
Agent Name Service (ANS): A Universal Directory
for Secure AI Agent Discovery and Interoperability

Ken Huang1

Agentic AI Security
DistributedApps.ai

ken.huang@distributedapps.ai

Vineeth Sai Narajala2

Proactive Security
Amazon Web Services

vineesa@amazon.com

Idan Habler3

Adversarial AI Security reSearch (A2RS)
Intuit

idan_habler@intuit.com

Akram Sheriff4

AI Security
Cisco Systems

isheriff@cisco.com

OWASP Gen AI Security Project - Agentic Security Initiative (ASI)

Abstract—The proliferation of AI agents requires robust mech-
anisms for secure discovery. This paper introduces the Agent
Name Service (ANS), a novel architecture based on DNS address-
ing the lack of a public agent discovery framework. ANS provides
a protocol-agnostic registry mechanism that leverages Public
Key Infrastructure (PKI) certificates for verifiable agent identity
and trust. The architecture features several key innovations:
a formalized agent registration and renewal mechanism for
lifecycle management; DNS-inspired naming conventions with
capability-aware resolution; a modular Protocol Adapter Layer
supporting diverse communication standards (A2A, MCP, ACP,
etc.); and precisely defined algorithms for secure resolution.
We implement structured communication using JSON Schema
and conduct a comprehensive threat analysis of our proposal.
The result is a foundational agent directory service protocol
addressing the core challenges of secure discovery and interaction
in multi-agent systems, paving the way for future interoperable,
trustworthy, and scalable agent ecosystems.

Index Terms—Agent Name Service (ANS), Agentic AI, Service
Discovery, Public Key Infrastructure (PKI), Interoperability,
Secure DNS, Formal Methods, Multi-Agent Systems (MAS)

I. INTRODUCTION

Agent-to-agent communication is expected to become a
significant component of internet traffic, driving the need for
reliable mechanisms enabling agents to discover, verify, and
securely interact with one another. Traditional service discov-
ery, notably the Domain Name System (DNS) [1], primarily
maps human-readable names to network addresses and is
insufficient for the dynamic, semantically rich, and security-
sensitive environment of agentic AI. Enhancements like DNS-
Based Service Discovery (DNS-SD) [2] offer improvements
but still fall short of the necessary agent capability granularity,
identity verification, and lifecycle management required by
autonomous agents. Furthermore, maintaining a trustworthy
registry necessitates robust processes for agent registration and
periodic renewal.

Several agent communication protocols are emerging to
standardize interactions:

1This work is not related to the author’s position at DistributedApp.ai
2This work is not related to the author’s position at Amazon Web Services.
3This work is not related to the author’s position at Intuit
4This work is not related to the author’s position at Cisco Systems

• Agent2Agent (A2A) Protocol [3], [4]: Developed by
Google, providing a standardized protocol for inter-agent
communication, aiming to bridge different agent frame-
works.

• Model Context Protocol (MCP) [5]–[7]: Focused on
simplifying the integration of AI models with external
tools and data sources.

• Agent Communication Protocol (ACP) [8]: Designed to
standardize how agents communicate, enabling automa-
tion, collaboration, UI integration, and developer tooling,
evolving from initial MCP concepts.

This paper outlines the Agent Name Service (ANS), a
framework for a protocol-agnostic Agentic AI Registry. ANS
complements these emerging protocols by integrating Public
Key Infrastructure (PKI) for identity and trust, defining struc-
tured communication via JSON Schema, incorporating DNS-
like naming for discovery, establishing mechanisms for agent
registration and renewal, and providing a formal specification
of the protocol to enhance precision and implementability.
ANS aims to provide a universal, secure directory service
foundation for interoperable agent ecosystems.

II. RELATED WORK

Traditional service discovery, such as DNS [1], provides
essential name-to-address resolution but lacks the semantic
understanding and security features needed for agentic AI.
DNS-SD [2] adds local service discovery capabilities but
doesn’t address verifiable identity or complex agentCapability
matching on a global scale.

Research in multi-agent systems (MAS) has explored var-
ious agent communication languages (ACLs), such as those
defined by the Foundation for Intelligent Physical Agents
(FIPA) [9]. While influential, these often lack standardized,
built-in security mechanisms and universally adopted transport
protocols suitable for the modern internet.

The emerging protocols represent significant advancements:
• A2A [3], [4] focuses on bridging agent ecosystems.
• MCP [5]–[7] emphasizes dynamic discovery and integra-

tion of tools/data for AI models.
• ACP [8] targets broader agent-to-agent communication

needs, including delegation and orchestration.

ar
X

iv
:2

50
5.

10
60

9v
1

 [
cs

.C
R

]
 1

5
M

ay
 2

02
5

https://orcid.org/0009-0004-6502-3673
https://orcid.org/0009-0007-4553-9930
https://orcid.org/0000-0003-3423-5927
https://orcid.org/0000-0002-1606-7854

Our work builds upon these efforts not by replacing them,
but by providing a complementary, protocol-agnostic infras-
tructure layer. ANS differentiates itself by integrating PKI-
based identity verification [10] directly into the discovery
and lifecycle management process, offering a universal reg-
istry mechanism that enhances trust and facilitates secure
interaction across different protocol standards via a common
discovery plan. Furthermore, the formalized specification of
the ANS protocol ensures clarity and ease of implementation.

III. AGENT REGISTRY ARCHITECTURE

The proposed Agent Registry architecture provides a secure,
interoperable platform for agent discovery and interaction,
supporting multiple communication protocols through a mod-
ular design. Key components include:

• Requesting Agent: The entity initiating the agent regis-
tration process, which could be an individual, organiza-
tion, or automated system seeking to register a new agent
or update existing agent information in the registry.

• Agent Registry: A potentially distributed database for
storing ACEM (Agent Credential and Entitlement Man-
agement) and DID (Decentralized Identifier) related in-
formation. This registry encompasses agent capabilities,
security policies, PKI certificates, protocol-specific meta-
data (via protocolExtensions), and registration/re-
newal timestamps, supporting a comprehensive frame-
work for agent identity, authentication, and authorization.

• Certificate Authority (CA): A trusted entity issuing
and managing X.509 digital certificates [10] for agents,
forming the root of trust.

• Registration Authority (RA): Verifies agent registra-
tion/renewal requests, interacts with the CA to issue
certificates based on Certificate Signing Requests (CSRs),
manages the agent lifecycle (registration, renewal, revo-
cation), and validates the legal entity of the Requesting
Agent. It enforces registry policies.

• Protocol Adapter Layer: Translates between the reg-
istry’s internal representation and protocol-specific for-
mats (details in Section V).

• Request/Response Schema: A protocol-agnostic JSON-
based schema [11] for registry interactions (discovery,
registration, etc.), incorporating PKI data and allowing
protocol-specific extensions (details in Section III-D).

• Agent Name Service (ANS): Enables agent discov-
ery using human-readable, structured names, coupled
with agentCapability-based resolution (details in Section
III-E).

The Protocol Adapter Layer translates between the registry’s
internal representation and protocol-specific formats. For ex-
ample, consider an agent registering with the MCP. An MCP
tool description might be represented as a JSON blob. Criti-
cally, the agent would need to be registered with ANS first and
foremost. Therefore, imagine this tool is associated with the
following ANSName: "mcp://sentimentAnalyzer.textAnalysis.
ExampleCorp.v1.0". This would mean the MCP tool is now

discoverable via the ANS. The MCP specific extension data
itself might look like this:

1 {
2 "description": "Analyzes sentiment of text input."

,
3 "input_schema": {
4 "type": "string",
5 "description": "Text to analyze."
6 },
7 "output_schema": {
8 "type": "object",
9 "properties": {

10 "sentiment": {
11 "type": "string",
12 "enum": ["positive", "negative", "neutral"]
13 },
14 "score": {
15 "type": "number",
16 "description": "Sentiment score (-1 to 1)."
17 }
18 }
19 },
20 "mcpEndpoint": "https://sentiment.example.com/

analyze"
21 }

Listing 1. Example MCP Extension Data

The MCP Adapter within the Protocol Adapter Layer would
parse this JSON and map it to the registry’s internal columns.
This could involve:

• Extracting information implicitly: since the ANSName
is mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.
v1.0, this implicitly defines the:

– Protocol: mcp
– AgentID: sentimentAnalyzer
– agentCapability: textAnalysis
– Provider: ExampleCorp
– Version: v1.0

• Storing the description ("Analyzes sentiment of
text input.") in a dedicated description field within
protocolExtensions.

• Serializing the input_schema and output_schema
and storing them in a protocolExtensions column
specific to MCP, allowing other MCP-aware agents to
understand the tool’s interface.

• The actual MCP endpoint
"https://sentiment.example.com/analyze"
would be stored within the protocolExtensions,
under the key mcpEndpoint.

This normalization process allows the Agent Registry to store
and query MCP-specific information in a protocol-agnostic
way, while adhering to the ANSName structure for consistent
identification and resolution.

Figure 1 illustrates the core components of the Agent Name
Service (ANS) and how they interact. Description of Figure
1: Imagine an Agent trying to find another agent. It starts by
contacting the ANS Service, which acts like a central directory.
The ANS Service relies on the Agent Registry, a specialized
database containing information about all registered agents,
including their capabilities, security policies, and contact
details. The Agent Registry also interacts with a Certificate

mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0
mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0
mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0
mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0

Authority (CA), which issues and manages digital certificates
to verify agent identities, and a Registration Authority (RA),
which validates new agents joining the system. To support
different communication protocols, the ANS Service uses a
Protocol Adapter Layer, which translates requests and re-
sponses into the appropriate format. All communication with
ANS services is structured with JSON schemas. Together, these
components form the Agent Registry Infrastructure that allows
secure and reliable agent discovery.

Table I outlines how Google A2A, Anthropic MCP, and
IBM’s ACP validate agents and enforce security within the
ANS. Each protocol uses distinct adapter implementations
and validation mechanisms—such as ZKPs (Zero-Knowledge
Proofs), tool schema checks, and role-based controls—to
ensure trusted identity, capability verification, and secure
agent interactions. Zero-Knowledge Proofs (ZKPs) are crypto-
graphic protocols that allow one party (the prover) to convince
another party (the verifier) that a statement is true without
revealing any information beyond the validity of the statement
itself. These protocols maintain three essential properties:
completeness (a valid proof always convinces an honest veri-
fier), soundness (a false statement cannot be proven true except
with negligible probability), and zero-knowledge (the verifier
learns nothing beyond the statement’s validity). ZKPs can be
used for capability attestation by enabling agents to prove
they possess certain abilities or skills without exposing the
underlying data.

A. Agent Registration and Renewal
Maintaining registry integrity requires explicit lifecycle

management:
• Registration:

1) An agent submits a registration request (conforming
to the defined JSON schema) including metadata,
protocol details (within protocolExtensions),
and a CSR.

2) The RA validates the agent’s identity and submit-
ted information against registry policies (potentially
involving automated checks or human review).

3) The RA requests a certificate from the CA using the
validated CSR.

4) The issued certificate and agent information are
stored in the Agent Registry.

• Renewal:
1) Agents periodically submit renewal requests before

their registration or certificate expires.
2) The RA verifies continued compliance with policies.
3) The RA requests a new certificate from the CA.
4) The agent’s registration/renewal timestamp and po-

tentially updated certificate are stored in the Reg-
istry.

• Deregistration/Revocation: Agents can be deregistered,
or their certificates revoked (e.g., due to key compro-
mise), removing or flagging their entry in the registry and
invalidating their certificate via standard PKI mechanisms
(CRL/OCSP [12]).

Figure 2 outlines the steps an agent takes to register with
the Agent Name Service (ANS). Description of Figure 2: The
process begins when an Agent sends a Registration Request
to the Registration Authority (RA). This request includes the
agent’s metadata (name, capabilities, etc.) and a Certificate
Signing Request (CSR). The RA then Validates the agent’s
identity and information. If the validation Fails, the Regis-
tration is Rejected. If the validation is Successful, the RA
requests a Certificate from the Certificate Authority (CA). The
CA issues the certificate and sends it back to the RA. Finally,
the RA stores the agent’s information and certificate in the
Agent Registry and sends a Confirmation back to the Agent,
completing the registration process.

B. PKI Integration

PKI [10] provides the foundation for trust. Each registered
agent possesses a unique PKI key pair and a corresponding
digital certificate issued by the CA via the RA.

• Identity Verification: The certificate binds the agent’s
public key to its verified identity (e.g., its ANSName,
organizational affiliation). Other agents can verify signa-
tures made with the private key using the public key in
the certificate, ensuring authenticity and integrity.

• Trust Chain: Certificates are validated against the trusted
CA, establishing a chain of trust.

• Lifecycle Management: Certificate validity is tied to
the registration/renewal cycle. Revoked certificates are
handled using Certificate Revocation Lists (CRLs) or the
Online Certificate Status Protocol (OCSP) [12].

• Simplification: While PKI management can be complex,
the RA/CA interaction within the registry framework
aims to streamline certificate issuance and renewal for
agent developers compared to manual processes.

C. ANS Protocol Notation

We introduce the following notation for defining ANS
elements and operations:

1) Top Level Elements: Protocol: Communication Pro-
tocol

AgentID: Agent Identifier

agentCapability: Agent Capability

Provider: Provider Name

Version: Version Number

Extension: Extension Metadata

Cert: Agent Certificate (X.509)

Sig: Digital Signature

ANSName: Agent Name Service Name

Endpoint: a resolvable endpoint

Fig. 1. ANS Architecture. Illustrates the interaction between Agent, ANS Service, Agent Registry, CA, RA, and Protocol Adapter Layer.

TABLE I
OVERVIEW OF HOW DIFFERENT PROTOCOLS VALIDATE AGENTS AND ENFORCE SECURITY WITHIN ANS.

PROTOCOL ADAPTER
IMPLEMENTATION

VALIDATION MECHANISM SECURITY FEATURES

Google Agent (Agent 2 Agent) Native Implementation with
Google SDK

Agent ID card Integrity verification. Capability attestation with
ZKP

Anthropic MCP Anthropic compliant adapter with
extension validation

Tool Identity / Tool Schema verification Resource access control

ACP (Agent Communication
Protocol)

IBM ACP Reference Implementa-
tion

Role-based Agent Identity and capabil-
ity enforcement.

Delegation validation

2) Data Types: String: Represents a sequence of char-
acters.

Integer: Represents an integer number.

Boolean: Represents a boolean value (true or false).

Set<T>: Represents a set of elements of type T.

So, the top level elements have the following data types:
Protocol: {a2a, mcp, acp, . . . }

AgentID: String

agentCapability: String

Provider: String

Version: String (Semantic Versioning)

Extension: String

Cert: X.509 Certificate

Sig: Digital Signature

ANSName: String

Endpoint: String

3) Verification Rules: Certificate Chain Verification

VerifyCertChain (Cert, TrustedCA) -> Boolean:
1. Get the certificate authority (CA) that signed

the Cert
2. Check for Certificate Revocation status of

Cert via CRL or OCSP
3. If Cert is Revoked Return False
4. If CA == TrustedCA, Return True
5. Else, recursively check CA Cert against

TrustedCA
6. If no trusted CA is found in the chain, Return

False

Listing 2. Certificate Chain Verification Algorithm

Digital Signature Verification

VerifySignature (Data, Signature, PublicKey) ->
Boolean:

1. Use PublicKey to decrypt the Signature
2. Hash Data using agreed upon function (e.g.,

SHA-256)
3. Compare the decrypted signature to the Data

hash
4. If signatures are valid return True, otherwise

return False

Listing 3. Digital Signature Verification Algorithm

Fig. 2. Agent Registration Process.

D. Protocol-Agnostic Communication Schema

We define JSON Schema [11] documents for registry in-
teractions (discovery requests/responses, registration/renewal
requests/responses). This ensures structured, validated com-
munication.

An example AgentRegistrationRequest schema is
shown in Listing 4.

1 {
2 "$schema": "http://json-schema.org/draft-07/schema

#",
3 "title": "AgentRegistrationRequest",
4 "description": "Schema for Agent Registration

Request",
5 "type": "object",
6 "properties": {
7 "protocol": {
8 "type": "string",
9 "enum": ["a2a", "mcp", "acp"],

10 "description": "Communication Protocol"
11 },
12 "agentID": {
13 "type": "string",
14 "description": "Unique Agent Identifier"
15 },
16 "agentCapability": {
17 "type": "string",
18 "description": "Primary Agent Capability"
19 },
20 "provider": {
21 "type": "string",
22 "description": "Name of the Provider"

23 },
24 "version": {
25 "type": "string",
26 "pattern": "^(0|[1-9]\\d*)\\.(0|[1-9]\\d*)

\\.(0|[1-9]\\d*)(?:-((?:0|[1-9]\\d*|\\d*[a-zA-Z
-][0-9a-zA-Z-]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-Z
-][0-9a-zA-Z-]*))*))?(?:\\+([0-9a-zA-Z
-]+(?:\\.[0-9a-zA-Z-]+)*))?$",

27 "description": "Semantic Versioning format"
28 },
29 "extension": {
30 "type": "string",
31 "description": "Extension Metadata"
32 },
33 "certificate": {
34 "type": "object",
35 "properties": {
36 "subject": {
37 "type": "string",
38 "description": "Certificate Subject"
39 },
40 "issuer": {
41 "type": "string",
42 "description": "Certificate Issuer"
43 },
44 "pem": {
45 "type": "string",
46 "description": "PEM-encoded Certificate (

strongly recommended to use a secure vault
reference instead)",

47 "readOnly": false
48 }
49 },

50 "required": ["subject", "issuer", "pem"]
51 },
52 "protocolExtensions": {
53 "type": "object",
54 "description": "Protocol-specific data"
55 }
56 },
57 "required": ["protocol", "agentID", "

agentCapability", "provider", "version", "
certificate"]

58 }

Listing 4. Example AgentRegistrationRequest JSON Schema

• Core Fields: Include common elements like agent com-
munication protocol types (a2a, mcp, acp, etc.), re-
questing/responding agent identifiers, timestamps, and
PKI certificate details (subject, issuer, PEM representa-
tion - though referencing a secure vault is recommended
for the PEM in production).

• protocolExtensions: A key field within the
schema acts as a container for protocol-specific data
(e.g., an A2A Agent Card [13], MCP tool descriptions
[14], ACP agent profiles). This allows the registry to
store and query protocol-specific agentCapabilities while
maintaining a common core schema.

• Validation: All interactions with the registry must be
validated against these schemas. (See Section IV for more
details on the schema structure).

E. ANS Naming Structure and Resolution

ANS defines a robust, protocol-agnostic mechanism for
naming and resolving agents across heterogeneous agentic
environments. Its principal function is to establish a uniform
Endpoint format that encodes identity, agentCapability, and
contextual metadata for any given agent, irrespective of the
underlying transport or runtime architecture. ANS ensures that
both human-readable and machine-resolvable identifiers are
preserved in a format designed to facilitate dynamic discovery,
rigorous trust verification, secure communication, seamless
service composition, and the representation of relationships
between agents. A key motivation for ANS is to move beyond
simple naming resolution to enable precise agentCapability
discovery, which is not achievable with traditional systems
like DNS. The design of ANS acknowledges that the agent’s
agentCapabilities are paramount for intelligent interactions,
distinguishing it from simpler naming systems like DNS.

1) Formal Naming Structure: The ANSName is formally
defined as a string constructed from the following components:

1 ANSName = Protocol "://" AgentID "." agentCapability
2 "." Provider ".v" Version "." Extension

Where:
• Protocol ∈ {a2a, mcp, acp, ...}
• AgentID, agentCapability, Provider,
Version, Extension are strings.

Constraints:
• Version MUST adhere to Semantic Versioning stan-

dards.

• AgentID, agentCapability, Provider
SHOULD be registered with a governance authority
(similar to ICANN).

• Extension SHOULD be used for deployment-specific
or provider-defined metadata, not for core identity. In the
actual implementation, a registry of reserved tokens can
be used to enhance security.

Example:

1 ANSName = "a2a://textProcessor.DocumentTranslation.
↪→ AcmeCorp.v2.1.hipaa"

2) Resolution: The resolution mechanism in ANS is engi-
neered to map a fully qualified ANSName to an actionable
reference, such as a network address, service binding, or
detailed metadata document (Endpoint). Resolution can be
achieved through distributed lookups, local resolver caches, or
enterprise-specific ANS gateways, providing deployment flex-
ibility. Critically, ANS moves beyond simple name resolution
to facilitate precise agentCapability discovery.

When an agent requires resolution, it queries the ANS
service, a fundamental component of the Agent Registry
infrastructure. The query includes the ANSName of the target
agent and can incorporate optional agentCapability filters to
refine the search.

Figure 3 depicts the agent resolution process. Description
of Figure 3: The process begins when an Agent sends a
Resolution Query, containing the ANSName of the agent it
wants to find, to the ANS Service. The ANS then Queries
the Agent Registry for the corresponding agent record. If the
Record is Not Found, the ANS returns an Agent Not Found
Error. If the Record is Found, the ANS Verifies the returned
Endpoint (which contains address and security information),
including verifying target Agent’s signature and certificate. If
the Verification Fails, an Invalid Endpoint Error is returned. If
the Verification is Successful, the ANS returns the Endpoint to
the Agent, enabling it to connect to the desired agent securely.

3) Formal Resolution Algorithm: The ANS resolution al-
gorithm takes an ANSName as input and returns a resolvable
Endpoint or an error.

1 Resolve(ANSName, RequestedVersionRange):
2 1. Parse ANSName into Protocol, AgentID,

agentCapability, Provider, Version, Extension
3 2. Query Agent Registry for Agents with matching

Protocol, AgentID, agentCapability, Provider
4 3. If no match found:
5 Return ERROR("Agent not found")
6 4. If multiple matches found:
7 Match = VersionNegotiation(Matches,

RequestedVersionRange)
8 if Match == ERROR("Incompatible Version")
9 Return ERROR("Incompatible Version")

10 5. EndpointRecord =
GetAgentEndpointRecord(Match.AgentID)

11 6. Valid =
VerifyAgentEndpointRecord(EndpointRecord,
TrustedCA)

12 7. If valid == False
13 Return ERROR ("Invalid Endpoint")
14 8. Return Endpoint
15

16 GetAgentEndpointRecord () -> EndpointRecord

Fig. 3. Agent Resolution Process.

17 // EndpointRecord: {data, signature, Cert}
18 // Agent Registry implements

GetAgentEndpointRecord to get records from the
database.

19 // GetAgentEndpointRecord enforces authentication
and authorization with Agent Registry ACL.

20

21 VerifyAgentEndpointRecord (EndpointRecord,
TrustedCA) -> Boolean:

22 1. signatureValid =
VerifySignature(EndpointRecord.data,
EndpointRecord.signature,
AgentRegistry.PublicKey)

23 2. VerifySignature (Data, Signature, PublicKey)
-> Boolean:

24 1. Use PublicKey to decrypt the Signature
25 2. Hash Data using agreed upon function
26 3. Compare the decrypted signature to the Data

hash
27 4. If signatures are valid return True,

otherwise return False
28 // Verifying Signature is implemented by each

language standard library, e.g.,
java.security.Signature

29 3. If signature is invalid return ERROR ("Invalid
Signature")

30 4. certChainValid =
VerifyCertChain(EndpointRecord.cert, TrustedCA)

31 5. VerifyCertChain (Cert, TrustedCA) -> Boolean:
32 1. Get the certificate authority (CA) that

signed the Cert
33 2. Check for Certificate Revocation status of

Cert.
34 3. If Revoked Return False
35 4. If CA == TrustedCA, Return True
36 5. Else, recursively check CA Cert against

TrustedCA
37 6. If no trusted CA is found in the chain,

Return False
38 // Certificate Chain validation, and

Certificate Revocation Check are implemented
via Library in standard language, e.g. Java:
java.security.cert.CertPathValidator

39

40 VersionNegotiation(Matches, RequestedVersionRange):
41 1. Sort Matches by Version (highest to lowest

Semantic Version)
42 2. For each Match in Matches:
43 3. If RequestedVersionRange == "*" OR

IsVersionCompatible(Match.Version,
RequestedVersionRange):

44 4. Return Match
45 5. End If
46 6. End For
47 7. Return ERROR("Incompatible Version")
48

49 IsVersionCompatible(AgentVersion,
RequestedVersionRange) -> Boolean:

50 // (Implement Semantic Version Range
Compatibility Check here

51 // Using existing library, e.g.,
https://github.com/npm/node-semver

52 // 1. Attempt to parse requestedVersionRange as a
SemVer range.

53 // 2. If parsing fails, treat
requestedVersionRange as a specific SemVer
version.

54 // 3. Check if agentVersion is satisfied by the
requestedVersionRange.

55 Return SemVer.satisfies(AgentVersion,
RequestedVersionRange)

Listing 5. ANS Resolution Algorithm

IMPLEMENTATION NOTES:
• Cacheability: To ensure resolvers know when to re-

validate EndpointRecords, the Agent Registry MUST
include a Time-To-Live (TTL) value with each resolved
Endpoint. The TTL indicates the number of seconds
for which the EndpointRecord can be cached. A rec-
ommended default TTL is 300 seconds (5 minutes), but
this value MAY be adjusted based on factors such as
the volatility of the agent’s configuration or the secu-
rity policy of the Agent Registry. Resolvers MUST re-
validate the EndpointRecord (by calling GetAgentEnd-
pointRecord) after the TTL has expired.

• Version Negotiation and Pre-release Tags: When us-
ing SemVer.satisfies for version negotiation, pre-
release tags (e.g., -rc1, -beta) MUST be considered
to have lower precedence than the corresponding stable
version. For example, version 1.0.0-rc1 would be
considered lower precedence than 1.0.0. This ensures
that resolvers prefer stable versions over pre-release ver-
sions unless explicitly requested (e.g., by specifying a

pre-release version range).

4) Secure Resolution Implementation:

• Trust Anchor: The trust anchor for ANS is the Agent
Registry’s Certificate Authority (CA). The Agent Reg-
istry’s certificate is a public key certificate that is used to
verify the digital signatures of the Agent Registry’s re-
sponses. The Agent Registry’s certificate must be trusted
by all agents that use ANS.

• Digital Signatures: Digital signatures are used to en-
sure the integrity and authenticity of Agent Registry’s
responses. The Agent Registry’s responses are digitally
signed using the Agent Registry’s private key. Clients,
upon receiving a response, verify the signature using the
corresponding public key, confirming the integrity and
authenticity of the data.

• DNSSEC-like Security: Consider the implementation
of the Domain Name System Security Extensions
(DNSSEC)-like mechanisms to validate the chain of trust.
DNSSEC can increase the risk and amplify the effects of
denial of service attacks on the infrastructure. DNSSEC
also increases the number of DNS query responses be-
cause of the crypto fields that are used to verify records
properly. This means that high-volume responses enable
attackers with greater attack volume against a zone than
they could if DNSSEC were not in place. Therefore, a
careful evaluation of the threat model and the potential
for amplification attacks is crucial before implementing
DNSSEC-like security measures. Mitigation strategies
such as rate limiting, traffic filtering, and anycast deploy-
ment should be considered to protect the Agent Registry
infrastructure from potential DoS attacks.

• Certificate Revocation: Implement a robust mechanism
for certificate revocation. If the Agent Registry’s private
key is compromised, the corresponding certificate must
be revoked immediately to prevent attackers from using
the compromised key to sign malicious responses. Use
standard certificate revocation methods such as Certificate
Revocation Lists (CRLs) [10] or the Online Certificate
Status Protocol (OCSP) [12].

• Threat Modeling: Perform ongoing threat modeling to
identify potential vulnerabilities in the secure resolution
mechanism. This will help to proactively address security
concerns and ensure the ongoing security of ANS.

The overall end-to-end flow within the ANS ecosystem,
covering registration, secure resolution, and following inter-
actions, is illustrated Figure 4. To demonstrate the transition
from discovery to direct communication in more detail, Figure
5 presents the specific sequence where ANS facilitates secure
connection setup as a distinct pre-communication phase. Steps
1-3 in the Figure illustrates the initiating agent leverages the
ANS service, registry, and PKI to securely resolve and verify
the target agent’s endpoint. Following successful resolution
via ANS, the agents proceed with direct communication using
their native protocol (Step 4), where ANS is no longer directly
involved.

Fig. 4. Full end-to-end flow (Registration, Resolution, Interaction).

Fig. 5. ANS Resolution Sequence as a Pre-Communication Step.

F. ANS Challenges and Governance

Deploying ANS involves addressing key challenges:
• Naming Collisions/Squatting: Ensuring uniqueness re-

quires a managed registration process for names, par-
ticularly <AgentID>, <agentCapability>, and
<Provider> segments. A governance model, poten-
tially similar to ICANN for DNS, might be needed to
manage top-level agentCapabilities and provider identi-
fiers.

• Scalability: Supporting potentially billions of agents
requires scalable registry storage (e.g., distributed
databases, NoSQL) and efficient resolution mechanisms
(e.g., distributed hash tables (DHTs), caching layers,
geographically distributed resolution points).

• Governance: Establishing policies for name allocation,
dispute resolution, operational practices, and managing
the trust infrastructure (CAs, RAs) is crucial for long-
term stability and trustworthiness.

G. Agent Identity

Agent identity within the ANS framework can include the
following:

• Cryptographic Identity: The agent’s PKI certificate
provides a verifiable, CA-signed cryptographic identity.

• Logical Identity: The ANSName provides a human-
readable, structured identifier conveying agentCapability,
provider, etc.

• Protocol-Specific Identity: Agents may have identities
within their native protocols (A2A Agent Card ID, MCP
tool identifiers, ACP agent URIs), stored within the
protocolExtensions.

• Verifiable Claims: The registry could support attaching
digitally signed attestations (e.g., compliance certifica-
tions, capability endorsements) to agent profiles.

• Identity linkage: ANS ecosystem leverages the struc-
tured naming convention to establish relationships be-
tween agents. The core principle is that an agent’s
ANSName serves as a unique and resolvable identifier,
allowing other agents or the system itself to reference
it. The Agent Registry, upon recognizing this request,
not only returns the target agent’s details (binding, meta-
data, certificates) but also automatically resolves the
linked agents, effectively materializing the relationship
and providing all necessary information for secure and
informed interaction. This automated relationship discov-
ery, built upon the foundation of uniquely identifiable
and resolvable agent names, significantly simplifies the
orchestration and coordination of complex multi-agent
systems.

Agent Card Validation: The integrity of Agent Cards
within the ANS ecosystem is verified through cryptographic
methods, utilizing the relational patterns between agents.
This process ensures that capability declarations are validated
against organizational policies. Additionally, endpoint URL
structures are enforced to comply with security standards such
as TLS and proper domain constraints. The Agent Registry
oversees and connects these identity components, facilitating
verification through challenge-response protocols that rely on
the agent’s private key. Both the Requesting Agent and the
Registration Authority (RA) play crucial and distinct roles in
this validation process.

Requesting Agent Responsibility: The Requesting Agent
has a primary and ongoing responsibility for validating the
Agent Card before every interaction. This includes:

• Cryptographic Verification: Verifying the Agent Card’s
digital signature to ensure it hasn’t been tampered with.

• Capability Alignment: Confirming that the agent’s stated
capabilities are actually what the Requesting Agent ex-
pects and needs for the intended interaction. This might
involve checking specific input/output schemas or testing
the agent’s performance on sample tasks before relying
on it for critical operations.

The Requesting Agent’s validation is not a one-time event;
it’s a continuous process that ensures the agent remains
trustworthy for each specific interaction. A failure to properly
validate an Agent Card could expose the Requesting Agent to
significant security risks.

Registration Authority (RA) Responsibility: The RA
performs a foundational validation of the Agent Card during
the agent registration and renewal processes. This includes:

• Signature Verification: Verifying the Agent Card’s signa-
ture and the validity of the associated certificate.

• Policy Adherence: Ensuring the agent’s claimed capa-
bilities and operational practices comply with broader
registry policies and legal requirements.

• Legitimacy Checks: Performing checks to confirm the
identity and legitimacy of the agent’s owner (e.g., domain
validation, organizational checks).

The RA’s validation provides a baseline level of trust, but it
does not replace the need for the Requesting Agent to perform
its own, more context-specific validation.

Additionally, endpoint URL structures are enforced to com-
ply with security standards such as TLS and proper do-
main constraints. The Agent Registry oversees and connects
these identity components, facilitating verification through
challenge-response protocols that rely on the agent’s private
key.

Agent Capability Attestation: The AI agent’s identity and
claimed capabilities are authenticated through zero-knowledge
proof methods. Specifically, ZKPs can be employed to allow
an agent to prove that it possesses certain capabilities (e.g.,
access to specific data, the ability to perform a certain compu-
tation) without revealing how it possesses those capabilities or
the underlying data itself. For example, an agent might use a
ZKP to prove it has access to a database containing sensitive
patient information without revealing the specific query it
will use or any of the patient data. This involves the agent
constructing a proof, based on its private knowledge and the
claimed capabilities, that can be verified by the Agent Registry
(or another agent) using only publicly available information.
The verifier gains assurance that the agent possesses the
claimed capabilities without learning any sensitive information
about the agent’s internal state or data. During runtime,
capabilities are dynamically validated as part of the resolution
process. To further enhance real-time verification, challenge-
response mechanisms are employed.

Challenge-Response Example: Imagine an agent claims
to be able to perform "Sentiment Analysis" with a certain
accuracy.

• The Agent Registry (or a verifying agent) sends the
claimed "Sentiment Analysis" agent a specific challenge:
a piece of text with a known sentiment.

• The "Sentiment Analysis" agent processes the text and
returns its sentiment classification (positive, negative,
neutral) and a confidence score.

• The Agent Registry (or verifying agent) compares the
agent’s response to the known sentiment and the claimed
accuracy.

• If the response is correct and the confidence score aligns
with the agent’s claimed accuracy, the agent’s capability
is considered validated (for that specific challenge).

• If the response is incorrect or the confidence score is
significantly lower than the claimed accuracy, the agent’s
claimed capability is called into question and further
challenges or even revocation of the agent’s registration
might be triggered.

This challenge-response process can be repeated periodically

or triggered based on certain events (e.g., a change in the
agent’s code, a security alert). The challenges can be designed
to test various aspects of the agent’s claimed capabilities,
ensuring that it continues to function as expected over time.
The Agent Registry maintains a history of challenge-response
results to track the agent’s performance and reliability.

By combining ZKPs for initial capability attestation with
challenge-response mechanisms for ongoing validation, the
ANS provides a robust framework for ensuring the trustwor-
thiness of AI agents.

Authentication Enforcement: The process involves val-
idating the OAuth 2.0 flow to ensure the legitimacy of
authorization tokens, verifying mTLS certificates to confirm
alignment with the registered agent’s identity, and checking
JSON Web Tokens (JWTs) to ensure their signatures and
claims are accurate and properly authenticated.

Agent Identity Module Examples: The Agent Iden-
tity module implements resource access control through
capability-based security. Below are examples for A2A and
MCP protocols:

1 {
2 "a2aCapabilityVerification": {
3 "capabilityVerification": {
4 "proofMechanism": "ZKP",
5 "verificationCircuit": {
6 "constraints": [
7 "agent.hasCapability(c) AND agent.

isAuthorized(c)",
8 "agent.certificate.isValid() AND agent.

certificate.notRevoked()"
9],

10 "proofGeneration": "Groth16",
11 "verificationKey": "0x4a8f..."
12 }
13 },
14 "rateLimit": {
15 "algorithm": "TokenBucket",
16 "refillRate": "100/s",
17 "burstCapacity": 500,
18 "perCapability": true
19 }
20 }
21 }

Listing 6. A2A Capability Verification Example

1 {
2 "mcpAgentIdentity": {
3 "resourceAccessControl": {
4 "model": "RBAC+ABAC",
5 "policyDecisionPoint": {
6 "engine": "OPA",
7 "evaluationMode": "distributed"
8 },
9 "contextAttributes": [

10 "agent.role",
11 "resource.classification",
12 "time.window",
13 "operation.sensitivity"
14]
15 },
16 "toolRegistration": {
17 "sandboxValidation": {
18 "environment": "gVisor",
19 "runtime": "V8Isolate",
20 "memoryLimit": "256MB",
21 "cpuQuota": "0.5",

22 "networkPolicy": "DENY_ALL"
23 }
24 }
25 }
26 }

Listing 7. MCP Agent Identity Example

The Agent Registry manages and links these identity facets,
enabling verification via challenge-response protocols using
the agent’s private key.

IV. REQUEST/RESPONSE SCHEMA FOR ANS NAME
RESOLUTION

The following core JSON Schema defines the structure for
Agent Capability requests and responses.

AgentCapabilityRequest Schema:
1 {
2 "$schema": "http://json-schema.org/draft-07/

schema#",
3 "title": "AgentCapabilityRequest",
4 "description": "Schema for Agent agentCapability

Request",
5 "type": "object",
6 "properties": {
7 "requestType": {
8 "type": "string",
9 "enum": [

10 "resolve"
11],
12 "description": "Type of request"
13 },
14 "protocol": {
15 "type": "string",
16 "enum": [
17 "a2a",
18 "mcp",
19 "acp"
20],
21 "description": "Communication Protocol"
22 },
23 "agentID": {
24 "type": "string",
25 "description": "Unique Agent Identifier"
26 },
27 "agentCapability": {
28 "type": "string",
29 "description": "Primary Agent Capability

"
30 },
31 "provider": {
32 "type": "string",
33 "description": "Name of the Provider"
34 },
35 "version": {
36 "type": "string",
37 "pattern": "^(0|[1-9]\\d*)\\.(0|[1-9]\\d

)\\.(0|[1-9]\\d)(?:-((?:0|[1-9]\\d*|\\d*[a-zA-
Z-][0-9a-zA-Z-]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-
Z-][0-9a-zA-Z-]*))*))?(?:\\+([0-9a-zA-Z
-]+(?:\\.[0-9a-zA-Z-]+)*))?$",

38 "description": "Semantic Versioning
format"

39 },
40 "extension": {
41 "type": "string",
42 "description": "Extension Metadata"
43 }
44 },
45 "required": [
46 "requestType",

47 "protocol",
48 "agentID",
49 "agentCapability",
50 "provider",
51 "version"
52]
53 }

Listing 8. AgentCapabilityRequest JSON Schema

AgentCapabilityResponse Schema:
1 {
2 "$schema": "http://json-schema.org/draft-07/

schema#",
3 "title": "AgentCapabilityResponse",
4 "description": "Schema for Agent agentCapability

Response",
5 "type": "object",
6 "properties": {
7 "Endpoint": {
8 "type": "string",
9 "description": "Agent address (e.g., a2a

://translatorBot.DocumentTranslation.exampleCorp
.v1.2.3.secure)"

10 },
11 "signature": {
12 "type": "string",
13 "description": "signature"
14 },
15 "cert": {
16 "type": "string",
17 "description": "PEM-encoded Certificate

(strongly recommended to use a secure vault
reference instead)",

18 "readOnly": false
19 }
20 },
21 "required": [
22 "Endpoint",
23 "signature",
24 "cert"
25]
26 }

Listing 9. AgentCapabilityResponse JSON Schema

Key points regarding schemas:
• Use a JSON Schema validator library for enforcement.
• Pay attention to required fields.
• Validate all incoming/outgoing messages against this

schema.
• Handle validation errors gracefully.
• Monitor evolving standards (A2A, MCP, ACP) and up-

date schemas accordingly.

V. PROTOCOL ADAPTER LAYER

The Protocol Adapter Layer enables the registry to support
diverse agent communication protocols without being tightly
coupled to any single one. It acts as an intermediary between
the registry’s core logic/storage and the specific requirements
of each protocol.

• Modularity: Adapters are implemented as distinct mod-
ules (e.g., plugins).

• Functionality: Each adapter understands how to:
– Parse protocol-specific metadata (e.g., from an

A2A Agent Card) and map relevant parts into the

registry’s internal representation (especially within
protocolExtensions).

– Extract information from the registry record to an-
swer protocol-specific discovery queries.

– Potentially handle protocol-specific aspects of regis-
tration or validation if needed.

• Each adapter is responsible to securely implement fea-
tures defined by each protocols. Some protocols have
built in security, such as signed messages.

• Translation: Adapters primarily focus on metadata trans-
lation for discovery and registration, not on real-time
message translation between protocols during agent in-
teraction. They help agents find each other and verify
identity; subsequent communication typically uses the
agents’ shared native protocol.

• Security aspect:
– All adapter implementations must use secure, up-

dated libraries that are commonly used to implement
the supported protocols.

– All adapter implementations must follow the security
guidance by each protocol.

– Each adapter parses untrusted blobs; mandate
memory-safe languages (Rust/Go) and formal test
suites.

A. A2A Protocol Adapter

• Parses/stores A2A Agent Card information within
protocolExtensions.

• Enables discovery based on A2A agentCapabilities ad-
vertised in the card.

• Facilitates finding A2A Endpoints listed in the card.

B. MCP Adapter

• Parses/stores MCP Tool and Resource descriptions within
protocolExtensions.

• Enables discovery of agents offering specific MCP tool-
s/resources.

• Facilitates finding MCP-compliant Endpoints.

C. ACP Adapter

• Parses/stores ACP agent profiles and agentCapability
advertisements within protocolExtensions.

• Supports discovery based on ACP roles or agentCapabil-
ities.

• May assist in bootstrapping ACP delegation or orchestra-
tion workflows by providing initial agent references.

Figure 6 illustrates the concept of protocol adapters.

D. Extension Points

Adding support for a new protocol involves creating a new
adapter module that implements the required mapping and
discovery logic interfaces defined by the registry framework.
This ensures the registry can evolve with the agent ecosystem.

Fig. 6. Protocol Adapters connecting the core registry to different agent protocols (A2A, MCP, ACP).

E. Cross-Protocol Interoperability Limits

The registry primarily enables discovery and identity ver-
ification across protocols. An A2A agent can discover an
agent advertising MCP tools, verify its identity via PKI, and
potentially interact if it also understands MCP or uses a
gateway. ANS does not automatically translate A2A tasks into
MCP requests. It provides the foundational trust and location
information, but deeper semantic interoperability often re-
quires additional mechanisms or multi-protocol support within
the agents themselves.

F. Protocol Adapter API Definition

Protocol Adapters are implemented as plugins that conform
to the following interface (expressed in a language-agnostic
way; adapt to your chosen implementation language):
interface ProtocolAdapter {

// Identifies the protocol supported by this
adapter (e.g., "a2a", "mcp", "acp")

String getProtocol();

// Parses protocol-specific metadata from the
protocolExtensions and maps it to an internal
registry format.

// Returns a map of key-value pairs representing
the extracted data.

Map<String, Object> parseMetadata(Object
protocolExtensions);

// Creates a protocol-specific discovery response
based on the registry record.

Object createDiscoveryResponse(Map<String,
Object> registryRecord);

// Handles protocol-specific validation during
the registration process

Boolean
validateRegistration(AgentRegistrationRequest

request);
}

Listing 10. Protocol Adapter Interface

Important Considerations:
• This is a basic interface. More complex scenarios might

require additional methods (e.g., for handling updates,
deletions, etc.).

• The Map<String, Object> type should be replaced
with more specific data structures based on your chosen
implementation language and registry data model.

• Error handling should be implemented using exceptions
or appropriate return codes.

SUMMARY OF ANS FUNCTIONAL LAYERS

This technical implementation of ANS ensures that uni-
versal agent Registry/Directory operates with cryptographic
assurance, distributed consensus for critical operations, and
real-time compliance enforcement while maintaining high per-
formance and scalability requirements essential for enterprise
AI agent deployments.

VI. SECURITY ANALYSIS AND CONSIDERATIONS

A. MAESTRO-Based Threat Analysis

This section presents a systematic security threat analysis
of the proposed ANS protocol. We identify key potential
vulnerabilities and map them onto the MAESTRO 7 Layers
framework [15] to provide a structured understanding of the
threat landscape and the corresponding mitigation strategies
integrated into our design. MAESTRO stands for Multi-Agent
Environment, Security, Threat, Risk, and Outcome, and its
seven layers are: Foundation Models, Data Operations, Agent
Frameworks, Deployment and Infrastructure, Evaluation and
Observability, Security and Compliance, and Agent Ecosys-
tem. By analyzing vulnerabilities and risks at each architec-
tural layer, as well as cross-layer interactions, MAESTRO
enables security teams to proactively identify, assess, and
mitigate threats unique to agentic AI.

1) Threat: Agent Impersonation:
• Risk: An adversary attempts to impersonate a legitimate,

registered agent inside the ecosystem.
• Mitigation Strategy: Mandatory implementation of PKI.

Verification of agent identity through validation of agent-
specific digital certificates (Cert) issued by a trusted CA.
Agent must prove possession of the private key.

• Formal Check:
– Agent MUST provide valid Cert on registration.
– RA MUST verify Cert against trusted CA.
– All communication MUST be digitally signed; recip-

ient MUST verify signature using public key from
Cert.

– See Section III-B (PKI Integration) and III-G (Agent
Identity).

• MAESTRO Layer Mapping: Layer 7 (Agent Ecosys-
tem) - Agent Impersonation/Identity Attack.

2) Threat: Registry Poisoning:
• Risk: An adversary tries to inject malicious data into

the Agent Registry (e.g., corrupting agentCapabilities or
Endpoints).

• Mitigation Strategy: Strict RA validation during reg-
istration/renewal; cryptographic signing of registry re-
sponses (secure resolution); stringent database access
controls [16]. Secure resolution ensures responses are
signed by the Agent Registry’s private key, verifiable by
clients.

• Formal Check:
– RA validation procedures (Section III-A).
– Secure, authenticated registry responses (Section

III-E.D leveraging PKI Section III-B).
– Database access controls (Infrastructure L4 / Data

L2).
• MAESTRO Layer Mapping:

– Layer 7 (Agent Ecosystem) - Compromised Agent
Registry, Malicious Agent Discovery.

– Layer 6 (Security and Compliance) - RA validation
policies, cryptographic signing.

– Layer 4 (Deployment and Infrastructure) / Layer 2
(Data Operations) - Database access controls.

3) Threat: Man-in-the-Middle (MitM) Attacks:
• Risk: An adversary modifies communications between

system components (agent-agent, agent-registry, agent-
RA/CA).

• Mitigation Strategy: Message authenticity/integrity via
digital signatures (agent’s PKI private key). Secure trans-
port (e.g., mTLS) is best practice but PKI signing is the
core mechanism discussed. Formal resolution algorithm
(III-E.C) enforces response integrity.

• Formal Check: PKI signing (Section III-B).
• MAESTRO Layer Mapping:

– Layer 4 (Deployment and Infrastructure) - Targets
communication channels. Secure transport operates
here.

– Layer 6 (Security and Compliance) - PKI framework
providing keys/certs managed via L6.

4) Threat: Denial of Service (DoS) / Distributed Denial of
Service (DDoS):

• Risk: Adversary attempts to incapacitate Agent Registry,
RA, CA, or resolution services via traffic flooding or
resource exhaustion.

• Mitigation Strategy: Resilience through distributed im-
plementation design. Standard operational defenses (rate
limiting, DDoS protection services). Formal resolution
algorithms may include DoS limits.

• Formal Check: Architectural design (distributed options
in Section VII).

• MAESTRO Layer Mapping:
– Layer 4 (Deployment and Infrastructure) - DoS at-

tacks target L4 availability. Architectural resilience
is L4 design.

TABLE II
SUMMARY OF ANS FUNCTIONAL LAYERS

ANS Component ANS Functional Layer JSON Schema Implementation
Policy Enforcement Engine Request Processing Forward-chaining rule processor with sequential evalua-

tion of Agent’s certs.
PKI Governance Security Infrastructure Hierarchical PKI with Agent specific Cert Validation &

Integration.
A2A Protocol Engine Protocol Adapter Zero-knowledge proof capability verification
MCP Protocol Engine Protocol Adapter RBAC+ABAC access control with OPA
Consensus Engine Distributed Governance Analyzing Agent Signatures
ANS Audit Trail System Compliance Layer Deterministically generate unique Agent IDs (UUIDv5

based on PKI public key hash)

– Layer 7 (Agent Ecosystem) - Impact felt at L7
(disrupted discovery/interaction).

B. Additional Security Controls and Considerations
Implementing ANS requires thorough threat modeling and

comprehensive security controls.
1) PKI Security Controls:
• Certificate Revocation: Robust CRL [10] or OCSP [12]

mechanisms are essential.
• Secure Key Storage: Agent private keys must be pro-

tected (HSMs, secure enclaves, OS key stores). Compro-
mise requires immediate revocation/re-issuance.

• Registry Access Control: Strict authentication/autho-
rization for registry management (RA) and potentially
querying.

• RA Validation: Rigorous process to prevent malicious
registration (domain validation, organizational checks,
manual review).

2) ANS-Specific Security Controls:
• Resolution Integrity: Use DNSSEC-like mechanisms or

signed responses to prevent ANS Manipulation/Spoofing.
• DoS Mitigation: Standard defenses (rate limiting, fire-

walls, anycast) for resolution Endpoints.
• CA Security: Standard CA best practices (offline roots,

audits, HSMs) are mandatory. Consider using established,
trusted CAs.

• Sybil Attack Resistance: Registration processes should
make creating fake identities difficult/costly.

3) Protocol Integration Security:
• Protocol-Specific Security: Leverage security features

within A2A, MCP, ACP (e.g., OAuth, capability tokens)
for agent-to-agent communication post-discovery.

• Governance and Trust Framework: Clear policies,
liability, and trust anchors are essential for adoption.

4) Side-Channel Deanonymization and Mitigation: The
process of querying the Agent Registry for specific agentCapa-
bilities could unintentionally reveal sensitive information about
the querier’s intent, business objectives, or operational profile.
To mitigate this risk, the implementation must prioritize:

• Private Information Retrieval (PIR) implementation:
To enable retrieval of information from the Agent Reg-
istry without revealing which information is being re-
trieved. Evaluate various PIR libraries to determine the

most secure and efficient implementation based on use
case. Prioritize the most performant and secure library.

• Anonymized Query Relays: Implementing query relays
to hide the origin of the requests and prevent ANS
Registry from seeing what agents are querying for what
capabilities.

• Differential Privacy for Aggregated Query Data:
Anonymize all data before sending to a 3rd party, en-
suring that PII isn’t included in the request.

• Query Pattern Analysis: Analyzing query patterns for
anomalous behavior, and block queries that look suspi-
cious.

• Rate Limiting: Implementing rate limiting to prevent
potential DDoS attacks, and help obfuscate queries.

• Auditing: Ensure all security implementations are au-
dited regularly.

• Privacy Controls for Query and Response Data:
Implementation of data anonymization techniques to en-
hance privacy compliance.

VII. IMPLEMENTATION CONSIDERATIONS

The Agent Registry can be implemented using various pat-
terns. The choice depends on scale, trust model, performance
requirements, administrative overhead, and cost. The Protocol
Adapter Layer suits a plugin architecture. Below is a decision
matrix to help guide the selection:

Implementation Patterns:
• Centralized: Simple management, but single point of

failure/bottleneck. Suitable for smaller/private deploy-
ments.

• Distributed (Cassandra, CockroachDB): Offers re-
silience and scalability. Technologies like Cassandra pro-
vide tunable consistency (eventual). Requires coordina-
tion mechanisms.

• Distributed (DHT): Scalable P2P lookup, complex state
management. Suitable for very large-scale deployments
with relaxed consistency requirements.

• Blockchain/DLT: Smart contracts as Registry Agents,
transactions validated and recorded on-chain. Offers high
security and auditability but suffers from high latency,
limited scalability, and significant write amplification.
Write amplification refers to the fact that a single write
operation to the blockchain can result in multiple write

TABLE III
DECISION MATRIX FOR AGENT REGISTRY IMPLEMENTATION PATTERNS

Feature Centralized Distributed (Cassandra) Distributed (DHT) Blockchain/DLT Federated
Consistency Strong Tunable (Eventual) Eventual Strong Tunable (Eventual)
Latency Low Medium Medium to High High Medium to High
Scalability Limited High Very High Limited High
Fault Tolerance Low High High High Medium
Security Medium Medium Medium High Medium
Operational Cost Low Medium Medium High Medium
Complexity Low Medium High High Medium

operations to the underlying storage, significantly increas-
ing storage costs and reducing performance.

• Federated: Independent registries interoperate (organi-
zational/geographic boundaries). Requires inter-registry
protocols and trust. To enable seamless cross-registry
discovery and interaction, federated registries require
standardized mechanisms for verifying agent identities
and resolving ANSNames across domains. This neces-
sitates agreed-upon trust anchors (e.g., mutually trusted
Certificate Authorities), standardized metadata formats
for agent descriptions, and well-defined inter-registry
communication protocols for querying and exchanging
agent information. Without these elements, a federated
system risks becoming a collection of isolated silos,
hindering interoperability.

• Hybrid: Combines elements (e.g., centralized RA/CA,
distributed/replicated read nodes). Caching layers (Redis,
Memcached) improve performance. Requires careful con-
sistency management.

Key Considerations:
• Consistency vs. Latency: Strong consistency (e.g., in

a centralized system) means that all reads see the most
recent write, but it can increase latency. Eventual con-
sistency (e.g., in Cassandra or a DHT) allows for lower
latency and higher scalability, but reads may not always
reflect the most recent write.

• Write Amplification (Blockchain): Be aware of the
significant write amplification in blockchain solutions.
This can lead to high storage costs and performance
bottlenecks.

• Operational Cost: Consider the operational cost of
each pattern, including hardware, software, and personnel
costs. Blockchain solutions, in particular, can be expen-
sive to operate due to the need for specialized hardware
and expertise.

• Complexity: Distributed systems, especially those based
on DHTs or blockchains, are more complex to design,
implement, and maintain than centralized systems.

VIII. FUTURE CONSIDERATIONS

This proposal lays groundwork; future work should explore:
• Prototype Implementation: Build and evaluate a work-

ing ANS prototype (See GitHub: https://github.com/
kenhuangus/dns-for-agents/).

• Explore an innovative bootstrap model for distributed
trust infrastructure: focusing on a foundation-led root
governance approach with delegated sub-spaces (similar
to Cloud Native Computing Foundation certificate trans-
parency roots), alongside a comprehensive funding and
fee schedule that creates a sustainable, flexible ecosys-
tem for trust delegation and verification across different
organizational scales and technological domains.

• Performance & Scalability: Benchmark resolution la-
tency, registration throughput, and scalability under load.

• Advanced Cryptography: Investigate privacy-
preserving techniques (e.g., zero-knowledge proofs)
for capability advertisement/selective disclosure.

• Formal Verification: Mathematically model and verify
security properties of registration/resolution protocols.

• Detailed Governance Model: Develop comprehensive
policies for naming, CA/RA operations, disputes, trust
framework evolution.

• Platform Integration: Demonstrate integration with
agent frameworks (LangChain, AutoGen, CrewAI) and
cloud platforms.

• Semantic Interoperability: Research mechanisms lever-
aging ANS metadata for deeper cross-protocol commu-
nication (standardized capability ontologies, translation
gateways).

• Reputation Systems: Integrate reputation scores/en-
dorsements to enhance trust.

• ANS agentCapability Negotiation and Binding Pro-
tocol: Develop standardized protocols for agents to ne-
gotiate capabilities post-resolution (capability mapping
taxonomies, binding, and quality of service).

• Draft a governance white-paper detailing name al-
location, fee model, dispute arbitration, and root CA
stewardship.

IX. CONCLUSION

ANS offers a foundational infrastructure for a more secure,
trustworthy, and interconnected agentic AI ecosystem. Its
broad impact includes:

• Enhancing Interoperability: Protocol-agnostic direc-
tory facilitates seamless communication between diverse
agents.

• Boosting Trust and Security: PKI integration enhances
trust for sensitive domains (finance, healthcare, cyberse-
curity).

https://github.com/kenhuangus/dns-for-agents/
https://github.com/kenhuangus/dns-for-agents/

• Accelerating Innovation: Lowers barriers by providing
common discovery/identity, letting developers focus on
agent solutions.

• Facilitating Autonomous Systems: Critical enabler for
systems needing dynamic, secure discovery and interac-
tion (autonomous vehicles, smart cities).

• Powering Secure AI Marketplaces: Foundation for
marketplaces with verifiable agent identities/capabilities.

The modular Protocol Adapter Layer ensures extensibility.
ANS provides foundational trust and discovery, enabling
agents on different standards to find and securely contact
each other. While challenges remain (governance, scalability,
semantic interoperability), ANS is a necessary step towards a
robust agentic AI ecosystem.

ACKNOWLEDGMENT

The authors acknowledge the contributions of the commu-
nities and organizations developing foundational agent com-
munication standards, including Google (A2A), Anthropic
(MCP), IBM (ACP), and the broader AI research community.
That this is included in OWASP Gen AI Security Project,
Agentic Security Initiative (ASI) - Agentic AI - Agent Name
Service (ANS) for Secure AI Agent Discovery.

REFERENCES

[1] P. Mockapetris, “Domain names - implementation and specification,”
RFC Editor, RFC 1035, Nov. 1987. [Online]. Available: https:
//www.rfc-editor.org/info/rfc1035

[2] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,”
RFC Editor, RFC 6763, Feb. 2013. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6763

[3] R. Surapaneni, M. Jha, M. Vakoc, and T. Segal, “Announcing the
Agent2Agent Protocol (A2A),” Google for Developers Blog, Apr.
2025, accessed: 2025-04-27. [Online]. Available: https://developers.
googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

[4] Agent2Agent Protocol Specification Authors, “Agent2Agent (A2A)
Protocol Specification,” https://github.com/google/A2A, 2025, accessed:
2025-04-27.

[5] Anthropic, “Model context protocol (MCP),” https://www.anthropic.
com/news/model-context-protocol, 2024, accessed: 2025-04-27.

[6] Model Context Protocol Specification Authors, “Model Context Proto-
col (MCP) Specification,” https://modelcontextprotocol.io/specification/
2025-03-26, Mar. 2025, accessed: 2025-04-27.

[7] P. Schmid, “MCP Introduction,” https://www.philschmid.de/
mcp-introduction, 2025, accessed: 2025-04-27.

[8] IBM Research, “(placeholder for anticipated ibm acp publication/spec-
ification link),” 2025, anticipated Publication.

[9] Foundation for Intelligent Physical Agents (FIPA), “FIPA Agent
Communication Language Specifications,” FIPA, Tech. Rep., 2002.
[Online]. Available: http://www.fipa.org/repository/aclspecs.html

[10] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile,” RFC Editor, RFC 5280, May
2008. [Online]. Available: https://www.rfc-editor.org/info/rfc5280

[11] E. T. Bray, “The javascript object notation (JSON) data interchange
format,” RFC Editor, RFC 7159, Mar. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7159

[12] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” RFC Editor, RFC 6960, Jun. 2013. [Online].
Available: https://www.rfc-editor.org/info/rfc6960

[13] I. Habler, K. Huang, V. S. Narajala, and P. Kulkarni, “Building a
secure agentic AI application leveraging A2A protocol,” arXiv preprint
arXiv.2504.16902, 2025. [Online]. Available: https://www.arxiv.org/abs/
2504.16902

[14] V. S. Narajala and I. Habler, “Enterprise-Grade Security for
the Model Context Protocol (MCP): Frameworks and Mitigation
Strategies,” arXiv preprint arXiv:2504.08623, 2025. [Online]. Available:
https://arxiv.org/abs/2504.08623

[15] K. Huang, A. Sheriff, J. Sotiropoulos, R. F. Del, and
V. Lu, “Multi-agentic system threat modelling guide OWASP
GenAI security project,” Apr. 2025. [Online]. Available:
https://www.researchgate.net/publication/391204915_Multi-Agentic_
system_Threat_Modelling_Guide_OWASP_GenAI_Security_Project

[16] V. S. Narajala, K. Huang, and I. Habler, “Securing genai multi-agent
systems against tool squatting: A zero trust registry-based approach,”
arXiv.org, 2025. [Online]. Available: https://arxiv.org/abs/2504.19951

APPENDIX A
COMPLETE REQUEST/RESPONSE SCHEMAS

The detailed JSON Schema documents for registry interac-
tions are maintained externally. Please ensure these schemas
are well-commented and validated in any implementation.

• AgentRegistrationRequest Schema: https://github.
com/kenhuangus/dns-for-agents/blob/main/agent_
registration_request_schema.json

• AgentRenewalRequest Schema: https://github.com/
kenhuangus/dns-for-agents/blob/main/agent_renewal_
request_schema.json

• AgentRegistrationResponse Schema: https:
//github.com/kenhuangus/dns-for-agents/blob/main/
agent_registration_response_schema.json

• AgentRenewalResponse Schema: https://github.com/
kenhuangus/dns-for-agents/blob/main/agent_renewal_
response_schema.json

• AgentCapabilityRequest Schema: https://github.com/
kenhuangus/dns-for-agents/blob/main/agent_capability_
request.schema.json

• AgentCapabilityResponse Schema: https://github.com/
kenhuangus/dns-for-agents/blob/main/agent_capability_
response.schema.json

APPENDIX B
GLOSSARY OF TERMS - AGENT NAME SERVICE (ANS)

A2A (Agent2Agent Protocol):
A communication protocol developed by Google for stan-

dardizing inter-agent communication, designed to bridge dif-
ferent agent frameworks.

ACP (Agent Communication Protocol):
A protocol designed by IBM Research to standardize how

agents communicate, enabling automation, collaboration, UI
integration, and developer tooling.

Agent:
An autonomous software entity capable of performing tasks,

making decisions, and interacting with other agents or systems.

Agent Identity:
The verifiable identity of an agent within the ANS ecosys-

tem, comprising cryptographic identity (PKI certificate), logi-
cal identity (ANSName), and protocol-specific identities.

Agent Registry:

https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc6763
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://github.com/google/A2A
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://modelcontextprotocol.io/specification/2025-03-26
https://modelcontextprotocol.io/specification/2025-03-26
https://www.philschmid.de/mcp-introduction
https://www.philschmid.de/mcp-introduction
http://www.fipa.org/repository/aclspecs.html
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc6960
https://www.arxiv.org/abs/2504.16902
https://www.arxiv.org/abs/2504.16902
https://arxiv.org/abs/2504.08623
https://www.researchgate.net/publication/391204915_Multi-Agentic_system_Threat_Modelling_Guide_OWASP_GenAI_Security_Project
https://www.researchgate.net/publication/391204915_Multi-Agentic_system_Threat_Modelling_Guide_OWASP_GenAI_Security_Project
https://arxiv.org/abs/2504.19951
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_request_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_registration_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_response_schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_request.schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_request.schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_request.schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_response.schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_response.schema.json
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_response.schema.json

A database storing registered agent information includ-
ing capabilities, security policies, PKI certificates, protocol-
specific metadata, and registration/renewal timestamps.

agentCapability:
A specific function, service, or skill that an agent can

perform or provide to other agents or users.

ANS (Agent Name Service):
A universal directory service framework that enables secure

discovery and interoperability between AI agents across dif-
ferent protocols and platforms.

ANSName:
A structured identifier for agents in the ANS ecosystem.

CA (Certificate Authority):
A trusted entity that issues and manages digital certificates

that bind public keys to entities (like agents) to establish a
chain of trust in the ANS ecosystem.

Certificate Chain Verification:
The process of validating a certificate by checking the chain

of trust from the certificate up to a trusted root certificate
authority.

Certificate Revocation:
The process of invalidating a certificate before its expiration

date, typically due to a key compromise or when an agent is
deregistered.

Certificate Revocation List (CRL):
A list of digital certificates that have been revoked before

their scheduled expiration date and should no longer be trusted.

CRL (Certificate Revocation List):
A mechanism used to check if a certificate has been revoked

and is no longer valid.

CSR (Certificate Signing Request):
A message sent by an agent to a Certificate Authority to

apply for a digital certificate.

Digital Signature:
A mathematical scheme for verifying the authenticity and

integrity of digital messages or documents.

Distributed Hash Table (DHT):
A decentralized distributed system that provides a lookup

service similar to a hash table, used as one possible imple-
mentation strategy for the Agent Registry.

DNS (Domain Name System):
The traditional system that translates human-readable do-

main names to IP addresses, which serves as a partial model
for ANS but lacks the capability-oriented nature of ANS.

DNS-SD (DNS-Based Service Discovery):
An extension to DNS that enables automatic discovery of

services available on a local network.

Endpoint:

A resolvable network address, service binding, or metadata
document that allows agents to connect and communicate with
each other.

Extension:
A field in the ANSName that holds deployment-specific or

provider-defined metadata.

Interoperability:
The ability of different agent systems or protocols to ex-

change information and use that information effectively across
platforms.

MAESTRO (7 Layers):
A threat modeling framework for agentic AI consisting of

7 layers, used to structure the security analysis of ANS.

MAS (Multi-Agent Systems):
Systems composed of multiple interacting intelligent agents

that can cooperate, coordinate, or compete to solve problems.

MCP (Model Context Protocol):
A protocol developed by Anthropic focused on simplifying

the integration of AI models with external tools and data
sources.

OCSP (Online Certificate Status Protocol):
An internet protocol used for obtaining the revocation status

of X.509 digital certificates as an alternative to CRLs.

PKI (Public Key Infrastructure):
A set of roles, policies, hardware, software, and procedures

needed to create, manage, distribute, use, store, and revoke
digital certificates and manage public-key encryption.

Protocol Adapter Layer:
A component in the ANS architecture that translates be-

tween the registry’s internal representation and protocol-
specific formats.

protocolExtensions:
A field within the ANS schema that acts as a container for

protocol-specific data.

Provider:
An organization or entity that offers or maintains agents in

the ANS ecosystem.

RA (Registration Authority):
An entity that verifies agent registration and renewal re-

quests, interacts with the CA to issue certificates, and manages
the agent lifecycle.

Registry Poisoning:
A security threat where an adversary attempts to inject

malicious data into the Agent Registry.

Semantic Versioning:
A versioning scheme with a format of MA-

JOR.MINOR.PATCH used to indicate compatibility and
changes in agent versions.

Service Discovery:

The process of automatically finding available services in a
network.

Signature Verification:
The process of checking that a digital signature is valid and

was created by the claimed signer.

Sybil Attack:
An attack where a malicious actor creates multiple fake

identities to gain disproportionate influence in a network.

Trust Anchor:
The root of trust in a PKI system, typically a certificate

authority whose certificate is implicitly trusted.

Version Negotiation:
The process where agents determine which protocol version

to use when communicating, based on compatibility and
preferences.

VerifyCertChain:
A function that checks the validity of a certificate by tracing

its chain of trust back to a trusted certificate authority.

VerifySignature:
A function that validates a digital signature against a mes-

sage and a public key to confirm authenticity and integrity.

	Introduction
	Related Work
	Agent Registry Architecture
	Agent Registration and Renewal
	PKI Integration
	ANS Protocol Notation
	Top Level Elements
	Data Types
	Verification Rules

	Protocol-Agnostic Communication Schema
	ANS Naming Structure and Resolution
	Formal Naming Structure
	Resolution
	Formal Resolution Algorithm
	Secure Resolution Implementation

	ANS Challenges and Governance
	Agent Identity

	Request/Response Schema for ANS Name Resolution
	Protocol Adapter Layer
	A2A Protocol Adapter
	MCP Adapter
	ACP Adapter
	Extension Points
	Cross-Protocol Interoperability Limits
	Protocol Adapter API Definition

	Security Analysis and Considerations
	MAESTRO-Based Threat Analysis
	Threat: Agent Impersonation
	Threat: Registry Poisoning
	Threat: Man-in-the-Middle (MitM) Attacks
	Threat: Denial of Service (DoS) / Distributed Denial of Service (DDoS)

	Additional Security Controls and Considerations
	PKI Security Controls
	ANS-Specific Security Controls
	Protocol Integration Security
	Side-Channel Deanonymization and Mitigation

	Implementation Considerations
	Future Considerations
	Conclusion
	References
	Appendix A: Complete Request/Response Schemas
	Appendix B: Glossary of Terms - Agent Name Service (ANS)

