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Abstract

Vertical Federated Learning (VFL) has revolutionised
collaborative machine learning by enabling privacy-
preserving model training across multiple parties.
However, it remains vulnerable to information leakage
during intermediate computation sharing. While Con-
trastive Federated Learning (CFL) was introduced to
mitigate these privacy concerns through representation
learning, it still faces challenges from gradient-based
attacks. This paper presents a comprehensive experi-
mental analysis of gradient-based attacks in CFL envi-
ronments and evaluates random client selection as a de-
fensive strategy. Through extensive experimentation,
we demonstrate that random client selection proves
particularly effective in defending against gradient at-
tacks in the CFL network. Our findings provide valu-
able insights for implementing robust security measures
in contrastive federated learning systems, contributing
to the development of more secure collaborative learn-
ing frameworks.

1 Introduction
Vertical Federated Learning (VFL) (Liu et al. 2024a)
has emerged as a promising approach in collaborative
machine learning. It allows multiple parties to jointly
train models while maintaining data privacy through
vertical partitioning of features (Liu et al. 2024b). This
paradigm has gained significant attention in privacy-
sensitive domains such as healthcare and finance, where
different organisations possess distinct feature sets of
the same entities (Yang et al. 2019).

Despite its potential to preserve data privacy, VFL
faces inherent vulnerabilities related to information
leakage during the intermediate computation sharing
process. Research has shown that even partial infor-
mation exchange can potentially expose sensitive data
characteristics, compromising the fundamental privacy
guarantees of the system (Lyu et al. 2024). These limi-
tations have prompted researchers to seek more robust
privacy-preserving solutions.

Contrastive Federated Learning (CFL) was intro-
duced as an innovative approach to address these pri-
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Figure 1: Random client selection within CFL network
to defend poisoning gradient attack.

vacy concerns (Ginanjar et al. 2025). By incorporat-
ing contrastive learning principles, CFL reduces the
need for direct feature sharing while maintaining model
performance through representation learning. This
method has demonstrated promising results in minimis-
ing information leakage during the training process.

However, while CFL enhances privacy preservation
in feature sharing, it does not fully address the broader
spectrum of security threats in federated learning, par-
ticularly internal attacks. Among these, parameter-
based attacks have emerged as a significant concern,
where malicious participants can exploit parameter in-
formation to reconstruct private training data or com-
promise model integrity (Xia et al. 2023). These attacks
pose a substantial threat to the security of federated
learning systems, potentially undermining their practi-
cal applications.

This paper presents three key contributions. First, it
offers a systematic analysis of the impact of parameter-
based attacks on contrastive federated learning (CFL)
systems. Second, it demonstrates that employing a sim-
ple random client selection strategy serves as an effec-
tive defense mechanism against such attacks (Colosimo
and De Rango 2024) , see Figure 1. Lastly, it quanti-
fies the effectiveness of this defence across 10 real-world
datasets, encompassing a variety of attack scenarios.

Our experimental results show that random client se-
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lection can reduce attack success rates across all tested
scenarios, while maintaining model performance. This
finding is particularly significant for practical imple-
mentations, as it offers a computationally efficient de-
fence mechanism (Fu et al. 2023) that can be immedi-
ately deployed in existing CFL systems.

2 Related Work

This section reviews existing research relevant to con-
trastive federated learning, gradient attacks in feder-
ated learning, and client selection as a defence mecha-
nism.

2.1 Contrastive Federated Learning

Contrastive learning (Gutmann and Hyvärinen 2010;
Chen et al. 2020) has been adapted to the federated
setting to enhance privacy preservation. Ginanjar et
al. (Ginanjar et al. 2025) introduce Contrastive Fed-
erated Learning (CFL) specifically designed for tabular
data silos. Their work focuses on reducing the reliance
on direct feature sharing by leveraging representation
learning, thereby mitigating potential information leak-
age. This approach aims to achieve a balance between
model performance and privacy protection in collabora-
tive learning with vertically partitioned data scenarios.

2.2 Model Attacks in Federated Learning

Federated learning systems are prone to various attacks,
notably those exploiting gradient and paramter infor-
mation (Tolpegin et al. 2020). Xia et al. (Xia et al.
2023) provide a comprehensive survey of poisoning at-
tacks in federated learning, detailing how malicious ac-
tors can manipulate parameters to compromise model
integrity or infer sensitive training data. A broader per-
spective on privacy and robustness in federated learning
is offered by Lyu et al. (Lyu et al. 2022). They discuss a
range of attacks, including gradient-based attacks, and
present various defence mechanisms to counter these
threats. These studies highlight the critical need for
robust security measures in federated learning.

2.3 Client Selection in Federated
Learning

Lei Fu et al. (Fu et al. 2023) work provides a
broad explanation of federated learning client selec-
tion methods. They mention that although a random
sample selection does not consider heterogeneity, this
method is most likely selected. This is because be-
side other algorithm complexity (Wu and Wang 2022;
Luping, Wei, and Bo 2019; Lai et al. 2021; Zhou et al.
2022) , This is because, besides other algorithm com-
plexity (Wu and Wang 2022; Luping, Wei, and Bo 2019;
Lai et al. 2021; Zhou et al. 2022) , these approaches
rely on experiments to demonstrate their effectiveness.
However, there is no guarantee of their performance in
the real world.

In this study, we employ random client selection.

3 Problem Formulation

3.1 Contrastive Federated Learning

Let D = {(xi, yi)}Ni=1 represent the training dataset,
where xi denotes the feature vector and yi the corre-
sponding label. In the vertical federated learning set-
ting, the feature space is partitioned across K parties,
where each client k holds a subset of features xk

i . The
CFL framework can be formalised as:

• Client’s objective is:
fc(D̄((Ē : x;ωe);ωd))→ xd

• Server’s Objective is:

F (g) =
1

K

∑K
k=1(ω

e, ωd)→ (ωeG, ωdG)

3.2 Model Attack

The gradient-based poisoning attack in CFL can be for-
mulated as follows: Attack Objective:

1. A malicious party aims to reconstruct private infor-
mation or compromise model performance by manip-
ulating parameters:
minδ Lattack(ω + δ) where ω represents the true pa-
rameter and δ the poisoning attack.

2. Attack constraints:

• Parameter manipulation must remain within
bounds to avoid detection: ||δ|| ≤ ϵ

• The poisoned gradients should maintain statistical
similarity to legitimate updates:
||stats(ω + δ)− stats(ω)|| ≤ τ

Our study applies model scaling attacks. Applies ω+
δ = ω · α where α ∈ R+ and α is the poison level.

3.3 Random Client Selection

The random client selection mechanism can be for-
malised as:

1. Selection Process
At each training round t, a subset of clients St is
randomly selected from the total client pool:
St ⊂ 1, ...,K, |St = m|
where m is the number of clients selected per round.

2. Selection probability
Each client k has an equal probability of being se-
lected: P (kϵSt) =

m
K

3. Defence objective
The random selection aims to minimise the attack
success probability: minSt

P (Attacksuccess∥St

3.4 Combined Defence Framework

The overall defence framework integrates these compo-
nents:

• Select clients: St ∼ Uniform(K,m)

• Update local models: ωt+1
k = ωt

kη▽ Lcont(ω
t
k)

• Aggregate updates: ωt+1 = 1
|S|

∑
k∈St

ωt+1
k



Strategy Not Information
Client poisoning
number

pc number of clients
being poisoned.

Scaling poisoning
level

pl ω · α where α = pl

Random client level rc number of clients
skipped during FL.

Table 1: Poisoning attack settings where {k, pc, pl, rl} ∈
Z. The ’Not’ is the notation.

3.5 Theoretical Analysis

Consider ωt is the model parameter at iteration t, η
learning rate, and µ strong convexity parameter. Given
the poisoning probability pc and selection ratio rl, the
attack success probability is bounded by P (attack) ≤
pc · rl. Under random selection ratio rl, the expected
convergence satisfies: E[||ωt−ω∗||2] ≤ (1−ηµrl)t||ω0−
ω ∗ ||2.

4 Experiments

The experiments in this study use ten datasets: Adult
(Becker and Kohavi 1996), Helena (Guyon et al. 2019),
Jannis (Guyon et al. 2019), Higgs Small (Baldi, Sad-
owski, and Whiteson 2014), Aloi (Geusebroek, Burgh-
outs, and Smeulders 2005), Epsilon (PASCAL Chal-
lenge on Large Scale Learning 2008), Cover Type
(Blackard and Dean 2000), California Housing (Pace
and Barry 1997), Year (Bertin-Mahieux et al. 2011),
Yahoo (Chapelle and Chang 2011), and Microsoft (Qin
and Liu 2013).

We perform an extensive study to challenge CFL.
We use the model scaling attack proposed by Cao et
al. (Cao et al. 2023). We intentionally do not apply
any defence, such as Byzantine (So, Güler, and Aves-
timehr 2021) and other security enhancements (Lyu et
al. 2022) to the CFL network. This was done to test
the robustness of CFL. This study covers three different
parameters as shown in Table 1.

The comprehensive settings for our experiments are
presented in Table 2. Across all datasets, we executed
a total of 19 distinct experiments.

To illustrate, consider an experiment that is assigned
specific parameters: {n : 8, pc : 0.2, pl : 0.1, rc : 0.2},
this indicates that the experiment is composed of 8
clients operating within a federated learning network.
Among these clients, a designated subset of clients is
classified as adversarial, each exhibiting a specific level
of (ω · 0.1) data poisoning designed to test the robust-
ness of the learning model. The global server is respon-
sible for aggregating the model parameters, collecting
data only from a random int(8 ·0.2) = 2) of the clients.
This methodology aims to simulate real-world scenar-
ios where malicious clients may attempt to disrupt the
learning process, allowing us to assess the robustness
of CFL under various attack conditions. The details of
the experiments are provided in Algorithm 4.

Table 2: Parameters used for the experiments.
Notation values

pc [0, 0.2, 0.5]
pl [0.1, 0.5, 2]
rc [1, 0.2, 0.8]

Algorithm 1 CFL with Potential Model Poisoning

1: Initialise:
2: Global model FG

3: Set of clients C = {C1, ..., Cn}
4: Poison clients Pc ⊂ C randomly selected
5: for each epoch e = 1, ..., E do
6: for each batch b do
7: for each client ci ∈ C do
8: Train local model: Li = Train(ci,batch)
9: if ci ∈ Pc then

10: Apply poisoning: α.ω → ωα

11: end if
12: end for
13: ωG = Agg({ωα, ω1, ..., ωn})
14: for each client ci ∈ C do
15: Update client model: ωci ← ωG

16: end for
17: end for
18: end for

5 Results

Table 3 shows the number of failed clients to the number
of poisoned clients (pc) on different dataset., with per-
centages representing poisoned clients (0%, 20%, and
50%). Most dataset like ”adult,” ”aloi,” and ”covtype”
show no impact (0.00) when unpoisoned, but a consis-
tent impact (15.79) when 20% or 50% clients are poi-
soned. The ”epsilon” dataset remains unaffected (0.00)
across all scenarios, while the ”year” dataset shows a
slightly higher impact (16.45) with 50% clients poi-
soned. From the Table, it is clear that CFL is able
to survive with low fail rate (Fail ≤ 16%) in all the
experiments.

Table 4 shows the number of failed clients with vary-

Table 3: Number of failed clients to the number of poi-
soned clients (pc) on different datasets.

pc 0 0.2 0.5
adult 0.00 15.79 15.79
aloi 0.00 15.79 15.79
covtype 0.00 15.79 15.79
epsilon 0.00 0.00 0.00
helena 0.00 15.79 15.79
higgs small 0.00 15.79 15.79
jannis 0.00 15.79 15.79
microsoft 0.00 15.79 15.79
yahoo 0.00 15.79 15.79
year 0.00 15.79 16.45



Table 4: Number of failed clients with different data
poisoning levels (pl).

pl 0.1 0.5 1 2
adult 10.53 10.53 0.00 10.53
aloi 10.53 10.53 0.00 10.53
covtype 10.53 10.53 0.00 10.53
epsilon 0.00 0.00 0.00 0.00
helena 10.53 10.53 0.00 10.53
higgs small 10.53 10.53 0.00 10.53
jannis 10.53 10.53 0.00 10.53
microsoft 10.53 10.53 0.00 10.53
yahoo 10.53 10.53 0.00 10.53
year 11.18 10.53 0.00 10.53

Table 5: Number of failed clients compared to the per-
centage of clients being used for aggregation during Fed-
erated Learning (rl) across different datasets.

rl 0.2 0.8 1
adult 31.58 0.00 0.00
aloi 31.58 0.00 0.00
covtype 31.58 0.00 0.00
epsilon 0.00 0.00 0.00
helena 31.58 0.00 0.00
higgs small 31.58 0.00 0.00
jannis 31.58 0.00 0.00
microsoft 31.58 0.00 0.00
yahoo 31.58 0.00 0.00
year 31.58 0.66 0.00

ing data poisoning levels pl (0.1, 0.5, 1, and 2) on dif-
ferent datasets. Most datasets, including adult, aloi,
covtype, and others, maintain a value of 10.53 at lower
poisoning levels (0.1 and 0.5), drop to 0.00 at level 1,
and return to 10.53 at level 2. The epsilon dataset re-
mained at 0.00 across all levels, while the year dataset
varied slightly with values of 11.18 at 0.1, 10.53 at 0.5,
dropping to 0.00 at level 1, and returning to 10.53 at
level 2. From the Table, it is clear that CFL is able
to survive with low fail rate (Fail ≤ 11%) in all the
experiments.

Table 5 shows the Number of failed clients when a cer-
tain percentage of clients is used for aggregation during
Federated Learning (rl) across different datasets. Three
rl values were tested: 0.2, 0.8, and 1.0. Most datasets,
including adult, covtype, and yahoo, utilised 31.58%
of clients at rl=0.2, with 0% at rl=0.8 and 1.0. The
epsilon dataset showed 0% client usage for all rl val-
ues. The year dataset had 31.58% at RL=0.2, 0.66%
at rl=0.8, and 0% at rl=1.0. Generally, lower rl values
(0.2) engage more clients than higher values (0.8 and
1.0). CFL models are not effective when only 0.2 of the
total client number joins the aggregation on the server.

Figure 2 shows the mean of the standard deviation
of the performance across the dataset. Based on the
previous result (Table 5), this figure was calculated by
removing all clients with rl = 0.2. From the figure,

Figure 2: The mean of the standard deviation of the
performance across the dataset.

we can see that the mean of the standard deviation
is small µstd ≤ 0.1. The highest mean values are in
Epsilon and Yahoo, which have the largest feature sets.
From this figure, it is clear that CFL is able to maintain
performance across different experiment settings.

From the theoretical analysis section, our experiment
findings can be explained that rl reduce attack success
probability. In addition, model convergence remains
stable when rl ≥ 0.8.

6 Conclusion
Random client selection is an effective strategy to de-
fend against adversarial attacks in contrastive federated
learning (CFL). Our research demonstrates that CFL
can effectively address model poisoning attacks through
the use of random client selection in many experiments.
This study focuses specifically on model scaling attacks
and random selection defence, leaving other attack vec-
tors and defence strategies for future work. Addition-
ally, while our empirical results are promising, we pro-
vide only basic theoretical guarantees.
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