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Abstract. Malicious Unmanned Aerial Vehicles (UAVs) present a sig-
nificant threat to next-generation networks (NGNs), posing risks such as
unauthorized surveillance, data theft, and the delivery of hazardous ma-
terials. This paper proposes an integrated (AE)-classifier system to detect
malicious UAVs. The proposed AE, based on a 4-layer Tri-orientated Spa-
tial Mamba (TSMamba) architecture, effectively captures complex spa-
tial relationships crucial for identifying malicious UAV activities. The
first phase involves generating residual values through the AE, which
are subsequently processed by a ResNet-based classifier. This classifier
leverages the residual values to achieve lower complexity and higher ac-
curacy. Our experiments demonstrate significant improvements in both
binary and multi-class classification scenarios, achieving up to 99.8%
recall compared to 96.7% in the benchmark. Additionally, our method
reduces computational complexity, making it more suitable for large-scale
deployment. These results highlight the robustness and scalability of our
approach, offering an effective solution for malicious UAV detection in
NGN environments.
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1 Introduction

The rapid development of next-generation networks (NGNs), including advance-
ments such as 5G and beyond, combined with the integration of unmanned aerial
vehicles (UAVs), has unlocked remarkable opportunities for connectivity and in-
novation. UAVs, commonly known as drones, have vast potential across various
industries and applications, including agriculture, surveillance, logistics, and en-
tertainment. However, their widespread availability and versatility also raise sig-
nificant concerns regarding potential misuse for malicious purposes, which could
pose serious threats to airspace and society [1]. To address the threat posed by
malicious UAVs, the authors in [2] survey the key features of such UAVs, po-
tential threats, and current countermeasures, including detection, tracking, and
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classification methods. They also discuss the limitations of existing approaches
in the literature, and suggest future research directions to improve the manage-
ment of UAV threats. One conclusion drawn from this and similar studies is that,
to prevent harm, it is imperative to design an autonomous platform capable of
effectively detecting malevolent UAVs. Among the various methods for detecting
malicious UAVs, two prominent approaches are communication-based methods
[1, 3–5] and computer vision-based methods [1, 6, 7], the latter largely relying on
artificial intelligence (AI) tools. In the following, we provide a literature review
on the topic and highlight the motivation and contribution of our research.

1.1 Related Works

Communication-based methods The authors in [4] propose a received signal
strength (RSS)-based method to detect malicious UAVs in a Rician fading chan-
nel. This method leverages RSS variations to identify UAVs in different channel
conditions. It uses threshold-based detection, comparing the RSS of the UAV to
optimized non-line-of-sight (NLoS) and line-of-sight (LoS) thresholds. In [5], the
proposed system detects and tracks drones using ID tags in radio signals, de-
coding telemetry packets to extract and validate data such as position, altitude,
and speed to intercept harmful drones. Using a similar principle, the authors in
[8] employ encrypted communication to identify detected UAVs. If identified as
friendly, the system decrypts the communication; if not, it reports the UAV to
the base station. In [9], MaDe is introduced —a method where each UAV gen-
erates an authentication variable based on transmitted packets. These variables
are verified by a central device, which uses a generalized likelihood ratio test to
detect malicious UAVs. In [10], the authors develop a malicious UAV detection
method using a support vector machine (SVM) combined with a shuffled frog
leap algorithm. Sensor nodes collect data and transmit it, along with a feedback
packet, to the UAV. The SVM-SFL approach classifies the data and optimizes the
SVM’s performance, improving detection accuracy. The defense system in [11]
uses a swarm of self-organizing UAVs to intercept rogue drones. The system em-
ploys encrypted communication to identify UAVs and reports threats to the base
station, ensuring robust operation. The modular design of this system enhances
its scalability and adaptability in dynamic environments. In [12], the authors
evaluate swarm formation methods for tracking malicious UAVs. The framework
assesses the impact of swarm size and UAV evasiveness on tracking effective-
ness. This allows for optimizing swarm strategies to improve the detection and
tracking of malicious UAVs. Lastly, [13] discusses the need to integrate UAV
flight zones in smart cities and proposes a defense system using self-organizing
drone swarms to intercept malicious UAVs. The system uses an auto-balanced
clustering mechanism for efficient defense, ensuring resilience against commu-
nication losses. This approach promotes coordination among UAVs, improving
both detection and mitigation capabilities.

Computer vision-based methods In [6], the authors introduced a structure
based on a vision transformer (ViT) to discriminate malicious UAVs. Their ap-
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proach involves segmenting drone images into fixed-size patches. Position and
linear embeddings are then incorporated, forming a sequence of vectors processed
through a standard ViT encoder. For classification, an additional learnable clas-
sification token linked to the sequence is employed. A different solution is sug-
gested in [14], which involves a smartphone application where users can report
malicious UAVs, including a photo for identification purposes. The app auto-
matically determines the UAV’s manufacturer and specific model using trained
image classification models. Four convolutional neural network (CNN) models —
AlexNet, VGG-16, ResNet-18, and MobileNet-v2— were trained using a dataset
of images from three popular UAVs, captured at various elevations, distances,
and camera zoom levels. The study in [15] explores autonomous UAV detection
for counter-unmanned aerial systems (CUAS). It employs deep learning mod-
els trained on image and acoustic features, combining visual and audio-based
methods for enhanced performance. Data collection involved two drones flying
simultaneously at a fixed distance, facilitating optimal performance assessment.
CNN and YOLOv5 were used for acoustic and visual data analysis, respec-
tively, contributing to a comprehensive drone detection system. In [7], a novel
framework combining handcrafted and deep features detects drones using sound
and image data, with SVM classifiers applied. Various CNNs and handcrafted
descriptors were compared to detect and localize malicious UAVs. According to
the authors, combining mel-frequency cepstral coefficients (MFCC) and AlexNet
features makes the model robust enough for national security applications. As
the most recent methods, Autoencoders (AEs) are powerful neural network
models used for data reconstruction, encryption, and feature learning. The au-
thors in [16] developed an ensemble approach for intrusion detection by com-
bining AEs and isolation forests. This approach merges the anomaly detection
strengths of isolation forests with the feature-learning capabilities of AEs, which
excel at learning representations of complex data. In [17], AEs are used to ad-
dress the challenge of underwater image classification in an open-set scenario.
The authors leverage an AE to effectively distinguish between seen and unseen
species, improving the model’s ability to handle novel data. The authors in [18–
20] identified that existing AE frameworks struggle with content-based reasoning
and proposed several improvements. To better handle discrete modalities, they
transform the state-space model parameters into functions of the input, develop
a hardware-optimized parallel algorithm for recurrent processing, and create a
streamlined architecture called Mamba that eliminates attention and multi-layer
perceptron (MLP) blocks. Mamba scales linearly with sequence length, and ex-
cels at handling sequences up to millions of entries. It achieves state-of-the-art
performance across various modalities, including language, audio, and genomics.
Detailed explanations of Mamba will be provided in the next section, as our
proposal builds on it.

1.2 Motivation and Contribution

Despite frequent news reports highlighting incidents involving malicious UAVs,
current methodologies and datasets to address this issue remain limited, often
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characterized by complexity or lack of accuracy. This gap poses a significant risk
as the potentially harmful applications of UAVs continue to rise. In response to
this critical need, and motivated by the work in [6, 7, 18, 19], our paper proposes
the design of a CNN-Mamba structure specifically tailored to identify malicious
UAVs with high accuracy and reduced complexity Our approach overcomes the
limitations of existing methods with two key innovations, as follows:

– Reducing Model Complexity: Unlike existing studies that utilize highly
complex transformers, our method employs the state-space model intro-
duced by the Mamba structure, which offers lower complexity while achieving
higher accuracy.

– Improved Detection Accuracy: We focus on residual modeling to en-
hance accuracy, achieving 100 % recall precision on selected datasets, which
is critical for real-world scenarios.

2 Proposed Network Structure

Our model process consists of two primary phases: reconstruction and classifi-
cation. In the reconstruction phase, we calculate the residuals, which are the
differences between the initial data and the reconstructed data. During the clas-
sification phase, these residual values are fed into the classifier to make final
decisions regarding the UAVs Fig. 1 illustrates our pipeline. We present a de-
tailed overview of our system model, covering the datasets and the training and
testing processes for both the autoencoder and the classifier.

Fig. 1: The block diagram of the proposed method [19].

2.1 Dataset

We use the dataset from [6], which comprises 776 images categorized into five
classes: kites, drones, malicious drones, birds, balloons, and airplanes. 70 % of
the dataset is used for training, while the remaining 30 % is used for validation.
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To simulate real-world conditions, the images were captured at varying altitudes
(both high and low) and under different weather conditions (favorable and ad-
verse). The dataset also includes variations in brightness, scale, and resolution,
further enhancing its value for model training. The diverse conditions ensure a
robust training process. Due to limitations in our dataset, we were unable to
perform hyperparameter tuning and instead relied on only two datasets: one for
training and one for testing.

TSMamba Block

MLP

LayerNormSS2D

LayerNorm

Nm  ×

TSMamba

Fig. 2: The structure of TSMamba [19].

2.2 Autoencoder

Our model consists of two main phases: reconstruction and classification. In the
reconstruction phase, we use an AE to rebuild the input image. The AE takes a
2D input image, and produces a reconstructed version, calculating the difference,
or residual, between the original and reconstructed images. This residual helps
us identify how well the AE has learned the data. We focus on the classifica-
tion of malicious drones versus non-malicious drones in this task. Malicious drone
datasets tend to be more uniform and well-defined, whereas non-malicious drones
encompass a broader variety of types. Due to this, we trained the AE exclusively
on malicious drone data, making it highly effective at reconstructing this class.
When the AE encounters data from non-malicious drones, its performance drops,
which results in high residual values. These residuals serve as inputs for the next
step—classification. To further enhance the AE’s capabilities, we use TSMamba
blocks based on Mamba architecture, a sequence modeling structure that im-
proves upon traditional methods like transformers. Mamba integrates Structured
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State Space (S4) models, offering lower complexity and better accuracy by effi-
ciently handling time-varying data. The architecture includes a mechanism that
dynamically adjusts the state space model’s parameters based on input, focusing
on the most relevant data and improving computational efficiency. This makes
it ideal for large, sequence-based datasets, like the one we are using for drone
detection (see Fig. 2). Each TSMamba block consists of three parts: LayerNorm,
SS2D, and MLP. LayerNorm normalizes the input data, which helps stabilize
and speed up the training process. SS2D is a 2D version of the Mamba state
space, enabling it to process images. In this paper, we propose a 4-layer TS-
Mamba model to replace traditional transformer architectures, as shown in Fig.
3. Finally, in the decoder section, we use convolutional layers and upsampling
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Fig. 3: The detailed structure of the proposed method.

layers to reconstruct the original image from the encoded data. Feature maps
from encoding are incorporated during decoding to enhance reconstruction by
leveraging local properties learned earlier.

2.3 Classifier

After calculating the residual value by subtracting the AE’s prediction from the
original input in the reconstruction phase, we transition to the second phase of
the proposed model. In this phase, using transfer learning, the residual value is
fed into a standard ResNet18 model, pre-trained on ImageNet. Since our applica-
tion requires classifying the images into two categories, we modify the ResNet18
model, which typically has 1,000 output neurons, to have only two output neu-
rons. This modification allows the model to classify the input as either malicious
or non-malicious (see Fig. 3).

2.4 Key Performance Indicators (KPIs)

To evaluate model performance, we use precision, recall, F1-score, and accuracy.
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– Precision measures the proportion of correctly predicted positive instances
out of all predicted positives:

Precision =
TP

TP + FP
;

– Recall evaluates the proportion of correctly predicted positives out of all
actual positives:

Recall =
TP

TP + FN
;

– The F1-score is the harmonic mean of precision and recall, balancing their
trade-offs:

F1 = 2 · Precision · Recall
Precision + Recall

;

– Accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
;

Note that TP refers to the number of true positives (correctly identified positive
instances), FP refers to false positives (incorrectly predicted positives), and FN
refers to false negatives (positives that were missed by the model).

3 Proposed Model Complexity

The computational complexity of Transformers primarily arises from their at-
tention mechanism, which scales quadratically with the input sequence length n,
resulting in O(n2 ·d+n ·d2), where d is the model dimension. This quadratic de-
pendency makes Transformers Processing-heavy for long sequences. In contrast,
Mamba+CNN (ResNet) combines Mamba’s State Space Model (SSM)-based
linear scaling O(n) with the ResNet’s convolutional complexity O(q ·k2 ·d ·h ·w),
where q is the number of filters, k is the kernel size, d is the depth of the input
(number of channels), and h and w are the height and width of the input image.
The combined complexity becomes O(n+q ·k2 ·d·h·w), which scales linearly with
the sequence length n, and is significantly more efficient for long sequences com-
pared to the Transformers’ quadratic growth. Thus, Mamba+CNN (ResNet)
is particularly suitable for tasks that require both long-range dependencies and
efficient computation, achieving a balance between the capabilities of Mamba
for sequence modeling and CNN (ResNet) for spatial feature extraction.

4 Experimental and Simulation Results

In this section, we present our experimental and simulation results. The ex-
periment is implemented using the PyTorch deep learning framework, and the
computations are accelerated using an NVIDIA RTX 2080 Ti GPU. We also
utilized the Adam optimizer with a learning rate of 1.5 × 10−5 and conducted
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the training over 110 epochs. To demonstrate the superiority of our proposed
model, we compare its complexity and accuracy metrics with those of [6], which
is based on vision transformers. Regarding complexity, their model consists of
82 million parameters, while our proposed model uses only 11.4 million parame-
ters. In the initial part of our experiments, we present the reconstruction loss for
the reconstruction phase and the classifier loss and accuracy for the classifica-
tion phase. The reconstruction loss of the AE during the training and validation
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Fig. 4: Logarithmic reconstruction loss in training and validation phases.
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phases for the anomaly class is shown in Fig. 4. A comparison of the train-
ing and validation curves reveals a close alignment, indicating that the model
is generalizing effectively. This observation underscores the AE’s capability to
learn meaningful representations, particularly for the anomaly class, and to ac-
curately reconstruct the input data. Fig. 5 and 6 provide a comprehensive view
of the classifier’s performance during the second phase of training. Specifically,
Fig. 5 shows the classification loss over the training epochs, offering insights into
how effectively the model reduces errors as it learns to classify the data. Af-
ter approximately 30 epochs, the loss starts to stabilize, indicating a divergence
between the training and validation curves. This suggests that the model has
reached a point of diminishing returns, where it has effectively learned from the
training data, and the further learning in subsequent epochs do not significantly
improve its predictive accuracy. In parallel, Fig. 6 showcases the classification
accuracy, highlighting the proportion of correctly classified instances out of the
total instances. This figure serves as a direct measure of the model’s efficacy
in accurately predicting the class labels. By observing the trends in accuracy
over the training period, we can envision the model’s progression towards better
performance after 20 epochs. The alignment of the testing and training curves
indicates that the proposed model is generalizes well. In the second part of our

Table 1: Results for methods in [6] and Proposed Method for the five-class sce-
nario, P: Precision (%), R: Recall (%), and F1: F1-score (%)

Class Aeroplane Bird Drone Helicopter Malicious Drones Accuracy
Method P R F1 P R F1 P R F1 P R F1 P R F1 %

Proposed in [6] 100 100 100 100 100 100 96 100 97 100 100 100 96 100 97 98
Our Proposed 100 100 100 100 100 100 98 100 99 100 100 100 100 98 99 99.5

experiments, we evaluate accuracy, recall, and precision for both multi-class (five-
class) and binary classification scenarios. In order to ensure a fair comparison and
benchmarking with the reference paper [6], we conducted both two-class (ma-
licious and unmalicious) and five-class classification experiments. Table 1 high-
lights the significant performance improvements of our proposed method over
the approach presented in [6]. Notably, our method achieves near-perfect recall
of 99.8%, compared to 96.7 % achieved by the benchmark across various classes.
This demonstrates that our approach is more effective at identifying all relevant
instances. Additionally, our method outperforms the benchmark in terms of pre-
cision, which reflects the accuracy of the identified instances. This suggests that
our model produces fewer false positives, resulting in a more reliable identifica-
tion process. Table 2 shows the confusion matrix, providing a detailed overview
of the model’s classification performance in the five-class classification scenario.
The diagonal entries, correct classifications, are significantly higher than the off-
diagonal entries, which correspond to misclassifications. However, an exception
is observed in the drone class, where some misclassification occurs. This suggests
that, while the model performs well in distinguishing between most categories,
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Table 2: The confusion matrix of the proposed method in five-class scenario.

Aeroplane 33 0 0 0 0

Birds 0 31 0 0 0

Drones 0 0 59 0 0

Helicopters 0 0 0 41 0

Malicious Drones 0 0 1 0 67
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it faces challenges in accurately classifying instances of the drone class, likely
due to their higher similarity with malicious drones. Table 3 presents the KPIs

Table 3: Accuracy, Recall, and Precision comparison for the two-class scenario.

Comparison Metric Method in [6] Our Proposed Method

Recall 96.7% 100%

Precision 96.7% 98.78%

Accuracy 98.2% 99.42%

of our proposed method compared to the approach in [6] for binary classification
tasks (distinguishing between malicious drones and non-malicious classes such
as drones, birds, helicopters, and airplanes). As shown, our proposed method
outperforms the benchmark, achieving improvements of 3 %, 2 %, and 1.5 % in
recall, precision, and accuracy, respectively. Furthermore, our method achieves
near-perfect recall of 100%, compared to 96.7% in the benchmark across bi-
nary classes. This superior performance is attributed to our method’s unique
combination of AE-based residual error analysis with ResNet18 classification.
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The autoencoder highlights subtle, malicious-specific features by focusing on re-
construction errors, which serve as discriminative signals for classification. This
two-phase approach leverages the strengths of anomaly detection and advanced
feature extraction, providing higher sensitivity to malicious patterns.
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5 Conclusion

To address the malicious UAV challenges, our paper proposes an integrated
AE-classifier system for detecting malicious UAVs. The AE, based on a 4-layer
TSMamba architecture, effectively captures complex spatial relationships criti-
cal for identifying malicious UAV activities. In the first phase, the AE generates
a residual value, which is then fed into the classifier in the second phase. This
classifier leverages the residual values to achieve lower complexity and higher
accuracy. Our simulation results, which encompass both binary and multi-class
(five-class) classification scenarios, demonstrate improvements over the state-of-
the-art methods based on Transformers. Specifically, our approach achieves a
recall of 99.8 %, compared to 96.7 % in the benchmark, in multi-class scenar-
ios. Additionally, our model reduces computational complexity, making it more
efficient for large-scale deployment.
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