the 7-round integral-neural distinguisher, which is shown below:
4 https://github.com/classabbyamp/espresso-logic

13

https://github.com/classabbyamp/espresso-logic

Algorithm 1 Get the CNF of the Neural Distinguisher
Input: a trained neural distinguisher ND, the size of the input to the distinguisher d
Output: The CNF of integral-nerual distinguisher CNFND
1: Tt ← [] ▷ Truth table
2: for input in 0 to 2d do
3: if ND(input) > 0.5 then
4: add 1 to Tt

5: else
6: add 0 to Tt

7: end if
8: end for
9: BF = BooleanFunction(Tt) ▷ Construct a boolean function

10: Get CNFND of BF
11: return CNFND

(¬b11 ∨ b113) & (b11 ∨ ¬b113) & (¬b21 ∨ b213) & (b21 ∨ ¬b213) & (¬b41 ∨ b413) &
(b41∨¬b413) & (¬b81∨b813) & (b81∨¬b813) & (¬b16∨b114) & (b16∨¬b114) & (¬b26∨
b214) & (b26∨¬b214) & (¬b46∨b414) & (b46∨¬b414) & (¬b86∨b814) & (b86∨¬b814)

To make the CNF evaluate to true, all clauses must be satisfied, which implies
that the ciphertext must satisfy every clause. Based on this, we infer that the
following expressions must all evaluate to 0:

b11⊕b113, b21⊕b213, b41⊕b413, b81⊕b813, b16⊕b114, b26⊕b214, b46⊕b414, b86⊕b814.

This result is consistent with the observed pattern in Pattern 1, which clearly
demonstrates the effectiveness of the proposed method.

5 More Precise Automated Search Model

In Sect. 5.1, by comparing existing classical results with those obtained from
integral-neural distinguishers, we observe that, for the same number of rounds,
integral distinguishers found by existing automated methods typically require
more active plaintext bits than those identified by neural networks. This indi-
cates that current automated modeling techniques may lack precision and fail
to identify optimal distinguishers. Motivated by this observation, we refine the
automated search model to align its results with those of the neural approach.
With the improved model, we are able to discover more effective integral distin-
guishers in Sect. 5.2.

5.1 Comparison of Integral Distinguishers Based on Neural
Networks and Classical Methods

In CRYPTO 2016, Beierle et al. proposed a 6-round integral distinguisher for
both SKINNY-64-64 and SKINNY-128-128 by activating one plaintext cell [3].
In 2019, Wening Zhang et al. discovered a 7-round integral distinguisher for

14

SKINNY by activating two plaintext cells [22]. At FSE 2020, Derbez et al.
obtained an 8-round integral distinguisher based on linear combinations of bits,
using 15 active plaintext bits, by employing the Superbox-Sbox technique and
linear mappings [8].

Table 4. The integral distinguisher against SKINNY-64-64

Round Method Type Data Reference

6 Classical Single Ciphertext Bit 24 [3]

7
Classical Single Ciphertext Bit 28 [22]

Neural Linear Combination of Bits 24 Sect.4.3

8
Classical Linear Combination of Bits 215 [8]

Neural Linear Combination of Bits 28 Sect.4.3

Based on the results in Table 4, we present the following observations and
conjectures:

– According to [3] and Distinguisher 2 in Section 4.3, the use of different types
of distinguishers can increase the number of rounds achievable by integral
distinguishers under the same number of activated plaintext bits.

– By comparing the integral distinguisher in [8] with Distinguisher 2 in Sec-
tion 4.3, both of which are based on linear combinations of bits, we observe
a difference in the number of required active plaintext bits.

These discrepancy may be attributed to the lack of precision in the existing
automated modeling method.

5.2 Improved Automated Search Model

We attempt to reproduce result in Table 4 using existing modeling methods:

– Bit-Based Division Property with Two Subsets [20]: Using this method,
we are only able to find a 6-round integral distinguisher when activating 4
plaintext bits.

– Monomial Prediction Technique [12]: This method fails due to the high
algebraic degree and the numerous copy operations in the SKINNY model.
The number of candidate monomials becomes so large that it is extremely
difficult to determine whether a specific monomial appears in the ANF.

The automated search model based on the bit-based division property with
two subsets is simple but lacks precision. In contrast, monomial prediction tech-
niques offer high precision but suffer from high computational complexity. To
balance these trade-offs, we developed an automated search model based on the

15

meet-in-the-middle approach. This method applies backward monomial exten-
sion for q rounds and performs forward modeling using the bit-based division
property with two subsets for p rounds, thereby enabling the search for a (p+q)-
round integral distinguisher. The core idea of the improved automated search
model is illustrated as follows:

Input division property d0 → Dp︸ ︷︷ ︸
p rounds forward modeling

→ Check← Monomials← Ciphertext bit︸ ︷︷ ︸
q rounds backward extension

.

Notations Let x = (x0, · · · , x63), s = (s0, · · · , s63), b = (b0, · · · , b63), and
k = (k0, · · · , k63) denote the plaintext, the output after p rounds, the p+q rounds
ciphertext, and the key of SKINNY-64-64, respectively where bits are indexed
from left to right. The encryption from round ri to rj is denoted as E

(ri,rj)
k , so

b = E
(0,p+q)
k (x) = E

(p,p+q)
k (s). The input division property is denoted by d0,

and the set of division properties after p rounds is denoted as Dp.
The MILP-based automated modeling of division properties is already well-

established in [20] and will not be elaborated here. The basic procedure of the
improved automated search model is presented as follows:

- q-Round Backward Monomial Extension. For the linear combination
of bits C(b), we recursively expand it in reverse to its ANF over the p-round
intermediate variables s:

C(b) = C(E(0,p+q)
k (x)) = C(E(p,p+q)

k (s)) =
∑
i

πui
(s)πvi

(k).

We focus only on the balance property of each πui
(s), treating πvi

(k) as
constants. To accelerate the search, we apply Reducing Rule 1 from Lambin’s
work [14] to reduce the number of monomials that need to be examined.

- p-Round Forward Modeling Using the Bit-Based Division Property
with Two Subsets. We model the propagation of the division property
over p rounds, storing all possible division properties in Dp. For details on
the modeling process of the bit-based division property with two subsets,
please refer to [20]. The MixColumn operation is treated as a single S-box.
Finally, the model is solved using the Gurobi optimizer [10].

- Checking the Balance Property of the Linear Combination of Bits.
For any monomial πui

(s) in the ANF, its parity can be determined as follows:∑
i

πui(s) =

{
unknown if there exists d ∈ Dp such that ui ⪰ d,

0 otherwise.

If all πui(s) in the ANF is balanced, then the linear combination of bits C(b)
is considered to be balanced.

Reducing Rule 1 ([14]) Given a monomial set U, if there exist ui,uj ∈ U
such that ui ⪰ uj, then for all us such that uj ⪰ us, it always holds that
ui ⪰ us. Therefore, it suffices to check the reduced set:

U′ = {ui ∈ U | ∄ uj ∈ U such that uj ⪰ ui} .

16

The algorithm for checking the balance property of a linear combination of
bits is presented in Algorithm 2.

Algorithm 2 Search Key-Independnet Integral Distinguisher Based on Combi-
nation of Bits
Input: A combination of ciphertext bits C(b), number of rounds p and q, input division

property d0

Output: True if C(b) is balanced; False otherwise
1: U← BackwardExtension(C, q)
2: U′ ← ApplyReducingRule 1(U)
3: for each ui ∈ U′ do
4: M← Model(p,d0,ui)
5: M.optimize()
6: if M.status is Optimal then
7: return False
8: end if
9: end for

10: return True

Using Algorithm 2 to Reproduce Distinguishers 1 and Distinguisher 2
For Distinguisher 1, we apply 1 round of backward monomial extension and 6
rounds of forward modeling. As shown in Equation (2), we verify whether each
monomial in the ANF is balanced:

b4 ⊕ b52 = s56s57 ⊕ s56 ⊕ s57 ⊕ s59 ⊕ 1 (2)

For Distinguisher 2, we apply 2 rounds of backward monomial extension and 6
rounds of forward modeling. As shown in Equation (3), we similarly verify the
balance property of each monomial.

b28 ⊕ b44 ⊕ b60

=s9s10k28 ⊕ s8s9k29 ⊕ s8k28 ⊕ s9k28 ⊕ s10k28 ⊕ s8k29 ⊕ s9k29 ⊕ s11k29 ⊕
k28k29 ⊕ s10 ⊕ k31 ⊕ k36

(3)

Finally, using the improved automated search model, we successfully identified
Distinguisher 1 and 2, which are consistent with the results obtained from the
integral-neural distinguisher.

Using Algorithm 2 to Search for Longer Distinguishers For SKINNY-64-64,
there are 264 possible linear combinations of bits, making exhaustive search in-
feasible. However, based on the observed structure of the linear combinations in
Distinguisher 1 and 2, we find that each bit involved in the linear combination
with balance property is always located at the same position within its respective
column. Therefore, it suffices to examine only 4× (24−1) linear combinations of

17

bits. Using this strategy, we successfully obtain an integral distinguisher for 11-
round SKINNY-64-64 and SKINNY-128-128 by activating only 60 plaintext bits,
which refer to this as Distinguisher 3 and Distinguisher 4. It is worth noting
that to obtain an 11-round integral distinguisher for SKINNY-64-64, Derbez et
al. required 63 activated plaintext bits [8].

Distinguisher 3 (Key-Independent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 11-round SKINNY-64-64.) If the last 60
plaintext bits are activated, then the linear combinations of bits bi⊕ bi+16⊕ bi+32

for i ∈ {16, 17, . . . , 31} and b12 ⊕ b60 are balanced.

Distinguisher 4 (Key-Independent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 11-round SKINNY-128-128.) If the last 60
plaintext bits are activated, then the linear combinations of bits bi⊕ bi+16⊕ bi+32

for i ∈ {26, . . . , 63} and b26 ⊕ b122 are balanced.

6 Key-Dependent Integral Distinguisher

While our previous analysis has primarily focused on key-independent (i.e., de-
terministic) integral properties, probabilistic integral properties are also of sig-
nificant value. In fact, such distinguishers correspond to cube testers, as intro-
duced in [1]. In this section, we demonstrate that neural networks are capable of
learning probabilistic integral properties. Moreover, by employing the improved
automated search model, we identify a higher-round key-dependent integral dis-
tinguisher for SKINNY-64-64.

6.1 Key-Dependent Integral Distinguisher Based on linear
Combination of Bits

In Section 4.3, a 7-round integral-neural distinguisher using VDS with an accu-
racy close to 100% is obtained by activating a single plaintext cell. In general, the
accuracy of a neural distinguisher tends to decrease as the number of rounds in-
creases. This raises a natural question: What is the maximum number of rounds
that an integral-neural distinguisher can achieve when only one plaintext cell is
activated?

The 8-Round Integral-Neural Distinguisher with One Activated Plain-
text Cell The size of the VDS is reduced to 64, since u ∈ {0b0001, 0b0010,
0b0100, 0b1000} and there are 16 cells in total. An 8-round integral-neural dis-
tinguisher for SKINNY-64-64 is obtained by activating the 15th plaintext cell,
as shown in Table 5. A bit sensitivity test was then performed to analyze the
learned features, and the results are presented in Fig. 3.

From Fig. 3, it can be observed that the 8-round integral-neural distinguisher
relies on only 6 bits (highlighted in and) from the VDS. These bits correspond
to the case where u = 8 in ciphertext cells {4, 7, 8, 11, 12, 15}. The 6 bits can be
grouped into two categories: and .

18

Table 5. Performance of the 8-round integral-neural distinguisher for SKINNY-64-64
when the 15th plaintext cell is activated

Activated Plaintext Cell Acc TPR TNR

15th 57.6% 49.2% 65.9%

u

Cell

Ciphertext

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

4

8

Fig. 3. Bit sensitivity test of the 8-round integral-neural distinguisher for SKINNY-64-64
with the 15th plaintext cell activated.

– When the bits are masked, the accuracy of the distinguisher decreases by
2.6%.

– When the bits are masked, the accuracy of the distinguisher decreases by
4.7%.

Retraining the Integral-Neural Distinguisher Given the abnormal TPR
observed for the distinguisher in Table 5, we retrain the integral-neural dis-
tinguisher using only the VDS corresponding to u = 8 in the ciphertext cells
{4, 8, 12} and {7, 11, 15}. The retraining results are presented in Table 6.

Table 6. Integral-neural distinguisher for 8-round SKINNY-64-64 using VDS entries
corresponding to u = 8 in ciphertext cells {4, 8, 12} and {7, 11, 15}

Activated
Plaintext Cell u

Observed
Ciphertext Cells Acc TPR TNR

15th 8
{4, 8, 12} 56.3% 62.7% 49.9%

{7, 11, 15} 56.3% 62.7% 49.9%

We utilized 107 positive instances to calculate the frequency of the equation
b16 ⊕ b32 ⊕ b48 = 0, which corresponds to the case of u = 8 in ciphertext cells
{4, 8, 12}. The analysis revealed that approximately 62.7% of the instances satis-
fied this condition. This frequency aligns precisely with the TPR of the integral-
neural distinguisher reported in Table 6, indicating that the neural network
has successfully learned a probabilistic (i.e., key-dependent) balanced property.
Based on this observation, we give a key-dependent integral distinguisher, as
presented in Distinguisher 5. A similar 8-round integral distinguisher also exists
for SKINNY-128-128, as shown in Distinguisher 6.

19

Distinguisher 5 (Key-Dependent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 8-round SKINNY-64-64.) If the 15th
plaintext cell is activated, then the linear combinations of bits b16 ⊕ b32 ⊕ b48
and b28 ⊕ b44 ⊕ b60 are probability balanced.

Distinguisher 6 (Key-Dependent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 8-round SKINNY-128-128.) If the 15th
plaintext cell is activated, then the linear combinations of bits b33⊕ b65⊕ b97 and
b57 ⊕ b89 ⊕ b121 are probability balanced.

6.2 Improved Automated Search Model for Key-Dependent
Integral Distinguisher

To study the probability of the key-dependent integral distinguisher, we get ANF
of the expression b16 ⊕ b32 ⊕ b48 using a 2-round backward monomial extension.
The resulting superpoly is shown in Equation (4), where the variable s denotes
the input state of the last two rounds.

b16 ⊕ b32 ⊕ b48

=s14(1⊕ k16)⊕ s13(k16 ⊕ k17)⊕ s12(k16 ⊕ k17)⊕ s15k17 ⊕ s16k17 ⊕ k19 ⊕ k48︸ ︷︷ ︸
balanced

⊕s13s14k16 ⊕ s12s13k17︸ ︷︷ ︸
unknown

.

(4)
Assuming the key is uniformly random, the probability that both k16 and k17

are equal to 0 is 0.25. In this case, the monomials s49s50k16⊕ s50s51k17 becomes
balanced. When k16 and k17 are not both 0, which occurs with probability 0.75,
the probability that monomials s49s50k16⊕ s50s51k17 are balanced is 0.5. There-
fore, the overall probability that b16 ⊕ b32 ⊕ b48 is balanced can be estimated
as:

0.25× 1 + 0.75× 0.5 = 0.625,

which closely matches the TPR of the integral-neural distinguisher reported in
Table 6. Notice, the estimated value of 0.625 deviates slightly from the exper-
imental result of 0.627. This discrepancy arises because the probability that a
monomial is unknown or balanced is not necessarily exactly 0.5.

In previous work, the focus has primarily been on identifying key-independent
integral distinguishers. When a unknown monomial is key-independent, it means
there is no key bit in the monomial. In this case, there is no opportunity to
make the unknown monomial balanced by setting key bits to 0. Therefore, the
monomial is certainly unknown. If a key-independent unknown monomial exists
in the ANF, the entire ANF will be considered unknown. However, when specific
key values are considered, it is possible for an unknown monomial with key
variable to become balanced. As a result, a probabilistic (key-dependent) integral
distinguisher may be obtained—resembling the notion of a weak-key integral
distinguisher.

20

Automatic Search for Key-Dependent Integral Distinguisher The al-
gorithm for searching key-dependent integral distinguishers is shown in Algo-
rithm 3. Building upon Algorithm 2, we examine each unknown monomial indi-
vidually, collect the key bits involved in the monomial, and estimate the prob-
ability that the linear combination of bits is balanced when both key bits and
constant plaintext bits are randomly assigned. It is important to note that when
key bits are present in the unknown monomial, Reducing Rule 1 becomes insuffi-
cient. For example, consider two monomials πui

(s)πvi
(k) and πuj

(s)πvj
(k) such

that ui ⪰ uj , vi ̸= 0, and vj = 0. In this case, the monomial πuj (s)πvj (k) must
not be ignored, as it is certainly unknown. In contrast, if ui = uj and vi ⪯ vj

holds for all relevant monomials, then it is safe to disregard the pair (uj ,vj).
We summarize this new insight as Reducing Rule 2.

Reducing Rule 2 Given a set of monomials M = {(ui,vi)}, the reduced set is
defined as:

M′ = {(ui,vi) ∈M | ∄ (uj ,vj) ∈M such that uj ⪰ ui and vj ⪯ vi} .

Algorithm 3 Search Key-Dependnet Integral Distinguisher Based on Combi-
nation of Bits
Input: Combination of ciphertext bits C(b), number of rounds p, q, input division

property d0

Output: Estimated probability that C(b) is balanced
1: M← BackwardExtension(C, q)
2: M′ ← ApplyReducingRule 2(M)
3: V← ∅ ▷ Set of key bit indices in the unknown monomials
4: for each (ui,vi) ∈ M′ do
5: if ui = 0 then
6: continue
7: end if
8: M← Model(p,d0,ui)
9: M.optimize()

10: if M.status is Optimal then
11: if 0 ∈ V then
12: return 0
13: end if
14: V.add({j | vi[j] = 1}) ▷ Collect key bits involved
15: end if
16: end for
17: return 2−|V| + (1− 2−|V|)× 0.5 ▷ Key bits = 0 with prob 2−|V|

Notice, when Algorithm 3 returns a probability of 1, the integral distinguisher
is in fact deterministically valid. Using Algorithm 3, we successfully identify
Distinguisher 7, which represents the longest known integral distinguisher for
SKINNY-64-64 to date.

21

Distinguisher 7 (Key-Dependent Integral Distinguisher Based on Lin-
ear Combination of Bits Against 12-round SKINNY-64-64.) If the last 60
plaintext bits are activated, then the probability that the linear combinations of
bits b16⊕b32⊕b48, b24⊕b40⊕b56, and b28⊕b44⊕b60 are balanced is approximately
0.625.

6.3 Key-Dependent Integral Distinguisher Based on Nonlinear
Combination of Bits

In the early stages of integral cryptanalysis, both the integral property and the
division property were originally studied at the byte level. In this section, we shift
our focus back to the byte level by using the division sequence DS corresponding
to a ciphertext cell as the input to train the integral-neural distinguisher. The
experimental results are presented in Table 7.

Table 7. The integral-neural distinguisher for 7-round SKINNY-64-64 using DS

Activated
Plaintext Cell

Observed
Ciphertext Cells Acc TPR TNR

15th 6th 76.3% 94.4% 58.3%

Analyzing the Working Mechanism To further analyze the internal decision
process of the integral-neural distinguisher, we adopt the method described in
Section 4.4 to directly convert the trained model into a Boolean function. The
conjunctive normal form (CNF) representation of the Boolean function consists
of 490 clauses in total. For brevity, only the shortest clauses are listed below:
(b16 ∨ b26 ∨ b86 ∨ ¬b96) & (b16 ∨ ¬b26 ∨ b86 ∨ b96) & (b16 ∨ b46 ∨ b86 ∨ ¬b126) &
(¬b16 ∨ b46 ∨ b86 ∨ b126) & (b26 ∨ b86 ∨ ¬b96 ∨ b126) & (¬b26 ∨ b86 ∨ b96 ∨ b126)

For positive examples (i.e., the DS corresponding to a single ciphertext cell),
every clause in the CNF must be satisfied. However, due to the large number
of clauses, it is infeasible to directly infer the specific decision rules learned by
the integral-neural distinguisher from the CNF representation. To address this,
we focus on the variables involved in each clause and evaluate their significance.
Specifically, we use Algorithm 2 to verify the integral property of various com-
binations of bits, such as:

b16 ⊕ b26 ⊕ b86 ⊕ b96, b16 ⊕ b46 ⊕ b86 ⊕ b126 , b26 ⊕ b86 ⊕ b96 ⊕ b126 .

To facilitate understanding, we convert bucth into its representation as a non-
linear combination of bits, i.e.

b24 ⊕ b26 ⊕ b27 ⊕ b24b27, b24 ⊕ b25 ⊕ b27 ⊕ b24b25, b24 ⊕ b26 ⊕ b24b27 ⊕ b24b25.

We first perform one round of backward monomial extension on these three
nonlinear combinations of bits, followed by six rounds of forward modeling. Each

22

resulting monomial is then checked for balanc property. The results are presented
in Equations (5), (6), and (7).

b24 ⊕ b26 ⊕ b27 ⊕ b24b27

=1⊕ k30 ⊕ k28 ⊕ s8 ⊕ k28k31 ⊕ s11k31 ⊕ s9k31 ⊕ s8k31 ⊕ s10k28 ⊕ s9k28 ⊕ s8k28︸ ︷︷ ︸
balanced

⊕ s10s11 ⊕ s9s11 ⊕ s8s11 ⊕ s8s10 ⊕ s8s9k31 ⊕ s10s11k28 ⊕ s9s11k28 ⊕ s8s11k28︸ ︷︷ ︸
unknown

⊕ s8s10k28 ⊕ s9s10s11 ⊕ s8s9s10 ⊕ s9s10s11k28 ⊕ s8s9s10k28︸ ︷︷ ︸
unknown

(5)

b24 ⊕ b26 ⊕ b24b27 ⊕ b24b25

= k31 ⊕ k30 ⊕ k29 ⊕ s11 ⊕ s8 ⊕ k28k31 ⊕ s11k31 ⊕ s9k31 ⊕ s8k31 ⊕ k28k29︸ ︷︷ ︸
balanced

⊕ s11k29 ⊕ s9k29 ⊕ s8k29︸ ︷︷ ︸
balanced

⊕ s10s11 ⊕ s9s11 ⊕ s8s11 ⊕ s9s10 ⊕ s8s10 ⊕ s8s9︸ ︷︷ ︸
unknown

⊕ s8s9k31 ⊕ s8s9k29 ⊕ s10s11k28 ⊕ s9s11k28 ⊕ s8s11k28 ⊕ s9s10k28︸ ︷︷ ︸
unknown

⊕⊕s8s10k28 ⊕ s9s10s11 ⊕ s8s9s10 ⊕ s9s10s11k28 ⊕ s8s9s10k28︸ ︷︷ ︸
unknown

(6)

b24 ⊕ b25 ⊕ b27 ⊕ b24b25

=1⊕ k31 ⊕ s10 ⊕ k28k29 ⊕ s11k29 ⊕ s9k29 ⊕ s8k29 ⊕ s10k28 ⊕ s9k28 ⊕ s8k28︸ ︷︷ ︸
balanced

⊕ s8s9k29 ⊕ s9s10k28︸ ︷︷ ︸
uknown

(7)

From these three equations, we observe that only Equation (7) allows the
nonlinear combination of bits to become balanced by controling the key values,
while Equations (5) and (6) do not, as they contain unknown monomials that
do not involve key bits. Specifically, when k28 and k29 in Equation (7) are set
to 0, the probability that the nonlinear combination of bits is balanced becomes
approximately 0.625. Therefore, we conclude that the neural network has learned
certain probabilistic integral features from nonlinear combinations of bits.

We enumerated all nonlinear combinations of bits for the 6th ciphertext cell,
resulting in a total of 22

4

possibilities. Using a process similar to Algorithm 3,
we calculated the probability that each of the 216 nonlinear combinations of bits
is balanced. Therefore, a key-dependent integral distinguisher for the nonlinear
combination of bits is proposed, as shown in Distinguisher 8.

23

Distinguisher 8 (Key-Dependent Integral Distinguisher Based on Non-
linear combination of bits Against 7-round SKINNY-64-64.) If the 15th
plaintext cell is activated, the probability that the nonlinear combination of bits
b24 ⊕ b26 ⊕ b24b27 (related to k28, k31) and b24 ⊕ b25 ⊕ b27 ⊕ b24b25 (related to
k28, k29) are balanced is 0.625.

Additionally, we derive an 11-round key-dependent integral distinguisher
based on a nonlinear combination of bits against SKINNY-64-64, as shown in
Distinguisher 9.

Distinguisher 9 (Key-Dependent Integral Distinguisher Based on Non-
linear Combination of Bits Against 11-round SKINNY-64-64.) If the last
60 plaintext bits are activated, then the probability that the following nonlinear
combinations of bits are balanced is approximately 0.625:

b24⊕b26⊕b24b27(related to k20, k23), and b24⊕b25⊕b27⊕b24b25(related to k20, k21).

The integral properties in Distinguishers 8 and 9 correspond to the integral
property defined in Definition 4 where the function g is nonlinear. We restrict the
search space to all possible combinations within a single ciphertext cell. Specif-
ically, we verify the balance of nonlinear combinations of bits within a single
ciphertext cell for SKINNY-64-64, where the number of calls to the automated
search model is 22

4

. However, extending this approach to SKINNY-128-128 would
require evaluating 22

8

combinations, which makes automated search computa-
tionally infeasible at this scale.

7 Improved Key Recovery Attack

At CRYPTO 2016, Beierle et al. introduced the SKINNY family of tweakable block
ciphers and evaluated its resistance to integral attacks [3]. They identified a 6-
round integral distinguisher using single-cell plaintext activation. By extending
this distinguisher 4 rounds backward and 4 rounds forward, the authors suc-
cessfully mounted 14-round key recovery attacks against both SKINNY-64-64
and SKINNY-128-128. Subsequent work by Zhang et al. [22] demonstrated a
16-round integral attack on SKINNY-128-128, using a 7-round distinguisher ex-
tended by 3 backward and 6 forward rounds. However, their analysis focused
solely on the key guessing space and did not fully evaluate the time complex-
ity. More recently, Hosein et al. proposed an 18-round attack by constructing
an integral distinguisher derived from a zero-correlation distinguisher under a
chosen-tweak model. Their attack targets the 60-bit and 120-bit key variants of
SKINNY-64-64 and SKINNY-128-128, respectively [11].

7.1 Key Recovery Attack Using Key-Independent Integral
Distinguisher

The longest integral distinguisher does not necessarily lead to the most effective
key-recovery attack. We use a 7-round integral distinguisher based on a linear

24

combination of bits to perform a key-recovery attack. The detailed procedure is
described as follows.

The Key Recovery Attack for SKINNY-n-n. The overall procedure of the
key-recovery attack is illustrated in Figure 4 The target cipher E is divided into
three parts: E0 covers rounds (0 → . . . → 3), E1 (Distinguisher 1) covers
rounds (3 → . . . → 10), and E2 covers rounds (10 → . . . → 15). The strategy
proceeds as follows:

1. Obtain a pair of plaintext-ciphertext (P,C).
2. Guess 15-cell involved keys,

– Determine the value of P in of E0. Encrypt the plaintext P using the
guessed key to obtain the ciphertext after the 3rd round. Then, traverse
the 15th cell of the 3rd-round ciphertext to obtain a ciphertext set.
Next, perform 3 rounds of decryption to recover the initial plaintext set.
Finally, execute 15 rounds of encryption to obtain the final ciphertext
set.

– Determine the values in of round 10: partially decrypt each ciphertext
using the guessed involved keys. Check whether the involved ciphertext
bits are balanced and obtain the candidate round keys that pass the test.

· · · 7-round Distinguisher · · · MC

Round 10 Round 11

Round 12 Round 13

Round 14 Round 15

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

6 4 5 0

3 1 7 2

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

SB,AC

AK,SR

MC

Round 2 Round 3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 4. 15-round key recovery using key-independent integral distinguisher for
SKINNY-n-n in single tweakey setting

Complexity Analysis. In round 0, a total of 12 cells are activated, resulting in
a data complexity of 212c. A total of 16 plaintexts and ciphertexts are used, and

25

the entire attack process involves keys from 15 cells and encryption/decryption
of 59 cells. Therefore, the time complexity is calculated as 2c × 215×c × 59

16×15 =

216c−2.024.

The Key Recovery Attack for SKINNY-n-2n and SKINNY-n-3n. Since the
7-round integral distinguisher is independent of the key, it can be applied to
SKINNY-n with different key lengths.

- Using a similar procedure, we can perform a 17-round key recovery attack on
SKINNY-n-2n. The attack process is shown in Appendix B.1 Fig. 6.The data
complexity of 212c and the time complexity is 2c×231×c× 59+32

16×17 = 232c−1.579.

- Using a similar procedure, we can perform a 19-round key recovery attack on
SKINNY-n-3n. The attack process is shown in Appendix B.1 Fig. 7. The data
complexity of 212c and the time complexity is 2c×247×c× 59+64

16×19 = 248c−1.305.

7.2 Key Recovery Attack Using Key-Dependent Integral
Distinguisher

In Section 7.1, the key recovery attack uses an integral distinguisher based on the
linear combination of bits (Distinguisher 1) involving two cells, which results
in the need to guess two key bytes in the 11th round. When using a 8-round
key-dependent integral distinguisher (Distinguisher 5), fewer key bytes need
to be guessed. Note that the attack is only effective when the two key bytes
involved in the distinguisher are set to zero.

The Complexity Analysis of Key Recovery Attack for SKINNY-n-n. The
overall procedure of the key-recovery attack is illustrated in Figure 5. In round
0, a total of 12 cells are activated, resulting in a data complexity of 212c. A total
of 16 plaintexts and ciphertexts are used, and the entire attack process involves
keys from 15 cells and encryption/decryption of 57 cells. Therefore, the time
complexity is calculated as 2c × 213×c × 57

16×15 = 214c−2.074.

The Key Recovery Attack for SKINNY-n-2n and SKINNY-n-3n. For differ-
ent parameter settings of the SKINNY, the 8-round key-dependent integral dis-
tinguishers involve different key positions, but the number of involved key bytes
remains the same.

- Using a similar procedure, we can perform a 17-round key recovery attack on
SKINNY-n-2n. The attack process is shown in Appendix B.2 Fig. 8. The data
complexity of 212c and the time complexity is 2c×229×c× 57+32

16×17 = 230c−1.612.

- Using a similar procedure, we can perform a 19-round key recovery attack on
SKINNY-n-3n. The attack process is shown in Appendix B.2 Fig. 9. The data
complexity of 212c and the time complexity is 2c×245×c× 57+64

16×19 = 246c−1.329.

26

· · · 8-round Distinguisher · · · MC

Round 11 Round 12

Round 13 Round 14

Round 15

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

SB,AC

AK,SR

MC

Round 2 Round3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Fig. 5. 15-round key recovery using key-dependent integral distinguisher for
SKINNY-n-n in single tweakey setting

8 Conclusion

This paper explores the application of neural networks in integral cryptanalysis
and presents several significant advancements. By comparing the results ob-
tained through neural networks and classical methods, we observe that existing
automated search models are inaccurate. Using an improved automated search
model, we extend the length of the integral distinguishers for SKINNY. In addi-
tion to discovering longer integral distinguishers, we also improve key-recovery
attacks. Specifically, the short-round distinguisher learned by the neural network
enables a longer-round key-recovery attack on SKINNY through a combination of
backward decryption and forward encryption. These results demonstrate that
artificial intelligence techniques can offer valuable support in advancing crypt-
analysis. Unfortunately, identifying integral distinguishers requires an exhaustive
enumeration of all possible mapping function. Exploring more efficient search
strategies remains an important direction for future research.

References

1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: FSE. Lecture Notes in Computer
Science, vol. 5665, pp. 1–22. Springer (2009)

2. Bao, Z., Lu, J., Yao, Y., Zhang, L.: More insight on deep learning-aided cryptanal-
ysis. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 436–467. Springer (2023)

27

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 9815,
pp. 123–153. Springer (2016)

4. Benamira, A., Gérault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. In: EUROCRYPT (1). Lecture Notes in Computer
Science, vol. 12696, pp. 805–835. Springer (2021)

5. Beyne, T., Verbauwhede, M.: Integral cryptanalysis using algebraic transition ma-
trices. IACR Trans. Symmetric Cryptol. 2023(4), 244–269 (2023)

6. Boura, C., Canteaut, A.: Another view of the division property. In: CRYPTO (1).
Lecture Notes in Computer Science, vol. 9814, pp. 654–682. Springer (2016)

7. Chen, Y., Shen, Y., Yu, H.: Neural-aided statistical attack for cryptanalysis. Com-
put. J. 66(10), 2480–2498 (2023)

8. Derbez, P., Fouque, P.A.: Increasing precision of division property. IACR Trans-
actions on Symmetric Cryptology pp. 173–194 (2020)

9. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In:
Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II
39. pp. 150–179. Springer (2019)

10. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https:
//www.gurobi.com

11. Hadipour, H., Gerhalter, S., Sadeghi, S., Eichlseder, M.: Improved search for inte-
gral, impossible differential and zero-correlation attacks application to ascon, fork-
skinny, skinny, mantis, PRESENT and qarmav2. IACR Trans. Symmetric Cryptol.
2024(1), 234–325 (2024)

12. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 12491, pp. 446–476.
Springer (2020)

13. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: FSE. Lecture Notes in
Computer Science, vol. 2365, pp. 112–127. Springer (2002)

14. Lambin, B., Derbez, P., Fouque, P.: Linearly equivalent s-boxes and the division
property. Des. Codes Cryptogr. 88(10), 2207–2231 (2020)

15. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: ASIACRYPT (1). Lecture
Notes in Computer Science, vol. 10624, pp. 128–157. Springer (2017)

16. Todo, Y.: Structural evaluation by generalized integral property. In: EUROCRYPT
(1). Lecture Notes in Computer Science, vol. 9056, pp. 287–314. Springer (2015)

17. Todo, Y.: Integral cryptanalysis on full MISTY1. J. Cryptol. 30(3), 920–959 (2017)
18. Todo, Y., Morii, M.: Bit-based division property and application to simon family.

In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. pp. 357–377.
Lecture Notes in Computer Science (2016)

19. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: Milp-aided method of searching di-
vision property using three subsets and applications. In: ASIACRYPT (3). Lecture
Notes in Computer Science, vol. 11923, pp. 398–427. Springer (2019)

20. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying milp method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22. pp. 648–678. Springer (2016)

28

https://www.gurobi.com
https://www.gurobi.com

21. Zahednejad, B., Lyu, L.: An improved integral distinguisher scheme based on neural
networks. Int. J. Intell. Syst. 37(10), 7584–7613 (2022)

22. Zhang, W., Cao, M., Guo, J., Pasalic, E.: Improved security evaluation of SPN
block ciphers and its applications in the single-key attack on SKINNY. IACR
Trans. Symmetric Cryptol. 2019(4), 171–191 (2019)

29

A The Algorithm of Bit Sensitivity Test

Algorithm 4 Bit Sensitivity Test [7]
Input: Test dataset X = {X0, · · · , XN−1}, where half of the dataset is positive, and

half is negative instances; n: the size of an instance Xi; ND: neural distinguisher;
Output: An array of the decrease in accuracy Accdec for each bit;
1: Accorig ← ND(X);
2: Accdec ← {};
3: Xmasked ← {};
4: for i = 0 to n− 1 do
5: for j = 0 to N do
6: Generate a random mask η ∈ {0, 1};
7: Xmasked ← Xj ⊕ (η ≪ i); ▷ Randomize bit i
8: end for
9: Add Accorig −ND(Xmasked) to Accdec;

10: end for
11: return Accdec;

B Improced Key Recovery Attack

B.1 Improved Key Recovery Attack Using Key-Independent
Integral Distinguisher

30

· · · 7-round Distinguisher · · · MC

Round 10 Round 11

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

6 4 5 0

3 1 7 2

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

SB,AC

AK,SR

MC

Round 2 Round3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 6. 17-round key recovery using key-independent integral distinguisher for
SKINNY-n-2n in single tweakey setting

31

· · · 7-round Distinguisher · · · MC

Round 10 Round 11

Round 12 Round 13

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

6 4 5 0

3 1 7 2

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

1 7 0 5

2 6 4 3

SB,AC

AK,SR

MC

Round 2 Round3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC

Fig. 7. 19-round key recovery using key-independent integral distinguisher for
SKINNY-n-3n in single tweakey setting

32

B.2 Improved Key Recovery Attack Using Key-Dependent Integral
Distinguisher

· · · 8-round Distinguisher · · · MC

Round 11 Round 12

Round 13 Round 14

Round 15 Round 16

Round 17

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

SB,AC

AK,SR

MC

Round 2 Round3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Fig. 8. 17-round key recovery using key-dependent integral distinguisher for
SKINNY-n-2n in single tweakey setting

33

· · · 8-round Distinguisher · · · MC

Round 11 Round 12

Round 13 Round 14

Round 15 Round 16

Round 17 Round 18

Round 19

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

9 15 8 13

10 14 12 11

1 7 0 5

2 6 4 3

SB,AC

AK,SR

MC

Round 2 Round3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Fig. 9. 19-round key recovery using key-dependent integral distinguisher for
SKINNY-n-3n in single tweakey setting

34

	Neural-Inspired Advances in Integral Cryptanalysis

