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Highlights

Quantized Approximate Signal Processing (QASP): Towards Ho-
momorphic Encryption for audio

Tu Duyen Nguyen, Adrien Lesage, Clotilde Cantini, Rachid Riad

• First complete end-to-end demonstration of fully homomorphic encryp-
tion (FHE) applied directly to raw audio signals, ensuring complete
privacy during inference.

• Novel quantized approximate signal processing techniques for secure
computation of STFT, Mel filterbanks, MFCCs, and gammatone filters.

• Theoretical error bounds established for approximation methods, guid-
ing optimal parameter selection.

• Empirical validation on multiple tasks (spectrogram reconstruction, vo-
cal marker analysis, and machine learning classification) and multiple
datasets demonstrates effective private audio processing with minimal
performance loss.
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Abstract

Audio and speech data are increasingly used in machine learning applications
such as speech recognition, speaker identification, and mental health moni-
toring. However, the passive collection of this data by audio-listening devices
raises significant privacy concerns. Fully homomorphic encryption (FHE) of-
fers a promising solution by enabling computations on encrypted data and
preserving user privacy. Despite its potential, prior attempts to apply FHE
to audio processing have faced challenges, particularly in securely computing
time-frequency representations—a critical step in many audio tasks.

Here, we addressed this gap by introducing a fully secure pipeline that
computes, with FHE and quantized neural network operations, four funda-
mental time-frequency representations: Short-Time Fourier Transform (STFT),
Mel filterbanks, Mel-frequency cepstral coefficients (MFCCs), and gamma-
tone filters. Our methods also support the private computation of audio
descriptors and convolutional neural network (CNN) classifiers. Besides, we
proposed approximate STFT algorithms that lighten computation and bit
use for statistical and machine learning analyses. We studied these addi-
tional approximations theoretically and empirically.

We ran experiments on the VocalSet and OxVoc datasets demonstrat-
ing the fully private computation of our approach. We showed significant
performance improvements with STFT approximation in private statistical
analysis of audio markers, and for vocal exercise classification with CNNs.
Our results reveal that our approximations substantially reduce error rates
compared to conventional STFT implementations in FHE. We also demon-
strated a fully private classification based on the raw audio for gender and
vocal exercise classification. Finally, we provided a practical heuristic for pa-
rameter selection, making quantized approximate signal processing accessible
to researchers and practitioners aiming to protect sensitive audio data.
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1. Introduction

The number of audio-listening devices has surged thanks to the increasing
affordability of smart speakers, headphones, and even TVs, putting high-
fidelity audio capture technology in the hands of consumers at ever-lower
costs. This trend, while allowing easy access to smart agents through audio
channels, has consequences for user privacy.

Human speech signal conveys sensitive information beyond linguistic con-
tent about the speaker’s traits and current state Narayanan and Georgiou
[30]. Automatic speech systems have been developed to recognize personal
traits such as age, gender Hechmi et al. [22], height Mporas and Ganchev
[29], current emotions Schuller [46], Akçay and Oğuz [3], mood states in
psychiatric diseases Gideon et al. [17], Cummins et al. [10], or even current
pain Ren et al. [42]. The increasing prevalence of devices equipped with
microphones expands the possibilities for adversaries to capture speaker in-
formation. This proliferation of devices can be seen through the lens of the
cryptography principle known as the ”surface attack” theory Howard et al.
[23]. A larger attack surface – the total number of potential entry points for
adversaries – implies a larger number of vulnerabilities.

This ever-growing attack surface on human speech calls for the develop-
ment and deployment of machine learning and speech technologies to preserve
the privacy of speakers Nautsch et al. [32]. Given the sensitivity of speech
data, individuals may wish to protect both their voice identity and the con-
tent of their utterances. Such privacy concerns are often reinforced by legal
frameworks like the EU’s GDPR, which mandate the protection of personal
data. This is even more critical in healthcare settings, where speech analysis
is gaining traction in neurology and psychiatry Cummins et al. [10], Riad
et al. [44], Fraser et al. [13], often through applications developed by private
companies. Privacy-preserving techniques must be implemented throughout
the entire machine learning pipeline to ensure full protection of individuals’
speech. This includes protecting speech data during training data collection,
model inference (prediction), and even potential privacy breaches by cloud
vendors and healthcare companies hosting and carrying machine learning

2



analyses (see Bäckström [4], Nautsch et al. [32] for reviews about vulnerabil-
ities, privacy-preserving methods for speech).

While existing methods like differential privacy Pelikan et al. [39], speech
anonymization Srivastava et al. [49], and federated learning Kairouz et al.
[24] aim to protect training speaker data, they have some limitations and do
not protect data used during deployment and inference. These techniques
will decrease potential leakages of the training data, by reducing speaker
footprints Shamsabadi et al. [47] on spoken utterances; or leaving training
data on mobile smartphones Guliani et al. [21], and computing some gradients
on the client side.

These approaches present some limitations. First, they can conflict with
biometric or clinical speech applications. For example, deleting speaker char-
acteristics like pitch or speech rate can hinder tasks like emotion recognition
or disease severity estimation. Second, these methods still have security risks.
Storing model weights on mobile devices exposes training data participants
to membership inference attacks Teixeira et al. [53] and even potential data
reconstruction Rigaki and Garcia [45].

A solution to circumvent such risks is to encrypt the sensitive audio and
use it to perform the computations with homomorphic encryption. The
current demonstrations and applications of homomorphic encryption are re-
stricted to linear models, tree-based models Frery et al. [14] or shallow neural
networks Stoian et al. [50]. This is limited by integer-based representation
of numbers and memory limits to perform computation in homomorphic do-
main. To circumvent the problems of a large number of computations due
to signal processing, Zhang et al. [59] proposed to avoid filterbanks by not
computing them and using only smaller convolutions on audio. Yet, signal
processing algorithms still exhibit strong performances: Mel filterbanks are
still used in state-of-the-art large models tackling automatic speech recog-
nition like Whisper Radford et al. [41]. Dumpala et al. [11], also explored
speaker identity masking using sine-wave speech for depression detection,
but there are no guarantees of the loss of information for all applications. A
compromise in terms of security is to allow computation of time-frequency
representations in clear, and a part of client pre-processing on-device and
encrypting only subsequent algorithms:Glackin et al. [18] adopted this strat-
egy, and used a convolutional neural network based on the short-time Fourier
transform to compute locally phonetic probabilities and encrypted the rest
of the computations.

Pioneering efforts in cryptographic-based secure speech processing were
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undertaken by Pathak et al. [36], Pathak and Raj [37]. They developed
algorithms for secure Gaussian mixture model computations based on the
clear computation of Mel-Frequency Cepstral Coefficients (MFCCs). Thaine
and Penn [54] used homomorphic encryption to encrypt MFCCs and Bark-
Frequency Cepstral Coefficients (BFCCs), and evaluated Automatic Speech
Recognition Systems on the decrypted results. Recently, Nautsch et al. [31]
applied homomorphic encryption to securing biometric speech processing,
while Treiber et al. and Nautsch et al. also explored secure multiparty
computation Nautsch et al. [33], Treiber et al. [55] for the same task.These
approaches still assume the computation of speech representation locally also
sharing service-provider models directly to users’ devices. Building upon
these advances, Teixeira et al. [52] introduced a method to safeguard both
the speaker’s x-vector template and the underlying model itself.

Encryption of the raw audio signal before sending it to the server can
unlock a broader range of privacy-preserving techniques. This approach not
only protects the sensitive audio data but also safeguards the pipeline and
models of service providers from unauthorized access or tampering.

In this work, we investigated and introduced novel methods to address
the challenge of full privacy-preserving at the inference stage in speech and
audio processing, i.e. guarantee privacy during data fed to models during
deployment. Our work is in contrast with privacy-preserving techniques con-
cerning training data protection (e.g. federated learning, differential pri-
vacy, membership inference). The challenge of this problem is to achieve
privacy guarantees for speech data during model inference, while simulta-
neously maintaining the performance of speech analyses. We achieved this
by leveraging advances in homomorphic encryption Gentry [16], Zama [58],
neural network quantization Pappalardo [34], and signal processing proper-
ties. Similar techniques leveraging homomorphic encryption and quantiza-
tion have already shown promising results in secure image compression and
processing Mertens et al. [28].

Our first contribution is the introduction of the first system to perform
homomorphic encryption computations on the raw audio signals, enabling
secure processing of audio and speech with the main algorithms Short-Time
Fourier Transform (STFT), Mel filterbanks, Mel-Frequency Cepstral Coeffi-
cients (MFCCs), and gammatone filters. Second, we proposed and combined
multiple techniques for computing approximate time-frequency representa-
tions with low-bit depth, optimizing audio processing while maintaining bet-
ter performance for more complicated tasks. We also established theoretical
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error bounds for each approach as a function of approximation parameters.
Finally, we conducted comprehensive evaluations, benchmarking the pro-
posed privacy-preserving techniques against clear computation on various
datasets and tasks. Our evaluation framework incorporated increasingly dif-
ficult tasks, from the absolute errors in spectral features to the estimation of
audio descriptors that are statistically relevant for audio tasks, and finally
fully encrypted individual machine learning predictions.

This paper starts by presenting the necessary background in homomor-
phic encryption, quantization and signal processing to formulate our secure
audio processing goal (Section 2). Our approximate quantized signal pro-
cessing method is introduced in Section 3. Our proposed approximate time-
frequency formulations for optimizing bit usage and their corresponding error
bounds are presented in Section 3.4 to Section 3.8. Our evaluation framework
and experimental results are shown in Section 4.

2. Background

2.1. Audio signal processing

Deep learning models trained on large datasets are the current paradigm
to perform various audio processing tasks, such as voice activity detection
Gelly and Gauvain [15], speaker recognition Snyder et al. [48], Chung et al.
[9], speech recognition Radford et al. [41] or emotion recognition Schuller [46].
Even state-of-the-art models still use signal processing algorithms filterbanks
Radford et al. [41], Gong et al. [19] as input instead of the raw waveform.

These algorithms usually start by mapping the raw audio signal to a
representation in a time-frequency domain. They do so by reducing time
resolution to gain localized information on the frequency energy. This allows
the extraction of localized patterns in both time and energy which are rel-
evant for downstream tasks. Different time-frequency representations have
been proposed, heavily inspired by the human auditory system, such as Mel
filterbanks, Mel-Frequency Cepstrum Coefficients (MFCCs) Abdul and Al-
Talabani [2] or gammatone filters Patterson et al. [38]. In the remainder of
this work, we use interchangeably the terms time-frequency representations,
audio features and spectrograms to refer to these first computation steps.

In this work, we focused on the following time-frequency representations:
Short-Time Fourier Transform (STFT), Mel filterbanks, Mel-Frequency Cep-
strum Coefficients (MFCCs), and Gammatone filterbanks. A secure audio
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processing pipeline should preserve the richness of time-frequency represen-
tations for computing tasks. To do so, we leveraged fully homomorphic
encryption, quantization, sparsity and approximate signal processing.

Time-dependent spectral analysis is usually performed by splitting the
signal in successive frames and performing the discrete Fourier transform
(DFT) on each frame Gröchenig [20], resulting in the short-time Fourier
transform (STFT). The frame by frame concatenation of the spectral repre-
sentations forms a spectrogram. A window function is used to smooth the
transition from one frame to the next.

Let x ∈ RM be a real-valued signal, h ∈ N the hop length, w : R → R
the Hann window with length N defined by:

w(n) =
1

2

[
1− cos

(
2πn

N

)]
10≤n≤N .

We use the sliding DFT implementation of the discrete STFT:

X(m, k) =
M−1∑
n=0

x(n)w(n−mh) exp

(
−2jπkn

N

)
. (1)

2.2. Secure computation with fully homomorphic encryption

One way of performing computations securely is to operate on encrypted
data, so that the client data is not at risk during inference, as illustrated in
Figure 1. We assume in this paper that the client is honest Bäckström [4].
This falls into a cryptographic approach known as homomorphic encryption.

A scheme is said to be fully homomorphic if it enables the evaluation
of any function f over encrypted data. As a result, Fully Homomorphic
Encryption (FHE) allows an individual A to compute any function f over
some encrypted data E(x) without accessing the plaintext, the data x, by
using the FHE circuit equivalent f̂ which operates over encrypted data:

f(x) = E−1
(
f̂ [E(x)]

)
In this work, we used the fast fully homomorphic encryption scheme over

the torus (TFHE) Chillotti et al. [8] and its Concrete Zama [58] implementa-
tion. We chose TFHE over the more commonly used Cheon-Kim-Kim-Song
(CKKS) scheme Cheon et al. [6] because CKKS can only handle a bounded
number of additions and multiplications, therefore it cannot truly handle any
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Figure 1: Schematic representation of secure audio processing with fully homomorphic
encryption (FHE): client audio is not accessed in plaintext, and can be processed in en-
crypted form. T is the MFCC transformation, g is a combination of subsequent operations
(e.g. a classifier layer) over MFCCs.
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function f . Moreover, contrary to TFHE, CKKS is approximate by design
as it introduces a noise that can corrupt the data Stoian et al. [51].

TFHE and CKKS both represent numbers as integers to perform compu-
tations on encrypted data. To compile a given function f to an equivalent
FHE circuit f̂ , Concrete computes look-up tables which store all possible
intermediate values in computing f̂ as integers rather than floating-point
values. Concrete also enforces a 16-bit limit over all intermediate values of
the circuit in order to keep the FHE duration low. As a result, f must be
quantized to f̃ according to this 16-bit integer limit before being compiled
to f̂ . In the remainder of this work, we refer with a tilde all functions f̃
or tensors X̃ that go through quantization, and with a hat all functions f̂
that are compiled to be FHE compatible. Note that writing the compiled
FHE circuit f̂ always entails that its clear counterpart f was quantized to f̃
before compilation.

2.3. Quantization

FHE constraints of representing numbers as low-bit integers entails the
use of quantization methods which turn high-bit float values into low-bit
integers. Quantization on B bits associates each element of a continuous
or large set (for example, a subset of R) to a smaller, discrete set of size
2B − 1 (for example, J0, 2B − 1K). The transformation of a floating value
to an integer results in loss of information. However, quantization provides
speed gains that are necessary for the compilation of FHE circuits.

In this work, we used the range-based, affine, uniform quantization Kr-
ishnamoorthi [25]. Let [α, β] be the real range of values represented by floats
in the calibration data, and J0, 2B −1K the quantized range. Each float value
x is mapped to a quantized value x̃ in J0, 2B − 1K as follows:

x̃ =

⌊
(x− α)

2B − 1

β − α

⌉
, (2)

where ⌊·⌉ denotes the rounding to the nearest integer operator. Together,
α, β and B are the quantization parameters which define the quantization
operation. The choice of bit width B is a design choice which comes as a
trade-off between loss of precision and gains in memory and speed. On the
other hand, α and β are determined during the calibration process, where
some calibration data representative of the overall input data distribution is
passed to the quantizer to determine quantization parameters. Here, α and
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β are simply taken as the minimum and maximum values in the calibration
data. Thus, the quantization operation defined by α and β can be written as
qD ,B so that x̃ = qD ,B(x) where D is the calibration data. In Equation (2), we
used unsigned integers in the quantization range J0, 2B−1K. In many cases, it
can be preferable to use signed integers. In this case, the quantization range
becomes J−2B−1, 2B−1 − 1K. This is easily performed by substracting 2B−1

in the calculation of x̃ in (2). The operator qD ,B can also be used on data
that has already been quantized, for example when a change of bit width is
required.

2.4. Secure audio processing

To summarize, our goal is to perform secure computation for audio tasks:
time-frequency representations from raw audio, audio descriptors and clas-
sifiers. We decomposed it as the computation of time-frequency representa-
tions denoted by T and subsequent operations denoted by g, which can be
the identity function, an audio descriptor or a learned classifier.

Writing as x the raw audio signal, our goal for private processing of audio
can be written as:

(g ◦ T )(x) ≈ E−1(ĝ ◦ T [E(x)]), (3)

where ĝ ◦ T denotes the FHE circuit equivalent to g ◦T . Note that Equation
(3) is not an equality but an approximation, since the quantization that
occurs before compilation leads to a loss of precision in the outputs.

3. Approximate quantized signal processing

The biggest loss of information to turn a function to its FHE equivalent,
in Equation (3), lies in the quantization that takes place before compiling
Chillotti et al. [8]. The compilation error can be neglected in comparison to

the quantization error. We can consider E−1(ĝ ◦ T [E(x)]) ≈ g̃ ◦ T (x). The

challenge is therefore to reduce the quantization error ∥g̃ ◦ T (x)− g ◦ T (x)∥
as much as possible.

This section focuses on the quantization of T . We first set up a general
framework for analysis, then introduce approximations of the STFT and ex-
plains how they can be used to improve the computation of signal processing
with integers with a limited number of bits. An illustration can be found in
Figure 2.
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3.1. Signal processing operations as neural network operations

The STFT can be seen as a convolution over the signal x with stride
h, kernels of length N , and weights w(n−mh) exp

(−2jπkn
N

)
(Equation (1)).

We cast the STFT computations as neural network operations Cheuk et al.
[7] by leveraging convolutional neural networks. Similarly, we wrote Mel
filterbanks, mel-frequency cepstrum coefficients (MFCCs) and gammatone
filters as neural networks comprised of convolutional layers with fixed ker-
nel weights. This formulation enabled us to use quantization methods with
our signal processing formulation which supports customized bit widths for
input, output and weights of quantized neural network layers, including con-
volutional layers. We used Brevitas Pappalardo [34] for the automatic im-

plementation of quantization, transforming g ◦ T into g̃ ◦ T .

3.2. Selection of quantization parameters

The result of the FHE compilation depends on bit widths parameters
controlling the quantization of the model: they are like hyperparameters of
the FHE model. For each experiment, we used a grid search to find the set of
parameters that leads to the best performances. Each layer can be controlled
with its specific bit width parameters. To simplify the grid search, we used
only 4 bit width parameters for the quantization of the time-frequency rep-
resentations. The repartition of the 4 bit widths parameters in the STFT is
shown in Figure 2: parameters Bi, Bo, Bw, Bm respectively control the quan-
tization of the inputs, outputs, convolution weights and intermediary values.
We did the same with Mels, MFCCs and gammatone filters intermediate
computations.

3.3. Quantization of neural networks heuristics

To understand how to reduce the quantization accuracy loss while respect-
ing the 16-bit constraint, it is useful to consider the relationship between: the
output bit width of a layer, the bit width of its inputs and weights in the
worst case scenario.

With m and k fixed in Equation (1), the STFT computations amount to
a scalar product between a convolution kernel and the input signal.

For a generic kernel w of size L and input vector x of size L, we write
y the result of the dot product between w = (w(1), . . . , w(L)) and x =
(x(1), . . . , x(L)):
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y =
L−1∑
l=0

x(l)w(l).

Assuming that all x(l) are encoded on N bits and all w(l) are encoded on M
bits, also assuming the worst case scenario where every x(l) = 2N − 1 and
every w(l) = 2M − 1, we deduce the number of bits N ′ needed to encode y:

N ′ =
⌈
log2

(
L(2N − 1)(2M − 1)

)⌉
. (4)

The insight we get from Equation (4) is that by reducing L (i.e. introducing
zeros in the convolution kernel) or reducing N or M (i.e. quantizing more ag-
gressively the input or the kernel weights), we can decrease the N ′ value and
avoid overflow of the accumulator. Thus introducing zeros in the convolution
kernel of the STFT or reducing the number of bits necessary to encode the
intermediate values allows us to use more bits in the quantization of either
the audio inputs or the rest of the kernel weights.

Our strategies for strategically inserting zeros in the convolution kernel
are inspired by common neural network operations and relate to sparsity
structure theory in convolutional neural networks Mao et al. [27]. Two of
our approximations, namely frequency dependent windows and dilation, fall
in the category of so-called fine-grained, 0-D sparsity since they affect the
kernels at the individual weights level. In contrast, what we introduce as
cropping refers to more coarse, kernel-level 2-D sparsity.

We introduced approximations T ′ of the STFT so that the goal described
in Equation (3) becomes

(g ◦ T )(x) ≈ E−1(ĝ ◦ T ′[E(x)]). (5)

Using T ′ rather than T could save unnecessary bit computation in the quan-
tization stage and allow an increase in bit widths while still respecting the
16-bit integer constraint. While it would introduce an error between spec-
trograms ∥T (x)− T ′(x)∥ > 0, it could decrease the loss due to quantization
so that

∥g̃ ◦ T ′(x)− g ◦ T ′(x)∥ ≤ ∥g̃ ◦ T (x)− g ◦ T (x)∥. (6)

If this loss decrease proves significant, using the approximate audio transfor-
mation T ′ could lead to FHE computations that are more accurate to their

11



Figure 2: Top: conventional computation of the spectrogram, or squared magnitude of
the STFT. Bottom: our quantized approximate formulations of the STFT energy.

clear counterparts. However, it is computationally expensive to compute this
loss theoretically for any circuits as it is partially data-dependent. Therefore
it is hard to know which approximations can lead to better performance.

Optimizing bit usage in the STFT computation can increase the accuracy
for the other time-frequency operators (Mel filterbanks, MFCCs, gammatone
filters) because they are all based on the STFT. The remainder of this section
describes the approximations of the STFT that we use.

3.4. Convolution dilation

The first approximation is based on the premise that downsampling can
lead to a sparse STFT convolution kernel without compromising the struc-
tural integrity of the signal. This common approximation uses dilated con-
volutions Yu and Koltun [57] and applies them to the STFT formulation as
a convolution operator. It consists in skipping samples of the signal at a
chosen rate in the computation of the STFT. With a dilation of factor d,
one sample is used every d samples. We use the Shannon-Nyquist sampling
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(a) STFT with FHE (b) Mel with FHE (c) MFCC with FHE
(d) Gammatone with
FHE

(e) Clear STFT (f) Clear Mel (g) Clear MFCC (h) Clear Gammatone

Figure 3: Comparison of log-scale spectrograms with FHE-friendly transformation corre-
sponding to lowest Euclidean distance, of a given audio from the Vocalset dataset.

theorem, which states that the sample rate of a signal must be at least twice
the bandwidth of the signal to avoid aliasing, as a heuristic to derive the
following maximum dilation rate in each frequency bin:

dk =

⌊
fs
2fk

⌋
=

⌊
N

2(k + 1)fs
· fs

⌋
=

⌊
N

2(k + 1)

⌋
,

with fs the sample rate and fk the upper frequency of the k-th frequency
bin.

The dilated STFT approximation is defined as:

X(d)(m, k) :=
M−1∑
n=0

x(n)w(n−mh)e−
2jπkn

N 1n≡0[min(d,dk)]. (7)

where

1n≡0[min(d,dk)] =

{
1 if n is a multiple of min(d, dk)

0 otherwise.

From Equation (7), the error formulations reads as:∣∣X(m, k)−X(d)(m, k)
∣∣ = ∣∣∣∣∣

M−1∑
n=0

x(n)w(n−mh)e−
2ikπn

N

(
1− 1n≡0[min(d,dk)]

)∣∣∣∣∣ .
(8)
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From Equation (8) it is clear that when d increases, more noise from other
frequency bins is injected. This is especially the case for lower frequencies as
they correspond to a higher maximum dilation rate dk.

In particular, the STFT approximation with maximal frequency-dependent
dilation can be written as Xdil := X(dk).

3.5. Frequency-dependent windows

In the conventional STFT, a uniform window is applied across all fre-
quency bins, which makes the window width completely frequency indepen-
dent. The resolution in time and frequency strongly relates to the window
width through the well-known time-frequency tradeoff. Intuitively, a signal
has to be observed for a certain amount of time (the window has to be a
certain width) to witness at least one oscillation of the signal and get an idea
of its frequency. As a result, higher time resolution leads to lower frequency
resolution, and vice-versa.

At higher frequencies, less time is needed to observe signal oscillations.
Variable window transforms such as the Constant-Q Transform (CQT) Brown
and Puckette [5] make use of this fact and introduce narrower windows for
higher frequencies in order to optimize the time-frequency tradeoff at each
frequency bin. We took inspiration from the CQT to define frequency-
dependent window widths, with padding applied as necessary to maintain
frame length (i.e. kernel size) consistency.

In this section, we define the frequency-dependent variable window as:

N fd(k) = min
(
N,Nmin

fmax

fk

)
, with fmax the maximum frequency of the spec-

trogram, N the highest window width we choose to allow and Nmin the
smallest window width. N and Nmin are parameters to choose. From this
formula, it is clear that at the lowest frequencies, the window width is equal
to N , and that at the highest frequency, it is equal to Nmin. Therefore, the
corresponding approximate STFT formulation can be written as:

Xfd(m, k) :=
M−1∑
n=0

x(n)wk(n−mh)e−
2jπkn

N ,

with wk(n) =
1

2

(
1− cos

2πn

N fd(k)− 1

)
1N−Nfd(k)

2
≤n≤N+Nfd(k)

2

.
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The STFT error formulation is:

|X(m, k)−Xfd(m, k)| =

∣∣∣∣∣
M−1∑
n=0

x(n)e−
2ikπn

N (w − wk) (n−mh)

∣∣∣∣∣ ,
where

(w − wk)(n−mh) =

{
1
2

(
cos 2πn

N−1
− cos 2πn

Nfd(k)−1

)
if N−Nfd(k)

2
≤ n ≤ N+Nfd(k)

2

−w(n−mh) otherwise.

This error formulation distinguishes two types of approximation errors: the
padding error−w(n−mh) due to the added zeros in order to keep a consistent

frame length, and the narrowing error 1
2

(
cos 2πn

N−1
− cos 2πn

N(k)−1

)
due to the

narrower window functions, which increase resolution in time but decrease
resolution in frequency due to the time-frequency tradeoff. Our intuition
is that the windows only get narrow at high frequencies, and the loss of
resolution is not too drastic.

3.6. Poorman’s formulation
We propose to use the poorman’s DFT Lamoureux [26] formulation of the

DFT, a reduction of the frequency granularity. The idea is to project each
complex integral e−2jπn k

N on the set {1,−1, j,−j}. With that approximation,
the only operations that act on the input signal are changes in sign and/or
conjugation. When applying this to our STFT computation, it means that
more bits can be used to encode the window function, the input or the next
layers. This approximation consists not in the insertion of zeros but rather
in the targeted quantization of part of the STFT computation.

To generalize the poorman’s process, we proposed to project each complex

integral on a bigger set
{
e−2jπ l

L , l < L
}

where L is an integer. The original

formulation corresponds to L = 4. We denote by pL : U → UL the projection
from the unit circle to UL and define the poorman’s STFT as

XL(m, k) :=
M−1∑
n=0

x(n)w(n−mh)pL

(
e−

2jπkn
N

)
. (9)

We derived the following upper bound on the STFT error in appendix Ap-
pendix A.2:

∣∣X(m, k)−XL(m, k)
∣∣ ≤ 2

∣∣∣sin π

2L

∣∣∣
√√√√M−1∑

i=0

(x(i)w(i−mh))2.
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We obtained a k-independent upper bound for the error, that vanishes to
zero when L goes to infinity.

3.7. l1 energy

The computation of the module of the X vector implies the squaring of
its real and imaginary parts. This operation is costly: in the worst case
scenario, the number of bits needed to represent the output is twice the
number of bits used for the input. A workaround is to approximate the
spectral density by replacing |X|2 with ∥X∥l1 := |ℜ(X)| + |ℑ(X)|, which
only leads to one additional bit to represent the output in the worst case
scenario. In this case the error is simply∣∣|X|2 − ∥X∥l1

∣∣ = ∣∣ℜ(X)2 + ℑ(X)2 − |ℜ(X)| − |ℑ(X)|
∣∣

3.8. Cropping

Another way to insert zeros in the STFT kernel is to set all STFT coef-
ficients to 0 in a certain range of frequencies, i.e. to compute the STFT in a
narrower range of frequencies.

We defined the cropping frequencies approximation, which consists in
setting all STFT coefficients exp

(
−2jπkn

N

)
to 0 where fk /∈ [fmin, fmax], with

fmin and fmax hyperparameters to choose. Thus the STFT error at each time
m and frequency k is simply

|X(m, k)−Xcrop(m, k)| = |X(m, k)| (1fk>fmax + 1fk<fmin
)

Our heuristic is that in voice, most of the important information contained
in the signal comes from the lower frequencies, so we chose as parameters
fmin = 0 and fmax = 1000 Hz.

4. Experimental setup

Our goal is to compute quantized, FHE-compatible, approximate time-

frequency representations securely with E−1(ĝ ◦ T ′[E(x)]) (Equation (5)). In
Section 3 we focused on the quantization of T . In this section, we present our
experiments with different g functions. In our experiments, we evaluated the

fidelity of the secure computation E−1(ĝ ◦ T ′[E(x)]) to its clear counterpart
(g ◦ T )(x), where g is the identity function, an audio descriptor computing
statistics over the spectrograms, or a learned classifier. Additionally, we
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compared the different approximations of the STFT and determined whether
they provide an increase in accuracy compared to the baseline.

To assess the quality of the secure computation to its clear counterpart, we
considered both intrinsic (based on raw spectrograms) and extrinsic (based
on downstream tasks such as audio descriptor computation or classification
accuracy) performance. We considered the four audio transformations men-
tioned in Section 2.1, all based on the standard STFT or its approximate
counterpart, and multiple audio descriptors.

4.1. Metrics

4.1.1. Intrinsic metric

We used an intrinsic metric to measure the distance between FHE and
clear spectrograms (g = Id). Specifically, we used the 2D Euclidean distance
between spectrograms normalized by their L2 norm, to emphasize the repar-
tition of the energy throughout the spectrogram rather than the raw energy
values.

4.1.2. Audio descriptors

We computed several audio descriptors in FHE over secure spectrograms:

• the average of the standard deviation over time of the energy for each
frequency bin, for Mel or Gammatone features,

• the mean over time of the root-mean-square (RMS) values, computed
over the STFT spectrogram

• the standard deviation over time of the RMS values, computed over
the STFT spectrogram.

Computing audio descriptors over spectrograms indicates how much of
the spectrogram information necessary to compute the audio descriptor was
preserved by FHE. Additionally, it provides a harsher quantization challenge
than the previous task, since more operations are performed, on top of time-
frequency representations. We computed the mean of standard deviations for
Mel filterbanks and Gammatones, quantifying potential source disturbances
in vowels Quatieri and Malyska [40], Riad et al. [43]; and we computed RMS
statistics as commonly used in various paralinguistic tasks Eyben et al. [12].
The compiled model outputs all 4 audio descriptors in one tensor, so they are
required to be quantized with the same parameters. Since the scales of values
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of the audio descriptors can be different, we normalized before concatenation
and the common quantization of the descriptors to avoid unnecessary loss of
precision. We computed constants during the calibration process and used
them at inference time to simulate regular normalization.

For a given T ′ (conventional or approximation of the STFT), we selected
best bit width parameters Bi, Bo, Bw and Bm with the Pearson correlation
coefficient between the outputs of the FHE and clear descriptors. To compare
approximations against each other, we performed an in-depth evaluation of
false discovery and missing discovery rates. We compared the results of
statistical tests performed using clear and FHE outputs. Specifically, we
computed the audio descriptors for all audio classes in both datasets using
both FHE and clear computation. Then, we performed a Mann-Whitney U
test on the audio descriptors from each pair of audio classes in both FHE and
clear computation. A high-fidelity FHE audio descriptor is expected to yield
p-values for these statistical tests that are similar to the p-values obtained
with the audio descriptor in clear. We defined a true positive as a pair
of audio classes where the FHE computation maintains the statistical test
separation (p < 0.05) observed in the clear computation. Conversely, a false
negative occurs when the FHE computation fails to preserve this separation.
True negatives and false positives were defined similarly. By calculating the
error rate (sum of false discovery and missed discovery) introduced by FHE,
we gauged the accuracy of the FHE audio descriptors. We illustrated this
evaluation for a given marker in Figure 4 left, and a specific comparison of
Clear and FHE statistical test on Figure 4 right.

4.1.3. Classification

Finally, we performed gender and vocal exercise classification. We trained
a convolutional neural network (CNN) to classify audios either in the clear
or in FHE, and compared the obtained accuracies. We used a CNN architec-
ture containing two convolutional blocks with respectively 8 and 16 filters,
ReLU activations and batch normalizations, a max-pooling layer and two
fully connected layers separated by ReLU activations. We used a batch size
of 32 for gender classification and 16 for vocal exercise classification, and
an Adam optimizer with a learning rate of 10−3 for 10 to 20 epochs. We
performed quantization-aware training, meaning we trained the quantized
network directly instead of performing post-training quantization.
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4.2. Datasets

We used two real-world audio datasets for the experiments: VocalSet
Wilkins et al. [56] and OxVoc Sounds databases Parsons et al. [35].

The VocalSet database consists of 10 hours of 11 male and 9 female profes-
sional singers performing 4 vocal exercises each with different variations. We
considered gender classes and vocal exercise classes (arpeggios, scales, long
tones and song excerpts) for the classification task. For replication of sta-
tistical tests with audio descriptors, we considered more fine-grained classes:
we performed statistical tests over all pairs of variations inside each vocal
exercise, which amounts to 144 pairs of audio classes (See Annex for full list
of variations for all 4 vocal exercises).

The OxVoc Sounds database consists of 173 spontaneous non-verbal vocal
sounds from infants, adults and domestic animals. Human sounds comprise
natural expressions of happy, neutral and sad emotions. For adults, sounds
are further subdivided by the gender of the speaker. We did not consider
this dataset for the CNN classification task, as its size is not sufficient. For
the task of replicating statistical tests with audio descriptors, we considered
pairs of gender categories in each adult emotion class, pairs of overall speaker
categories (infant, adult or animal), and speaker subcategories (happy, sad
and neutral for humans, cats and dogs for animals), which amount to 27
pairs of audio classes.

For computing FHE spectrograms and audio descriptors, we split each
dataset into calibration and evaluation sets by selecting 10% of the dataset
for calibration and the remaining 90% for evaluation. We used stratified
sampling to make sure the class proportions remained consistent with those
of the entire dataset. For classification, we also used stratified sampling to
split the VocalSet dataset into train and test sets, using 80% of the data to
train and 20% to test.

5. Results and discussions

Our results are presented in increasing order of interest towards recent
audio processing tasks. First, we examined intrinsic metrics over FHE spec-
trograms. Then, we examined the statistical properties of FHE audio de-
scriptors, meaning that the compiled FHE model outputs not only one audio
descriptor but a vector composed of all audio descriptors. This necessitated
a deeper FHE circuit and put harsher constraints on the quantization of the
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model. Finally, we built and evaluated classifiers to output classes directly
from private audio.

Figure 4: Example of a scatter plot of p-values computed in clear or in FHE with the
conventional STFT formulation. Only the mean of gammatone standard deviations (M-
GStds) audio descriptor is plotted. The data is from VocalSet. The arrow points to
statistical tests in clear and FHE for the pair of audio classes (”scales slow forte”, ”scales
vocal fry”).

5.1. Intrinsic metric results

We displayed in Figure 3 all 4 time-frequency representations for audio
extracted from the Vocalset dataset, both in clear and with FHE using the
conventional STFT. Qualitatively, although the harmonics are lost above
4000 Hz, some of the patterns in lower frequencies are preserved in the spec-
trograms. We also showed in Table 1 the means, standard deviations and
ranges of the average 2D Euclidean distance between the normalized clear
and FHE spectrograms for each dataset.

As shown qualitatively in Figure 3, the MFCC time-frequency representa-
tion suffered the most from the quantization necessary to compile the model,
as it showed the highest 2D Euclidean mean distance on both datasets. On
the other hand, the three other audio transformations showed relatively low
distances consistent across both datasets. Yet, for STFT, Mel filterbanks and
Gammatones, there were outliers (maximum values above 1) in both datasets
even though the mean and standard deviation remain low under 20%.
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Audio
features

VocalSet OxVoc

Mean ± Std Range Mean ± Std Range

STFT 0.13± 0.14 [0.00, 1.38] 0.13± 0.17 [0.02, 1.37]
Mel 0.18± 0.19 [0.00, 1.38] 0.13± 0.16 [0.02, 1.21]
MFCC 0.78± 0.16 [0.31, 1.45] 0.85± 0.17 [0.41, 1.53]
GammaT 0.18± 0.19 [0.01, 1.41] 0.15± 0.19 [0.03, 1.21]

Table 1: 2D Euclidean distances including mean ± standard deviation and range for either
VocalSet or OxVoc Sounds datasets, between normalized clear and FHE spectrograms.
GammaT stands for Gammatones.

5.2. FHE audio descriptors

Figure 4 illustrates our results for the mean of gammatone standard de-
viations (M-GStds) audio descriptor with the conventional STFT approach,
and shows the statistical test results for a false negative example. We showed
in Table 2 and in Table 3 the full examination of error rates of the conven-
tional STFT with FHE, in comparison to our introduced approximation. We
displayed the total number and error rates (sum of false positives and false
negatives) for the VocalSet Singing dataset and the OxVoc Sounds dataset.

We found out that (Table 2, Table 3) that the conventional STFT ap-
proach is making some errors but remain low, as it only lead to mean error
rates of 5.9% and 6.5% for VocalSet and OxVoc respectively. Secondly, the
poorman’s transform approach improved upon the baseline in both datasets
in its original formulation (L = 4 quantized angles) by achieving mean error
rates of 4.9% and 3.7% for VocalSet and OxVoc respectively. The dila-
tion approach also outperformed the baseline conventional STFT, especially
with dilation factor 4 which turned out to be the best approach across both
datasets (mean error rates 4.7% and 1.9% for VocalSet and OxVoc respec-
tively). In contrast, other approaches such as cropping, frequency-adapted
windows or L1 energy lead to worse results.

5.3. Classification in FHE

Finally, our spectrogram-based classification results are presented in Ta-
ble 4 and in Table 5.

Binary gender classification accuracies in FHE stayed close to the accura-
cies in clear audio, ranging from 0.86 to 0.89 in FHE compared to 0.90 to 0.94
in clear audio. The performance was less sensitive to audio representation.
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STFT
formulation

Mean Gammatone stds Mean Mel stds

VocalSet
(n = 144)

OxVoc
(n = 27)

VocalSet
(n = 144)

OxVoc
(n = 27)

Conventional STFT 10.4 (15) 7.4 (2) 9.0 (13) 7.4 (2)

Poorman L = 4 9.0 (13) 3.7 (1) 8.3 (12) 3.7 (1)
Poorman L = 6 11.1 (16) 3.7 (1) 9.0 (13) 0.0 (0)
Poorman L = 8 12.5 (18) 0.0 (0) 8.3 (12) 0.0 (0)

Dilation d = 2 13.9 (20) 3.7 (1) 15.3 (22) 0.0 (0)
Dilation d = 3 6.9 (10) 11.1 (3) 10.4 (15) 14.8 (4)
Dilation d = 4 8.3 (12) 0.0 (0) 8.3 (12) 3.7 (1)
Dilation d = 5 7.6 (11) 7.4 (2) 7.6 (11) 7.4 (2)
Dilation d = dk 13.9 (20) 29.6 (8) 16.7 (24) 33.3 (9)

FreqAW 11.8 (17) 25.9 (7) 10.4 (15) 22.2 (6)

L1 29.2 (42) 37.0 (10) 24.3 (35) 44.4 (12)

Cropping 10.4 (15) 3.7 (1) 9.0 (13) 37.0 (10)

Table 2: Error rates for statistical tests with FHE for Mean Gammatone and Mean Mel
standard deviations on VocalSet and OxVoc Sounds datasets, over different approxima-
tions. n is the total number of statistical tests for pairs of audio classes. The absolute sum
of false positives and false negatives is in parentheses. The best approach for each marker
and dataset is bolded. Cropping was performed with 1kHz. d = dk stands for choosing
the maximum dilation rate dk at each frequency bin k. FreqAW stands for frequency-
adapted windows, performed with Nmin = 80.

On the other hand, for the more challenging 4-class vocal exercise classifica-
tion, the audio representation choice mattered more and our approximations
helped to get closer to the clear computation. Dilation for the vocal exercise
classification was the best for STFT, mel filterbanks and MFCCs. Overall
though, these results still suggest that FHE time-frequency representations
effectively preserve some, if not much of the information needed for both
speaker gender and vocal exercise classification. Approximations could be
useful for some computational tasks.

5.4. Post-hoc analysis

We displayed in Figure 5 the distribution of bit width parameters in our
best-performing quantized models. On average, convolution weights used
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STFT
formulation

Std RMS Mean RMS

VocalSet
(n = 144)

OxVoc
(n = 27)

VocalSet
(n = 144)

OxVoc
(n = 27)

Conventional STFT 2.8 (4) 11.1 (3) 1.4 (2) 0.0 (0)

Poorman L = 4 1.4 (2) 7.4 (2) 0.7 (1) 0.0 (0)
Poorman L = 6 2.1 (3) 18.5 (5) 1.4 (2) 3.7 (1)
Poorman L = 8 1.4 (2) 11.1 (3) 0.7 (1) 0.0 (0)

Dilation d = 2 1.4 (2) 7.4 (2) 0.7 (1) 0.0 (0)
Dilation d = 3 9.7 (14) 7.4 (2) 6.3 (9) 0.0 (0)
Dilation d = 4 2.1 (3) 3.7 (1) 0.7 (1) 0.0 (0)
Dilation d = 5 3.5 (5) 7.4 (2) 4.9 (7) 3.7 (1)
Dilation d = dk 16.7 (24) 37.0 (10) 26.4 (38) 18.5 (5)

FreqAW 6.9 (10) 29.6 (8) 7.6 (11) 3.7 (1)

L1 31.3 (45) 25.9 (7) 22.9 (33) 0.0 (0)

Cropping 2.8 (4) 7.4 (2) 1.4 (2) 0.0 (0)

Table 3: Error rates for statistical tests with FHE for Std RMS and Mean RMS on
VocalSet and OxVoc Sounds datasets, over different approximations. n is the total number
of statistical tests for pairs of audio classes. The absolute sum of false positives and false
negatives is in parentheses. The best approach for each marker and dataset is bolded.
Cropping was performed with 1kHz. d = dk stands for choosing the maximum dilation rate
dk at each frequency bin k. FreqAW stands for frequency-adapted windows, performed
with Nmin = 80. .

significantly lower bit widths, representing only about 15% of the total bud-
get. In contrast, bit widths controlling the output quantization represented
more than 35% of the total budget on average. This suggests a heuristic for
optimal quantization parameters: choosing higher bit widths on activations
and lower bit widths on weights leads to better performances. This aligns
with our observation that the poorman’s transform, an extreme quantization
of STFT coefficients, outperformed the baseline, and other approximations.

5.5. Limitations

The quantization needed to compile models to FHE entails the loss of
harmonics: as seen in Figure 3, the energy of frequency bins above 4000
Hz is quantized to 0 for the STFT, Mel filterbanks and gammatone filters.
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Features Clear Conventional Poorman Dilation

STFT 0.93± 0.01 0.89± 0.01 0.82± 0.02 0.88± 0.01
Mel 0.93± 0.01 0.86± 0.02 0.84± 0.01 0.82± 0.01
MFCC 0.90± 0.02 0.86± 0.04 0.83± 0.01 0.79± 0.01
GammaT 0.94± 0.01 0.89± 0.02 0.83± 0.02 0.82± 0.01

Chance 0.52

Table 4: Mean and standard deviation of the test set accuracies for binary gender clas-
sification obtained with Clear, FHE, Poorman, or Dilation classifiers, across 5 runs with
different seeds. Experiments are done on VocalSet. GammaT stands for Gammatones.
The best approach for each audio representation is bolded. The ”Chance” classifier is a
dummy classifier that always predicts the majority class.

Features Clear Conventional Poorman Dilation

STFT 0.62± 0.02 0.54± 0.03 0.50± 0.04 0.59± 0.01
Mel 0.63± 0.01 0.41± 0.01 0.42± 0.01 0.50± 0.02
MFCC 0.56± 0.01 0.53± 0.00 0.50± 0.01 0.54± 0.01
GammaT 0.68± 0.01 0.63± 0.01 0.63± 0.01 0.62± 0.02

Chance 0.39

Table 5: Mean and standard deviation of the test set accuracies for 4-class vocal exercise
classification obtained with Clear, FHE, Poorman, or Dilation classifiers, across 5 runs with
different seeds. Experiments are done on VocalSet. GammaT stands for Gammatones.
The best approach for each audio representation is bolded. The ”Chance” classifier is a
dummy classifier that always predicts the majority class.

Another limitation of this work is that we did not implement very deep
models that tackle speech processing tasks such as speech recognition or
speaker diarization. Additionally, it would be insightful to extend our study
to more extensive and complex datasets containing noisy speech and acoustic
events.

Finally, although it is not a limitation of our method per se, the current
main drawback of FHE is its inference speed. Computing the STFT over a
64 ms long audio in FHE took 12970 seconds on a Apple M2 chip with 8
cores, but only 0.004 seconds in the clear on the same machine.
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Figure 5: Distributions of bit width controlling the input quantization (Bi), output quan-
tization (Bo), weights of convolutions (Bw) and intermediary activations (Bm), in the
best-performing models for all approaches, datasets and tasks.

6. Conclusion

In this work, we provided the first secure raw audio processing pipeline us-
ing fully homomorphic encryption. We successively demonstrated the validity
of our approach across increasingly difficult tasks: first the computation of
four standard time-frequency representations, then the computation of four
audio descriptors over different representations in one single model, and fi-
nally the training of end-to-end privacy-preserving CNN classifiers for both
binary and multi-class classification. We further improved the performance of
FHE audio descriptors and FHE classifiers by introducing approximations of
time-frequency representations which optimize the quantization of our mod-
els. Research on improving fully homomorphic encryption algorithms toward
production is blooming with projects such as Google’s HEIR hei [1], sharing
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compilers to facilitate FHE compilation at scale.
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Appendix A. STFT approximations

Appendix A.1. Calculations for dilation
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Appendix A.2. Calculations for poorman’s transform

We have

|X(m, k)−XL(m, k)| =
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By definition of pL,
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Finally, using the Cauchy-Schwarz theorem,
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