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Abstract

Local Differential Privacy (LDP) has been widely recognized as a

powerful tool for providing a strong theoretical guarantee of data

privacy to data contributors against an untrusted data collector.

Under a typical LDP scheme, each data contributor independently

randomly perturbs their data before submitting them to the data

collector, which in turn infers valuable statistics about the origi-

nal data from received perturbed data. Common to existing LDP

mechanisms is an inherent trade-off between the level of privacy

protection and data utility in the sense that strong data privacy

often comes at the cost of reduced data utility. Frequency estima-

tion based on Randomized Response (RR) is a fundamental build-

ing block of many LDP mechanisms. In this paper, we propose a

novel Joint Randomized Response (JRR) mechanism based on cor-

related data perturbations to achieve locally differentially private

frequency estimation. JRR divides data contributors into disjoint

groups of two members and lets those in the same group jointly

perturb their binary data to improve frequency-estimation accu-

racy and achieve the same level of data privacy by hiding the group

membership information in contrast to the classical RR mechanism.

Theoretical analysis and detailed simulation studies using both real

and synthetic datasets show that JRR achieves the same level of

data privacy as the classical RR mechanism while improving the

frequency-estimation accuracy in the overwhelming majority of

the cases by up to two orders of magnitude.

Keywords

local differential privacy, randomized response, frequency estima-

tion

1 Introduction

Differential privacy [18] is widely considered as the de facto frame-

work for providing strong theoretical guarantee of data privacy.

Recent years have also witnessed significant interests in developing

data analysis techniques for ensuring differential privacy in the

local setting, commonly referred to as Local Differential Privacy

(LDP) [15]. A local differential privacy mechanism protects indi-

vidual data contributors’ data privacy against an untrusted data
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collector by having each data contributor randomly perturb their

data value before submission while allowing the data collector

to learn valuable statistics of the contributors’ data. In addition

to significant interests from academia, LDP techniques have seen

growing adoption by industry for various data analysis applica-

tions. For example, Google has deployed RAPPOR [20] into Chrome

to privately collect individual web browsing behavior. As another

example, Apple adopts LDP algorithms [5] in Safari for privacy-

preserving collection of users’ typing history to better understand

user behaviors.

Significant efforts have been made to achieve a good utility-

privacy trade-off for various data analysis tasks. In particular, all

existing LDP mechanisms exhibit a natural trade-off between data

privacy and data utility at the data collector because strong data

privacy for individual data contributors often comes at the cost of

reduced data utility [15, 41]. Therefore, a major focus of current

research is to design LDP mechanisms that achieve higher data

utility without sacrificing privacy guarantees for individual contrib-

utors. For example, several recent proposals [6, 8, 12, 19, 33] show

that it is possible to improve privacy protection while reducing

the amount of noise needed by having an auxiliary server shuffle

data contributors’ perturbed data before sending them to the data

collector. Other proposed approaches include parameter optimiza-

tion [26, 49], developing advanced encoding schemes [7, 20, 25],

random perturbation schemes and estimators [35, 49], interactive

data collection schemes [60], cryptography-assisted solutions [41],

post-processing techniques [21, 53], etc.

Frequency estimation is a classical data analysis problem in

which the data collector aims to learn the number (or ratio) of data

contributors with a certain attribute or possessing a particular data

value. Randomized Response (RR) [55] is the first known and most

classical LDP protocol for frequency estimation. Since frequency

estimation is used in many other data analysis tasks such as heavy

hitter estimation, mean value estimation, and range queries, RR

is also widely used as a fundamental building block in many LDP

mechanisms for these tasks [7, 13, 46, 50–52]. Common to these

solutions is that every data contributor independently perturbs

his/her data before submitting them to the data collector. An open
question is whether it is possible to improve data utility of RR-based
LDP mechanisms without loss of LDP guarantees by introducing
correlations among the random perturbations performed by different
data contributors.

In this paper, we make the first attempt to explore correlated

random perturbations for frequency estimation to improve data
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utility without any sacrifice of LDP guarantees. We observe that

it is possible to achieve much higher data utility in terms of esti-

mation accuracy at the data collector by randomly dividing data

contributors into disjoint groups of two and introducing carefully

crafted correlations to each group’s random perturbations. At the

same time, no additional information can be inferred as long as

the group membership is kept secret from the data collector. Based

on these observations, we introduce a novel Joint Randomized

Response (JRR) mechanism for locally differentially private fre-

quency estimation. By carefully tuning the parameters, JRR can

achieve significantly higher data utility in the overwhelming ma-

jority of cases while offering the same level of LDP protection as

the classical RR mechanism.

Our contributions in this paper can be summarized as follows.

• We are the first to explore correlated random perturbations

for frequency estimation to improve data utility at the data

collector without sacrificing LDP guarantee for individual

data contributors.

• We introduce a general Joint Randomized Response (JRR)

mechanism that achieves the same level of LDP protection

as the classical RR mechanism, while improving the data

utility in an overwhelming majority of the cases, especially

for a large number of data contributors.

• We present a practical instantiation of JRR by utilizing a

non-colluding auxiliary server.

• We thoroughly evaluate JRR via a combination of theoretical

analysis and detailed simulation studies using both real and

synthetic datasets. Our results show that JRR outperforms

the classical RR mechanism for over 97% of the possible

frequencies and improve the estimation accuracy by as much

as two orders of magnitude.

The rest of the paper is structured as follows. Section 2 presents

the problem formulation and reviews LDP and the RR mechanism.

Section 3 uses two examples to demonstrate the impact of corre-

lated random perturbations. Section 4 introduces a general JRR

mechanism, its performance analysis, and a practical instantiation.

Section 5 evaluates the performance of JRR. Section 6 discusses

related work. Section 7 concludes this paper and points out several

future research directions.

2 Preliminaries

In this section, we formulate the problem and then reviews LDP

and the RR mechanism.

2.1 Problem Formulation

We consider a system consisting of a data collector and a set of

data contributorsU = {𝑢1, 𝑢2, · · · , 𝑢𝑛}. Each contributor has a bi-

nary value 𝑥𝑖 ∈ 𝐷 = {0, 1}, and the data collector wants to learn

the number of data contributors having value 𝑣 for each 𝑣 ∈ 𝐷 .

Data contributors are concerned about their data privacy. As a re-

sult, instead of submitting the original value 𝑥𝑖 , each contributor

𝑢𝑖 randomly perturbs his/her value using a random perturbation

mechanismM and submits the perturbed value 𝑦𝑖 =M(𝑥𝑖 ) to the

data collector. After receiving the perturbed data from 𝑛 contribu-

tors, the data collector estimates the number of data contributors

having value 𝑣 for each 𝑣 ∈ 𝐷 .

We assume the data collector is honest but curious, meaning it

faithfully carries out system operations but is interested in infer-

ring the original data values of the contributors. Specifically, we

assume the data collector will not register or create fake contrib-

utor accounts to participate in data collection, as doing so would

risk damaging its business reputation if detected. Moreover, we

assume that normal data contributors are concerned about their

data privacy and will not disclose their original data values to the

data collector. Even if a few data contributors collude with the data

collector, we assume that the number of such contributors does not

exceed a predefined threshold 𝑀 , e.g., a small fraction of all the

contributors.

We seek to design a locally differentially private frequency esti-

mation scheme that enables the data collector to estimate 𝑛𝑣 with

high accuracy while providing individual contributors with the

same 𝜀-LDP guarantee as the classical RR mechanism.

2.2 Local Differential Privacy

Local Differential Privacy (LDP) is considered a gold standard for

privacy-preserving data collection against an untrusted data col-

lector. It requires a perturbation mechanism that provides enough

randomness to the private data.

Definition 1 (Local Differential Privacy). A random-
ized mechanismM : X → Range(M) satisfies 𝜀-LDP if

Pr[M(𝑥) = 𝑦]
Pr[M(𝑥 ′) = 𝑦] ≤ 𝑒𝜀 , (1)

for any inputs 𝑥, 𝑥 ′ ∈ X and any output 𝑦 ∈ Range(M), where
Range(M) is the output range ofM.

Here 𝜀 is a parameter controlling the level of privacy protection

commonly referred to as privacy budget. The smaller the 𝜀, the

stronger the privacy protection, and vice versa. Intuitively, 𝜀-LDP

means that by observing the output𝑦, the data collector cannot infer

whether the input is 𝑥 or 𝑥 ′ with high confidence, which provides

contributors submitting sensitive data with plausible deniability.

2.3 Review of Randomized Response

Randomized Response (RR) [55] was originally proposed to provide

plausible deniability to interviewees answering a sensitive boolean

question in a survey. Under RR, each interviewee reports the answer

truthfully with probability 𝑝 (the opposite answer with 𝑞 = 1 − 𝑝).
RR mechanism satisfies 𝜀-LDP if 𝑝 ≤ 𝑒𝜀/(1 + 𝑒𝜀 ).

Assume that the total number of data contributors is 𝑛 and that

𝑛𝑣 contributors have value 𝑣 for each 𝑣 ∈ 𝐷 . Suppose that the data
collector receives 𝐼𝑣 perturbed value 𝑣 . The data collector estimates

the number of data contributors having value 𝑣 as

�̂�𝑣 =
𝐼𝑣 − 𝑛𝑞
𝑝 − 𝑞 , (2)

which is an unbiased estimator of 𝑛𝑣 [49, 55].

The data utility of RR is commonly measured by the variance of

the unbiased estimator �̂�𝑣 , which is given by

Var[�̂�𝑣] =
Var[𝐼𝑣]
(𝑝 − 𝑞)2

=
𝑛𝑝𝑞

(𝑝 − 𝑞)2
. (3)
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Table 1: Joint probability distribution in Example 2.

𝑇1 = 1 𝑇1 = 0

𝑇2 = 1 0.61 0.19

𝑇2 = 0 0.19 0.01

3 Impact of Correlation Among Data

Contributors

In this section, we discuss the potential impact of introducing cor-

relations among the random perturbations performed by different

data contributors on data privacy and data utility through examples.

The data utility of LDP protocols such as [49, 55], is commonly

measured by the variance of the estimator of the value of interest.

A smaller variance indicates higher data utility. Traditional LDP

protocols involve each contributor independently perturbing their

data. Consequently, the estimator of an LDP protocol is reduced

to the sum of the individual contributors’ reported values, and its

variance is proportional to the sum of the variances of individual

reported values.

We find that if multiple contributors jointly perturb their data,

the variance of the estimator also depends on the covariance of the

jointly perturbed values. By carefully designing the joint pertur-

bation to introduce a negative covariance, it is possible to achieve

higher data utility. In what follows, we use two concrete examples

to illustrate this finding.

Example 1. (Independent perturbation) Suppose that there are
two data contributors, 𝑢1 and 𝑢2 with values 𝑥1 = 1 and 𝑥2 = 1,
respectively. Each contributor independently perturbs their value using
RR with 𝑝 = 0.8. Let 𝑇𝑗 be the indicator of reporting truthfulness of
𝑢 𝑗 , i.e., 𝑇𝑗 = 1 if 𝑦 𝑗 = 𝑥 𝑗 and 0 otherwise. We have

𝑇𝑗 =

{
1 with probability 𝑝 = 0.8,

0 with probability 𝑞 = 0.2.
(4)

Estimation of 𝒏1: Assume that the data collector has received

𝐼1 perturbed values of 1. According to Eq. (2), the data collector can

estimate 𝑛1 as

�̂�1 =
(𝐼1 − 2 × 0.2)

0.6
. (5)

Data privacy: Since 𝑝/𝑞 = 0.8/0.2 = 4, the RR mechanism in

the above example satisfies ln 4-LDP.

Data utility: According to Eq. (3), the variance of �̂�1 can be

computed as

Var[�̂�1] =
𝑛𝑝𝑞

(2𝑝 − 1)2
=

2 · 0.8 · 0.2
(2 · 0.8 − 1)2

= 0.89. (6)

Example 2. (Correlated perturbation) Consider the same two
contributors in Example 1. Let 𝑇𝑗 be a binary indicator of a random
variable for whether a data contributor 𝑢 𝑗 reports truthfully, i.e.,
𝑇𝑗 = 1 if 𝑦 𝑗 = 𝑥 𝑗 and 0 otherwise. The two contributors jointly
perturb their data according to the joint probability distribution shown
in Table 1.

Estimation of 𝒏1: It is easy to see that the marginal probability

distribution of both𝑇1 and𝑇2 in Table 1 is the same as the probability

distribution of𝑇𝑗 in Example 1. Define𝑌𝑗 to be the indicator random

variable for data contributor 𝑢 𝑗 reports a perturbed value 𝑦 𝑗 = 1

for all 1 ≤ 𝑗 ≤ 2. There are two cases. First, if 𝑥 𝑗 = 0, we have

Pr[𝑌𝑗 = 1|𝑥 𝑗 = 0] = Pr[𝑇𝑗 = 0] = 0.2. Second, if 𝑥 𝑗 = 1, we have

Pr[𝑌𝑗 = 1|𝑥 𝑗 = 1] = Pr[𝑇𝑗 = 1] = 0.8. Let 𝐼1 be the random variable

for the number of contributors reporting a perturbed value 1. We

have 𝐼1 = 𝑌1 + 𝑌2. Taking the expectation on both sides, we have

E[𝐼1] = E[
2∑︁
𝑗=1

𝑌𝑗 ] =
2∑︁
𝑗=1

E[𝑌𝑗 ] =
2∑︁
𝑗=1

Pr[𝑌𝑗 = 1]

= 𝑛1 · Pr[𝑇𝑗 = 1] + (2 − 𝑛1) · 1 · Pr[𝑇𝑗 = 0]
= 0.8𝑛1 + 0.2 · (2 − 𝑛1)
= 0.4 + 0.6𝑛1 .

(7)

The data collector can estimate 𝑛1 as �̂�1 = (𝐼1−0.4)/0.6, which is
an unbiased estimator of𝑛1 and also identical to Eq. (5) in Example 1.

Data privacy: Since the marginal probability distribution of

both𝑇1 and𝑇2 in Table 1 is the same as the one in Example 1, those

marginal probability distributions also satisfy ln 4-LDP. However,

it does not indicate that each contributor can enjoy the same level

of ln 4-LDP as in Example 1. In fact, the introduction of correla-

tion among different contributors will inevitably reduce privacy

guarantee for individual contributors. We postpone the discussion

of the potential privacy leakage from the correlation between two

contributors in the same group to Section 4.2.

Data utility: The variance of the unbiased estimator is

Var[�̂�1] =
Var[𝐼1]
0.36

=
25

9

Var[𝑌1 + 𝑌2]

=
25

9

(Var[𝑌1] + Var[𝑌2] + 2Cov[𝑌1, 𝑌2]),
(8)

where Cov[𝑌1, 𝑌2] is the covariance between 𝑌1 and 𝑌2.
First, Var[𝑌1] and Var[𝑌2] are the same due to the same mar-

ginal distribution. Moreover, since both contributors have the same

original value of 1, we have E[𝑌𝑗 ] = Pr[𝑌𝑗 = 1] = Pr[𝑇𝑗 = 1] = 0.8

and E[𝑌 2

𝑗
] = Pr[𝑌𝑗 = 1] = 0.8. It follows that

Var[𝑌1] + Var[𝑌2] = 2Var[𝑌1] = 2(E[𝑌 2

1
] − E2 [𝑌1])

= 2 · (0.8 − 0.82) = 0.32.
(9)

We now compute Cov[𝑌1, 𝑌2]. Since 𝑥1 = 𝑥2 = 1, we have

E[𝑌1𝑌2] =0 × Pr[𝑇1 = 0,𝑇2 = 0]+
1 × Pr[𝑇1 = 1,𝑇2 = 1] = 0.61,

and it follows that

Cov[𝑌1, 𝑌2] = E[𝑌1𝑌2] − E[𝑌1]E[𝑌2]
= 0.61 − 0.8 · 0.8 = −0.03. (10)

Substitute Eqs. (9) and (10) into Eq. (8), we have

Var[�̂�1] =
1

0.36
(0.32 + 2 × (−0.03)) ≈ 0.72, (11)

which is smaller than the Var[�̂�1] of 0.89 in Example 1.

From the above two examples, we can see that it is possible

to improve data utility, i.e., reduce the variance of the estimator,

through the introduction of a negative correlation between 𝑌1 and

𝑌2 via joint perturbation of two contributors. Theoretical analysis of

generalizing 𝑛 and 𝑥𝑖 in the above examples will be presented in the

next section. Meanwhile, several key questions must be answered

to fully exploit the potential of joint random perturbation.
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Table 2: Joint reporting probability in JRR.

𝑇2𝑖−1 = 1 𝑇2𝑖−1 = 0

𝑇2𝑖 = 1 𝑝2 + 𝜌𝑝𝑞 (1 − 𝜌 )𝑝𝑞

𝑇2𝑖 = 0 (1 − 𝜌 )𝑝𝑞 𝑞2 + 𝜌𝑝𝑞

(1) How can we generalize the above joint perturbation mecha-

nism given in Table 1?

(2) Can the joint perturbationmechanism provide the same level

of data privacy as RR? If so, under what condition? In par-

ticular, is it possible for the data collector to infer additional

information about a target contributor’s value by exploiting

the correlations among different data contributors?

(3) How can we quantify the data utility of a joint perturbation

mechanism?

(4) How can we optimize the joint perturbation mechanism to

maximize the data utility while guaranteeing the same level

of data privacy as RR?

(5) How can we design a practical joint perturbation mecha-

nism?

We provide answers to these questions in the next section.

4 Joint Randomized Response

This section first introduces a general joint randomized response

(JRR) mechanism as a generalization of the classical RR mechanism.

We then generalize the definition of LDP to ensure that JRR can

provide the same level of privacy protection as the classical RR. We

quantify the data utility of JRR in Section 4.3. Section 4.4 presents

a heuristic algorithm to choose its parameters for maximized data

utility given the desirable level of privacy protection. Finally, we

present two practical instantiations of the JRR mechanism.

4.1 A General JRR Mechanism

Assume there are 𝑛 contributors, U = {𝑢1, . . . , 𝑢𝑛} each having

a binary value and 𝑛 is an even number. We first divide the 𝑛

contributors into 𝑛/2 disjoint groups of two𝐺1, . . . ,𝐺𝑛/2 uniformly

at random. Without loss of generality, assume that each group 𝐺𝑖

consists of contributors𝑢2𝑖−1 and𝑢2𝑖 for all 1 ≤ 𝑖 ≤ 𝑛/2. Each group
𝐺𝑖 of two contributors jointly perturb their values according to the

joint probability distribution shown in Table 2, where 0.5 < 𝑝 ≤ 1,

𝑞 = 1−𝑝 , and 1− 1/𝑝 ≤ 𝜌 ≤ 1 are system parameters. In particular,

each contributor 𝑢 𝑗 , 1 ≤ 𝑗 ≤ 𝑛, reports 𝑦 𝑗 = 𝑥 𝑗 if 𝑇𝑗 = 1 and 1 − 𝑥 𝑗
if 𝑇𝑗 = 0.

4.1.1 Properties of JRR. The general JRR mechanism has several

key properties, which are summarized as follows.

First, the marginal probability distribution of every 𝑇𝑗 (1 ≤ 𝑗 ≤
𝑛) is identical. In particular, it is easy to verify that

Pr[𝑇𝑗 = 1] =𝑝2 + 𝜌𝑝𝑞 + (1 − 𝜌)𝑝𝑞 = 𝑝

Pr[𝑇𝑗 = 0] =(1 − 𝜌)𝑝𝑞 + 𝑞2 + 𝜌𝑝𝑞 = 𝑞.
(12)

This means that each data contributor reports their value truthfully

with probability 𝑝 and untruthfully with probability 𝑞 = 1 − 𝑝 ,

which aligns with the classical RR mechanism with parameter 𝑝 .

Second, parameter 𝜌 is the correlation coefficient between ran-

dom variables 𝑇2𝑖−1 and 𝑇2𝑖 . Specifically, the correlation coefficient

between random variables 𝑇2𝑖−1 and 𝑇2𝑖 is given by

Cov[𝑇2𝑖−1,𝑇2𝑖 ]
𝜎1𝜎2

=
E[𝑇2𝑖−1𝑇2𝑖 ] − E[𝑇2𝑖−1]E[𝑇2𝑖 ]

𝜎1𝜎2
, (13)

where Cov[𝑇2𝑖−1,𝑇2𝑖 ] is the covariance of 𝑇2𝑖−1 and 𝑇2𝑖 , and 𝜎1
and 𝜎2 are the standard deviation of 𝑇2𝑖−1 and 𝑇2𝑖 , respectively.

According to the joint probability distribution in Table. 2, we have

E[𝑇2𝑖−1𝑇2𝑖 ] = Pr[𝑇2𝑖−1𝑇2𝑖 = 1] · 1 + Pr[𝑇2𝑖−1𝑇2𝑖 = 0] · 0
= Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 1] · 1
= 𝜌𝑝𝑞 + 𝑝2 .

(14)

We can also compute

E[𝑇𝑗 ] = Pr[𝑇𝑗 = 1] · 1 + Pr[𝑇𝑗 = 0] · 0 = 𝑝 (15)

and

𝜎2𝑗 = E[𝑇 2

𝑗 ] − E
2 [𝑇𝑗 ]

= Pr[𝑇 2

𝑗 = 1] · 1 + Pr[𝑇 2

𝑗 = 0] · 0

− (Pr[𝑇𝑗 = 1] · 1 + Pr[𝑇𝑗 = 0] · 0)2

= Pr[𝑇 2

𝑗 = 1] − Pr[𝑇𝑗 = 1]2

= Pr[𝑇𝑗 = 1] − Pr[𝑇𝑗 = 1]2

= 𝑝 − 𝑝2

(16)

for all 1 ≤ 𝑗 ≤ 𝑛.

Substituting Eqs. (14) to (16) into Eq. (13), we get the correlation

coefficient between 𝑇2𝑖−1 and 𝑇2𝑖 as

Cov[𝑇2𝑖−1,𝑇2𝑖 ]
𝜎1𝜎2

=
𝜌𝑝𝑞 + 𝑝2 − 𝑝 · 𝑝

𝑝 − 𝑝2
= 𝜌.

(17)

Note that 𝜌 must not be smaller than 1 − 1/𝑝 to ensure that every

probability value in Table 2 is non-negative.

Third, the classical RR mechanism is a special case of the general

JRR mechanism. In particular, when 𝜌 = 0, 𝑇2𝑖−1 and 𝑇2𝑖 are inde-
pendent, and the JRR mechanism is equivalent to the case of each

two in each perturbs his/her data value using the RR independently.

Last but not least, the data collector can estimate 𝑛𝑣 using the

same estimator as in the classical RR. Specifically, assume that the

data collector receives 𝐼𝑣 values of 𝑣 for each 𝑣 ∈ 𝐷 , it can estimate

the number of contributors having true value 𝑣 as

�̂�𝑣 =
𝐼𝑣 − 𝑛𝑞
𝑝 − 𝑞 , (18)

Theorem 1. The estimator in Eq.(18) is unbiased.

We give the proof in Appendix A.

4.2 Data Privacy Analysis

Assume that the data collector wants to infer a target contributor

𝑢𝑖 ’s value 𝑥𝑖 . Let C be the set of contributors who collude with

the data collector so that the data collector knows whether each

contributor in C reports truthfully. In other words, besides all per-

turbed values 𝑦1, · · · , 𝑦𝑛 , the data collector also knows whether

each colluding contributor reports truthfully or not, which we de-

note by T𝑐 = {𝑇𝑗 | 𝑗 ∈ C}. Under the uniformly random grouping of

4
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JRR, the group peer of 𝑢𝑖 , say 𝑢 𝑗 , may be a colluding contributor

in C. If this happens, even if the data contributor does not know

who the group peer of contributor 𝑢𝑖 is, the correlation between

the two contributors’ perturbation would still inevitably reduce the

data privacy of the targeted contributor 𝑢𝑖 .

We therefore extend the definition of LDP to measure the individ-

ual privacy provided by the JRR scheme. Specifically, the following

theorem shows that the JRR scheme can offer individual contribu-

tors a form of data privacy similar to 𝜀-LDP.

Theorem 2. Assume that there is a set of contributors C whose re-
porting truthfulness T𝑐 is known to the adversary. For any contributor
𝑢𝑖 , the JRR mechanismM satisfies

Pr[M(𝑥𝑖 ) = 𝑦𝑖 |T𝑐 ]
Pr[M(𝑥 ′

𝑖
) = 𝑦𝑖 |T𝑐 ]

≤ 𝑒𝜀 (19)

for any pair of inputs 𝑥𝑖 , 𝑥 ′𝑖 ∈ 𝐷 and any output 𝑦𝑖 ∈ Range(M),
where

𝜀 = ln

𝑚𝑝max + (𝑛 −𝑚 − 1)𝑝
𝑚𝑝min + (𝑛 −𝑚 − 1)𝑞

, (20)

with 𝑝max = max{(1 − 𝜌)𝑝, 𝑝 + 𝜌𝑞}, 𝑝min = min{(1 − 𝜌)𝑞, 𝑞 + 𝜌𝑝},
𝑚 = |T𝑐 |, and 0 ≤ 𝑚 ≤ 𝑛 − 1.

The detailed proof is provided in Appendix B.

4.3 Data Utility Analysis

Theorem 3. Assume that 𝑛 contributors are divided into 𝑛/2
groups uniformly at random. The variance of the estimator �̂�𝑣 given
in Eq. (18) by JRR is

Var[�̂�𝑣] =
𝑝𝑞

(𝑝 − 𝑞)2
·
(
𝑛 +

𝜌
(
(2𝑛1 − 𝑛)2 − 𝑛

)
𝑛 − 1

)
, (21)

where 𝑛𝑣 is the number of contributors with a value of 𝑣 .

The proof is given in Appendix C.

We can see that Var[�̂�𝑣] = 𝑛𝑝𝑞/(𝑝 − 𝑞)2 when 𝜌 = 0, which

is the same as that of RR. Moreover, Var[�̂�𝑣] < 𝑛𝑝𝑞/(𝑝 − 𝑞)2, i.e.,
smaller than that of RR, if 𝜌 ((2𝑛1 − 𝑛)2 − 𝑛) < 0, which provides

opportunities to achieve higher data utility than RR.

4.4 Choice of 𝑝 and 𝜌

In this subsection, we show how to choose parameters 𝑝 and 𝜌 to

achieve high data utility at the data collector under a given data

privacy requirement.

4.4.1 An Optimization Problem Formulation. Assume that we want

to provide the same level of privacy guarantee with an RR scheme

that satisfies 𝜀-LDP. We need to choose parameters 𝑝 and 𝜌 that

satisfies Ineq. (19) in Theorem 2. One challenge is that Ineq. (19)

involves the parameter𝑚, i.e., the number of contributors colluding

with the data collector, which is often unknown in practice. Fortu-

nately, we find that for any pair of (𝑝, 𝜌), given the privacy budget

𝜀, if 𝑚1 satisfies Ineq. (19), so does 𝑚2 for all 𝑚2 ≤ 𝑚1, because

𝑓 (𝑚) = 𝑚𝑝max+(𝑛−𝑚−1)𝑝
𝑚𝑝min+(𝑛−𝑚−1)𝑞 is monotonically increasing with respect

to𝑚. The detailed proof is given in Appendix H. Assume that there

could be at most𝑀 data contributors colluding with the data col-

lector. We can then replace𝑚 in Ineq. (19) by𝑀 when choosing 𝑝

and 𝜌 .

Let ℎ(𝑝, 𝜌) = Var[�̂�1] as given in Eq. (21). We can formulate the

choice of 𝑝 and 𝜌 as the following optimization problem, which

seeks to minimize the objective function ℎ(𝑝, 𝜌) while satisfying
the privacy constraint and the domain constraint of 𝜌 and 𝑝 .

min ℎ(𝑝, 𝜌)

s.t.

𝑀𝑝max + 𝑝 (𝑛 −𝑀 − 1)
𝑀𝑝min + 𝑞(𝑛 −𝑀 − 1)

≤ 𝑒𝜀 ,

1 − 1/𝑝 ≤ 𝜌 ≤ 1,

0.5 < 𝑝 ≤ 1,

(22)

where 𝑝max = max{(1 − 𝜌)𝑝, 𝑝 + 𝜌𝑞} and 𝑝min = min{(1 − 𝜌)𝑞, 𝑞 +
𝜌𝑝}.

Unfortunately, since the objective function ℎ(𝑝, 𝜌) involves 𝑛1
that we want to estimate, the above optimization problem cannot be

directly solved without knowing 𝑛1 in advance. However, certain

properties of the objective function ℎ(𝑝, 𝜌) and the constraints

make it possible to design an effective heuristic to choose 𝑝 and 𝜌

that can yield good performance in the majority of the cases.

Specifically, we have the following three lemmas, with proofs in

Appendix D, Appendix E, and Appendix F, respectively.

Lemma 1. For any 𝑛, 𝑛1 > 0, the following inequality holds:

(2𝑛1 − 𝑛)2 − 𝑛

≥ 0 if 𝑛1

𝑛 ∈ [0,
1

2
− 1

2

√
𝑛
]⋃( 1

2
+ 1

2

√
𝑛
, 1),

< 0 if 𝑛1

𝑛 ∈ [
1

2
− 1

2

√
𝑛
, 1
2
+ 1

2

√
𝑛
] .

(23)

Lemma 2. For any 𝑛 ≥ 2, 𝜌 ∈ [−1, 1] and 0 ≤ 𝑛1 ≤ 𝑛,

𝑛 + 𝜌 ((2𝑛1 − 𝑛)2 − 𝑛)
𝑛 − 1 > 0. (24)

Lemma 3. 𝑝𝑞/(𝑝 − 𝑞)2 is monotonically decreasing with respect
to 𝑝 ∈ (0.5, 1].

We then have the following theorem regarding the monotonicity

of the objective function ℎ(𝑝, 𝜌).

Theorem 4. The objective function ℎ(𝑝, 𝜌) is
• monotonically increasing with respect to 𝜌 if 𝑛1/𝑛 ≤ 1/2 −
1/2
√
𝑛 or 𝑛1/𝑛 ≥ 1/2 + 1/2

√
𝑛 and monotonically decreasing

with respect to 𝜌 if 1/2 − 1/2
√
𝑛 < 𝑛1/𝑛 < 1/2 + 1/2

√
𝑛,

• monotonically decreasing with respect to 𝑝 ∈ (0.5, 1].

The proof uses the results from Lemmas 1 to 3, which is quite

straightforward and given in Appendix G.

4.4.2 A Heuristic Algorithm for Selecting 𝜌 and 𝑝 . We now intro-

duce a heuristic to choose 𝜌 and 𝑝 that can yield good performance

in most cases by exploiting the monotonicity of ℎ(𝑝, 𝜌). First, we
assume that the data collector would collude with at most𝑚 = 𝑀

contributors, where 𝑀 is a system parameter indicating the data

collector’s inference ability.

According to Theorem 4, ℎ(𝑝, 𝜌) is monotonically increasing

with respect to 𝜌 if 𝑛1/𝑛 ∈ [0, 1/2 − 1/2
√
𝑛]⋃[1/2 + 1/2√𝑛, 1]

and monotonically decreasing with respect to 𝜌 if 𝑛1/𝑛 ∈ [1/2 −
1/2
√
𝑛, 1/2 + 1/2

√
𝑛]. We notice that the size of the range [1/2 −

1/2
√
𝑛, 1/2 + 1/2

√
𝑛] is 1/

√
𝑛, which is relatively small for large 𝑛

and inversely proportional to

√
𝑛. For example, when 𝑛 = 100 and

10, 000, the ranges in which ℎ(𝑝, 𝜌) is monotonically increasing

5
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Algorithm 1: Search for (𝜌, 𝑝)
input :𝑛, 𝜀 ,𝑀 , △𝜌 , and △𝑝
output :𝜌 and 𝑝

1 𝑝 ← 𝑒𝜀

1+𝑒𝜀 − △𝑝 ;
2 while 𝑝 > 0.5 do

3 𝜌 ← 1 − 1

𝑝
;

4 while 𝜌 ≤ 1 do

5 if (𝑝, 𝜌 ) satisfies all constraints in Eq. (22) then
6 return 𝑝 and 𝜌 ;

7 end

8 𝜌 ← 𝜌 + △𝜌 ;
9 end

10 𝑝 ← 𝑝 − △𝑝 ;
11 end

12 return Null;

with respect to 𝜌 are [0.45, 0.55] and [0.495, 0.505], respectively.
It is therefore reasonable to assume that ℎ(𝑝, 𝜌) is monotonically

increasing with respect to 𝜌 when 𝑛 is large in practice.

Assume that 𝑛1/𝑛 ∉ [1/2 − 1/2
√
𝑛, 1/2 + 1/2

√
𝑛]. The objec-

tive function ℎ(𝑝, 𝜌) is then monotonically increasing with respect

to 𝜌 and monotonically decreasing with respect to 𝑝 according

to Theorem 4. Let 𝑅 ∈ R2 be the feasible domain of (𝑝, 𝜌). We

can define a partial ordering relationship among different pairs

of (𝑝, 𝜌)s. In particular, for any two pairs of (𝑝, 𝜌) and (𝑝′, 𝜌′),
we have ℎ(𝑝, 𝜌) ≤ ℎ(𝑝′, 𝜌′) if 𝑝 ≥ 𝑝′ and 𝜌 ≤ 𝜌′. Moreover, let

range(𝑝) be the feasible range of 𝜌 for a given 𝑝 . The optimal choice

of the parameters must be (𝑝,min(range(𝑝))) for some 𝑝 .

Based on the above observation, our key idea is to first find a

maximal feasible 𝑝 and then find the correspondingminimal feasible

𝜌 . Let △𝑝 and △𝜌 be two small constants, e.g., 0.0001. Algorithm 1

provides the detailed procedure. Specifically, we initialize 𝑝 to 𝑒𝜀

1+𝑒𝜀 −
△𝑝 (Line 1). We intentionally skip 𝑝 = 𝑒𝜀

1+𝑒𝜀 because if 𝑝 = 𝑒𝜀

1+𝑒𝜀
then 𝜌 would be zero and JRR would be equivalent to RR. We then

search for a feasible pair of 𝑝 and 𝜌 using two nested loops. For each

given 𝑝 , we initialize 𝜌 to 1 − 1

𝑝 (Line 3) and then iteratively check

whether the current (𝑝, 𝜌) satisfy all the constraints in Eq. 22 (Lines

3-9). If so, we output (𝑝, 𝜌). Otherwise, we increase 𝜌 by △𝜌 until

𝜌 = 1, in which case a new iteration starts. Algorithm 1 returns

"Null" for completeness. In practice, Algorithm 1 always returns a

feasible pair (𝜌, 𝑝) in the worst case. The reason is that when 𝜌 = 0,

we have 𝑝max = 𝑝 and 𝑝min = 𝑞, so the first constraint is simplified

to
𝑝
𝑞 ≤ 𝑒𝜀 . In this case, any 𝑝 ≤ 𝑒𝜀

1+𝑒𝜀 with 𝜌 = 0 is always a feasible

pair. The search space for 𝑝 and 𝜌 is [0.5, 𝑒𝜖

1+𝑒𝜖 ) and [1 −
1

𝑝 , 1],
respectively, and the computational complexity of Algorithm 1 is

proportional to the area of search space
1

𝑝 · (
𝑒𝜀

1+𝑒𝜀 −0.5) and inversely
proportional to both Δ𝑝 and Δ𝜌 .

4.5 Practical Instantiations of JRR

In this subsection, we present two practical instantiations of the

JRR mechanism for completeness. The first instantiation is highly

efficient but requires an auxiliary non-colluding server to facilitate

random grouping and joint random perturbation, as described in

Table 2. The second instantiation, in contrast, leverages multi-party

computation techniques (MPC) to eliminate the need for a non-

colluding server but comes at the cost of increased computational

and communication overhead. While our proposed instantiations

provide practical implementations, they are not necessarily opti-

mal. There remains significant potential for further refinement and

efficiency improvements, which we leave as future work.

4.5.1 A Non-colluding Server-Based Instantiation. Recall that the
JRR mechanism relies on the two key assumptions: (1) all 𝑛 con-

tributors are divided into 𝑛/2 groups uniformly at random, and (2)

the data collector is unaware of the group membership. Our first

instantiation leverages an auxiliary non-colluding server to satisfy

these requirements. Notably, similar non-colluding servers have

been employed in recent works such as [6, 8, 12, 19]. Moreover,

various approaches have been proposed to enforce non-collusion,

as discussed in [9, 17, 28].

Random grouping. The auxiliary server divide 𝑛 contributors

into 𝑛/2 disjoint groups of two uniformly at random. Without loss

of generality, assume that the 𝑖-th group𝐺𝑖 consists of contributors

𝑢2𝑖−1 and 𝑢2𝑖 for all 1 ≤ 𝑖 ≤ 𝑛
2
. For each group 𝐺𝑖 , the server

generates 𝑅2𝑖−1 ∈ {1,−1} uniformly at random and computes 𝑅2𝑖 =

−𝑅2𝑖−1. It then sends 𝑅2𝑖−1 to 𝑢2𝑖−1 and 𝑅2𝑖 to 𝑢2𝑖 .
The grouping information is kept by the auxiliary server, which

is unknown to both the collector and individual contributors.

Correlated perturbation in each group. Each group 𝐺𝑖 of

contributors then perform correlated perturbation with the help

of 𝑅2𝑖−1 and 𝑅2𝑖 received from the auxiliary server. Specifically,

each contributor 𝑢 𝑗 generates a random variable 𝐶 𝑗 independently

according to the following probability distribution

𝐶 𝑗 =


1.5 with probability 𝑝 − √−𝜌𝑝𝑞,
0.5 with probability

√−𝜌𝑝𝑞,
−0.5 with probability

√−𝜌𝑝𝑞,
−1.5 with probability 𝑞 − √−𝜌𝑝𝑞,

(25)

for 𝑗 = 2𝑖 − 1 and 2𝑖 , where 𝑝, 𝑞 and 𝜌 are given in Table 2.

Finally, each contributor 𝑢 𝑗 determines whether to report truth-

fully according to the following rule

𝑇𝑗 =

{
1 if 𝐶 𝑗 + 𝑅 𝑗 > 0,

0 if 𝐶 𝑗 + 𝑅 𝑗 < 0,
(26)

for all 𝑗 = 1, . . . , 𝑛.

Theorem 5. Under the practical mechanism, for any two con-
tributors in the same group, the joint probability distribution of the
truthfulness of the two contributors’ reports is equivalent to the one
described in Table. 2.

We provide the detailed proof in Appendix I.

This practical scheme can guarantee the data privacy of each

individual contributor against the auxiliary server, the data col-

lector, and any other contributor in the system. First, while the

auxiliary server knows the which contributor receives −1 or 1 and
the membership information, it has no access to perturbed value

submitted by individual contributors. Similarly, the data collector

receives the perturbed values from contributors but is unaware

of the group membership. Even in the worst case where all con-

tributors but one victim contributor say 𝑢 𝑗 collude with the data

collector, the data collector can only infer the random variable 𝑅 𝑗

6
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that 𝑢 𝑗 received from the auxiliary server but cannot recover 𝑇𝑗
because 𝐶 𝑗 is unknown to the data collector. While this can lead to

reduced data privacy guarantee for 𝑢 𝑗 , such cases of collusion are

extremely impractical in a system with a large number of contribu-

tors. Last but not the least, each contributor knows only whether

the other group member receives −1 or 1 from the auxiliary server

and is unaware of the identity of or the perturbed value submitted

by the other group member.

4.5.2 An MPC-Based Instantiation. Now we introduce another

practical instantiation that utilizes secure multi-party shuffling

(SMPS) [34] to eliminate the need for a non-colluding server. SMPS

is a secure multiparty computation protocol that allows a group of

contributors to agree on a random permutation of their individual

inputs while keeping the inputs private. After permutation, each

contributor receives only one of the shuffled inputs, and no one can

determine the complete mapping between the original and shuf-

fled inputs. Our second instantiation uses SMPS to securely shuffle

contributors IDs (i.e., original positions) at random and achieving

random grouping and group membership private according to the

shuffled IDs. The detailed steps are as follows.

(1) Upon joining the system, each contributor is assigned a

unique ID 𝑗 ∈ {1, 2, . . . , 𝑛} from the data collector.

(2) Assuming an even number 𝑛 of participating contributors in

a specific round, all contributors perform SMPS (Algorithm 1

in [34]) to securely shuffle their IDs, i.e., a random permuta-

tion 𝜋 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛}. After the permutation,

each contributor 𝑗 gets a shuffled ID 𝜋 ( 𝑗) without learning
any other contributor’s shuffled ID.

(3) Let 𝜋−1 (·) be the inverse permutation of 𝜋 (·). Every two

contributors with adjacent shuffled IDs form a group with-

out knowing each other’s original ID, i.e., the 𝑘th group

consists of contributors 𝜋−1 (2𝑘 − 1) and 𝜋−1 (2𝑘) for each
𝑘 ∈ {1, . . . , 𝑛/2}.

(4) Each contributor with shuffle ID 𝜋−1 ( 𝑗) sets 𝑅 𝑗 = 1 if 𝜋−1 ( 𝑗)
is even and −1 if 𝜋−1 ( 𝑗) is odd.

(5) Each contributor with shuffle ID 𝜋−1 ( 𝑗) generates𝐶 𝑗 accord-

ing to Eq. (25), computes 𝑇𝑗 according to Eq. (26). Finally,

each contributor randomly perturbs their data according to

𝑇𝑗 for submission.

This scheme ensures random grouping due to the randomness

introduced by SMPS. Moreover, Step 3 guarantees that in every

group 𝑘 , consisting of data contributors 𝜋−1 (2𝑘 − 1) and 𝜋−1 (2𝑘),
one contributor has 𝑅

2𝑘−1 = 1 while the other has 𝑅
2𝑘 = −1, ef-

fectively replicating the role of the trusted auxiliary server in the

first scheme. Additionally, this approach ensures individual data

privacy against both the data collector and other participants. Since

each contributor 𝑗 only knows his shuffled position 𝜋 ( 𝑗) without
knowing the other group member, group membership privacy is

maintained. This setup allows each contributor to randomly decide

whether to report truthfully, enhancing privacy while maintaining

the functionality of the first scheme. On the other hand, this scheme

requires all contributors to be online and participate in SMPS, lead-

ing to higher computation and communication overheads. In par-

ticular, SMPS has a computation and communication overheads of

O(𝑛 log𝑛), which is much higher than the first scheme.

It is also worth noting that SMPS and data submission can be

conducted at different times. We anticipate that the JRR scheme

will be implemented as a mobile app, while SMPS will run as a

background service, executing periodically without contributor

involvement. Upon successfully participating in SMPS, contribu-

tors can submit their data via JRR at any time as needed. Newly

registered contributors who have not yet completed any SMPS

procedure can still submit data using classical RR. Similarly, if a

contributor’s group peer fails to submit their value, it effectively

reduces to that contributor submitting his value under RR.

4.6 Discussions

In this subsection, we examine several key issues related to JRR

and its practical instantiations.

4.6.1 Extension to Non-Binary Data. It is possible to extend JRR to

support non-binary data by redesigning the joint reporting proba-

bility in Table 2. In particular, for a group of two contributors with

data 𝑣1, 𝑣2 ∈ [𝑘], where 𝑘 ≥ 2 is the domain size, they report their

data according to the following joint probability distribution.

Pr[(𝑣 ′
1
, 𝑣 ′

2
)] =


𝑝2 + 𝜌𝑝𝑞 if 𝑣 ′

1
= 𝑣1, 𝑣

′
2
= 𝑣2,

𝑝𝑞 − 1

𝑘−1𝜌𝑝𝑞 if 𝑣 ′
1
= 𝑣1, 𝑣

′
2
≠ 𝑣2,

𝑝𝑞 − 1

𝑘−1𝜌𝑝𝑞 if 𝑣 ′
1
≠ 𝑣1, 𝑣

′
2
= 𝑣2,

𝑞2 + 1

(𝑘−1)2 𝜌𝑝𝑞 if 𝑣 ′
1
≠ 𝑣1, 𝑣

′
2
≠ 𝑣2,

(27)

where 𝑝 + (𝑘 − 1)𝑞 = 1 and 𝜌 is the correlation coefficient between

𝑇1 and 𝑇2. This is similar to the extension from RR to Generalized

RR (GRR).

It is easy prove that the marginal probability distribution of each

contributor reporting his value is the same as the binary case, i.e.

𝑘-JRR maps each value 𝑣 to itself with probability 𝑝 and to any

other value with probability 𝑞. As a result, �̂�𝑣 = (𝐼𝑣 − 𝑛𝑞)/(𝑝 − 𝑞)
is also an unbiased estimator for 𝑛𝑣 , where 𝐼𝑣 is the number of

contributors reporting 𝑣 . We prove this property in Appendix K.

The data privacy and utility can be analyzed in the same way as

the binary case. The remaining task is to choose 𝑝 and 𝜌 by solving

an optimization problem similar to the one in Eq. (22), which we

leave as our future work.

4.6.2 Integration with Advanced LDP Mechanisms. JRR can be inte-

grated with advanced LDP mechanisms built upon RR to improve

their utility and privacy tradeoff. Here we present its integration

with Optimized Unary Encoding (OUE) [49] and Optimized Local

Hashing (OLH) [49] as two examples.

Integrationwith OUE:OUE is an LDPmechanism that encodes

a data value in a 𝑘-size domain into 𝑘-bit binary vector [49]. OUE

follows a three-step encoding-perturbation-aggregation procedure:

(i) Encoding: given an original value 𝑥 ∈ [𝑘], OUE first encodes

it into Encode(𝑥) = {0, · · · , 0, 1, 0, · · · , 0}, where the 𝑥-th bit is 1

and the rest are 0. (ii) Perturbation: given the 𝑘-bit vector 𝐵 =

Encode(𝑥), OUE then generates a perturbed vector 𝐵′ using RR

according to the following probability distribution

Pr[𝐵′ [ 𝑗] = 1] =
{
𝑝, if 𝐵 [ 𝑗] = 1,

𝑞, if 𝐵 [ 𝑗] = 0,

7
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where 𝐵 [ 𝑗] denotes the 𝑗-th bit of 𝐵. (iii) Aggregation: the data

collector counts the number of 1 in 𝐵′ from all data contributors

whereby to estimate the frequency of each value as in RR.

JRR can be seamlessly integrated into OUE by modifying the

perturbation step. Specifically, instead of applying independent RR,

two contributors jointly perturb each bit of their encoded vectors

using JRR. This collaborative approach enhances the estimation

accuracy of OUE while preserving the original privacy guarantees.

IntegrationwithOLH:OLH follows a similar encoding-perturb-

ation-aggregation procedure: (i) Each contributor randomly picks

one hash function 𝐻 (·) among a universal hash family to map his

value 𝑣 in an 𝑠-size domain into a much smaller domain of size

𝑘 , i.e., 𝑥 = 𝐻 (𝑣). (ii) Each contributor then perturbs the encoded

value 𝑥 into 𝑦 using GRR according to the following probability

distribution

Pr[𝑦 = 𝑖] =
{
𝑝, if 𝑖 = 𝑥,

𝑞, for each 𝑖 ∈ {1, . . . , 𝑘} \ {𝑥}.
(iii) The data collector then counts, for each 𝑖 ∈ [𝑘], the number of

reports equal to 𝑖 , to estimate the frequency of 𝑖 . This frequency

also serves as an estimated frequency of original values that are

mapped to 𝑖 (i.e., for which 𝑖 = 𝐻 (𝑣)).
We can easily integrate JRR with OLH by replacing the perturba-

tion procedure in Step (ii) with the extended JRR for non-binary data

introduced in the previous subsection, i.e., 𝑘-JRR given in Eq. 27,

to enhance the estimation accuracy of OLH while preserving its

original privacy guarantees.

4.6.3 Impact of Large Domain Size. Like other existing LDP mecha-

nisms, the data utility of JRR inherently declines as the data domain

size increases. This is because any LDP mechanism must allocate

probability mass across all possible data values to satisfy 𝜖-LDP,

reducing the probability that each data contributor reports their

true value as the domain expands. While the extended JRR method

introduced in Section 4.6.1 i.e.,𝑘-JRR, consistently outperforms GRR

(a special case of 𝑘-JRR with 𝜌 = 0) by achieving a better utility-

privacy trade-off through tuning the parameter 𝜌 , its advantage

over GRR diminishes as the domain size grows.

However, since JRR is designed to replace the RR or GRR com-

ponent in other LDP mechanisms—many of which incorporate

domain reduction techniques to mitigate the impact of large do-

main sizes—JRR can effectively handle large domains as long as the

underlying LDP mechanisms can before being enhanced by JRR.

This capability is demonstrated in the integration of JRR with OLH

discussed earlier.

4.6.4 Extension to Larger-size Group. While this paper focuses

on two-contributor groups, JRR can theoretically be extended to

larger groups with more than two contributors. For a group of

𝑘 > 2 contributors, their joint probability distribution of truthful

reporting can be represented by a 𝑘-dimensional table. Intuitively,

increasing the group size could enhance JRR’s privacy-utility trade-

off compared to two-contributor groups by allowing for greater

correlation, which can help mitigate the added noise. As the group

size continues to increase, the probability of a group including

colluding contributors grows significantly, leading to additional

privacy leakage and limiting further improvements in the utility-

privacy trade-off.

Table 3: Summary of Datasets.

Dataset

Total

(𝑛)

# of “1”

(𝑛1)

Pct. of “1”

(𝑛1/𝑛)

Kosarak 2 × 10
4

659 0.033

Amazon 1 × 10
4

762 0.076

E-commerce 23, 486 19, 314 0.822

Census 1 × 10
4

9, 528 0.953

Synthetic 20 ∼ 2 × 10
6

0 ∼ 2 × 10
6

0 ∼ 1.0

However, designing such a scheme becomes increasingly com-

plex as the group size grows. Consider a group of three contribu-

tors as an example. To ensure that the data collector cannot infer

additional information beyond standard RR by analyzing each con-

tributor’s reported value in isolation, the marginal probability of

truthful reporting for each contributor must remain consistent with

RR and JRR. However, fully defining their joint probability distri-

bution requires specifying three pairwise correlation coefficients

(𝜌12, 𝜌13, 𝜌23) and a triple correlation coefficient (𝜌123) to capture

higher-order dependencies. As the group size increases, the num-

ber of required correlation coefficients grows exponentially. Even

if we leverage symmetry to reduce the number of independent

correlation parameters to one less than the group size, selecting

appropriate values while maintaining privacy guarantees remains

a challenging problem. Therefore, we leave the extension of JRR to

larger group sizes as future work.

4.6.5 Relationship with the Shuffle Model. We would like to clarify

the relationship between JRR and the Shuffle Model [6, 8, 12, 19, 22,

31] which also uses a trusted server to improve the utility-privacy

trade-off. In the shuffle model, data contributors perturb their data

using an LDP mechanism and send the perturbed data to a trusted

shuffler, which shuffles all the received data before forwarding them

to the data collector. It has been shown that randomly shuffling the

data can improve data privacy without sacrificing any data utility.

We stress that JRR is not intended to replace the shuffle model.

Instead, they can be easily integrated to further improve data pri-

vacy. Specifically, each contributor can first perturb their data via

JRR and then send them to a shuffler, which in turn shuffles all the

received data values before forwarding them to the data collector.

The data collector can estimate 𝑛𝑣 using the same estimator as JRR.

5 Performance Evaluation

This section thoroughly evaluates the performance of the proposed

JRR mechanism using both real and synthetic datasets.

5.1 Datasets and Simulation Setting

We use four real-world datasets, Kosarak [1], Amazon Rating [4],

E-commerce [2], Census [42], for performance evaluation. Detailed

descriptions of them are shown in Appendix J. In addition to these

four real datasets, we also generate synthetic datasets with 𝑛 vary-

ing from 20 to 2 × 106 and 𝑛1/𝑛 varying from 0 to 1. Table 3 sum-

marizes these datasets.

We compare the proposed JRR mechanism with the RR mech-

anism because RR is not only the most classical LDP protocol for

frequency estimation but also a special case of JRR. We do not
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Table 4: Default Simulation Setting

Parameter Value Description

𝑛 10, 000 # of participated contributors

𝑛1/𝑛 0.1 Ratio of contributors with value 1

𝜀 0.1 Privacy budget

𝑀 5 # of colluding contributors

△𝑝 0.0001 Search granularity

△𝜌 0.0001 Search granularity

compare JRR with the shuffle model because a fair comparison

between them is challenging for two reasons. First, the privacy

guarantee offered by the shuffle model is derived based on the

(𝜀, 𝛿)-DP definition with 𝛿 ≠ 0 [6, 12, 19, 31], whereas JRR provides

𝜀-LDP, i.e., 𝛿 = 0. It is therefore difficult to compare their estima-

tion accuracy under the same data privacy guarantee. Second, the

shuffle model measures the lower bound of estimation error using

the (𝛼, 𝛽)-accuracy notion [22], which is weaker than the standard

mean square error we use to measure the estimation error of JRR.

Additionally, we do not compare JRR with other more advanced

LDP mechanisms, as they rely on RR as a building block and tar-

get different data types, such as OLH [50] for categorical data and

PCKV [23] for key-value data. As discussed in Section 4.6.2, JRR

has the potential to replace RR in these schemes and improve their

privacy-utility trade-off.

Data utility comparisons are performed at the same privacy level

𝜀. For RR, utility is maximized by setting 𝑝 = 𝑒𝜀/(1 + 𝑒𝜀 ). For JRR,
we employ the heuristic solution of 𝑝 and 𝜌 outlined in Algorithm 1.

Notably, to ensure a fair comparison at the same privacy level 𝜀, the

parameter 𝑝 in JRR differs from that in RR. We use the following

two metrics to evaluate the performance of JRR.

• Mean squared error (MSE) [24, 49]: it is the mean squared

errors of the estimated �̂�𝑣 with respect to the real one 𝑛𝑣
across all values, which is defined as

𝑀𝑆𝐸 =
1

|𝐷 |
∑︁
𝑣∈𝐷
(�̂�𝑣 − 𝑛𝑣)2 . (28)

• Averaged relative error (ARE) [29, 60]: it is the mean relative

error across all values that is defined as

𝐴𝑅𝐸 =
1

|𝐷 |
∑︁
𝑣∈𝐷

|�̂�𝑣 − 𝑛𝑣 |
𝑛𝑣

. (29)

In the above formula, |𝐷 | = 2 is the size of 𝐷 = {0, 1}. Note that as
shown in Eq. (3) the MSE of RR is not affected by 𝑛𝑣 , whereas its

ARE is. Consequently, RR’s ARE performance may exhibit multiple

distinct lines for different 𝑛𝑣 , whereas its MSE remains a single line.

Table 4 lists the default simulation settings. Using MATLAB,

each point in the figures represents the average of 1000 runs with

unique random seeds.

5.2 Results From Real-world Datasets

Fig. 1 presents theMSE of JRR and RR on the four real-world datasets

when 𝜀 is 0.01, 0.1, and 1, respectively. We can see that the JRR

achieves a lower MSE than RR for all four datasets under all three

𝜀s. This is expected because the negative correlation between two

contributors’ random perturbations under JRR can effectively re-

duce the expectedMSEwhen the ratio𝑛1/𝑛 is not close to 0.5, which
is true for all four real datasets with 𝑛1/𝑛 being either smaller than

0.1 or larger than 0.8. Moreover, we can see that the larger the 𝜀, the

smaller the MSE under both JRR and RR. This is also anticipated as

the larger the privacy budget 𝜀, the more likely that each contribu-

tor reports truthfully, the smaller the MSE under both mechanisms

and vice versa. In addition, we can see that JRR outperforms RR by a

larger margin on Kosarak and Census datasets in comparison with

the Amazon Rating and E-commerce datasets, especially when 𝜀 is

small, e.g., 𝜀 = 0.01. This is because the ratio, 𝑛1/𝑛, in the Kosarak

and Census datasets are farther away from 0.5 than those in the

other two datasets. We will carefully evaluate the impact of 𝜀, 𝑛,

and 𝑛1/𝑛 on the MSE using the synthetic datasets shortly.

Figs. 2 show the distributions of ARE over the 1, 000 runs under

JRR and RR on the four real datasets with 𝜀 = 0.01 and 1, respec-

tively. A percentile indicates the percentage of error values that are

lower than the corresponding ARE. We can see that for any spe-

cific percentile, JRR consistently outperforms RR with a lower ARE

across all four datasets. For example, as shown in Fig. 2(b), when

𝜀 = 0.1, the 80th percentile under JRR on the Kosarak dataset is 0.7,

i.e., 800 out of 1, 000 runs have ARE lower than 0.7. In contrast, the

80th percentile under RR is 1.45. These results confirm that JRR

consistently offers stable performance with a lower ARE.

5.3 Results From Synthetic Datasets

5.3.1 Impact of 𝜀. Figs. 3(a) to 3(c) illustrates the MSEs of RR and

JRR with privacy budgets 𝜀 varying from 0.01 to 1 under different

number of data contributors. As expected, MSE decreases for both

RR and JRR as 𝜀 increases because higher 𝜀 increases the proba-

bility of reporting truthfully. Moreover, JRR consistently achieves

a smaller MSE than RR, with the performance gap widening as 𝑛

increases. For example, as shown in Fig. 3(a), when 𝜀 = 0.01, the

MSE under JRR is 5.8%, 40.9%, and 1.0% of that under RR when 𝑛1/𝑛
is 0.01, 0.1, and 1, respectively. In contrast, when 𝑛 = 8 × 104 (see
Fig. 3(c)), the corresponding MSE is 4.5%, 37.2%, and 0.9% of that un-

der RR. This trend occurs because a larger 𝑛 reduces the likelihood

of the data collector correctly identifying group members, limiting

the additional information inferred from correlated reporting. The

advantage of JRR over RR becomes even more pronounced as 𝜀

decreases. In Fig. 3(c), for 𝜀 = 0.1, the MSE under JRR is 86.6%,

55.8%, and 90.9% smaller than RR’s when 𝑛1/𝑛 is 0.01, 0.1, and 1,

respectively. In contrast, when 𝜀 = 0.01, the corresponding MSE is

95.4%, 62.8%, and 99.0% smaller than that under RR, respectively.

When 𝜀 = 0.1 and 𝑛1/𝑛 = 1, the MSE under JRR is 7.3 × 105, which
is about 74.1% of the one under RR. In contrast, when 𝜀 = 0.01, the

MSE under JRR 𝑛1/𝑛 = 1 is 8.6 × 106, which is only about 1.0% of

the one under RR. These results demonstrate that JRR outperforms

RR with a large margin, especially when 𝑛 is large and 𝜀 is small.

Figs. 3(d) to 3(f) compare the AREs under RR and JRR with 𝜀

varying from 0.01 to 1. We can observe similar trends to Figs. 3(a) to

3(c) that the AREs under both RR and JRR decreases as 𝜀 increases.

Moreover, we can see that a larger 𝑛1/𝑛 leads to a smaller ARE. JRR

achieves a smaller ARE than RR in all the cases, and the margin by

which JRR outperforms RR increases as 𝜀 decreases due to the same

reasons that we mentioned earlier.
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(a) 𝜀 = 0.01 (b) 𝜀 = 0.1 (c) 𝜀 = 1

Figure 1: Comparison of MSE under RR and JRR on four real datasets when the privacy budget 𝜀 = 0.01, 0.1 and 1.
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Figure 2: Percentiles of ARE under RR and JRR on four real datasets when the privacy budget 𝜀 = 0.01, 0.1 and 1.
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Figure 3: Comparison of MSE (top row) and ARE (bottom row) under RR and JRR with privacy budget 𝜀 = 0.01 to 1.
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Figure 4: Comparison of MSE under RR and JRR with 𝑛 = 20 to 2 × 10
6
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Figure 5: Comparison of MSE of JRR’s heuristic solution with RR.

5.3.2 Impact of 𝑛. Figs. 4 compares the MSE and ARE under JRR

and RR with the 𝑛 varying from 20 to 2, 000, 000 for 𝜀= 0.01, 0.1,

and 1, respectively.

Figs. 4(a) to 4(c) show that the MSE under RR increases linearly

as 𝑛 increases, which is expected. In contrast, the MSE under JRR

initially increases linearly as 𝑛 increases from 20 to 2, 000, then

increases at a slower rate or even decreases as 𝑛 increases from

2, 000 to 2, 000, 000. This is because when there are relatively few

contributors, 𝜌 needs to be close to zero to guarantee sufficient

data privacy, and JRR and RR have similar MSE. As 𝑛 increases, 𝜌

output by Algorithm 1 decreases, and a smaller negative correlation

is introduced between the two contributors in each group, resulting

in a smaller MSE than RR. Since the MSE under JRR is the sum of

the variance of all 𝑛/2 groups, the change in the MSE under JRR

is the joint effect of the decreased variance in each group and the

increased number of groups. As 𝑛 increases, the MSE under JRR in-

evitably increases but is still lower than that under RR. Most notably,

in Fig. 4(a) when 𝑛 = 200, 000 and 𝑛1/𝑛 = 1, JRR outperforms RR

by two orders of magnitude. Additionally, although the margin JRR

outperforms RR decreases as 𝜀 increases, the improvement remains

significant even when 𝜀 is large. Taking Fig. 4(c) as an example,

the MSE under JRR is still 7.2 × 105 lower than that of RR when

𝑛 = 2 × 106 and 𝑛1/𝑛 = 1.

Figs. 4(d) to 4(f) show a similar trend of ARE under RR and

JRR. Specifically, the ARE under JRR and RR both decrease as 𝑛

increases. As 𝑛 increases from 2, 000 to 2, 000, 000, the ARE under

JRR decreases much faster than that under RR due to the joint effect

of increasing 𝑛 and decreasing variance in each group.
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Figure 6: Comparison of MSE under RR and JRR with 𝑛1/𝑛 = 0 to 1.
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Figure 7: The impact of 𝜀 on RI and 𝑅.
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Figure 8: The impact of 𝑛 on RI and 𝑅.

These results show that JRR is particularly favorable for the cases

of small 𝜀, large 𝑛, and 𝑛1/𝑛 close to 0 or 1, reducing RR’s MSE by

up to two orders of magnitude and ARE by over 70%.

5.3.3 Impact of𝑀 . Figs. 5(a) to 5(c) show the MSE under JRR and

RR as 𝑀 increases from 0 to 𝑛 − 1, where the MSE under RR is

not affected by𝑀 and is plotted for reference. We can see that the

MSE of JRR initially almost stays stable and then increases until it

reaches that of RR. The reason is that the 𝑝 selected by Algorithm 1

is always close to the one achieved under RR, but the corresponding

𝜌 increases as𝑀 increases. Specifically, when𝑀 is small, 𝜌 is always

very close to the minimal value 1 − 1/𝑝 , resulting in a relatively

stable MSE that is much smaller than the one under RR. As 𝑀

increases, a small 𝜌 no longer satisfies the privacy constraint, and

an increased negative 𝜌 leads to an increased MSE. When𝑀 is very

large, e.g.,𝑀 = 90%𝑛, 𝜌 is close to 0, and JRR degrades to RR.

These results indicate that JRR consistently outperforms RR in

terms of MSE for any𝑀 from 0 to 𝑛−1, and is particularly favorable
when𝑀 is small.

5.3.4 Impact of 𝑛1/𝑛. Fig. 6 compares the MSE of JRR and RR

on synthetic datasets, with 𝜀 = 1 and 𝑛1/𝑛 ranging from 0 to 1.

We can see that the MSE under JRR initially increases and then

decreases as 𝑛1/𝑛 increases from 0 to 1 and is symmetric with

respect to 𝑛1/𝑛. The reason for the initial increase is that the MSE

under JRR has term 𝜌 ((2𝑛1 − 𝑛)2 − 𝑛) = 𝜌𝑛2 ((2𝑛1/𝑛 − 1)2 − 1/𝑛),
which is monotonically increasing with respect to 𝑛1/𝑛 ∈ [0, 0.5]
when 𝜌 < 0. In addition, the symmetry comes from the fact that

𝑀𝑆𝐸 = (�̂�1 − 𝑛1)2 = (�̂�0 − 𝑛0)2, so MSE does not change if every

contributor’s original value is flipped. Moreover, we can see that the

MSE of JRR exceeds that under RR when 𝑛1/𝑛 is close to 0.5. There

are two reasons. First, we choose 𝑝 and 𝜌 by Algorithm 1 under the

assumption that 𝑛1/𝑛 ∉ [1/2 − 1/2
√
𝑛, 1/2 + 1/2

√
𝑛]. When 𝑛1/𝑛

is close to 0.5, this assumption does not hold, and the choice of 𝑝

and 𝜌 results in higher MSE than RR. Second, the 𝑝 and 𝜌 chosen

by Algorithm 1 are not the optimal solution for the optimization

problem given in Eq. (22), which may further increase the MSE.

5.3.5 The Cases of JRR Underperforming RR. We further evalu-

ate the conditions under which JRR underperforms RR using the

following two metrics:

• Relative increases (RI): It is defined as the ratio of the differ-

ence between the MSE of JRR and that of RR to the MSE of

RR when
𝑛1

𝑛 = 0.5 (i.e., the worst case for JRR):

RI =
𝑀𝑆𝐸JRR −𝑀𝑆𝐸RR

𝑀𝑆𝐸RR
, (30)

where 𝑀𝑆𝐸JRR and 𝑀𝑆𝐸RR are the MSE of JRR and RR, re-

spectively.

• Ratio of underperforming range (𝑅): Since the MSE of JRR and

RR are roughly symmetric to
𝑛1

𝑛 = 0.5, the range of
𝑛1

𝑛 in

which the MSE of JRR exceeds that of RR is [0.5 − 𝑅/2, 0.5 +
𝑅/2] for some 𝑅 ∈ [0, 0.5]. Therefore, we define 𝑅 as the

ratio of the underperforming range.

Figs. 7(a) and 7(b) show RI and 𝑅 with 𝜀 varying from 0.001 to 1.

We can see from Fig. 7(a) that RI decreases as 𝜀, which is anticipated

because a larger 𝜀 means a larger 𝑝 under both JRR and RR. Notably,
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RI is always less than 10
−4

even for an extremely small 𝜀 = 0.001.

From Fig. 7(b), we can see that 𝑅 remain stable as 𝜀 increases, but

a larger 𝑛 (e.g., 𝑛 = 80, 000) results in a smaller 𝑅, coinciding with

theoretical analysis in Section 4.4 that the range of underperforming

is 1/
√
𝑛, i.e., independent of 𝜀 but decreases as 𝑛 increases.

Figs. 8(a) and 8(b) show RI and 𝑅 with 𝑛 varying from 1, 000 to

40, 000. We can see from Fig. 8(a) that RI initially decreases sharply

and then gradually decreases as 𝑛 increases. In particular, even

when 𝑛 is small, e.g., 𝑛 = 5, 000, RI is 7.3× 10−5, which is negligible.

Moreover, as we can see in Fig. 8(b), 𝑅 decreases as 𝑛 increases, but

it is not affected by 𝜀, which is consistent with Fig. 7(b). In addition,

even when 𝑛 = 1, 000, 𝑅 is less than 3%, indicating JRR outperforms

RR in terms of the MSE for more than 97% of value 𝑛1/𝑛.
These results indicate that JRR outperforms RR for an over-

whelming majority of 𝑛1/𝑛 with only a negligible relative increase

in the worst case.

5.4 Summary of Simulation Results

We summarize the simulation results as follows.

• JRR achieves smaller MSE and ARE than RR as long as the

numbers of contributors having value 1 and 0 are not very

close, i.e., 𝑛1/𝑛 ∉ [1/2 − 1/2
√
𝑛, 1/2 + 1/2

√
𝑛].

• JRR significantly outperforms RR when the numbers of con-

tributors with values 1 and 0 are not close, the total number

of contributors is large, and the number of colluding contrib-

utors is small.

• When 𝑛1 and 𝑛0 are not very close, the margin by which

JRR outperforms RR is inversely proportional to the privacy

budget 𝜀 and the maximum number of colluding contributors

𝑀 but proportional to the number of contributors 𝑛. As𝑀

increases, the MSE of JRR approaches that of RR.

• JRR underperforms RR if the numbers of contributors hav-

ing value 1 and 0 are very close, i.e., when 𝑛1/𝑛 ∈ [1/2 −
1/2
√
𝑛, 1/2 + 1/2

√
𝑛]. However, the margin by which RR

outperforms JRR is very small or negligible.

6 Related Work

Privacy-preserving frequency estimation dates back to Warner [55],

who introduced the RR mechanism for collecting sensitive data in

social science research. RAPPOR [20] extends RR to non-binary

data by encoding values as 𝑑-bit vectors and applying RR to each bit.

OLH [49] refines this by introducing a local hash to compress the

𝑑-bit vector, reducing communication cost. A comparative analysis

of these mechanisms and their variants is in [14].

Significant efforts have improved the privacy-utility tradeoff in

LDP. A variance analysis framework was proposed in [49] to opti-

mize the parameters of RR-based mechanisms, thereby enhancing

data utility. Post-processing techniques can also improve the utility.

For example, the non-negative and sum-to-one constraints were

applied in [53], in which they referred to as consistency. As another
example, the convolution framework in [21] added Wiener filter-

based deconvolution to existing LDP protocols for improved data

utility. Interactive protocols such as PrivKV [60] can iteratively im-

prove estimation accuracy. Estimation of the most frequent items,

or heavy hitters, can be accomplished through random projection,

as shown in [7]. Cryptographic methods enhance privacy without

sacrificing utility, as seen in Crypt𝜀 [41]. However, none of them

address correlated perturbation among contributors. Some tech-

niques, including post-processing, can be integrated with JRR for

further utility gains.

Privacy leakage due to data correlation has long been a concern.

Prior research [10, 27, 37, 43, 59] explores this from both theo-

retical and practical perspectives. The Pufferfish framework [27]

enables customized privacy definitions for correlated data, later

adapted in [43]. Bayesian differential privacy [59] analyzes corre-

lated data privacy from a Bayesian perspective, with [10] using

Bayesian networks to determine the minimum required noise. A

game-theoretic model [57] examines the privacy-utility tradeoff

in data sharing. Applications such as graph data publication [30],

trajectory and network data release [10, 38], and trading statistics

aggregation [37] have also been studied under differential privacy.

However, these works focus on protecting correlated data, not the

correlation among different contributors’ perturbations.

The shuffle model [6, 8, 12, 19, 33] enhances privacy by having

a trusted auxiliary server shuffle perturbed data before forwarding

it to the data collector, breaking the linkage between contributors

and their data. Originally proposed in Prochlo [8], the model’s

theoretical privacy guarantees have since been extensively studied.

The first instantiation of JRR also utilizes a non-colluding auxiliary

server, but unlike the shuffle model, this server never accesses

contributor-submitted data. Moreover, shuffling is complementary

to JRR and can be integrated to further strengthen privacy.

A separate line of research focused on designing LDP mecha-

nisms for various types of data, including real-valued data [16, 32,

36, 46], multi-dimensional data [11, 40, 46, 58], set-valued data [39,

47, 48], time-series data [54], social graph data [44], key-value

pairs [23, 45, 60], sparse vector [61], and directional data [56]. How-

ever, similar to existing LDP frequency estimation techniques, these

works do not consider correlated perturbation.

7 Conclusions and Future Works

In this paper, we explored correlated random data perturbations

for locally differentially private frequency estimation to achieve a

better utility-privacy tradeoff. We have presented a general Joint

Randomized Response (JRR) mechanism, along with two practical

instantiations, which can provide the same level of data privacy

as the classical RR mechanism while improving the data utility in

an overwhelming majority of the cases. We have confirmed the

advantages of JRR over RR through theoretical analysis and detailed

simulation studies using both real and synthetic datasets.

There are several directions to extend this work. First, since

JRR may underperform RR if the ratio 𝑛1/𝑛 is very close to 0.5,

it is possible to avoid this situation via a two-phase frequency

estimation. In the first phase, we use the standard RR to obtain a

rough estimate of 𝑛1 using a portion of privacy budget whereby

to choose optimal 𝑝 and 𝜌 for JRR. In the second phase, we use

JRR with these parameters to refine the estimation of 𝑛1 using the

remaining privacy budget. Additionally, we plan to extend JRR for

groups with more than two contributors. Moreover, we will seek to

extend JRR to support other data types such as non-binary data and

explore its integration with advanced LDP mechanisms for other

data analysis problems such as mean value estimation.
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A Proof of Theorem 1

Proof. It is easy to see that the marginal probability distribution

of 𝑇2𝑖−1 and 𝑇2𝑖 in Table. 2 is the same. More specifically, for any

data contributor 𝑢 𝑗 ,

𝑇𝑗 =

{
1 with probability 𝑝,

0 with probability 𝑞.

Define 𝑌𝑗 as the random indicator variable for data contributor 𝑢 𝑗
reporting a perturbed value 𝑦 𝑗 = 1. There are two cases:

• 𝑥 𝑗 = 0, then Pr[𝑌𝑗 = 1|𝑥 𝑗 = 0] = Pr[𝑇𝑗 = 0] = 𝑞;

• 𝑥 𝑗 = 1, then Pr[𝑌𝑗 = 1|𝑥 𝑗 = 1] = Pr[𝑇𝑗 = 1] = 𝑝 .

Denote 𝐼𝑣 as the random variable for the number of contributors

reporting a perturbed value of 𝑣 , where 𝑣 ∈ {0, 1}. When 𝑣 = 1, we

have

𝐼1 =

𝑛∑︁
𝑗=1

𝑌𝑗 .

Taking the expectation on both sides follows

E[𝐼1] = E[
𝑛∑︁
𝑗=1

𝑌𝑗 ] =
𝑛∑︁
𝑗=1

E[𝑌𝑗 ] =
𝑛∑︁
𝑗=1

Pr[𝑌𝑗 = 1]

= 𝑛1 · Pr[𝑇𝑗 = 1] + (𝑛 − 𝑛1) · Pr[𝑇𝑗 = 0]
= 𝑛1 · 𝑝 + (𝑛 − 𝑛1) · 𝑞
= (𝑝 − 𝑞)𝑛1 + 𝑛𝑞.

(31)

Therefore, the data collector can estimate the number of contribu-

tors having value 1 as

�̂�1 =
𝐼1 − 𝑛𝑞
𝑝 − 𝑞 , (32)

which is an unbiased estimator of 𝑛1.

Similar to the proof of �̂�1, we have 𝐸 [𝐼0] = (𝑝−𝑞)𝑛0+𝑛𝑞 followed
by 𝐼0 = 𝑛 − 𝐼1, which leads to the same unbiased estimator in the

theorem. □

B Proof of Theorem 2

Proof. Denote by C the set of contributors who collude with

the data collector and T𝑐 = {𝑇𝑗 | 𝑗 ∈ C}. We prove the theorem by

showing

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 ]
Pr[M(𝑥 ′

𝑖
) = 𝑦𝑖 | T𝑐 ]

≤ max Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 ]
min Pr[M(𝑥 ′

𝑖
) = 𝑦𝑖 | T𝑐 ]

=
𝑚𝑝max + (𝑛 −𝑚 − 1)𝑝
𝑚𝑝min + (𝑛 −𝑚 − 1)𝑞

,

(33)

for all 𝑥𝑖 , 𝑥
′
𝑖
, 𝑦𝑖 ∈ 𝐷 .

We start by analyzing Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 ]. Specifically, denote
by 𝑢 𝑗 the contributor that is assigned to the same group as contrib-

utor 𝑢𝑖 . We first have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 ]
= Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∉ C] · Pr[ 𝑗 ∉ C]
+ Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∈ C] · Pr[ 𝑗 ∈ C]

(34)

Under uniform random grouping, we have

Pr[ 𝑗 ∉ C] = 𝑛 −𝑚 − 1
𝑛 − 1 , (35)

and

Pr[ 𝑗 ∈ C] = 𝑚

𝑛 − 1 , (36)

where𝑚 is the number of contributors who collude with the data

collector.

We now analyze the conditional probabilities of contributor 𝑢𝑖
reporting 𝑦𝑖 under these two cases.

Case 1: 𝑗 ∉ C. If 𝑢 𝑗 is not a colluder, the probabilities of contrib-
utor 𝑢𝑖 reporting 𝑦𝑖 is independent of T𝑐 , and we have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∉ C] = Pr[M(𝑥𝑖 ) = 𝑦𝑖 ] . (37)
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It follows that

max

𝑥𝑖 ,𝑦𝑖 ∈𝐷
Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∉ C]

= Pr[M(𝑥𝑖 ) = 𝑥𝑖 ] = 𝑝,
(38)

where the first equality means that the maximum is achieved when

reporting truthfully (i.e., 𝑦𝑖 = 𝑥𝑖 ). Similarly, we have

min

𝑥𝑖 ,𝑦𝑖 ∈𝐷
Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∉ C]

= Pr[M(𝑥𝑖 ) = 1 − 𝑥𝑖 ] = 𝑞.
(39)

Case 2: 𝑗 ∈ C. If 𝑢 𝑗 colludes with the data collector, the condi-

tional probabilities of contributor 𝑢𝑖 reporting 𝑦𝑖 only depend on

𝑇𝑗 . We then have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 , 𝑗 ∈ C] = Pr[M(𝑥𝑖 ) = 𝑦𝑖 | 𝑇𝑗 ] . (40)

There are four cases:

• Case 2.1: If 𝑇𝑖 = 1,𝑇𝑗 = 1, then we have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | 𝑇𝑗 ] =
Pr[𝑦𝑖 = 𝑥𝑖 ,𝑇𝑗 = 1]

Pr[𝑇𝑗 = 1]

=
𝑝2 + 𝜌𝑝𝑞

𝑝
= 𝑝 + 𝜌𝑞.

(41)

• Case 2.2: If 𝑇𝑖 = 0,𝑇𝑗 = 1, then we have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | 𝑇𝑗 ] =
Pr[𝑦𝑖 = 1 − 𝑥𝑖 ,𝑇𝑗 = 1]

Pr[𝑇𝑗 = 1]

=
(1 − 𝜌)𝑝𝑞

𝑝
= (1 − 𝜌)𝑞.

(42)

• Case 2.3: If 𝑇𝑖 = 1,𝑇𝑗 = 0, then we have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | 𝑇𝑗 ] =
Pr[𝑦𝑖 = 𝑥𝑖 ,𝑇𝑗 = 0]

Pr[𝑇𝑗 = 0]

=
(1 − 𝜌)𝑝𝑞

𝑞
= (1 − 𝜌)𝑝.

(43)

• Case 2.4: If 𝑇𝑖 = 0,𝑇𝑗 = 0, then we have

Pr[M(𝑥𝑖 ) = 𝑦𝑖 | 𝑇𝑗 ] =
Pr[𝑦𝑖 = 1 − 𝑥𝑖 ,𝑇𝑗 = 0]

Pr[𝑇𝑗 = 0]

=
𝑞2 + 𝜌𝑝𝑞

𝑞
= 𝑞 + 𝜌𝑝.

(44)

The maximum and the minimum of the above four cases are given

by

𝑝max = max{𝑝 + 𝜌𝑞, (1 − 𝜌)𝑞, (1 − 𝜌)𝑝, 𝑞 + 𝜌𝑝}
= max{𝑝 + 𝜌𝑞, (1 − 𝜌)𝑝},

𝑝min = min{𝑝 + 𝜌𝑞, (1 − 𝜌)𝑞, (1 − 𝜌)𝑝, 𝑞 + 𝜌𝑝}
= min{𝑞 + 𝜌𝑝, (1 − 𝜌)𝑞}.

(45)

It follows that

max

𝑥𝑖 ,𝑦𝑖 ∈𝐷
Pr[M(𝑥𝑖 ) = 𝑦𝑖 |T𝑐 , 𝑗 ∈ C] = 𝑝max

(46)

and

min

𝑥𝑖 ,𝑦𝑖 ∈𝐷
Pr[M(𝑥𝑖 ) = 𝑦𝑖 |T𝑐 , 𝑗 ∈ C] = 𝑝min (47)

Substituting Eqs. (35), (36),(38) and (46) into Eq. (34), we have

max

𝑥𝑖 ,𝑦𝑖
Pr[M(𝑥𝑖 ) = 𝑦𝑖 |T𝑐 ] =

𝑚𝑝max

𝑛 − 1 +
𝑛 − 1 −𝑚
𝑛 − 1 · 𝑝, (48)

Similarly, substituting Eqs. (35), (36), (39) and (47) into Eq. (34), we

have

min

𝑥𝑖 ,𝑦𝑖
Pr[M(𝑥𝑖 ) = 𝑦𝑖 |T𝑐 ] =

𝑚𝑝min

𝑛 − 1 +
𝑛 − 1 −𝑚
𝑛 − 1 · 𝑞, (49)

It follows that

max Pr[M(𝑥𝑖 ) = 𝑦𝑖 | T𝑐 ]
min Pr[M(𝑥 ′

𝑖
) = 𝑦𝑖 | T𝑐 ]

=
𝑚𝑝max + (𝑛 −𝑚 − 1)𝑝
𝑚𝑝min + (𝑛 −𝑚 − 1)𝑞

, (50)

for all 𝑥𝑖 , 𝑥
′
𝑖
, 𝑦𝑖 ∈ 𝐷 . The theorem is thus proved. □

C Proof of Theorem 3

Proof. First, the variance of the estimator �̂�𝑣 is given by

Var[�̂�𝑣] =
Var[𝐼𝑣 − 𝑛𝑞]
(𝑝 − 𝑞)2

=
Var[𝐼𝑣]
(𝑝 − 𝑞)2

, (51)

where the second equality holds because both 𝑛 and 𝑞 are constant.

Since 𝑛 = 𝑛0 + 𝑛1, we have Var[�̂�0] = Var[𝑛 − �̂�1] = Var[�̂�1]. In
what follows, we focus on the analysis of Var[�̂�1].

Again define 𝑌𝑗 to be the indicator random variable such that

𝑌𝑗 = 1 if contributor 𝑢 𝑗 reports a perturbed value of “1” and 0

otherwise for all 1 ≤ 𝑗 ≤ 𝑛. Without loss of generality, assume that

group 𝐺𝑖 consists of contributors 𝑢2𝑖−1 and 𝑢2𝑖 for all 1 ≤ 𝑖 ≤ 𝑛/2.
Since the perturbation of different groups is independent of each

other, we have

Var[𝐼1] = Var[
𝑛∑︁
𝑗=1

𝑌𝑗 ] =
𝑛/2∑︁
𝑖=1

Var[𝑌2𝑖−1 + 𝑌2𝑖 ] . (52)

The 𝑛/2 groups can be classified into three categories: Type-

1 groups with both contributors having value 1, Type-2 group

with one contributor having value 1 and the other having value

0, and Type-3 groups with both contributors having value 0. The

variance of each group’s variance Var[𝑌2𝑖−1 + 𝑌2𝑖 ] depends on its

type, and groups of the same type have the same variance. Define

𝑉𝑧 = Var[𝑌2𝑖−1 +𝑌2𝑖 ] if group𝐺𝑖 is a type-𝑧 group for all 1 ≤ 𝑧 ≤ 3

and 1 ≤ 𝑖 ≤ 𝑛
2
. Let𝑚1,𝑚2, and𝑚3 be the numbers of Type-1, Type-

2, and Type-3 groups, respectively, which are themselves random

variables due to uniform random grouping. For any given 𝑛0 and

𝑛1, we have 2𝑚1 +𝑚2 = 𝑛1 and𝑚1 +𝑚2 +𝑚3 = 𝑛/2. It follows that
𝑚2 = 𝑛1 − 2𝑚1 and𝑚3 = 𝑚1 + 𝑛/2 − 𝑛1, which indicates that the

random grouping only produces one independent random variable

𝑚1.

For any given𝑚1, the conditional variance of 𝐼1 is given by

Var[𝐼1 |𝑚1] =
𝑛/2∑︁
𝑖=1

Var[𝑌2𝑖−1 + 𝑌2𝑖 ]

=𝑚1𝑉1 +𝑚2𝑉2 +𝑚3𝑉3

=𝑚1𝑉1 + (𝑛1 − 2𝑚1)𝑉2 + (𝑚1 +
𝑛

2

− 𝑛1)𝑉3 .

(53)

According to the law of total variance [3], the (unconditional) vari-

ance of 𝐼1 is given by

Var[𝐼1] = E[Var[𝐼1 |𝑚1]] + Var[E[𝐼1 |𝑚1]] . (54)

Next, we calculate the two terms in Eq. (54) one by one.
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The first term E[Var[𝑰1 |𝒎1]].We first calculate 𝑉1, 𝑉2 and 𝑉3.

For any group 𝐺𝑖 , we have

Var[𝑌2𝑖−1 + 𝑌2𝑖 ]
=Var[𝑌2𝑖−1] + Var[𝑌2𝑖 ] + 2Cov[𝑌2𝑖−1, 𝑌2𝑖 ]
=Var[𝑌2𝑖−1] + Var[𝑌2𝑖 ]
+ 2(E[𝑌2𝑖−1𝑌2𝑖 ] − E[𝑌2𝑖−1]E[𝑌2𝑖 ]).

(55)

There are three cases.

• Case 1: If 𝐺𝑖 is of Type-1, then we have

E[𝑌2𝑖−1𝑌2𝑖 ] = Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 1] = 𝜌𝑝𝑞 + 𝑝2, (56)

and

E[𝑌2𝑖−1]E[𝑌2𝑖 ] = Pr[𝑇2𝑖−1 = 1] · Pr[𝑇2𝑖 = 1] = 𝑝2 . (57)

• Case 2: If 𝐺𝑖 is of Type-2, then we have

E[𝑌2𝑖−1𝑌2𝑖 ] = (1 − 𝜌)𝑝𝑞 (58)

and

E[𝑌2𝑖−1]E[𝑌2𝑖 ] = 𝑝𝑞. (59)

• Case 3: If 𝐺𝑖 is of Type-3, then we have

E[𝑌2𝑖−1𝑌2𝑖 ] = 𝑞2 + 𝜌𝑝𝑞, (60)

and

E[𝑌2𝑖−1]𝐸 [𝑌2𝑖 ] = 𝑞2 . (61)

Substituting Eqs. (56) to (61) into Eq. (55), we get

𝑉1 = 2𝑝𝑞(1 + 𝜌),
𝑉2 = 2𝑝𝑞(1 − 𝜌),
𝑉3 = 2𝑝𝑞(1 + 𝜌) .

(62)

Substituting Eq. (62) into Eq. (53), we have

Var[𝐼1 |𝑚1] = 𝑛𝑝𝑞 + (8𝑚1 + 𝑛 − 4𝑛1)𝜌𝑝𝑞, (63)

Taking the expectation on both sides, we have

E[Var[𝐼1 |𝑚1]] =E[𝑛𝑝𝑞 + (8𝑚1 + 𝑛 − 4𝑛1)𝜌𝑝𝑞]
=𝑛𝑝𝑞 + (8E[𝑚1] + 𝑛 − 4𝑛1)𝜌𝑝𝑞.

(64)

Since the expectation of the number of Type-1 groups is

E[𝑚1] =
𝑛

2

· 𝑛1 (𝑛1 − 1)
𝑛(𝑛 − 1) =

𝑛1 (𝑛1 − 1)
2(𝑛 − 1) , (65)

Substituting Eq. (65) into Eq. (64), we have

E[Var[𝐼1 |𝑚1]] = 𝑛𝑝𝑞 + (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 𝜌𝑝𝑞. (66)

The second term Var[E[𝑰1 |𝒎1]]. According to the definition of

conditional expectation, we have

E[𝐼1 |𝑚1] = E[
𝑛∑︁
𝑗=1

𝑌𝑗 |𝑚1] =
𝑛∑︁
𝑗=1

E[𝑌𝑗 |𝑚1]

= 𝑛 · 1 · Pr(𝑌𝑗 = 1|𝑚1) .
(67)

Under JRR, whether an arbitrary contributor 𝑢 𝑗 reports 1 or 0 only

depends on the contributor’s original value 𝑥 𝑗 and the identical mar-

ginal probability distribution Pr[𝑇𝑗 ]. Since the numbers of contrib-

utors with the original value 1 and 0, 𝑛1 and 𝑛0, are predetermined.

Thus, we have

E[𝐼1 |𝑚1] = 𝑛 · Pr[𝑌𝑗 = 1|𝑚1]
= 𝑛1 · Pr[𝑇𝑗 = 1] + (𝑛 − 𝑛1) · Pr[𝑇𝑗 = 0]
= 𝑛1𝑝 + (𝑛 − 𝑛1) (1 − 𝑝)
= (2𝑛1 − 𝑛)𝑝 + 𝑛 − 𝑛1,

(68)

which is a constant independent with𝑚1. It follows that

Var[E[𝐼1 |𝑚1]] = 0. (69)

Substituting Eqs. (69) and (66) into Eq. (54 ), we have

Var[𝐼1] = 𝑛𝑝𝑞 + (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 𝜌𝑝𝑞. (70)

Finally, substituting Eq. (70) into Eq. (51), we have

Var[�̂�𝑣] =
𝑝𝑞

(𝑝 − 𝑞)2
· (𝑛 + 𝜌 ((2𝑛1 − 𝑛)2 − 𝑛)

𝑛 − 1 ) .

The theorem is thus proved. □

D Proof of the Lemma 1

Proof. Let (2𝑛1 − 𝑛)2 − 𝑛 < 0. Solving the inequality, we have

−
√
𝑛 < 2𝑛1 − 𝑛 <

√
𝑛. (71)

By simple algebraic manipulation, we get

𝑛 −
√
𝑛

2

< 𝑛1 <
𝑛 −
√
𝑛

2

. (72)

Dividing all three sides by 𝑛, we can obtain

𝑛 −
√
𝑛

2𝑛
<

𝑛1

𝑛
<

𝑛 −
√
𝑛

2𝑛
.

We therefore have (2𝑛1 − 𝑛)2 − 𝑛 < 0 if
1

2
− 1

2

√
𝑛
<

𝑛1

𝑛 < 1

2
+ 1

2

√
𝑛

and (2𝑛1 −𝑛)2 −𝑛 ≥ 0 if
𝑛1

𝑛 ∈ [0,
1

2
− 1

2

√
𝑛
]⋃[ 1

2
+ 1

2

√
𝑛
] The lemma

is thus proved. □

E Proof of Lemma 2

Proof. Since 0 ≤ 𝑛1 ≤ 𝑛, we have 0 ≤ (2𝑛1 − 𝑛)2 ≤ 𝑛2. Sub-

tracting 𝑛 from all three sides and then dividing them by 𝑛 − 1, we
get

0 − 𝑛
𝑛 − 1 ≤

(2𝑛1 − 𝑛)2 − 𝑛
𝑛 − 1 ≤ 𝑛2 − 𝑛

𝑛 − 1 . (73)

It follows that

1

𝑛 − 1 − 1 ≤
(2𝑛1 − 𝑛)2 − 𝑛

𝑛 − 1 ≤ 𝑛. (74)

Since 𝜌 ∈ [−1, 1] and 𝑛 ≥ 2 > | 1

𝑛−1 − 1|, multiplying 𝜌 by all three

sides of Inequality (74), we get

−𝑛 < 𝜌 ( 1

𝑛 − 1 − 1) ≤ 𝜌 · (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 ≤ 𝜌𝑛 ≤ 𝑛. (75)

It follows that

−𝑛 < 𝜌 · (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 ≤ 𝑛. (76)

Adding 𝑛 to all three sides of Inequality (76), we get

0 < 𝑛 + 𝜌 · (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 ≤ 2𝑛. (77)

It follows that

𝑛 + 𝜌 · (2𝑛1 − 𝑛)
2 − 𝑛

𝑛 − 1 > 0. (78)
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The lemma is thus proved.

□

F Proof of Lemma 3

Proof. Since 𝑞 = 1 − 𝑝 , we have

𝑝𝑞

(𝑝 − 𝑞)2
=

𝑝 (1 − 𝑝)
(2𝑝 − 1)2

=
1

4

( 1

(2𝑝 − 1)2
− 1) .

It is easy to see that
1

(2𝑝−1)2 is monotonically decreasing with

respect to 𝑝 ∈ (0.5, 1]. Therefore, 𝑝𝑞

(𝑝−𝑞)2 is also monotonically

decreasing with respect to 𝑝 ∈ (0.5, 1]. The lemma is therefore

proved. □

G Proof of Theorem 4

Proof. Sinceℎ(𝑝, 𝜌) is the product of 𝑝𝑞

(𝑝−𝑞)2 and𝑛+
𝜌 ( (2𝑛1−𝑛)2−𝑛)

𝑛−1
according to Eq. (21), we can analyze its monotonicity with re-

spect to 𝑝 and 𝜌 based on the monotonicity of
𝑝𝑞

(𝑝−𝑞)2 and 𝑛 +
𝜌 ( (2𝑛1−𝑛)2−𝑛)

𝑛−1 .

First, since
𝑝𝑞

(𝑝−𝑞)2 is monotonically decreasing with respect to

𝑝 ∈ (0.5, 1] according to Lemma 3, and 𝑛 + 𝜌 ( (2𝑛1−𝑛)2−𝑛)
𝑛−1 > 0

according to Lemma 1 and is independent of 𝑝 , ℎ(𝑝, 𝜌) is monoton-

ically decreasing with respect to 𝑝 ∈ (0.5, 1].
Second, since

𝑝𝑞

(𝑝−𝑞)2 > 0 and is independent of 𝜌 , the mono-

tonicity of ℎ(𝑝, 𝜌) with respect to 𝜌 is the same as that of 𝑛 +
𝜌 ( (2𝑛1−𝑛)2−𝑛)

𝑛−1 . Since 𝑛 ≥ 2 and ((2𝑛1 − 𝑛)2 − 𝑛) < 0 if 𝑛1/𝑛 ∈
( 1
2
− 1

2

√
𝑛
, 1
2
+ 1

2

√
𝑛
) according to Lemma 2, ℎ(𝑝, 𝜌) is also monotoni-

cally decreasing with respect to 𝜌 if
𝑛1

𝑛 ∈ (
1

2
− 1

2

√
𝑛
, 1
2
+ 1

2

√
𝑛
). By sim-

ilar deduction, it is also easy to prove that ℎ(𝑝, 𝜌) is also monotoni-

cally increasing with respect to 𝜌 if
𝑛1

𝑛 ∈ [0,
1

2
− 1

2

√
𝑛
]⋃[ 1

2
+ 1

2

√
𝑛
, 1].

The theorem is therefore proved. □

H Monotonicity of 𝑓 (𝑚)
Denote by 𝑔1 (𝑚) = 𝑚𝑝max + (𝑛 −𝑚 − 1)𝑝 and 𝑔2 (𝑚) = 𝑚𝑝min +
(𝑛 −𝑚 − 1)𝑞. We have 𝑓 (𝑚) = 𝑔1 (𝑚)

𝑔2 (𝑚) , and its derivative is

𝑓 ′ (𝑚) =
𝑔′
1
(𝑚) · 𝑔2 (𝑚) − 𝑔1 (𝑚) · 𝑔′

2
(𝑚)

𝑔2
2
(𝑚)

=
(𝑝max · 𝑞 − 𝑝min · 𝑝) · (𝑛 − 1)

𝑔2
2
(𝑚)

(79)

We now consider the following two cases.

• Case 1: if 𝜌 ≤ 0, we have 𝑝max = (1− 𝜌)𝑝 and 𝑝min = 𝑞 + 𝜌𝑝 .
It follows that 𝑝max · 𝑞 − 𝑝min · 𝑝 = −2𝜌𝑝𝑞 > 0,

• Case 2: if 𝜌 > 0, we have 𝑝max = 𝑝 + 𝜌𝑞 and 𝑝min = (1− 𝜌)𝑞.
It follows that 𝑝max · 𝑞 − 𝑝min · 𝑝 = 2𝜌𝑝𝑞 > 0.

Notice that 𝑔2
2
(𝑚) > 0 and 𝑛 − 1 > 0. We then have 𝑓 ′ (𝑚) > 0, and

𝑓 (𝑚) is monotonically increasing with respect to𝑚.

I Proof of Theorem 5

Proof. We prove the reporting trustfulness in Section 4.5 is the

same as in Table 2.

For any group with two contributors 𝑢2𝑖−1 and 𝑢2𝑖 , let𝑇2𝑖−1 and
𝑇2𝑖 be the truthfulness of the two contributors’ reports.

First, for the case 𝑇2𝑖−1 = 1,𝑇2𝑖 = 1, we have:

Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 1]
=Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 1|𝑅1 = 1]
+ Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 1|𝑅1 = −1]

=
1

2

(𝑝2 + 𝜌𝑝𝑞) + 1

2

(𝑝2 + 𝜌𝑝𝑞) = 𝑝2 + 𝜌𝑝𝑞.

(80)

Second, for the case 𝑇2𝑖−1 = 1,𝑇2𝑖 = 0, we have:

Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 0]
=Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 0|𝑅1 = 1]
+ Pr[𝑇2𝑖−1 = 1,𝑇2𝑖 = 0|𝑅1 = −1]

=
1

2

((1 − 𝜌)𝑝𝑞 − √−𝜌𝑝𝑞)

+ 1

2

((1 − 𝜌)𝑝𝑞 + √−𝜌𝑝𝑞)

=(1 − 𝜌)𝑝𝑞.

(81)

𝑇2𝑖−1 = 0,𝑇2𝑖 = 1 is symmetric to the case of 𝑇2𝑖−1 = 1,𝑇2𝑖 = 0, so

we have Pr[𝑇2𝑖−1 = 0,𝑇2𝑖 = 1] = (1 − 𝜌)𝑝𝑞.
For the case of 𝑇2𝑖−1 = 0,𝑇2𝑖 = 0, we have

Pr[𝑇2𝑖−1 = 0,𝑇2𝑖 = 0]
=Pr[𝑇2𝑖−1 = 0,𝑇2𝑖 = 0|𝑅1 = 1]
+ Pr[𝑇2𝑖−1 = 0,𝑇2𝑖 = 0|𝑅1 = −1]

=
1

2

(𝑞2 − 𝜌𝑝𝑞)

+ 1

2

(𝑞2 − 𝜌𝑝𝑞)

=𝑞2 − 𝜌𝑝𝑞.

(82)

These results are the same as in Table 2. □

J Details of Real-world Datasets

We use the following four real-world datasets to evaluate the per-

formance of JRR:

• Kosarak [1]: a dataset containing the click stream of a Hun-

garian news website that records about 8 million click events

for 41, 270 different pages. For our purpose, we randomly

select 100 pages as the target pages and 20, 000 click events

as contributors. If a click event’s visited page belongs to the

target pages, that contributor’s true value is “1: visited” and

“0: not” otherwise. The frequency of the clicks on the target

pages is deemed as the ground truth.

• Amazon Rating Dataset [4]: a dataset that contains over

2 million customer ratings of beauty-related products sold

on Amazon. We randomly select 10, 000 customers as con-

tributors and set each contributor’s true value to 1 if his/her
rating is “1 star” and 0 otherwise.
• E-commerce [2]: a women’s clothing E-Commerce dataset

consisting of 23, 486 records and 10 features variables. We

select the binary variable “Recommended IND” as each con-

tributor’s true data.

• Census[42]: a dataset of the United States census in 2010

from the Integrated Public Use Microdata Series (IPUMS).

We randomly select 10, 000 records and set each contributor’s
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true value to 1 if the code of group quarter (GQ) is 1 and 0
otherwise.

K Marginal distribution and estimator of 𝑘-JRR

We first prove that the marginal distribution of 𝑘-JRR (Section 4.6.1)

is identical, with each contributor reporting their true value with

probability 𝑝 and any other value with probability 𝑞.

Proof. Let 𝑣1 and 𝑣
′
1
be a contributor’s true value and reported

value. We have

Pr[𝑣 ′
1
= 𝑣1] =

∑︁
𝑣′
2
∈[𝑘 ]

Pr[𝑣 ′
1
= 𝑣1, 𝑣

′
2
]

=𝑝2 + 𝜌𝑝𝑞 + (𝑘 − 1) (𝑝𝑞 − 1

𝑘 − 1𝜌𝑝𝑞)

=𝑝.

(83)

Similarly, for each 𝑣 ′
1
≠ 𝑣1 in the data domain, we have

Pr[𝑣 ′
1
≠ 𝑣1] =

∑︁
𝑣′
2
∈[𝑘 ]

Pr[𝑣 ′
1
≠ 𝑣1, 𝑣

′
2
]

=(𝑝𝑞 − 1

𝑘 − 1𝜌𝑝𝑞) + (𝑘 − 1) (𝑞
2 + 1

(𝑘 − 1)2
𝜌𝑝𝑞)

=𝑞.

(84)

We now prove the estimator �̂�𝑣 = (𝐼𝑣 − 𝑛𝑞)/(𝑝 − 𝑞) is unbiased.
First, we have

E[𝐼𝑣] = 𝑛𝑣 · Pr[𝑣 ′ = 𝑣] + (𝑛 − 𝑛𝑣) · Pr[𝑣 ′ ≠ 𝑣]
=𝑛𝑣𝑝 + (𝑛 − 𝑛𝑣)𝑞.

(85)

Plugging E[𝐼𝑣] into �̂�𝑣 gives

E[�̂�𝑣] =
E[𝐼𝑣] − 𝑛𝑞

𝑝 − 𝑞

=
𝑛𝑣𝑝 + (𝑛 − 𝑛𝑣)𝑞 − 𝑛𝑞

𝑝 − 𝑞
=𝑛𝑣,

(86)

i.e. �̂�𝑣 is an unbiased estimator for 𝑛𝑣 . □
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