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Abstract
Vehicle platooning, with vehicles traveling in close formation co-
ordinated through Vehicle-to-Everything (V2X) communications,
offers significant benefits in fuel efficiency and road utilization.
However, it is vulnerable to sophisticated falsification attacks by
authenticated insiders that can destabilize the formation and po-
tentially cause catastrophic collisions. This paper addresses this
challenge: misbehavior detection in vehicle platooning systems. We
present AttentionGuard, a transformer-based framework for mis-
behavior detection that leverages the self-attention mechanism to
identify anomalous patterns in mobility data. Our proposal employs
a multi-head transformer-encoder to process sequential kinematic
information, enabling effective differentiation between normal mo-
bility patterns and falsification attacks across diverse platooning
scenarios, including steady-state (no-maneuver) operation, join, and
exit maneuvers. Our evaluation uses an extensive simulation dataset
featuring various attack vectors (constant, gradual, and combined
falsifications) and operational parameters (controller types, vehicle
speeds, and attacker positions). Experimental results demonstrate
that AttentionGuard achieves up to 0.95 F1-score in attack detection,
with robust performance maintained during complex maneuvers.
Notably, our system performs effectively with minimal latency
(100ms decision intervals), making it suitable for real-time trans-
portation safety applications. Comparative analysis reveals superior
detection capabilities and establishes the transformer-encoder as a
promising approach for securing Cooperative Intelligent Transport
Systems (C-ITS) against sophisticated insider threats.

CCS Concepts
• Networks → Network security; • Security and privacy →
Distributed systems security; Intrusion detection systems.

∗Equally contributing authors.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
WiseML 2025, Arlington, VA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1531-0/2025/06
https://doi.org/10.1145/3733965.3733966

Keywords
Transformer Encoder, Anomaly Detection, Vehicular Platoons, V2X,
Maneuvering

ACM Reference Format:
Hexu Li, Konstantinos Kalogiannis, Ahmed Mohamed Hussain, and Panos
Papadimitratos. 2025. AttentionGuard: Transformer-based Misbehavior
Detection for Secure Vehicular Platoons. In Proceedings of the 2025 ACM
Workshop on Wireless Security and Machine Learning (WiseML 2025), July
3, 2025, Arlington, VA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3733965.3733966

1 Introduction
Vehicular Ad-hoc Networks (VANETs) and Cooperative Intelligent
Transport System (C-ITS) have emerged as promising technolo-
gies to enhance road safety, improve traffic efficiency, and pro-
vide a more comfortable driving experience [1, 20]. An important
application in this domain is vehicle platooning, where multiple
vehicles travel in close formation with reduced inter-vehicle dis-
tances, coordinated through Vehicle-to-Everything (V2X) commu-
nications [21, 22]. While platooning offers substantial benefits, such
as reduced fuel consumption, improved traffic throughput, and en-
hanced safety, it also introduces significant security vulnerabilities
that must be addressed [12].

The vehicle platooning security challenges stem from the de-
pendence on the continuous exchange of Cooperative Awareness
Messages (CAMs) containing kinematic data (i.e., position, speed,
acceleration) among vehicles. Cryptographic approaches provide
a first line of defense, mitigating external to the platoon attackers
and safeguarding against Sybil adversaries [15]; but they remain
ineffective against insider threats–authenticated vehicles that de-
liberately transmit falsified mobility data [23]. Such falsification
attacks can destabilize platoon formations and potentially lead to
catastrophic collisions, particularly during coordinated maneuvers,
such as joining or exiting a platoon [12].

Misbehavior Detection Schemes (MDSs) are an essential second
line of defense, identifying anomalous patterns in V2X communica-
tions that may indicate malicious activity [13, 14]. Traditional MDS
approaches typically rely on pre-defined rules, thresholds, or plau-
sibility checks, which, while computationally efficient, often fail to
adapt to the complex dynamics of vehicular environments. More
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recent approaches leverage Machine Learning (ML) approaches
to improve detection capabilities [14]; however, many challenges
persist, including (i) the ability to distinguish between legitimate
maneuvers and malicious behavior [12], (ii) computational con-
straints on resource-limited On-Board Units (OBUs) [3], and (iii)
the need for real-time misbehavior detection to enable timely miti-
gation [11].

In this paper, we propose a novel transformer-based architecture
for misbehavior detection in vehicular platoons that addresses the
aforementioned challenges. Our approach leverages the temporal
context awareness of transformer encoders to effectively differenti-
ate between normal mobility patterns and sophisticated falsification
attacks, even during complex maneuvers.

Contributions.We summarize the main contributions of this
work as follows: (i) A reliable and timelyMDS capable of identifying
malicious behavior in diverse mobility scenarios, including steady-
state and maneuvering conditions. (ii) Evidence on the capability
of transformer-based approaches to identify attacks even when
the inference-phase data input differs from the training dataset.
(iii) Insights on the deployment of transformer-based MDSs, in
vehicles or on the edge, depending on acceptable reaction times
and detection performance.

Paper Organization. Sec. 2 reviews related work on misbehav-
ior detection in vehicular networks, focusing on ML approaches
for platooning security. Sec. 3 presents our system and adversary
model, detailing platooning environments and attack scenarios.
Sec. 4 describes our transformer-based framework, including the
preprocessing, architecture, and implementation details. Sec. 5 eval-
uates our approach and analyzes practical deployment considera-
tions for vehicle and infrastructure-based detection systems. Finally,
Sec. 6 concludes with key findings and future research directions.

2 Related Work
Vehicle platooning systems rely on reliable V2X communications
and continuous CAM exchange. The coordinated nature of pla-
tooning operations (e.g., middle-join, exit) [11, 12] necessitates
robust misbehavior detection mechanisms to ensure operational
integrity and satisfy safety-critical requirements. Traditional ML ap-
proaches demonstrated significant efficacy in V2X misbehavior de-
tection [14]. These include Support VectorMachine (SVM), Decision
Tree (DT), Random Forest (RF), and k-Nearest Neighbor (k-NN), en-
abling systematic identification of anomalous patterns in network
messages and vehicle behaviors.

Such approaches heavily depend on feature engineering and
model adaptation to dynamic vehicular environments. Grover et
al. [8] developed a comprehensive feature set encompassing ge-
ographical position, acceptance range, Received Signal Strength
(RSS), speed, and packet delivery metrics for misbehavior classifica-
tion in VANET. They utilized multiple classifiers, including RF and
k-NN, and validated the feasibility of resource-constrained misbe-
havior detection. Additionally, Gyawali et al. [6] integratedMLwith
reputation-based systems, enhancing detection accuracy through
Dempster-Shafer (DS)-based feedback combination. Ercan et al. [3]
proposed a distributed Intrusion Detection System (IDS) utilizing
ensemble learning techniques, demonstrating high performance
through combining k-NN and RF classifiers.

Deep Learning (DL) approaches have shown particular promise.
Liu [16] implemented a Long Short-Term Memory (LSTM)-based
architecture for anomaly detection in the VeReMi dataset [24], im-
proving on False Positive (FP) rates compared to conventional de-
tectors. Hsu et al. [9] developed a hybrid architecture combining
Convolutional Neural Network (CNN) and LSTM networks, achiev-
ing 95.35% detection accuracy across multiple misbehavior attacks.
Advanced collaborative approaches have further enhanced detec-
tion capabilities. Mangla et al. [17] proposed a fusion framework
integrating SVM, Multi-Layer Perceptron (MLP), and LSTM classi-
fiers, achieving 99.99% accuracy in multi-class misbehavior detec-
tion. Gurjar et al. [7] addressed privacy concerns through Federated
Learning (FL), enabling distributed model training while preserving
data privacy. Recently, Transformer-based IDS have been developed
as a way to detect attacks in In-Vehicle Networks (IVNs) [2, 18, 19].

Comparison with Existing Work. Our MDS incorporates a
Transformer-encoder that captures the unique mobility charac-
teristics of different maneuvering (attack and benign) scenarios.
Compared to the Transformer-based solutions, our aim is not to de-
tect attacks within IVN; we detect adversarial behavior in platoon
formations by analyzing the platooning vehicles’ sensor readings
and mobility patterns.

3 System and Adversary Model
We consider a set of V2X-enabled vehicles forming a platoon on a
highway and traveling in unison. During the journey, other V2X-
enabled vehicles can request to join the formation to gain platoon-
ing benefits. The platoon leader can accept such a request and
designate a join position based on the requesting car’s capabilities
and target destination. Similarly, platooning vehicles can decide to
exit their formation during the trip, e.g., when approaching their
destination, by initiating an exit request and performing the ma-
neuver when available.

It is exactly at these moments that the attacker can choose to
strike, to maximize its attack potential effect (harm). More specifi-
cally, we study a threat model applicable to Vehicular Communica-
tion (VC) systems [20], and more specifically to platooning [1, 12].
An attacker possesses valid cryptographic credentials and can join
platoons to perform its attacks: the attacker cannot impersonate
another vehicle, but it can alter the kinematic properties (i.e., posi-
tion, speed, acceleration) of the CAMs it transmits. Based on the
dataset in [12], the attacks can introduce a constant or a gradual
offset to each of the kinematic values; or alter them intelligently,
and in unison, in a physics-consistent way, termed “combined” at-
tacks. These nine types of attacks are executed against platoons
in different mobility scenarios: a join, an exit, or a steady-state
scenario.

4 Proposed Framework
We propose an MDS framework consisting of three phases, namely:
(i) data pre-processing, (ii) model training, and (iii) model evalua-
tion.

Data Pre-Processing. The available simulated data consists of
platoons of up to seven vehicles traveling on a straight highway
for 118.9 seconds, recording seven mobility properties (distance,
relativeSpeed, acceleration, controllerAcceleration, speed, posx, and
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posy). To account for varying vehicle insertion times (appearing in
the simulation), we utilize amask array indicating valid features for
each car. Finally, we classify data as benign (0), or attack (1) if they
deviate from the ground truth; for scenarios under the same seed,
the data deviate only when an attack affects the vehicle controller.
This results in an array of shape (7, 1189, 7) for the features and
an array of shape (7, 1189) for the labels and the mask. Table 1
summarizes the total number of traces and the ratio between the
benign and attack traces processed.

Table 1: Outcome of preprocessing for each seed.

Seed Total Traces Valid Labels Ratio of 1 Ratio of 0 0/1 Ratio

0-02-1 1454 8307624 0.2111 0.7889 3.7369
2016-02-1 1620 9568553 0.2863 0.7137 2.4926
2083-02-1 1449 8286245 0.2217 0.7783 3.5101
2084-02-1 1458 8376577 0.2209 0.7791 3.5278
2085-02-1 1426 8119617 0.2199 0.7801 3.5469
2086-02-1 1434 8168407 0.2174 0.7826 3.6007

To ensure all features contribute equally during the model train-
ing phase, we normalize values using a global mean 𝜇 and variance
𝜎2. Specifically, let x ∈ R7 be the raw feature vector at a given time
step. We first compute:

𝜇 =
1
𝑁

𝑁∑︁
𝑛=1

x𝑛, 𝜎2 =
1
𝑁

𝑁∑︁
𝑛=1

(x𝑛 − 𝜇)2, (1)

where 𝑁 is the total number of feature vectors across all files.
Then, each feature is normalized to:

x̂ =
x − 𝜇

𝜎 + 𝜖
, (2)

with 𝜖 ≈ 10−8 to avoid division by zero. The z-score transfor-
mation ensures that each dimension has a near-zero mean and
unit variance, reducing scale discrepancies among different scenar-
ios. After normalization, we split the data into equal-sized sliding
windows (10 data points) and introduce padding where applicable.

Considered Model. We utilize the Transformer-encoder ar-
chitecture because it can generate output data by capturing the
context of the input data [25]. Unlike the sequential processing
of data performed by Recurrent Neural Networks (RNNs), Trans-
formers can at once process the entire data sequence, allowing
for extracting relationships and context within the sequence. The
overall Transformer architecture (introduced in [25]) includes two
primary components: the encoder and the decoder. The encoder is
tasked with processing the input data sequence, transforming it into
a continuous representation that encapsulates contextual informa-
tion. This is achieved through multiple layers, each incorporating
a multi-head self-attention mechanism and a position-wise fully
connected feed-forward network. The self-attention mechanism
enables the encoder to assign varying degrees of importance to
different parts of the input sequence, thereby generating a compre-
hensive representation of the data.

The complete architecture of our transformer block is presented
in Fig. 1. For this domain-specific problem, our approach consists
of two model training approaches: (i) a general platooning model
utilizing all vehicle data as input, (ii) a vehicle-specific model trained
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Figure 1: Structure and details of the implemented
transformer-encoder.

only on its own mobility data. The aim is to provide insights on
the feasibility of deploying general or vehicle-specific models to
ensure the vehicular formation security.

Considering the binary nature of the problem (benign vs attack
characterization), we utilize the masked binary-cross entropy loss
function, presented in Equation 3. Let 𝑦𝑖 ∈ {0, 1} be the ground-
truth label for step 𝑖 , and mask𝑖 ∈ {0, 1} indicate whether that
step is valid (i.e. not padded). The model outputs a logit 𝑧𝑖 ∈ R.
We define a positive weight 𝛼 > 1 to handle the class imbalance
inherent in our data. Thus, for each valid step (mask𝑖 = 1), the BCE
loss is:

LBCE = −
∑︁
𝑖

mask𝑖
[
(1 − 𝑦𝑖 ) log

(
𝜎 (𝑧𝑖 )

)
+ 𝑦𝑖 𝛼 log

(
𝜎 (𝑧𝑖 )

) ]
(3)

where 𝜎 (·) is the sigmoid function. All steps with mask𝑖 = 0 do
not contribute to the loss. Finally, we normalize by the total number
of valid steps to get an average loss.

Model Evaluation. To drive the discussion towards the loca-
tion deployment of MDSs, in-vehicle, on the edge, or at a Roadside
Unit (RSU), we run the inference phase of the general platooning
model with two different inputs: either locally, with just the vehicle
own mobility data, or after collecting the entire platoon mobil-
ity information. Additionally, we evaluate each vehicle’s model
performance against the general platooning model.

Our evaluation of attack detection employs several metrics, recall,
precision, 𝐹1 score, and accuracy; giving us, respectively, the frac-
tion of true positive steps among all actual positives, the fraction of
correctly identified positives among all predicted positives, the har-
monic mean of the previous two metrics (useful when dealing with
unbalanced classes), and, finally, the indicator of correct predictions.
Furthermore, we use the Receiver Operating Characteristic (ROC),
the proportion of correctly detected messages (True Positive (TP))
over incorrectly identified messages (FP), to measure the ability of
our identifier to correctly classify the input data. Additionally, we
provide the Area Under the Curve (AUC) to facilitate the classifier
comparison.

5 Performance Evaluation
5.1 Training Setup
The transformer-encoder is implemented using TensorFlow [5]
and Keras [4]; for training, we used a batch size of 128, chosen
empirically, and a learning rate of 5𝜖−5 for the Adaptive Moment
Estimation (ADAM) optimizer. We set the positive weights for all
models depending on the ratio of benign and attack labels, as de-
scribed in Table 1, e.g., to 3.3 for the general platooning model. For
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positional encoding, we utilize the sin(·) and cos(·) functions [25].
As part of the training and inference process, we define the window
size to be 10, i.e., we gather 1s worth of data, and consider a variable
step size; from 1 to 10, signifying the required data before making
the next prediction (from 100ms to 1s, respectively). Table 2 outlines
all the parameters used in the model training setup.

Table 2: Training parameters.

Transformer-encoder Platoons

Parameters Value Parameters Value

Batch Size 128 Cars 6 or 7 (Join)
Data Split Ratio 80/20 Spacing Controller PATH, Flatbed
Learning Rate 5𝜖−5 Headway Controller Ploeg, Consensus
Window size 10 Leader Speed 50, 80, 100, 150 kmph
Step size [1, 5, 10] Spacing 5m, 5m, 0.5s, 0.8s

Positive Weight/Positional Encoding Dataset/Model dependent Sim. Duration 120s
Loss Function Binary Crossentropy Attacker Position [0, 2]

On the other hand, the input dataset describes platoons of 6 vehi-
cles, increasing to 7 when a join needs to be performed, that travel
on the highway with different speeds. The platoons themselves
utilize different controllers, either Constant Vehicle Spacing (CVS),
where the vehicles try to keep a constant spacing distance; or
Constant Time Headway (CTH), where the vehicles’ intra-platoon
distances are based on speed and the time it would take to reach the
bumper of the car ahead. The different controllers and speeds con-
tribute to the diverse mobility characteristics of the vehicles. Finally,
we consider attackers positions either at the front, as the platoon
leader, or at position three (Vehicle 2), as a regular platoon follower;
the latter corresponds to the position just in front of the join or
exit positions [12]. The analysis of our data was performed on an
Ubuntu machine, using 128 GB of Random Access Memory (RAM),
an AMD Ryzen Threadripper PRO 5965WX with 24 physical cores
and 48 logical cores, and an NVIDIA GeForce RTX 4090 with 24 GB
of DDR5 memory.
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Figure 2: Model training/validation Loss/Accuracy as a func-
tion of number of epochs.

5.2 Evaluation Results
Fig. 2 illustrates the loss and accuracy values per epoch for a maxi-
mum of 150 epochs during the training phase of the general pla-
tooning model. We observe that both values steadily converge,
indicating that the model can learn from our input. During the
training phase, we reach an accuracy of 0.96 on the validation and
training datasets. We omit the training plots for the individual car
models.
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Figure 3: ROC curves for step = 5: (a) Global (General) Model,
(b) Vehicle Model.

We consider model input, with a step equal to 5, a balance be-
tween timely predictions and detection performance (shown in
Tables 3 and 4). Fig. 3 presents the ROC curves comparing the
detection performance of AttentionGuard. In Fig. 3a, the general
platoon-level model (with the platoon input) achieves an AUC of
0.96, demonstrating robust classification capabilities. Individual
vehicle inputs show similar but lower performance, with Vehicles
3 and 6 exhibiting better detection rates at lower FP rates. In com-
parison, vehicles 1 and 2 show steeper initial positive rates, but
with a lower convergence as the input increases. Vehicle 0 (pla-
toon leader) is not shown, as the attacks have no effect, and the
classifier results in >0.99 across the evaluation metrics. In Fig. 3b,
we showcase the performance of the individual car models: the
majority perform better, but notably, vehicles 2 and 5 show higher
FP rates. These vehicles are the furthest away from both attacking
vehicles (0 and 2, respectively), making distinguishing between
misbehavior and benign movement harder. Across all models, these
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Figure 4: Confusion matrix for step = 5: (a) Global Model, (b) Vehicle 3 Model, and (c) Vehicle 6 Model.

Table 3: Performance comparison for general platooning and individual vehicle models.

Input Step = 1 Step = 5 Step = 10

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
General 0.88 0.91 0.88 0.89 0.88 0.91 0.88 0.89 0.91 0.93 0.91 0.91
Vehicle 1 0.90 0.92 0.90 0.90 0.90 0.93 0.90 0.91 0.95 0.95 0.95 0.95
Vehicle 2 0.84 0.89 0.84 0.85 0.85 0.90 0.85 0.86 0.91 0.93 0.91 0.91
Vehicle 3 0.92 0.93 0.92 0.92 0.92 0.93 0.92 0.92 0.94 0.95 0.94 0.94
Vehicle 4 0.89 0.90 0.89 0.89 0.90 0.91 0.90 0.90 0.93 0.93 0.93 0.93
Vehicle 5 0.87 0.89 0.87 0.87 0.88 0.89 0.88 0.88 0.90 0.91 0.90 0.90
Vehicle 6 0.92 0.93 0.92 0.92 0.92 0.93 0.92 0.92 0.92 0.93 0.92 0.92

consistently high AUC values validate the transformer architec-
ture capability to capture attack patterns, making it an effective
approach for misbehavior detection in vehicle platooning scenarios.

Fig. 4 presents the confusion matrices for three different mod-
els utilizing a step 5 input, i.e., 500ms worth of new data. The
platoon-level model, in Fig. 4a has 1,704,274 TPs and 5,575,937 True
Negatives (TNs), indicating effective identification of non-attack
instances across the entire formation. However, the model does not
avoid misclassifications, with 829,575 FPs and 132,989 False Neg-
atives (FNs); affecting the precision of the attack detection. This
translates to an accuracy of 0.88, with a weighted precision of 0.91,
recall of 0.88, resulting in a F1-score of 0.89 as detailed in Table 3.

In Fig. 4b and Fig. 4c, we show the confusion matrix for vehicles 3
and 6 respectively (i.e., in each case a vehicle-specific model). These
correspond to the vehicle traveling behind the follower-attacker
and the vehicle entering the formation just behind it, respectively, a
prime target to cause harm to both the platoon downstream and ve-
hicles on the next lane. For vehicle 3, the confusion matrix contains
a smaller number of benign and attack samples; however, the clas-
sifier improves substantially, with an increase of 0.2-0.4 across all
metrics, even during maneuvering. For vehicle 6, the model demon-
strates similar improvements (from the general model), illustrating
the effectiveness of our approach, even for the joining vehicle.

5.3 MDS Deployment
An essential part of any vehicular MDS, particularly in platooning
where vehicles travel closely together, is to swiftly and reliably
determine any abnormal mobility. In Tables 3 and 4, we observe
that with smaller step sizes, the MDS trades off worse performance
across all evaluation metrics, for faster reaction to any detected
misbehavior. A step size of 10 can potentially be catastrophic for
the platoon, making a faster but less precise decision preferable
when coupled with an adequate mitigation response [11].

In Table 3, we evaluate the performance of the different models
during inference, using weighted averages. The general platoon-
ing model confirms the result in Fig. 3b), by performing slightly
better than the individual models of vehicles 2 and 5. Nonetheless,
the rest of the individual models show an increase for all metrics;
specifically, the F1-score improves by 0.1-0.3 for the step equal to
1; 0.2-0.3 for the step equal to 5; and 0.1-0.4, reaching a total of
0.95 for vehicle 1. This can be anticipated as individual models
were trained specifically for each vehicle. Comparing the individual
vehicle performance, vehicles closest to the attackers achieve the
best detection rates, even compared to the general model.

For the general platooning model (Table 4), individual vehicle
inputs result in varying performance, depending on the position
of the vehicles in the formation. Vehicles 1 and 2 are unaffected
by all follower attacks (performed by Vehicle 2 itself), as they are
upstream and can only detect malicious behavior of a leader attacker
(Vehicle 0). Resulting in degraded MDS performance, highlighted
in red (with a downward trend for smaller step size), as the model is
trained on the full dataset and not just their behavior. Both vehicles
show a high number of FPs, affecting the attack-class precision,
and FNs, affecting the recall. Notably, a vehicle that decides to
enter the platoon formation (Vehicle 6 in our simulations) performs
well according to all the metrics (lowest being 0.90), for a step
equal to 1. This means that the joiner can immediately distinguish
misbehavior, avoid joining the formation and getting affected, thus
avoiding causing hazardous conditions to the platoon itself, or other
non-platooning vehicles on the road.

Discussion. Examining bothmodel training approaches (general
platooning and vehicle-specific), the individual models generally
perform better (except for vehicles 2 and 5). However, this requires
vehicles having different models depending on their position in a
platoon, effectively limiting them to platoons of size equal to their
number of models. With a general platooning model, individual
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Table 4: Performance comparison for the general platooning model with vehicle-specific input.

Input Step = 1 Step = 5 Step = 10

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
General 0.88 0.91 0.88 0.89 0.88 0.91 0.88 0.89 0.91 0.93 0.91 0.91
Vehicle 1 0.83 0.90 0.83 0.85 0.84 0.91 0.84 0.85 0.89 0.93 0.89 0.90
Vehicle 2 0.80 0.89 0.80 0.82 0.80 0.90 0.80 0.82 0.85 0.91 0.85 0.86
Vehicle 3 0.89 0.91 0.89 0.90 0.89 0.91 0.89 0.90 0.92 0.93 0.92 0.92
Vehicle 4 0.89 0.90 0.89 0.89 0.90 0.90 0.90 0.90 0.92 0.92 0.92 0.92
Vehicle 5 0.88 0.89 0.88 0.88 0.88 0.89 0.88 0.88 0.90 0.91 0.90 0.90
Vehicle 6 0.90 0.92 0.90 0.91 0.91 0.92 0.91 0.91 0.91 0.92 0.91 0.92

inference inputs provide comparable results to the entire platoon
input, except for vehicles 1 and 2. This implies that training and
inference on all the platoons’ data can effectively safeguard a pla-
toon by discerning platoon misbehavior. This allows for a more
flexible deployment of MDSs, e.g., on an RSU or the platoon leader,
enabling it to detect misbehavior within the platoon. Further, given
higher step sizes, when timely decisions may not be critical, such
an MDS could act as a forensic tool for post-attack analysis.

However, deploying AttentionGuard on a vehicle or an edge
device (representing an RSU) presents several challenges. Notably,
the limited computational power and memory constraints of such
platforms. Towards addressing these challenges, we propose using
optimization methods provided by the TensorFlow library. Namely,
model conversion to TensorFlow Lite (TFLite) and quantization.
Such optimizations can significantly reduce the model size and
improve inference time, enabling deployment without accuracy
degradation [10].

6 Conclusion
We presentedAttentionGuard, a transformer-basedMDS framework
to safeguard vehicle platoon formations, operating under different
controllers, speeds, and maneuvering states. Our evaluation shows
that our approach can provide high detection rates and fast reac-
tion, allowing vehicles to detect attacks even after 100ms. Further,
we presented results that support the training of models on entire
platoon data, while still guaranteeing the detection performance of
individual cars when deployed locally. This enables diverse config-
urations depending on the preferred outcome. As part of our future
work, we will expand our detection scheme to cover a plethora of
network attacks in platooning and apply model optimizations for
deployment on resource-constrained devices while analyzing their
overall performance.
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