
S3C2 Summit 2024-09:
Industry Secure Supply Chain Summit

Imranur Rahman∗, Yasemin Acar†, Michel Cukier‡, William Enck∗,
Christian Kästner§, Alexandros Kapravelos∗, Dominik Wermke∗, Laurie Williams∗

∗North Carolina State University, Raleigh, NC, USA
†Paderborn University, Paderborn, Germany and George Washington University, DC, USA

‡University of Maryland, College Park, MD, USA
§Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT
While providing economic and software development value, soft-
ware supply chains are only as strong as their weakest link. Over
the past several years, there has been an exponential increase in
cyberattacks, specifically targeting vulnerable links in critical soft-
ware supply chains. These attacks disrupt the day-to-day function-
ing and threaten the security of nearly everyone on the internet,
from billion-dollar companies and government agencies to hobby-
ist open-source developers. The ever-evolving threat of software
supply chain attacks has garnered interest from the software in-
dustry and the US government in improving software supply chain
security.

On September 20, 2024, three researchers from the NSF-backed
Secure Software Supply Chain Center (S3C2) conducted a Secure
Software Supply Chain Summit with a diverse set of 12 practitioners
from 9 companies. The goals of the Summit were to: (1) to enable
sharing between individuals from different companies regarding
practical experiences and challenges with software supply chain
security, (2) to help form new collaborations, (3) to share our ob-
servations from our previous summits with industry, and (4) to
learn about practitioners’ challenges to inform our future research
direction. The summit consisted of discussions of six topics rele-
vant to the companies represented, including updating vulnerable
dependencies, component and container choice, malicious commits,
building infrastructure, large language models, and reducing entire
classes of vulnerabilities.

KEYWORDS
software supply chain, open source, secure software engineering

1 INTRODUCTION
Software supply chains are only as strong as their weakest link.
Over the past several years, cyberattacks have exponentially in-
creased, specifically targeting vulnerable links in critical software
supply chains. These attacks disrupt the day-to-day functioning
and threaten the security of nearly everyone on the internet, from
billion-dollar companies and government agencies to hobbyist open-
source developers [18]. The rapid development of state-of-the-art
artificial intelligence (AI) integration systems and large language
models (LLMs) has also presented additional novel attack vectors
for software supply chain attacks. The ever-evolving threat of soft-
ware supply chain attacks has garnered interest from the software

industry and government organizations to improve software supply
chain security.

On Thursday, September 20, 2024, three researchers from the
NSF-backed Secure Software Supply Chain Center (S3C2) conducted
a day-long Secure Software Supply Chain Summit with a diverse set
of 12 practitioners from 9 companies. Attendance was intentionally
capped to create an environment encouraging candid conversa-
tions among key stakeholders. The goals of the Summit were to:
(1) to enable sharing between individuals from different companies
regarding practical experiences and challenges with software sup-
ply chain security; (2) to help form new collaborations; and (3) to
learn about practitioners’ challenges to inform our future research
direction.

The Summit was run under the Chatham House Rule, meaning
all participants could freely use the information discussed. However,
disclosing who was present, their affiliations, or who said what is
forbidden. As such, this report also follows the Chatham House
Rule.

The Summit consisted of discussions of six topics, which were
decided upon ahead of time by the practitioners present, who voted
on which topics to discuss, ensuring that the topics included were
of interest and relevant to the companies represented. These six
topics are: (1) updating vulnerable dependencies; (2) component
and container choice; (3) malicious commits; (4) build infrastruc-
ture; (5) large language models; and (6) reducing entire classes of
vulnerabilities. Each topic was moderated by one of the researchers
from S3C2 and began with a brief introduction and a list of ques-
tions to spark conversation. The questions posed to practitioners
are provided in Appendix A.

Three S3C2 researchers (two professors and one PhD student)
took notes on the discussion. The PhD student created a first draft
of this report based on these notes, which the two professors then
reviewed and revised. The remaining sections of this report sum-
marize the September 2024 Industry Secure Software Supply Chain
Summit.

2 UPDATING VULNERABLE DEPENDENCIES
Modern software relies on dependencies as building blocks, allow-
ing for rapid reuse and lower development costs. However, relying
on dependencies also has drawbacks, namely dependency selection
and management and keeping them up-to-date. Keeping up with
dependency vulnerability patches can be overwhelming and require
significant manual effort from already overburdened developers. It
can be difficult to determine which vulnerabilities are necessary to

1

ar
X

iv
:2

50
5.

10
53

8v
1 

 [
cs

.C
R

] 
 1

5 
M

ay
 2

02
5



Secure Software Supply Chain Center (S3C2)

invest time into addressing, leading to what some refer to as patch
fatigue.

2.1 Current State of the Practice
Industry practitioners mandate providing SBOMs from vendors.
However, this mandate is mostly for compliance with government
rules [7]. One participant mentioned they store and analyze SBOM,
but continually analyzing SBOM is a challenge for the engineer-
ing team since they have to repeatedly analyze SBOM for all of
their suppliers. Most companies only provide SBOMs upon request,
making them difficult to use in automated workflows. Some practi-
tioners generate SBOMs for their internal products/tools, but these
SBOMs are not delivered since the products are internal. Moreover,
SBOM practices vary across industries, with some producers only
offering SBOMs for the base product but not for updates. The press-
ing issue with SBOM is that practitioners do not have a clear way of
consuming the generated and/or received SBOMs. One practitioner
mentioned that they contact vendors once in a while if there is a
vulnerable dependency as a use case of received SBOMs. Another
issue with SBOMs is that they only contain information on direct
but not transitive dependencies. One practitioner mentioned that
sometimes running the Software Composition Analysis (SCA) tools
themselves is better than using SBOMs to detect vulnerable depen-
dencies since SCA tools provide more info than SBOMs. Another
weakness in SBOM is that the standard does not handle the assem-
bly of an SBOM for a product with several different components
where the SBOM for each component is generated individually.

On discussing whether companies are better equipped with their
system than what the situation was at the time of the log4j or xz
incident [21], participants had mixed feelings. Most of the partici-
pants claimed they were better equipped because they continuously
monitor SBOMs. However, this is challenging since, first, contin-
uously monitoring SBOMs is tough, and, second, vendors do not
always update SBOMs with every change they make.

Trust is a big issue in SBOM. Practitioners have to fully trust
the vendors that the provided SBOM was correct. The only way to
verify the SBOM is reverse-engineering-based efforts, which tend
to be time-consuming and manual. However, one practitioner men-
tioned that they occasionally employ a manual reverse-engineering
process to verify, although no attendee attested to doing this in a
reasonable or sustainable way.

Having vulnerable dependencies in software does not mean the
vulnerability is exploitable or even reachable from the program.
Most of the time, industry practitioners have faced pushback from
the vendors after reaching out about vulnerable dependencies since
the vulnerabilities were not reachable or exploitable. Practition-
ers emphasized the need for better tooling for exploitability and
reachability analysis to fill this gap.

To understand if there is a vulnerable dependency present in the
software, practitioners use a multi-pronged approach with open-
source databases, paid third-party services, and internal threat
intelligence. Open Source Vulnerability (OSV) [3], GitHub Advisory
Database [1], vulndb [6], and CISAKnown Exploitable Vulnerability
(KEV) [9] are used by different companies as vulnerability feeds.
Some companies pay vendors or third parties to map vulnerabilities
in their products (to assets).

To reduce the impact of vulnerabilities coming from OSS de-
pendencies, a common practice in the industry while consuming
OSS packages is to create a fork of that package, add additional or
company-specific features, and use the internal forked version of
the package. However, this goes against the collaborative spirit of
open-source principles. Determining when an internal forking is
justified and how to balance it with supporting the open-source
community remains an open question. Planning for the End-of-
Life (EOL) of components is also discussed, especially for critical
systems that cannot be easily taken offline for updates. However,
estimating the EOL of a package is still an open question in practice.

Summing up the discussion, participants expressed the need for
flexible tools to manage vulnerable dependencies, such as SBOM
generation and integration with various vulnerability feeds. One ob-
servation highlighted the lack of standardized reachability analysis,
with most efforts focused on updating high and critical vulnerabili-
ties. Challenges with open-source SBOMs lead to the practice of
regenerating them internally. Additionally, there was an emphasis
on the importance of building end-to-end SBOM programs and
creating custom SBOMs for vulnerability analysis.

2.2 Open Questions
(1) How do we improve tooling for exploitability and reacha-

bility analysis to prioritize vulnerabilities to look into?
(2) How do we effectively store, analyze, track, and consume

the generated SBOMs?
(3) How do we ensure the quality of SBOMs?
(4) How do we handle SBOM for multi-component products?
(5) How do we estimate the End of Life (EOL) of a package

that could help take precautions early?

3 COMPONENT AND CONTAINER CHOICE
Because of the growth of OSS packages, developers often use com-
ponents from software registries to accelerate the development
lifecycle [16, 17]. Using third-party components also simplifies the
development process for developers and increases productivity.
However, pulling components into products might have an adverse
effect if the component is tampered with malicious intent.

3.1 Current State of the Practice
OpenSSF Scorecard [2] provides a quick score by looking at the
component source code and activity in the repository for a period
of time to assess the risk associated with using the component.
However, no company at the Summit reports consumes Scorecard
scores automatically as a part of the component-choosing process.
Scorecard might be helpful to aggregate or summarize but loses the
finer details or nuances that may matter to the developer’s need
or to the company’s policy. For example, a feature complete [10]
component does not receive updates frequently. With the Scorecard
metrics, that component will incorrectly have a lower score because
of no activity or maintenance.

One practitioner mentioned that their company lets developers
freely choose the components (and other open-source technologies).
They use internal ingestion gates to vet the component the first time
when pulled inside the company’s infrastructure and keep caches
of used components. When another developer tries to pull the same

2



S3C2 Summit 2024-09

package, the package is pulled from internal caches to avoid package
shadowing. They also periodically reanalyze the components and
containers already in use using internal scanning and validation
tools to look for issues like malware, known vulnerabilities, and
license violations. This process heavily relies on internal security
response tooling. Alongside the ingestion gates, their legal team
works closely to ensure the licenses and compliance of using those
components. In short, developer productivity is prioritized over
security in some companies.

When consuming containers, most companies try to use known-
good baseline container images, e.g., containers published by ‘trusted’
publishers such as Debian, Fedora, and Docker. According to the
use case, they often build on top of the base container images and
regularly perform automated scanning and patching of containers.
Some companies do not perform automated scanning and patch-
ing of containers on consumption to prevent potential breaking
changes. Instead, some companies rely on a forced lifecycling of
container policy where each container is rebuilt from scratch in 30
days or so. To find vulnerabilities in the containers, Trivy [5] and
Qualys [4] are typically used for scanning. Additionally, containers
are often run with restricted privileges and access controls to limit
the potential impact of a compromise.

Regarding managing binary artifacts, the current trend is ban-
ning or limiting binary artifacts. Some companies have banned
using binary artifacts internally, while others are pursuing this
practice. Not using binary artifacts ensures that all software used
within the organization originates from a trusted build environment
with clear provenance.

Organizations are increasingly seeking ways to establish the
provenance and identity of components and containers. For exam-
ple, OpenSSF’s Trusted Publishing [15] aims to facilitate secure
artifact releases directly from CI/CD pipelines to repositories, at-
taching verifiable identity information. Also, integrating security
tooling earlier in the development process, or “shifting left,” is be-
coming more prevalent.

Summing up the discussion, component selection remains largely
developer-dependent. Scorecard adoption is still evolving and re-
quires supporting signals. Vulnerability management is viewed as
subjective, focusing on exploitability and reachability as areas of
research. Another takeaway was the shift from Docker to OCI and
the emphasis on trusted publishing. While Scorecard scores are
helpful for context, they should not be used as gating mechanisms.

3.2 Open Questions
(1) How can organizations find the right balance between giv-

ing developers freedom in component choice while ensur-
ing adequate security?

(2) Do we need a flexible version of the OpenSSF Scorecard
that can be customized to the organization’s needs?

(3) What are the best practices and standardized approaches
for managing container security?

4 MALICIOUS COMMITS
Instead of waiting for the identification of an existing vulnerability
to exploit, attackers are increasingly utilizing malicious commits
as an attack vector in software supply chains [18]. Through the

contribution of malicious commits to a project, attackers can build
vulnerabilities themselves and then exploit them. An example of
this is the recent incident in March of 2024 involving XZ Utils, a file
compression library used by Linux distributions in systems around
the world like Red Hat and Debian. A malicious actor slowly estab-
lished themselves as a trusted maintainer of the XZ-utils project and
then utilized their privileges to gradually build a backdoor, which
would have allowed attackers unauthorized access to systems de-
pending on the compromised versions [11, 12]. Another developer
accidentally discovered the backdoor before it was widely released.

4.1 The Current State of Practice
Detecting malicious commits is generally considered a difficult
problem by all practitioners. Although no practitioner could point
out a good solution, there are several heuristics to detect malicious
activity. One participant mentioned banning having binary exe-
cutables or images in a repository. ‘Binary-Artifacts’ is one of the
OpenSSF Scorecard’s security checks for measuring a package’s se-
curity health. Another participant brought up a multi-party review,
but the multi-party review does not work for most OSS packages
when there are one or two active maintainers. However, no binary
artifact and multi-party review are just two signals that we can use
to detect malicious activity, but the problem of identifyingmalicious
commits is non-deterministic in general. One participant compared
detecting malicious commits to the ‘halting problem’. The ‘halting
problem,’ a theoretically undecidable problem in computer science,
means there is no guaranteed way to create an algorithm that can
always determine whether a given program will halt or run forever.
With the same logic, identifying malicious behavior in a program
can be considered a halting problem because it is generally im-
possible to definitively determine if a program exhibits malicious
behavior without potentially running the program indefinitely. And
if identifying malicious behavior in a program is a halting problem,
identifying malicious commits that result in malicious behavior can
also be considered a variant of this problem.

Since there is no reliable and automated way to detect malicious
commits, human review is always considered the go-to way to
detect potential malicious commits. However, human review is
error-prone and not always reliable. For some specific cases, the
human review cannot be usable at all. For example, a single commit
may look benign in isolation or to the human eye but becomes
malicious when integrated into the codebase or with other commits
(‘Bidirectional Attack’). Overall, when discussing the human-in-
the-loop for detecting malicious activity, trust is a big issue. Trust
in individual developer does not translate into guarantees in their
accounts, which can be compromised to push malicious commits.
The XZ-incident [11], where a malicious actor disguised a malicious
takeover as stepping up as a maintainer, brings up the trust issue
in human-in-the-loop action. Developers’ reputation tracking can
be used as another signal for suspicious behavior. However, a lack
of reputation does not necessarily indicate malicious intent since
new developers and projects emerge into open-source naturally.
To address the human factors, practitioners discussed the need for
supporting open-sourcemaintainers. The support can be in the form
of funding (Assured OSS effort on funding critical projects) or by
addressing maintainers’ burnout and mental health concerns. Then

3



Secure Software Supply Chain Center (S3C2)

again, balancing the support with the independence and philosophy
of open-source communities remains an ongoing challenge.

Another way of detecting malicious activity, as some participants
mentioned, can be using capabilities and sandboxing. Capabilities
indicate granting a package or dependency-specific permissions,
whereas sandboxing means executing code in isolation. Both ap-
proaches have several limitations. For example, sandboxing does
not work well for languages with dynamic code execution features.
In short, no efficient approach exists beyond some heuristic analysis
in detecting malicious activity.

Overall, the panel participants expressed the importance of pre-
declaring calls and activity for all code, conducting security reviews
of open-source projects, and involving humans in the code publish-
ing process. Another highlight of the discussion was that malicious
commits are an ongoing challenge, with detection only possible
after new techniques are identified. Participants also emphasized
that addressing malicious commits cannot rely solely on analyzing
the commits themselves. The summary of the overall discussion
on malicious commits is that there is no silver bullet for detecting
malicious commits.

4.2 Open Questions
(1) Howdowe distinguishmalicious vs benign behavior/commit?

What signals or indicators can reliably distinguish between
unintentional bugs and deliberately introduced malicious
code?

(2) How can reputation and risk scoring systems be used to
identify potentially malicious actors?

(3) How do we identify malicious intent in a practical and
scalable manner?

(4) How do we effectively detect advanced attacks such as
bidirectional attacks?

(5) How do we establish more robust mechanisms for account-
ability and trust within the open-source ecosystem?

5 BUILD INFRASTRUCTURE
Build platforms and CI/CD tools support developers by automating
key aspects of software development, including building, testing,
and deployment. This build infrastructure is relevant for the in-
tegrity of software builds by providing documented, consistent
environments, isolating build processes, and generating verifiable
provenance. Reproducible builds can help further strengthen in-
tegrity by making the build system deterministic, allowing for a
consistent reproduction and verification of builds.

5.1 Current State of Practice
Participants highlighted the ongoing efforts and challenges in secur-
ing the build infrastructure. Trusted build and execution is still an
unresolved or unmanageable problem. One participant mentioned
that in-toto attestations are not yet being shipped to the customers.
Self-attestation to SLSA levels is typically provided by the producer,
but self-attestation can be misleading or fabricated, which is still
an open problem. Reproducible build and hermetic build are both
discussed to track provenance in the build system to resolve the
validation issue. Still, they are not always implementable or consid-
ered very hard in practice [13, 20]. That is why reproducible build

and hermetic build were removed from SLSA 1.0. Binary to source
validation [14] achieves the same guarantee as reproducible builds,
which essentially eradicates the need for having reproducible builds
since achieving reproducible builds is hard in practice. One of the
participants also mentions cache poisoning on GitHub Action while
discussing attack vectors in the build infrastructure. Another partic-
ipant raised concern that the time spent on generating SBOM was
significant in the overall build infrastructure. There is no efficient
way to reduce this time since no caching is possible to generate the
SBOM.

Overall, the panel participants expressed that reproducible builds
are an important goal but remain difficult to achieve today. Build
identity is not discussed enough, and low-privilege builds are an-
other key objective. Another takeaway was that build infrastructure
spans many subdomains and serves as the primary conduit for in-
puts and outputs in the supply chain. Participants emphasized that
solving build infrastructure security is a layered problem requiring
novel innovations to close gaps and achieve an end-to-end solution.

5.2 Open Questions
(1) How to reduce the time taken by security tooling (effi-

ciency)?
(2) How do we establish trust in self-attestation?
(3) How do we validate provenance information (e.g., SBOM,

PBOM, EBOM)?

6 LARGE LANGUAGE MODELS (LLMS) AND
SUPPLY CHAIN

We have seen a recent trend of heavily integrating LLMs into de-
velopment workflows. For example, developers are increasingly
using such AI- or LLM-assistant technologies, such as ChatGPT
and Copilot, for debugging and analyzing existing code and generat-
ing new code. However, the risks of LLM use are yet to be explored,
especially from the perspective of the industry.

6.1 LLMs for Securing Software Supply Chain
Practitioner’s perspectives on utilizing LLMs in their companies var-
ied widely depending on their use case. Some practitioners reported
that they do not use such AI/ML technologies in their development
workflows. In contrast, others reported that they had seen a signifi-
cant increase in the use of LLMs by their developers and vendors.
Common use cases of using LLM are generating fuzzing targets,
identifying potentially malicious commits, and providing code sug-
gestions to fix bugs and vulnerabilities. LLMs can also be helpful
in prioritizing and resolving security issues if there is a backlog.
However, resolving issues manually might be easier if the total
number of issues is manageable. Moreover, if LLM does not support
the used programming language, manual work is the only option.
Some participants reported the use of LLM in improving incident
response and scaling security expertise. Vendors are increasingly
adding more features to their LLM (e.g., GitHub Copilot’s auto fix
feature).

6.2 Securing LLM Supply Chain
With the increasing use of LLM in every part of developers’ work-
flow, all participants agreed unanimously that securing the LLM

4



S3C2 Summit 2024-09

supply chain should be considered a first-class citizen. Especially,
one participant mentioned that verifying that models downloaded
from repositories are genuinely published by the claimed authors
and have not been tampered with is an open problem now. Sim-
ilarly, preventing unauthorized access to models and preventing
malicious actors from injecting backdoored or compromised mod-
els into repositories are also open problems. Another participant
mentioned that tracking the provenance information (origin, devel-
opment history, and dependencies) is similarly important to explore.
Since the widespread use of LLM is relatively new (ChatGPT was
the first production-ready LLM published at the end of 2022), there
are many challenges and open problems.

Overall, the panel participants expressed the need for greater
focus on securing the AI/ML supply chain and providing more
detailed guidance on using AI to support incident responders. Par-
ticipants noted that while there is significant hype around applying
LLMs to secure the software supply chain, much work remains be-
fore general applications are feasible. Currently, LLMs have only a
few use cases in supply chain security, with ongoing concerns about
IP leakage and the risks of training models with sensitive or pro-
prietary data. Securing AI models was mentioned as an emerging
field requiring further attention.

6.3 Open Questions
(1) Is HuggingFace enough or should companies have their

own artifactory to store the LLMs?
(2) What sort of provenance data is needed to verify the in-

tegrity of LLM? How dowe know a certain version of Llama
found in HuggingFace is actually a version of Llama?

(3) Which files are needed to be included in models to generate
a hash for later verification?

(4) How to use AI agents in different parts of the software
supply chain? What problems are reasonable for agents to
look into? Can we trust the returned information from the
agents?

(5) Can software security framework, e.g., S2C2F, be extended
for consuming LLM from HuggingFace or similar LLM arti-
factory?

(6) How to protect against developers going out and using
internet-facing models (data leakage or exfiltration through
prompts or interactions with the model)?

(7) How to protect against hallucinated package suggested by
LLM?

(8) How can the industry develop standards and best practices
for securing LLMs, including model provenance, signing,
and vulnerability disclosure?

7 REDUCING ENTIRE CLASSES OF
VULNERABILITIES

Adopting particular types of programming languages or frame-
works can reduce a system’s risk for entire classes of vulnerabilities.
For example, an industry practitioner at a previous summit [19]
pointed out that a large proportion of vulnerabilities are memory-
related so moving to memory-safe languages like Rust can signifi-
cantly reduce a system’s risk for memory-related vulnerabilities.

However, doing so can require significant overhead and be chal-
lenging to sell to senior leadership as a worthwhile investment.

7.1 The Current State of Practice
Every participant agreed that memory-safe languages, such as Rust
and Go, could be beneficial for mitigating memory-related vulner-
abilities. Multiple participants cited efforts driving the support,
adoption, and migration of codebases to Rust (interoperability with
C++ tool by Rust). Participants emphasized the importance of well-
defined frameworks to guide developers towards secure coding
practice and reduce the likelihood of introducing vulnerabilities
to reduce entire common classes of vulnerabilities at scale. Devel-
oper education is deemed very important, but another participant
raised concerns about whether developers should be aware of the
solved problems, e.g., SQL injection. Automating routine security
tasks, like dependency updates and vulnerability patching, can
free developers to focus on feature development while maintaining
a secure baseline. However, silent patching can lead to develop-
ers being unaware of the risks being mitigated. One participant
brought up MITRE’s unforgivable vulnerabilities [8] to complement
the discussion. Unforgivable vulnerabilities are the vulnerabilities
that should not exist in software since the difficulty of finding these
vulnerabilities and implementing mitigations is deemed negligible.

One participant emphasized the need for addressing vulnerabili-
ties at different levels. For example, traditional code-level bugs can
be identified and fixed through static and dynamic analysis tech-
niques and tools. However, another class is platform and service-
level vulnerabilities. Design or implementation flaws in platforms
and services fall into this class which are typically hard to detect
and mitigate.

Another discussed area in this panel was leveraging CWEs or
CPEs for finding and tracking vulnerabilities in systems without
CVEs to surface potential issues. Everyone agreed that there are
simultaneously too many and not enough CWEs to make them
functionally useful for most purposes.

Overall, the participants expressed that tools for interoperability
between Rust and C/C++ can support incremental migration to
more secure platforms without requiring a complete rewrite of
codebases. Participants preferred automating security fixes over
notifying developers, given the scale of challenges and the potential
for mistakes. CWEs were noted as not necessarily useful in daily
software engineering due to their narrow scope and large quantity.
Frameworks were highlighted as critical for reducing classes of
vulnerabilities, while education was seen as necessary to ensure
developers understand security concepts, even as abstraction in-
creases. Another takeaway was that pipeline templates help create
secure paths with minimal developer friction. While technical vul-
nerabilities can often be addressed at scale, platform and system
vulnerabilities require orchestration to resolve effectively.

7.2 Open Questions
(1) How to balance automation and developer education?

8 SUMMARY OF THE SUMMIT
SBOMs are valuable but not a complete solution, and cryptographic
identity and verification must be integral to development processes.

5



Secure Software Supply Chain Center (S3C2)

Discussions around SBOM integration revealed open questions
about metadata, querying, and retrieval, alongside concerns about
build caches and poisoning. Predeclared behavior should be stated
upfront, and frameworks and automation should complement, not
replace developer education. Managing vulnerable dependencies
and detecting malicious commits remain unsolved challenges, par-
ticularly when considering trusted users. Participants emphasized
the importance of incentivizing secure dependency selection and
the role of tools like frameworks and Dependabot-like solutions.
While the field has advanced since high-profile attacks brought at-
tention to supply chain security, significant gaps remain. LLMs are
already used in securing different parts of the software supply chain,
and so securing the LLM supply chain has become ever more im-
portant. Operationalizing proposals, addressing newly discovered
threats, and improving automation and tooling for under-resourced
organizations were highlighted as priorities for progress.

9 ACKNOWLEDGEMENTS
A big thank you to all Summit participants. We are very grateful
for being able to hear about your valuable experiences and sugges-
tions. The Summit was organized by Laurie Williams and Dominik
Wermke and recorded by Imranur Rahman. This material is based
upon work supported by the National Science Foundation Grant
Nos. 2207008, 2206859, 2206865, and 2206921. These grants support
the Secure Software Supply Chain Summit (S3C2) consisting of
researchers at North Carolina State University, Carnegie Mellon
University, University of Maryland, and George Washington Uni-
versity. Any opinions expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] GitHub Advisory Database. https://github.com/advisories. Last accessed: 12-

Mar-2025.
[2] OSSF Scorecard: Build better security habits, one test at a time. https://scorecard.

dev/. Last accessed: 12-Mar-2025.
[3] OSV.dev : A distributed vulnerability database for open source. https://osv.dev.

Last accessed: 12-Mar-2025.
[4] Qualys: Software Supply Chain Risk Management Solutions. https://www.qualys.

com/solutions/software-supply-chain-risk/. Last accessed: 12-Mar-2025.
[5] Trivy: The all-in-one open source security scanner. https://trivy.dev/latest/. Last

accessed: 12-Mar-2025.
[6] Vulndb. https://vuldb.com/. Last accessed: 12-Mar-2025.
[7] Executive Order on Improving the Nation’s Cybersecurity. https://www.

whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/, 2021-05-12. Last accessed:
12-Mar-2025.

[8] Steve Christey. Unforgivable Vulnerabilities. https://cwe.mitre.org/documents/
unforgivable_vulns/unforgivable.pdf, 2007. Last accessed: 12-Mar-2025.

[9] CISA. Known Exploited Vulnerabilities Catalog. https://www.cisa.gov/known-
exploited-vulnerabilities-catalog, 2024. Last accessed: 12-Mar-2025.

[10] Jailton Coelho and Marco Tulio Valente. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint meeting on foundations of software
engineering, pages 186–196, 2017.

[11] Andres Freund. backdoor in upstream xz/liblzma leading to ssh server compro-
mise. https://www.openwall.com/lists/oss-security/2024/03/29/4, March 2024.

[12] Jossef Harush Kadouri. Backdoor discovered in xz: The most advanced sup-
ply chain attack known to date. https:// zero.checkmarx.com/backdoor-in-xz-
impacting-multiple-linux-distros-074e86989725, 2023.

[13] Chris Lamb and Stefano Zacchiroli. Reproducible Builds: Increasing the Integrity
of Software Supply Chains. IEEE Software, 39(2):62–70, March 2022. 12 citations
(Semantic Scholar/DOI) [2022-09-18].

[14] Jeremy Long. Reflections on Trust in the Software Supply Chain.
https://i.blackhat.com/BH-US-23/Presentations/US-23-Long-Reflections-
On-Trust.pdf, 2023. Last accessed: 12-Mar-2025.

[15] OpenSSF. Trusted Publishers for All Package Repositories. https://repos.openssf.
org/trusted-publishers-for-all-package-repositories.html, 2024. Last accessed:
12-Mar-2025.

[16] Imranur Rahman, Ranidya Paramitha, Henrik Plate, Dominik Wermke, and
Laurie Williams. What’s in a Package? Getting Visibility Into Dependencies
Using Security-Sensitive API Calls, March 2025. arXiv:2408.02846 [cs].

[17] Imranur Rahman, Ranindya Paramitha, Nusrat Zahan, Stephen Magill, William
Enck, and Laurie Williams. No Vulnerability Data, No Problem: Towards Predict-
ing Mean Time To Remediate In Open Source Software Dependencies, March
2025. arXiv:2403.17382 [cs].

[18] Sonatype. 10th annual state of the software supply chain. Technical report,
Sonatype, October 2024.

[19] Greg Tystahl, Yasemin Acar, Michel Cukier, William Enck, Christian Kästner,
Alexandros Kapravelos, Dominik Wermke, and Laurie Williams. S3c2 summit
2024-03: Industry secure supply chain summit, March 2024.

[20] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, andAntonino Sabetta.
LastPyMile: identifying the discrepancy between sources and packages. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
780–792, Athens Greece, August 2021. ACM.

[21] Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imra-
nur Rahman, Mahzabin Tamanna, Greg Tystahl, Nusrat Zahan, Patrick Morrison,
Yasemin Acar, Michel Cukier, Christian Kästner, Alexandros Kapravelos, Do-
minik Wermke, and William Enck. Research Directions in Software Supply
Chain Security. ACM Trans. Softw. Eng. Methodol., January 2025. Just Accepted.

A FULL SURVEY QUESTIONS FOR PANEL
Survey questions for panel preferences.

(1) Panel 1: Updating Vulnerable Dependencies.
(a) What process and/or tools do you use to find out that

you have a vulnerable dependency?
(b) What is the process for evaluating/prioritizing what

dependencies to update and actually updating vulner-
able dependencies?

(c) Do you push a new version of a dependency with a
major or minor release?

(d) What do you do with SBOMs you receive from external
vendors?

(e) Are you better equipped with your system than what
was the situation at the time of log4j?

(f) What vulnerability feeds do you use?
(2) Panel 2: Component and Container Choice.

(a) What is the process for bringing a new component or
container into a product?

(b) Do you use OpenSSF Scorecard or other metrics to
help you with your decision making?

(c) Are component choices re-evaluated periodically?
(3) Panel 3: Malicious Commits.

(a) How can malicious commits be detected?
(b) What do you think signals a suspicious/malicious com-

mit?
(c) What role does the ecosystem play in detecting mali-

cious commits?
(4) Panel 4: Build Infrastructure.

(a) What is being done (or should be being done) to secure
the build and deploy process/tooling pipeline (a.k.a
SLSA practices)?

(b) Are you working toward reproducible builds?
(5) Panel 5: LLMs and Supply Chain.

(a) How are you leveraging the recent advances in ML/AI
in securing your software supply chain?

(6) Panel 6: Reducing Entire Classes of Vulnerabilities at
Scale.

6

https://github.com/advisories
https://scorecard.dev/
https://scorecard.dev/
https://osv.dev
https://www.qualys.com/solutions/software-supply-chain-risk/
https://www.qualys.com/solutions/software-supply-chain-risk/
https://trivy.dev/latest/
https://vuldb.com/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://cwe.mitre.org/documents/unforgivable_vulns/unforgivable.pdf
https://cwe.mitre.org/documents/unforgivable_vulns/unforgivable.pdf
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://zero.checkmarx.com/backdoor-in-xz-impacting-multiple-linux-distros-074e86989725
https://zero.checkmarx.com/backdoor-in-xz-impacting-multiple-linux-distros-074e86989725
https://i.blackhat.com/BH-US-23/Presentations/US-23-Long-Reflections-On-Trust.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Long-Reflections-On-Trust.pdf
https://repos.openssf.org/trusted-publishers-for-all-package-repositories.html
https://repos.openssf.org/trusted-publishers-for-all-package-repositories.html


S3C2 Summit 2024-09

(a) Are you moving toward the use of safer languages? (b) Mandating the use of any secure frameworks?

7


	Abstract
	1 Introduction
	2 Updating Vulnerable Dependencies
	2.1 Current State of the Practice
	2.2 Open Questions

	3 Component and Container Choice
	3.1 Current State of the Practice
	3.2 Open Questions

	4 Malicious Commits
	4.1 The Current State of Practice
	4.2 Open Questions

	5 Build Infrastructure
	5.1 Current State of Practice
	5.2 Open Questions

	6 Large Language Models (LLMs) and Supply Chain
	6.1 LLMs for Securing Software Supply Chain
	6.2 Securing LLM Supply Chain
	6.3 Open Questions

	7 Reducing Entire Classes of Vulnerabilities
	7.1 The Current State of Practice
	7.2 Open Questions

	8 Summary of the Summit
	9 Acknowledgements
	References
	A Full Survey Questions for Panel

