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ABSTRACT
Rust is a strong contender for a memory-safe alternative to C as
a “systems” programming language, but porting the vast amount
of existing C code to Rust is a daunting task. In this paper, we
evaluate the potential of large language models (LLMs) to automate
the transpilation of C code to idiomatic Rust, while ensuring that
the generated code mitigates any memory-related vulnerabilities
present in the original code. To that end, we present the design
and implementation of SafeTrans, a framework that uses LLMs to
i) transpile C code into Rust and ii) iteratively fix any compilation
and runtime errors in the resulting code. A key novelty of our ap-
proach is the introduction of a few-shot guided repair technique
for translation errors, which provides contextual information and
example code snippets for specific error types, guiding the LLM
toward the correct solution. Another novel aspect of our work is the
evaluation of the security implications of the transpilation process,
i.e., whether potential vulnerabilities in the original C code have
been properly addressed in the translated Rust code. We experi-
mentally evaluated SafeTrans with six leading LLMs and a set of
2,653 C programs accompanied by comprehensive unit tests, which
were used for validating the correctness of the translated code. Our
results show that our iterative repair strategy improves the rate of
successful translations from 54% to 80% for the best-performing
LLM (GPT-4o), and that all types of identified vulnerabilities in the
original C code are effectively mitigated in the translated Rust code.
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1 INTRODUCTION
The exploitation of memory corruption vulnerabilities is among the
leading causes of system compromise and malware infection. While
there are several reasons behind the proliferation of exploitable
bugs, the heavy reliance on C and C++, which do not guarantee
memory or thread safety [1], plays a major role. Attempts to retrofit
memory safety into unsafe languages like C/C++ face performance
and compatibility challenges that have prevented their adoption [2,
3]. This suggests that rewriting existing code into memory-safe
languages may be one of the most promising long-term strategies
for addressing the problem of memory errors.

Modern memory-safe languages like Go and Rust offer com-
pelling advantages as replacements for memory-unsafe languages.
Their strict memory management, bounds checking, automatic
memory allocation and deallocation, and other advanced features

significantly reduce the risk of memory-related vulnerabilities.
Despite the growing ecosystems of Go and Rust, operating sys-
tems, network services, and desktop software continue to be writ-
ten mostly in memory-unsafe languages. Although encouraging
progress is being made [4–8], the extensive developer familiarity
with C/C++, the immense amount of existing code written in these
languages, and their increased efficiency [9], impede large-scale
software rewriting efforts.

Many of the software systems used by enterprises and individual
users rely on huge legacy C/C++ code bases. Migration to memory-
safe languages will be a slow and tedious task if not (at least par-
tially) automated. Rust is the strongest contender for a memory-safe
“systems” language with acceptable runtime overhead, and major
projects have started distributing some components written in Rust,
or at least have introduced tooling support for integrating Rust code
in existing C/C++ code bases (e.g., Firefox, Chrome, Linux, Win-
dows). Automating the translation of existing C code into Rust,
however, is challenging due to substantial syntactic and seman-
tic disparities between the two languages, particularly concerning
memory management and ownership.

Initial attempts to this problem adopted rule-based translation
approaches [1, 10–13]. These techniques can scale to large programs
and produce functionally equivalent code, but struggle with gener-
ating idiomatic code, which is harder to maintain. More importantly,
the majority of the translated code is wrapped in unsafe blocks
(Rust’s way of allowing developers to bypass its safety guarantees),
which defeats the purpose of translation from a security perspective.
To address the limitations of rule-based methods, learning-based
transpilers have been proposed, which convert code translation into
a neural machine translation problem [14–17]. These techniques
offer improvements over traditional program analysis methods, but
bring new challenges, such as the high amount of resources required
for training, and the scarcity of functionally equivalent program
pairs in source and target languages like C and Rust, respectively.

With the advent of large language models (LLMs), recent stud-
ies have focused on exploring their potential for automating code
translation. LLMs can generate more idiomatic code than previous
methods, but they come with their own set of challenges. Pan et
al. [18] performed one of the first studies to understand the limita-
tions of LLMs for code translation, and present a taxonomy of bugs
introduced during the translation process. Similarly, Ou et al. [19]
developed a repository-level benchmark (RustRepoTrans) for code
translation evaluation, and developed a taxonomy of translation
errors. LLM-transpiled code requires comprehensive methods to
verify its correctness, so recent studies have addressed this concern
using automated test case generation [20], fuzzing [21], multimodal
specification [22], and formal verification [23]. Aside from cor-
rectness, LLMs also struggle with larger applications. Although
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modern LLMs support large context windows, recent studies show
that they often cannot attend to all parts of long inputs uniformly,
which can impact performance on larger programs [24, 25]. Several
studies have tackled this issue by dividing larger applications into
smaller translation tasks [26–29]. Although these studies explain
the causes of translation errors, it remains unclear how to leverage
this knowledge to improve transpilation accuracy.

As a step towards bridging this gap and aiding the migration
to memory-safe languages, in this paper we present SafeTrans, a
framework for evaluating recent LLMs in their C-to-Rust code
translation capabilities. SafeTrans uses LLMs to i) transpile C code
into Rust and ii) iteratively fix any compilation and runtime errors
in the resulting code. Successfully transpiled programs are then
verified against the original C program’s unit tests to ensure their
functional correctness.

A key novelty of our approach is the use of an iterative basic
repair phase, combined with an additional few-shot guided repair
phase to improve the repair rate of translation errors. In the first
repair phase, SafeTrans attempts to repair compilation errors by
constructing prompts containing the faulty code and the corre-
sponding compiler feedback. Any still unrepaired files undergo a
second guided repair phase that adds contextual information about
the specific errors encountered in the basic repair process. We ana-
lyzed the most frequent translation errors and assembled targeted
instructions along with example code snippets to guide the LLMs
towards the correct solution.

Another novel aspect of our work is the evaluation of the security
implications of the transpilation process, i.e., whether potential
vulnerabilities in the original C code have been properly addressed
in the translated Rust code. Prior works have primarily focused
on the correctness of the translated Rust programs, and do not
investigate the security implications of the generated code [18,
19, 26, 29]. Our study investigates this aspect by identifying and
categorizing various common types of vulnerabilities found in the
original C programs, and analyzing whether these vulnerabilities
have been neutralized in the translated Rust programs using inputs
that trigger the respective bugs.

We used SafeTrans to perform a total of 15,918 translations
across 2,653 C programs and six LLMs. The combination of ba-
sic repair with few-shot guided repair achieves compilation repair
success rates of up to 93.5% for gpt-4o and 89.8% for DeepSeek-V3.
Guided repair effectively resolves challenging Rust compilation
errors, such as trait implementation failures, with an average reso-
lution rate of 58.7%, and borrow-checker violations with an average
rate of 74.2% across all LLMs. Overall, our repair techniques collec-
tively achieve substantial improvements in computational accuracy
(CA), increasing the overall translation success rate from 54% to
80% for gpt-4o. Even smaller models, such as Qwen2.5-Coder and
DeepSeek-Coder, nearly double their CA, highlighting the broad
applicability and effectiveness of our approach.

In summary, we make the following main contributions:

• We present the design and implementation of SafeTrans, an
end-to-end framework for comprehensively evaluating the
C-to-Rust code transpilation capabilities of LLMs.

• We demonstrate that just providing compiler error messages
and feedback is insufficient for repairingmany types of faulty

translations, and introduce a novel few-shot guided repair
approach to improve the repair rate.

• We identify 10,375 vulnerabilities (e.g., array out of bounds
access, null-pointer dereference, use after free) in the 2,653
source C programs used in our evaluation, and demonstrate
through experimental validation that these vulnerabilities
are effectively neutralized in the translated Rust programs.

Our prototype and data set will be publicly available, and can be
currently accessed anonymously through this link.

2 BACKGROUND AND RELATEDWORK
Source-to-source code translation is a decades-old problem in
the programming languages and software engineering commu-
nities [30], driven by the need to modernize applications, migrate
legacy systems, and leverage the benefits of newer languages. Trans-
lation is achieved using a source-to-source compiler, also known
as a transcompiler or transpiler, i.e., a program that converts be-
tween programming languages that operate at a similar level of
abstraction [31]. Translating C programs to Rust has received sig-
nificant attention due to Rust’s memory safety and performance
characteristics, which position it as a safer alternative to C.

2.1 Rule-based Code Translation
Conventional solutions to source-to-source translation have pre-
dominantly relied on rule-based methodologies. These approaches
rely on static analysis to generate the abstract syntax tree and con-
trol flow graph of the code. Carefully crafted rules are then derived
mostly manually to transcribe the source code into the target lan-
guage. The development of such rule-based techniques is a tedious
process that involves substantial manual human effort.

Existing solutions for automating the conversion of C code to
Rust do not apply any of its borrowing and ownership features,
resulting in overuse of Rust’s unsafe keyword in the translated
code. Themost prominent tool in this category is C2Rust [10], which
translates large-scale C programs to Rust using both predefined
and custom rules. Despite its scalability, C2Rust produces non-
idiomatic code with excessive use of unsafe blocks. Wrapping
code in unsafe blocks bypasses Rust’s safety checks, ultimately
defeating the purpose of translating C programs to Rust (from a
security perspective).

A recent study of C2Rust by Emre et al. [1] investigated the
multiple underlying causes of unsafety. The authors propose a tech-
nique that relies on feedback from the rustc compiler to refactor
a certain type of raw pointers into Rust references. Inspired by
C2Rust, several studies have attempted to address its limitations.
CROWN [11] improves upon C2Rust’s output by converting raw
pointers to references, but it is limited to mutable and non-array
raw pointers. Similarly, other tools [12, 32, 33] focus on specific
translation challenges, such as converting lock APIs and certain
data types from C to Rust. CRustS [34] improves the translation
of C2Rust further by auto-refactoring C2Rust output using code
structure pattern matching and transformation without relying on
compiler feedback. Rusty [35] is a preliminary study of a system
for C-to-Rust code conversion via unstructured control specializa-
tion, which implements C-style syntactic sugar on top of Rust to
eliminate the discrepancies between the two languages.
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Figure 1: High-level architecture of SafeTrans’ transpilation, compilation, repair, and validation pipeline.

2.2 LLM-based Code Translation
In a relatively short span, the fields of artificial intelligence and
natural language processing have achieved impressive advances in
generative AI, with a multitude of LLMs trained on various sources
of data and for a wide range of applications [36–42]. In the field
of computer programming, in particular, LLMs have shown great
promise for code auto-completion, synthesizing code from natural
language descriptions, summarizing and explaining existing code,
and various other code-related tasks. By training models on im-
mense code bases, such as source code files from public GitHub
repositories, these code-specific LLMs can learn rich contextual rep-
resentations that can be applied to various code-related tasks. This
makes them an excellent tool for automated code translation [31].

Pan et al. [18] conducted a comprehensive analysis of LLMs’
translation capabilities across multiple language pairs, including C
to Rust. Their study also provides a detailed taxonomy of LLM-based
translation bugs but lacks in-depth insights into issues specific to C-
to-Rust translation. Yang et al. [20] introduce UniTrans, a tool that
generates unit tests using an LLM and iteratively incorporates feed-
back from these test cases to refine translation. However, UniTrans
is limited to translating between C++, Java, and Python.

For C-to-Rust translation, several studies enhance LLM-based
approaches with program analysis, formal verification, and fuzzing
to improve translation accuracy. Yang et al. [23] propose VERT,
which generates two Rust programs: an oracle Rust program lifted
from source code using WebAssembly, and an LLM-translated Rust
program from the same source. VERT then uses formal methods
to rigorously test the translated Rust code against the oracle Rust
program. Eniser et al. [21] developed FLOURINE, a framework that
relies on fuzzing instead of test cases to verify the equivalence of
translated Rust code. Similarly, Nitin et al. [22] introduce SPECTRA,
which generates multi-modal program specifications from an LLM
in a self-consistent manner, and provides them as input to the LLM
along with the code to improve translation quality. However, these
tools are only effective for C programs up to 600 LoC.

Some recent works focus on translating large-scale C programs
to Rust. Nitin et al. [26] propose C2SaferRust, which leverages
the C2Rust transpiler to generate an unsafe Rust version of an
entire repository, acting as an intermediary to assist the LLM in
translation. SYZYGY [27] also presents a method for translating
entire repositories from C to Rust. Their approach segments the

program into smaller translation units, uses an LLM to translate
each unit, and verifies correctness through dynamic analysis and
LLM-generated tests. Shiraishi et al. [28] adopt a similar methodol-
ogy for handling large C programs, but focus solely on generating
compilable Rust code without providing a means to verify func-
tional correctness. Finally, a user study by Li et al. [43] demonstrates
that human strategies for C-to-Rust translation differ from those
used by automated tools, suggesting that future translators could
benefit from incorporating human-like decision-making.

Unlike the above recent works in automated transpilation using
LLMs, which mostly focus on handling the translation of larger
applications and developing additional approaches to verify the
correctness of translated programs, our research addresses several
fundamental questions specific to C-to-Rust translation. First, we
identify the Rust features that LLMs struggle to comprehend, which
lead to the most frequent translation errors. We extend our anal-
ysis beyond building a simple taxonomy, by incorporating these
findings to improve translation accuracy in the form of concrete
examples and contextual information that aid the repair process.
Second, we evaluate the effectiveness of iterative basic and guided
repair in rectifying faulty translations. Lastly, we examine which
structural properties of Rust make programs resistant against com-
mon memory vulnerabilities present in C code. This targeted ap-
proach distinguishes our work from previous transpilation studies
by specifically examining the language-level semantic challenges
in translating from a memory-unsafe language to one with strict
safety guarantees enforced at compilation time.

3 LLM-BASED CODE TRANSLATION
In this section we present the design of SafeTrans, our framework
for automating the translation of C code into Rust, and the method-
ology we use to evaluate the fidelity of the translated code. The
overall translation process comprises four main steps, as illustrated
in Figure 1: transpilation, compilation, repair, and validation. The
original C program is first transpiled into Rust using a large lan-
guage model (LLM). The resulting Rust program is then compiled,
and if compilation fails, an iterative repair process is initiated to fix
the errors using both generic and guided prompts. After successful
compilation, the program is executed and validated against the
original C program’s test cases. In case of runtime or validation
errors, another phase of iterative repair is initiated.
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Given some codewritten in the C programming language, trans-
late it into equivalent Rust code that solves the exact same
problem as the original code does. Ensure the following:
- Produce only safe Rust code.
- The translated Rust code can be compiled and executed with
all the necessary imports.
- Output only the code without any additional explanation or
comments.
- Wrap the code with ```rust
C code:
{C code}
Rust code:

Figure 2: Prompt template for C to Rust transpilation.

3.1 Transpilation from C to Rust
The first step in the translation pipeline is the initial attempt to
generate a Rust translation of the original C program using an LLM.
The input program is provided as part of the prompt, along with
additional instructions. Figure 2 presents the format of our base
transpilation prompt template.

The first instruction in the prompt ensures that the LLMproduces
safe Rust by avoiding the generation of unsafe code blocks in the
translation. The second instruction helps to enforce the inclusion
of all necessary dependencies in the resulting code. The last two
instructions assist in extracting the translated code from the LLM’s
response. This is particularly useful for smaller open-source models,
which often lack consistency in their output format. To mitigate
this issue, we explicitly instruct the model to output only code, and
wrap it within the defined tags.

We use this initial prompt to query the LLM, which can result
in two scenarios. In the ideal case, the LLM generates a response
that adheres to the required output format, allowing us to extract
the Rust code based on the predefined tags. The extracted Rust
code then advances through the pipeline. In the second case, the
LLM fails to generate a valid response, either because the prompt
and the output exceed its context window, or because it produces
incoherent descriptive content without adhering to the required
format. In such cases, we discard the response, a condition we refer
to as a Generation Error .

3.2 Compilation and Repair
In the compilation phase, the transpiled Rust code from the pre-
vious phase is compiled using the rustc compiler. If the program
is compiled successfully, the resulting binary is provided as input
to the runtime testing and validation phase. Otherwise, SafeTrans
attempts to automatically repair the compilation errors in the gen-
erated Rust code by initiating an iterative repair phase.

3.2.1 Basic Repair. In case of a compilation error, the rustc com-
piler provides detailed error messages which can be passed to the
LLM along with the transpiled Rust program to provide additional
context about the issue. Recent studies [44] have demonstrated the

{Base prompt} // Base transpilation prompt from Figure 2

Rust code:
{Rust code} // Rust code with compilation errors

Executing your generated code gives the following errors be-
cause it is syntactically incorrect: {error messages}
Please suggest a corrected version of the complete code
wrapped in ```rust

Figure 3: Prompt template for repairing compilation errors.

effectiveness of this approach. Our repair prompt contains com-
plete contextual information structured into three major parts, as
illustrated in Figure 3. The base prompt section, which corresponds
to the base translation template of Figure 2, helps the LLM retain
contextual understanding and ensures that the repaired Rust code
remains equivalent to the core functionality of the original C pro-
gram. Next, we include the incorrect Rust translation generated by
the LLM. Finally, we append the compilation error messages along
with additional instructions about the required output format.

We adopt an iterative repair approach to resolve compilation
errors, similar to Pan et al. [18]. In each iteration, the incorrect
Rust translation and the repair instructions within the prompt are
updated based on the results of the previous iteration, while the
base prompt remains unchanged. At the end of each iteration, the
generated Rust program is compiled again, and if compilation fails,
a new repair cycle is initiated. The phase continues until either
the program is successfully compiled, or a predefined maximum
number of iterations is reached (set to five in our experiments).

3.2.2 Guided Repair. Even after several repair iterations, some
programs may still fail to compile. To improve the translation suc-
cess rate, we introduce a new guided repair strategy, which uses
few-shot learning by incorporating error-specific contextual in-
formation in the repair prompt. The customized prompt includes
specific guidance and concrete code examples tailored to the par-
ticular compilation errors encountered.

During our preliminary experiments, we performed an in-depth
analysis of the frequency and distribution of compilation errors
(based on their unique codes, as returned by rustc), and identified
themost common translation errors (discussed in detail in Section 5).
The error messages generated by rustc provide rich information
about the root cause of the failure and potential solutions. We
selected the top eight most frequent errors, for which we developed
tailored repair instructions, outlining key aspects to address, along
with common causes and fixes. After the completion of the basic
repair phase, if compilation still fails due to at least one of the
most frequent errors, then SafeTrans initiates the guided repair
phase, which is also performed iteratively (up to five times in our
experiments).

The customized repair prompt is similar to the basic repair
prompt (Figure 3), but is augmented with error-specific instructions
and context. To maintain conciseness within the LLM’s context
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1. All variables are immutable by default. If the value of the
variable needs to be changed, make sure you declare it as
mutable using the ‘mut’ keyword. Example:
//Cause:

let x = 10; // `x` is immutable by default

x = 20; // Error: E0384 , cannot assign to `x`
// because it is immutable

//Fix:

let mut x = 10; // `x` is now mutable

x = 20; // This is allowed because `x` is mutable

2. Pattern-matched variables in match are immutable by de-
fault. Use mut in the pattern match to make the variable mu-
table in that scope. Example:
//Cause:

let opt = Some (10);

match opt {

// Error: E0384 , cannot assign to `x` because it is

// immutable

Some(x) => x += 1,

None => (),

}

//Fix:

let opt = Some (10);

match opt {

// Now `x` is mutable within this scope

Some(mut x) => x += 1,

None => (),

}

Figure 4: Example of guided repair instructions for error
E0384 (“Cannot assign to an immutable variable” ).

length constraints and minimize noise, we only include instructions
relevant to the errors present in the current compilation output.
Figure 4 shows an example of the error-specific instructions for
error code E0384 (“Cannot assign to an immutable variable” ) that
are included in the prompt when this error is encountered. The
instructions first explain the Rust property that the LLM-generated
code violates, leading to error E0384. They then provide concrete
examples of incorrect and corrected code snippets to help the LLM
understand and resolve the issue effectively.

3.3 Runtime Testing and Validation
Successfully compiled Rust programs proceed to the runtime testing
and validation phase, which executes the program with various
test cases and validates the output against the expected results. We
consider a C program as successfully translated if the generated
Rust program passes all test cases. Erroneous outcomes of this
dynamic analysis phase include Runtime Error , Infinite Loop, and
Test Case Error . Our unit tests are based on the test cases available
in the CodeNet data set used in our evaluation. If the translated
Rust program fails to run properly or does not pass the test cases, it
undergoes another round of iterative repair, this time with prompts
tailored to the specific type of runtime error encountered.

First, we identify the type of failure, and based on the error type,
we construct a dynamic prompt that incorporates the corresponding
error feedback, as illustrated in Figure 5. We follow a structure
similar to the compilation error repair prompts, but this phase

base prompt which contains original C code and output format
instructions
{base prompt}

Faulty Rust code
Rust code:
{rust code}

specific error messages according to error type
Executing your generated code gives the following {error type}
error:
{error message}

Figure 5: Prompt template used for dynamic repair.

Table 1: LLMs used in our experimental evaluation.

Model Provider Exact Version Size Context

GPT-4o OpenAI gpt-4o N/A 128K
DeepSeek-V3 DeepSeek DeepSeek-V3 671B 64K
Llama3 Meta llama-3-70b-Instruct 70B 8K
DeepSeek-Coder DeepSeek DeepSeek-Coder-V2-Lite-Instruct 16B 128K
Qwen2.5-Coder Alibaba qwen2.5-coder 7B 128K
Codestral Mistral AI Codestral-22B-v0.1 22B 32K

handles multiple error types at the same time. While trying to
repair the Rust program, it is possible for the LLM to introduce
new compilation errors, which will lead to failed validation and the
program will need to be repaired again. However, only basic repair
will be used to repair intermediate compilation errors.

In this phase, SafeTrans iteratively repairs the program until it
passes all test cases or exceeds the maximum number of repair at-
tempts (set to five in our tests). In each iteration, SafeTrans performs
both compilation and runtime test checks, and if the validation fails,
it queries the LLM with an appropriately updated (dynamically
generated) prompt.

4 EXPERIMENTAL SETUP
4.1 Large Language Model Selection
For our empirical study, we select a diverse set of LLMs, ranging
from small open-source models to state-of-the-art (SOTA) LLMs.
Among the SOTA LLMs, we include gpt-4o and DeepSeek-V3. For
small open-source LLMs, we select Qwen2.5-Coder, Codestral,
DeepSeek-Coder, and Llama3. As a rapidly evolving field, LLMs
are frequently updated, and newmodels are being released regularly.
Due to time and cost reasons we could not include other recently
released models, such as Claude and Gemini, but we tried to select
a set of models that are representative of the spectrum of choices
and capabilities in the current state of the art. Table 1 provides a
detailed overview of the selected LLMs. In our open-source LLM
corpus, all the selected models are code-focused, except for Llama3
and DeepSeek-V3, which serve as general-purpose models.
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We access the SOTA LLMs through their respective public APIs.
Llama3 and Codestral are deployed on AWS (Amazon Web Ser-
vices) Bedrock, while Qwen2.5-Coder and DeepSeek-Coder run on
an ml.g5.12xlarge instance of AWS SageMaker AI.

4.2 LLM Hyperparameters
During the initial translation process, we configure the tempera-
ture (a hyperparameter that controls the randomness of output) to
0.2 for all models. We select a lower temperature value for base
translation to keep the generated Rust translations deterministic.
However, when repairing problematic translations, we increase this
value to 0.6 to allow for more creative fixes. All other generation pa-
rameters, including top-k and top-p, which limit token selection to
the most probable candidates based on fixed count and cumulative
probability, respectively, are set to standard values as recommended
by the developers of each language model.

4.3 Data Set Collection and Pre-Processing
For code translation tasks, prior studies have commonly utilized
data sets such as CodeNet [45], AVATAR [46], and EvalPlus [47]. Our
empirical study specifically targets the translation of C programs
to Rust, which necessitates a data set with a substantial number of
C programs. Having some strong evidence about the validity of the
translation is also critical, and can be accomplished by respective
test case inputs and outputs for runtime verification of functional
correctness. Based on these requirements, CodeNet is the most
suitable choice.

The CodeNet data set [45] comprises 4,053 competitive program-
ming problems written in over 50 programming languages, with
approximately 13 million code submissions. Each problem includes
multiple solutions across different languages. Since our focus is on
C, we filter the data set to retain only those problems that have an
adequate number of solutions written in C. We further eliminate
duplicates and randomly sample one solution per problem. Addi-
tionally, we ensure that all selected problems have a comprehensive
set of verified test cases.

Upon closer inspection, we observe that some solutions contain
additional utility functions that are not called anywhere in the
program. These “dead” functions may affect the accuracy of the
translation, and therefore we remove them using the static analysis
tool tree-sitter [48]. After completing all above filtering and
preprocessing steps, we end up with a final set of 2,653 C programs,
which comprise our evaluation data set.

To assess the quality of test cases accompanying the selected
programs, we use the gcov tool [49], to measure the line cover-
age (defined as the ratio of executed lines to the total number of
executable lines in a program) and function coverage (defined as
the ratio of executed functions to the total number of executable
functions in a program) for each test case. Higher line and function
coverage typically indicates more comprehensive testing. However,
it is important to note that high line and function coverages alone
do not guarantee the detection of all potential defects. Figure 7
presents the distribution of line and function coverage rates across
all selected C programs. A significant proportion of programs in
the data set have comprehensive line coverage, with an average of

91.25% and 97.50% functional coverage. Notably, only approximately
2.27% of the programs have line coverage below 50%.

To understand the structural characteristics of the C programs
in our evaluation data set, we again use tree-sitter to parse
them and extract various code-related metrics, such as number
of functions, number of pointers, number of structs, number of
memory functions (e.g., malloc, calloc, and free), and lines of
code (LoC). Figure 6 shows the cumulative distribution function of
each of these metrics.

In terms of lines of code, the 80th percentile reaches approxi-
mately 100 LoC, indicating that the majority of programs in the
data set are compact, except few programs larger than 200 LoC.
In the number of functions distribution 80th percentile falls at ap-
proximately 5 functions, demonstrating that most programs in the
data set employ a limited functional decomposition approach. The
pointer usage distribution indicates that while a majority portion
of programs use few or no pointers, there is a long tail of programs
with more complex memory management needs, indicated by the
gradually increasing curve beyond the 80th percentile.

Similarly, the distribution of struct declarations shows minimal
use of complex data structures, approximately 90% of programs
contain fewer than five struct definitions. In terms of dynamic
memory allocation, over 90% of programs make fewer than ten calls
to functions such as malloc or free, indicating that heap memory
management is not widely employed.

These distributions suggest that while the majority of programs
in the CodeNet data set are structurally simple, there remains a
subset of larger and more complex programs (e.g., those exceeding
200 LoC). As the experimental evaluation results show (Section 5.4),
these more complex programs pose additional challenges for auto-
mated translation.

5 RESULTS
In this section we present the results of our experimental evaluation,
focusing on the following main research questions:

• RQ1: Effectiveness of basic LLM-based C to Rust trans-
lation.We evaluate in detail how recent LLMs perform on
the task of translating C programs into Rust, and analyze
the different failure conditions that are encountered.

• RQ2: Analysis of compilation errors. We explore the
different types of compilation errors encountered in the tran-
spiled Rust programs, and evaluate the effectiveness of sim-
ple iterative repair.

• RQ3: Effectiveness of guided repair. We investigate how
compilation errors evolve and transition during repairing
iterations, and evaluate the effectiveness of our guided repair
strategy in fixing these errors.

• RQ4: Improvement in overall successful translation
rate. We evaluate how our iterative repair strategies help in
increasing the number of successfully translated programs.

5.1 RQ1: Basic Translation Success Rate
To assess the “out-of-the-box” performance of large language mod-
els (LLMs) in C to Rust translation, we adopt computational accuracy
(CA), proposed by Rozière et al. [31] and Szafraniec et al. [17], as our
primary evaluation metric. CA is defined as the ratio of successfully
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Figure 6: Cumulative distribution functions (CDFs) of structural code metrics for the C programs in the CodeNet data set.
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Figure 7: Runtime code coverage of the CodeNet test cases in
terms of executed lines of code and functions.

translated programs to the total number of translation samples. We
prioritize CA over static evaluation metrics such as exact match,
syntax match, and dataflow match [50], because CA evaluates the
functional equivalence of translated programs by executing them
with similar inputs. LLMs can achieve high scores on static metrics
while demonstrating poor performance in computational accuracy,
thereby revealing the limitations of such metrics in programming
language translation tasks.

Figure 8 presents a comparative analysis of the six evaluated
LLMs in their ability to perform base-level C-to-Rust translation
(without any attempt to fix any errors). For each model, the left
bar in the group represents the CA, while the right stacked bar
illustrates a breakdown of the encountered translation errors. Fol-
lowing the categorization of Pan et al. [18], we classify these errors
into five distinct types:

• Generation Error: The model either fails to generate a re-
sponse according to required format, or the prompt exceeds
the LLM’s context length.

• Compilation Error : The transpiled Rust code fails to compile.
• Runtime Error : The Rust code is compiled successfully, but
the execution of the program fails (e.g., panics).

• Infinite Loop: The program enters a non-terminating loop.
• Test Case Error : Execution of at least one test case fails.

Among the evaluated models, gpt-4o and DeepSeek-V3 achieve
the highest base computational accuracy (54% and 49%, respec-
tively). Although DeepSeek-V3 is an open-source model, DeepSeek
provides API access to its largest variant at a cost approximately 25
times lower than gpt-4o, while delivering comparable performance.
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Figure 8: Percentage of correct Rust translations out of 2,653
C programs, and breakdown of the different types of failures
for unsuccessful translations.

In contrast to larger LLMs, smaller open-source models perform
significantly worse, with significantly higher error rates.

On average, the smaller open-source code models in our study
demonstrate over twice the CA of Llama3. Despite its 70B pa-
rameter size and substantial resource demands, Llama3’s general-
purpose design results in limited performance on code-specific
tasks, underscoring the importance of domain-specific training for
programming language translation. Interestingly, despite having
only seven billion parameters, Qwen2.5-Coder achieves perfor-
mance on par with much larger competitors.

As evident from the stacked bars, compilation errors are the most
frequent failure mode across all models. This highlights that syn-
tactic correctness is a key challenge in LLM-based translation. The
particularly high prevalence of compilation errors in smaller open-
source models further emphasizes their limited understanding of
Rust’s syntax and compilation rules. For gpt-4o and DeepSeek-V3,
runtime errors are equally frequent as compilation errors, which
motivated us to also explore iterative repair techniques tailored to
runtime errors.

5.2 RQ2: Compilation Error Analysis
5.2.1 Error Distribution. A high frequency of compilation errors
demands an in-depth study of their root causes. The transpiled Rust
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Table 2: Effectiveness of iterative repairing of failed Rust
compilations.

LLM
Compilation

Failures Repaired Repair
Rate (%)

Pass
Rate (%)

Qwen2.5-Coder 1743 1090 62.5 23.4
Llama3 1884 1096 58.1 14.1
DeepSeek-Coder 1836 1021 55.6 33.7
Codestral 906 778 85.8 28.9
GPT-4o 558 522 93.5 43.4
DeepSeek-V3 579 520 89.8 47.1

programs result in a diverse range of compilation errors, but we
focus on the most frequent ones that comprise the vast majority
of cases, since they represent the core features of Rust with which
LLMs struggle. Additionally, we only consider the compilation
errors for which rustc provides specific error codes, because this
makes the categorization of errors easier for systematic analysis.

The heatmap of Figure 9 illustrates the distribution of the union
of the top-10 most frequent Rust compilation errors per LLM en-
countered in the transpiled programs. Cells with darker color cor-
respond to high relative contribution to the total number of com-
pilation errors for a given LLM. A first observation is the consis-
tent occurrence of some errors across all LLMs. Specifically, errors
E0277 (“trait not implemented” ) and E0308 (“mismatched types” ) are
the most prevalent, accounting for over 18% of all errors in most
models, and up to 30% for Qwen2.5-Coder and Llama3. This trend
suggests that LLMs struggle with type inference and trait bounds
when generating Rust code. We provide a detailed description of
the compilation error codes in Appendix A.

We also observe model-specific patterns. For example, 18.9%
of DeepSeek-V3 translations fail due to E0428 (“duplicate defini-
tion” ), while Codestral and DeepSeek-Coder struggle dispropor-
tionately (19.0-22.2%) with E0599 (“method not found” ). Similarly,
Qwen2.5-Coder and Llama3 result in high rates of E0499 (“lifetime
issues” ) and E0502 (“borrow conflicts” ), hinting at weaker handling
of Rust’s memory-safety constraints. The relatively lower variance
in errors such as E0061 (“invalid number of arguments in function
call’) implies that LLMs have captured a decent model of basic
programming language constructs.

5.2.2 Iterative Compilation Repairing. SafeTrans employs an itera-
tive compilation repair strategy to address compilation errors, as
described in Section 3. To evaluate the effectiveness of this phase,
we introduce two metrics:

• Repair Rate: The percentage of transpiled programs that
initially failed to compile, but then were successfully fixed
during the repair phase, resulting in a compilable program.

• Pass Rate: The percentage of repaired programs that run
successfully and pass all test cases.

Table 2 provides a breakdown of the outcomes of the iterative
compilation repair phase in terms of repair rate and pass rate for
each LLM. The Compilation Failures column corresponds to the
number of programs that failed to compile after the base translation.
We observe that gpt-4o and DeepSeek-V3 achieve high repair rates
of 93.5% and 89.8%, respectively, outperforming the other LLMs.
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Figure 9: Distribution of the most common compilation er-
rors for the transpiled Rust programs.
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Figure 10: Distribution of the compilation errors that could
not be fixed by the compilation repair phase.

Interestingly, despite being significantly smaller, Codestral per-
forms comparably to larger LLMs (only 7.7% and 4% lower than
gpt-4o and DeepSeek-V3 in terms of repair rate), demonstrating
its strong ability to understand and benefit from compiler feed-
back. The repair rate of Llama3 (58.1%) is comparable to other
smaller code-oriented LLMs, such as Qwen2.5-Coder (62.5%) and
DeepSeek-Coder (55.6%), suggesting that it can effectively leverage
repair prompts to fix faulty translations.

The relatively lower pass rates across all LLMs compared to
their repair rates suggest that while these models can interpret
compiler feedback and fix syntactic issues, they often lose sight of
the original program intent and functional equivalence. As noted
by Pan et al. [18], LLMs may introduce new errors while resolving
existing ones, requiring multiple iterative passes to achieve fully
correct and functional translations.
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Table 3: Resolution rates (RR) for each error code across the six LLMs using Guided Compilation Repair. Each cell shows RR%
(remaining error count/initial error count).

Error Code Codestral DeepSeek-Coder Qwen-Coder LLaMA3 DeepSeek-V3 GPT-4o

E0277 48.57 (18/35) 34.80 (178/273) 43.11 (194/341) 64.73 (85/241) 79.17 (5/24) 82.35 (3/17)
E0308 60.53 (15/38) 34.20 (227/345) 31.01 (238/345) 67.41 (73/224) 81.82 (4/22) 50.00 (5/10)
E0425 90.00 (1/10) 56.68 (81/187) 49.44 (91/180) 89.36 (15/141) 83.33 (1/6) 0.00 (0/0)
E0599 69.23 (4/13) 67.20 (61/186) 70.10 (87/291) 83.80 (29/179) 75.00 (3/12) 80.00 (1/5)
E0384 100.00 (0/2) 77.55 (11/49) 46.94 (26/49) 74.29 (9/35) 100.00 (0/1) 0.00 (0/0)
E0282 100.00 (0/4) 66.67 (5/15) 81.82 (2/11) 100.00 (0/8) 0.00 (0/0) 0.00 (0/0)
E0502 41.67 (7/12) 10.53 (17/19) 40.74 (16/27) 55.56 (4/9) 60.00 (2/5) 75.00 (1/4)
E0499 33.33 (2/3) 25.00 (9/12) 22.22 (7/9) 83.33 (1/6) 60.00 (2/5) 100.00 (0/3)

5.3 RQ3: Effectiveness of Guided Repair
Even after iterative compilation repairing, certain compilation er-
rors remain unresolved. Figure 10 shows the distribution of error
types that persist after the completion of the compilation repair
phase. It is evident that many of the most frequent errors before re-
pairing continue to appear in abundance, which means that merely
providing compiler feedback to the LLM is insufficient for resolving
them. To better understand why LLMs struggle with these per-
sistent errors, we selected the following ones (top-8) for further
investigation:

• E0277: The type does not implement a required trait.
• E0308: Mismatched types encountered.
• E0425: Use of an undeclared name or identifier.
• E0599: Attempted call on a type that doesn’t support it.
• E0384: Cannot assign to an immutable variable.
• E0282: Unable to infer enough type information.
• E0502: Cannot borrow as mutable because it is also borrowed
as immutable.

• E0499: Cannot borrow as mutable more than once at a time.
For each of these errors, we examine both their successful and

failed repair cases to identify recurring patterns that lead to the
error. Based on these observations, we develop guided instructions
that describe the common causes and provide example fixes where
applicable, which are used in our subsequent guided repair phase.

As an example, Figure 4 shows the guided instructions developed
for error E0384. This error typically occurs when a new value
is assigned to an immutable variable. Our analysis reveals that
common patterns include reassigning struct instances and variables
introduced through pattern matching. The instructions in Figure 4
are tailored to these patterns and provide examples to assist the
LLM in resolving the error.

Table 3 summarizes the results on the effectiveness of guided
repair in resolving the compilation errors remaining after the initial
basic repair phase. To accurately evaluate its effectiveness, we intro-
duce the resolution rate (RR) metric, which measures the percentage
of targeted errors that are successfully repaired—instead of simply
indicating whether a file is fixed or not. An RR of zero signifies that
the target error was not present in the test set. Notably, Llama3,
despite being a general-purpose LLM, achieves high resolution
rates across nearly all targeted errors, suggesting that guided repair
significantly enhances its ability to acquire the knowledge needed
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Figure 11: Final translation success rate and error breakdown
for the full SafeTrans pipeline.

for effective correction. Errors such as E0384, E0282, and E0425
consistently show high resolution rates across multiple models,
indicating that these error types can be fixed easily when LLMs are
provided with sufficient context and targeted feedback.

5.4 RQ4: Overall Translation Success Rate
After combining the basic and guided compilation repair ap-
proaches, in this section we evaluate the overall performance of
the complete SafeTrans pipeline in successfully translating C pro-
grams into Rust. Figure 11 illustrates the substantial improvements
achieved through the iterative repair techniques across all LLMs.
The computational accuracy (CA) of both gpt-4o and DeepSeek-V3
is increased by approximately 25% compared to their base CA, reach-
ing 80% and 79%, respectively. Even for the underperforming mod-
els, CA is improved by roughly twice (+22% for Codestral, +17% for
Qwen2.5-Coder, +19% for DeepSeek-Coder and +12% for Llama3).
Among the smaller open source code-LLMs, Qwen2.5-Coder and
DeepSeek-Coder achieve the same CA performance (34%), despite
Qwen2.5-Coder being smaller (7B) than DeepSeek-Coder (16B).

For gpt-4o and DeepSeek-V3, we observe a drastic reduction
across all error types, particularly in compilation errors, which
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drop below 2% (from 22–23% in Figure 8). This indicates that larger
LLMs are highly effective at debugging erroneous programs when
provided with appropriate compiler feedback. Similarly, compila-
tion errors for Codestral, Qwen2.5-Coder, DeepSeek-Coder, and
Llama3 drop by 30, 45, 44, and 47 percentage points, respectively.
Among these, Llama3 shows the largest reduction in compilation
errors, indicating that even a general-purpose LLM can substan-
tially benefit from our iterative repair strategies to enhance its
code understanding capabilities. For the smaller LLMs, we can see
that there is an increase in non-compilation errors. This occurs
because programs that previously failed to compile, once repaired,
may generate new runtime or logic errors due to the hallucination
tendencies of LLMs. However, the overall increase in CA shows the
potential of iterative repair techniques, especially when coupled
with targeted feedback, in improving translation success rate across
diverse models.

The structural characteristics of source programs, such as lines
of code (LoC), number of pointers, and number of functions, can
significantly influence the translation outcome. Figure 12 presents
an overview of how LOC and the number of pointers (#ptr) in
a program affect the translation success rate. Regarding LoC, all
LLMs exhibit steep cumulative distribution function (CDF) curves
for correct translations, i.e., they can easily handle the vast majority
of programs with up to 100 LoC. Notably, gpt-4o, DeepSeek-V3,
and Codestral are able to generate correct translations for larger
programs (i.e., those exceeding 100 LoC), whereas Qwen2.5-Coder,
DeepSeek-Coder, and Llama3 struggle with such programs. The
majority of compilation errors occur in programs with more than
100 LoC. As the program size increases, LLMs face greater difficulty
in maintaining syntactic correctness. A similar trend is seen in
runtime and test case errors.

The pointer-based analysis in the bottom graphs further substan-
tiates these findings, showing that translation success rates decline
as pointer usage increases—a pattern consistently observed across
all models. Notably, DeepSeek-V3’s slower-rising curve shows that
it produces fewer compilation errors for pointer-heavy code. Over-
all, these results highlight that although recent LLMs achieve im-
pressive code translation capabilities, their performance remains
influenced by structural code characteristics such as code size and
complexity.

6 VULNERABILTY MITIGATION
6.1 Identification of Potential Vulnerabilities
A major goal of our study is to assess the extent to which any vul-
nerabilities present in the original C code are effectively mitigated
in the translated Rust code. Instead of planting bugs in existing pro-
grams or collecting a different data set of vulnerable programs, we
observe that due to the nature of the CodeNet data set, its programs
already contain numerous flaws that would pose security risks if
they were to be used in production.

Inspired by the FormAI data set [51], we used the Efficient SMT-
based Context-Bounded Model Checker (ESBMC) [52] formal veri-
fication tool to analyze the programs in our CodeNet data set and
identify various types of vulnerabilities in them, such as illegal
memory accesses and integer overflows. ESBMC uses bounded
model checking, which examines the correctness of a program by

Table 4: Categorization of the outcome of running ES-
BMC [52] verification on the C programs in our data set.

Type Frequency Percentage (%)

Verification Failed 1906 71.8
Verification Successful 332 12.5
Scan Error 415 15.6
Total 2653 100.0

converting it into a finite state transition model and exploring possi-
ble states (up to a predefined boundary). ESBMC is an open-source
tool that supports multiple programming languages, including C.
It automatically verifies both predefined safety properties (e.g., out-
of-bounds array access, illegal pointer dereferences, overflows) and
user-defined program assertions. We should note that the flaws re-
ported by ESBMC constitute potential vulnerabilities—determining
whether they are indeed exploitable is outside the scope of this
work. For the sake of brevity, we refer to them simply as vulnera-
bilities in the rest of this section, as the majority of these flaws are
indeed critical (as discussed in Section 6.2).

The outcome of scanning a program with ESBMC can be catego-
rized into one of the following three cases:

• Verification Successful: Indicates that no flaws have been
found within the defined bounds.

• Verification Failed: ESBMC detected one or more flaws in the
target program.

• Scan Error:During verification, ESBMCmay crash or timeout.
In such cases, we mark the file as having a Scan Error.

Table 4 shows the breakdown of ESBMC verification results on our
evaluation data set. Approximately 70% of the programs contain
some form of flaw that was not reported by the authors of CodeNet.
We employ the same ESBMC configurations suggested by Tihanyi
et al. [51], as our focus is on the behavior of potential vulnerabilities
that are mitigated as the code is transpiled from C to Rust, rather
than reporting all possible bugs in a C program. As pointed out by
previous works [51, 52], ESBMC cannot produce false positives or
false negatives, as each identified issue is validated by counterex-
amples, and the fact that successful verification only occurs up to
a predefined bound. This means that the possibility of some bugs
hiding deep in the program still exists, but as we show, ESBMC still
identifies plenty of potential vulnerabilities in the tested programs.

Table 5 shows the distribution of the most frequently reported
types of vulnerabilities in the original C programs as reported by ES-
BMC. A single program can contain multiple vulnerabilities across
multiple types. Since our evaluation data set comprises competitive
style programs that mostly involve data supplied through stdin or
simple files, they commonly use simple scanf() calls, arrays, and
use of arithmetic operations, and we thus observe many vulnera-
bilities associated to these operations. Overall, ESBMC identified
a total of 10,375 vulnerabilities in the 2,653 C programs (~5 per
program on average).
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Figure 12: CDFs of code complexitymetrics—lines of code (top) and number of pointers (bottom)—for successful and unsuccessful
translation outcomes, as a percentage of the 2,653 C programs in our data set. As the complexity of the code increases, the rate
of failed translations also increases.

Table 5: Distribution of the types of detected vulnerabilities
in the original C programs, as provided by ESBMC [52].

Vulnerability Type Instances

Buffer Overflow 3,258
Array Bounds Violated 2,951
Arithmetic Overflow 2,859
Dereference Failure: NULL Pointer 753
Division by Zero 196
VLA Array Size Overflows Address Space 175
Dereference Failure: Forgotten Memory 100
Dereference Failure: Invalid Pointer 47
Dereference Failure: Invalidated Dynamic Object 12
Dereference Failure: Invalid Pointer Freed 5
Dereference Failure: Misaligned Access to Data Object 4

6.2 Vulnerability Mitigation
For each identified flaw, ESBMC generates a “proof” of vulnerability
in the form of an input that when fed into the program triggers the
flaw. We first use these inputs to test the original C programs and
verify that the identified vulnerabilities can indeed be triggered. We
then run the corresponding successfully transpiled Rust programs
with exactly the same inputs, and observe how they behave. In
the following, we provide a detailed analysis of the most common
types of potential vulnerabilities, and how they are mitigated in
the translated Rust code.

6.2.1 Array Bounds Violation and Variable-Length Array Overflow.
In the C implementations, the flexibility of using signed integers
for array indexing and variable-length array (VLA) sizes introduces

conditions of out-of-bounds array accesses and overflows of the
array size beyond the available address space, potentially leading
to undefined behavior or memory corruption. Rust mitigates these
issues by preventing negative values from being used as array
indices and sizes, enforcing the use of the unsigned type usize.
Furthermore, Rust’s dynamic memory allocation through heap-
allocated vectors (Vec<T>) includes built-in bounds checking. In
the following example code snippet from one of the test programs,
providing the number -192 as input to the integer variable n causes
the C program to access out-of-bounds memory. In the equivalent
transpiled Rust code, the same negative input results in a safe panic
rather than undefined behavior.

1 // Original C program

2 int a[100010];

3 void f(int l, int r, int k) {

4 ...

5 if (a[r - 1] == k) { // Array out -of-bounds access

6 ...

7 }

8 }

9 int main() {

10 int n;

11 scanf("%d", &n);

12 ...

13 f(0, n, 1);

14 ...

15 }

1 // Translated Rust code

2 fn f(a: &mut [i32], l: usize , r: usize , k: i32) {

3 ...

4 if a[r - 1] == k {

5 ...

6 }

7 ...

8 }
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9 fn main() {

10 ...

11 let n: usize = input.trim().parse().unwrap ();

12 ...

13 f(&mut a, 0, n, 1);

14 }

6.2.2 Arithmetic Overflow. In C, arithmetic operations can easily
overflow (or underflow) if not explicitly handled by the programmer,
as the language does not automatically check whether an arithmetic
result exceeds the limits of the data type used. Rust, in contrast,
emphasizes safety and robust error handling by utilizing stricter
type systems and runtime checks. In the example below, if a user
provides -2147483648 (INT_MIN) to the C program’s variable m, the
subtraction by 1 from m in the loop condition leads to a silent
overflow, and the value wraps around to INT_MAX, resulting in
undefined behavior. If the same input is provided to the transpiled
Rust program, the execution results in a panic event that prevents
the overflow. This is because the Rust program uses variables of
type usize for loop conditions, which do not allow negative values
or overflows.

1 // Original C program

2 while (1) {

3 scanf("%d%d", &n, &m);

4 for (k = 0; k < m - 1; k++) { // Arithmetic overflow

5 ...

6 }

7 }

1 // Translated Rust code

2 fn main() {

3 ...

4 loop {

5 let line = lines.next().unwrap ().unwrap ();

6 let mut parts = line.split_whitespace ();

7 let n: usize = parts.next().unwrap ().parse().unwrap ();

8 let m: usize = parts.next().unwrap ().parse().unwrap ();

9 ...

10 }

11 }

6.2.3 Dereference Failures. During our analysis of memory-related
vulnerabilities, we observe several common causes of such issues.
First, the absence of validation when negative values are provided
as sizes for memory allocations or array indices. Second, dynamic
memory allocation functions like malloc may return NULL upon
failure, and if unchecked, this can lead to NULL pointer dereferences.
Lastly, manual memory management in C often results in use-after-
free errors or dangling pointers, particularly when freed memory
is accessed inadvertently.

In contrast, when these vulnerable C programs are translated
into Rust, the original memory vulnerabilities are mitigated due
to Rust’s inherent safety guarantees. For complex data structures
such as trees, Rust employs constructs like Rc<RefCell<T> for
shared ownership and interior mutability, and uses Weak pointers
to represent non-owning references. This ensures that references
to potentially deallocated nodes are handled safely, thus preventing
use-after-free or invalid pointer dereferences.

Unlike C’s malloc, which returns NULL on failure, Rust’s Vec
handles memory allocation more robustly by either allocating suc-
cessfully or panicking in case of failure, thereby avoiding unsafe
memory accesses. Finally, Rust extensively uses the Option type

and explicit reference checks such as Rc::ptr_eq to manage spe-
cial cases, including sentinel nodes or optional references. This
ensures that potentially NULL or invalid pointers are explicitly han-
dled, effectively eliminating accidental dereferences of uninitialized
or invalid memory.

6.2.4 Rust Code Analysis. We observe that each major vulner-
ability class in the original C programs corresponds to specific
compilation-time guarantees provided by Rust’s type system and
ownership model. For further validation, we used the automated
Rust memory safety verification tools Rudra [53] and RAPx [54]
on all transpiled programs. While Rudra detected no issues, RAPx
reported potential memory violations (double-free, use-after-free,
and memory leaks) for a fraction of the translated Rust programs
of all LLMs (0.22% for DeepSeek-Coder, 0.18% for Llama3, 0.89%
for Qwen2.5-Coder, 0.95% for gpt-4o, 0.89% for Codestral, and
1.44% for DeepSeek-V3).

After conducting thorough manual inspection of all these cases,
we confirmed that these were all false positives, further supporting
our safety claims. Despite explicit instructions to generate safe Rust
code, all the evaluated models produced very few translations con-
taining some unsafe Rust code blocks (0.89% for DeepSeek-Coder,
1.25% for Llama3, 2.0% for Qwen2.5-Coder, 1.8% for gpt-4o, 3.4%
for Codestral, and 4.4% for DeepSeek-V3). Nonetheless, Rudra and
RAPx did not identify any memory issues in these programs. Given
the relatively low frequency of such occurrences, the presence of
unsafe blocks can be easily detected and managed, mitigating any
associated security risks.

7 LIMITATIONS AND FUTUREWORK
Our evaluation data set is drawn from CodeNet, which comprises
competitive-style programs from online coding platforms. Since
we use the most recent LLMs, it is possible that our benchmark
programs were included in the training process of these models.
However, this potential data leakage between our evaluation data
set and model training does not pose a major threat to the validity
of our results. This is because these models are not designed specif-
ically for code translation tasks, so they may contain independent
program samples, but not their functionally equivalent code pairs
in other languages (and specifically Rust).

Tomeasure the functional correctness of the transpiled programs,
we use the commonly accepted approach of test cases, which carries
the inherent risk of considering a buggy translation as correct. We
relied on the test cases provided by CodeNet to assess the functional
correctness of translated programs, and our measurements show
that these test cases achieve high line coverage. A limitation of
our evaluation is based on relatively simple programs, with corre-
sponding test cases mostly in the form of I/O pairs. As part of our
future work, we plan to evaluate our approach on more complex
programs that will require more comprehensive test suites—the
main challenge such a study entails is that it requires a non-trivial
experimental setup, and the collection of a large enough data set
with enough such test cases per program.

For our guided repairing of compilation errors, we constructed
contextual rules for only the top-eight errors we encountered, and
incorporate them in the prompt during the repair process. As we
have shown, this approach yields a high resolution rate for target
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errors. It is possible that after addressing the top errors, other com-
pilation error types may prevent successful translation. Therefore,
the set of custom instructions for guided repair prompts can be
expanded to address additional errors, which would potentially
increase further the success rate of compilation repair.

It is important to acknowledge that while Rust effectively mit-
igates many traditional memory vulnerabilities found in C, the
language presents its own unique classes of potential bugs, particu-
larly in the design and implementation of safe abstractions around
unsafe code [55, 56] even in safe rust [57]. Future work might ex-
plore automated methods to refactor these unsafe implementations
in Rust’s translations into safe alternatives where possible.

8 CONCLUSION
We presented SafeTrans, a framework that leverages LLMs to auto-
mate the transpilation of C code into Rust. Our approach combines
basic repair and few-shot guided repair to address the inherent
challenges in translating C code to idiomatic and safe Rust. Our ex-
tensive experimental evaluation results demonstrate that SafeTrans
offers significant improvements in both computational accuracy
(up to 25%) and compilation error repairing (up to 93.5%) compared
to basic LLM transpilation. Our analysis of the security implications
of the transpilation process highlights how Rust’s safety guarantees
can mitigate the memory vulnerabilities present in the original C
programs. We believe our findings highlight the potential of LLMs
for automated transpilation to memory-safe languages and will
encourage further research in this area.
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A APPENDIX
Description of the most frequent Rust error codes encountered
during our experimental evaluation.

• E0061: An invalid number of arguments was passed when
calling a function.

• E0106:Missing lifetime specifier in a type.
• E0133: Use of unsafe code without an unsafe block.
• E0252: A name is defined multiple times in the same scope.

• E0277: A type does not implement a required trait.
• E0282: Type annotations needed because the compiler can-
not infer the type.

• E0284: Overlapping implementations of a trait.
• E0308:Mismatched types.
• E0369: Binary operation cannot be applied to the given
types.

• E0382: Use of moved value.
• E0384: Cannot assign twice to immutable variable.
• E0425: Cannot find value in this scope.
• E0428: Duplicate definitions with the same name.
• E0432: Unresolved import.
• E0433: Failed to resolve a path.
• E0434: Can’t capture dynamic environment in a function
item.

• E0499: Cannot borrow as mutable more than once at a time.
• E0502: Cannot borrow as mutable because it is also bor-
rowed as immutable.

• E0506: Cannot assign to a variable that is borrowed.
• E0530: Use of self in a static method.
• E0596: Cannot borrow immutable item as mutable.
• E0599: No method found for the given type.
• E0600: Cannot call a non-function.
• E0608: Cannot index into a value of this type.
• E0609: Cannot access field of a primitive type.
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