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Abstract— Federated learning is vulnerable to poisoning
attacks by malicious adversaries. Existing methods often involve
high costs to achieve effective attacks. To address this challenge,
we propose a sybil-based virtual data poisoning attack, where
a malicious client generates sybil nodes to amplify the poison-
ing model’s impact. To reduce neural network computational
complexity, we develop a virtual data generation method based
on gradient matching. We also design three schemes for target
model acquisition, applicable to online local, online global, and
offline scenarios. In simulation, our method outperforms other
attack algorithms since our method can obtain a global target
model under non-independent uniformly distributed data.

Keywords—Federated learning, Sybil poisoning attack,
Virtual data.

I. INTRODUCTION

The revolution in sensing technology has enabled high-
quality data acquisition and processing across diverse real-
world applications. This technological progress has cat-
alyzed significant advancements in artificial intelligence
(AI), achieving state-of-the-art performance in specialized
domains including natural language processing [1], recom-
mender systems [2], [3], pose estimation [4], [5], intelligent
transportation [6], [7], energy-related prediction [8]–[10].

However, with the growing emphasis on data privacy and
the introduction of data protection regulations, traditional
centralized machine learning approaches face significant
obstacles [11]. To address this, federated learning (FL) [12]
emerges as a privacy-preserving paradigm. FL establishes
a shared model on a central server, distributes the model to
clients for training on local data, and subsequently aggregates
the locally trained models on the server. This framework
avoids direct data transmission, thereby preserving client
privacy [13].

While federated learning preserves data locality on client
devices, it also introduces new challenges. The inability
to filter user data results in non-independent and iden-
tically distributed (Non-IID) data, leading to model drift
and prolonged convergence times for optimal performance
[14]. Additionally, the lack of data filtering makes federated
learning susceptible to attacks by malicious adversaries.

To address the aforementioned challenges, designing fed-
erated learning defense algorithms to enhance the stability
of the federated learning process is a practical approach
[15]. Another perspective is to deepen the study of federated
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learning attack algorithms to understand potential security
risks, thereby improving the security and privacy protection
of federated learning. The latter can better understand the
attack process from the attacker’s perspective, which is more
conducive to our formulation of proactive defense strategies.

The earliest poisoning attack was introduced against Sup-
port Vector Machines (SVM) by flipping the labels of train-
ing data [16]. Although originally designed for centralized
settings, this attack is found to be effective in federated
learning scenarios [17]. Based on the structural character-
istics of federated learning, the following poisoning attacks
can be categorized into three types: data poisoning, model
poisoning, and sybil-based poisoning attacks.

In data poisoning attacks, adversaries cannot directly ma-
nipulate users’ models but can access and tamper with client
training data to execute attacks. Ref. [17] first introduced
label-flipping attacks to federated learning, where malicious
actors flip sample labels, causing the trained model to
deviate from the intended prediction boundary. However,
the effectiveness of this approach is limited by the influ-
ence of non-malicious clients. To address this, Ref. [18]
proposed a dynamic label-flipping strategy that selects the
target label with the smallest loss, improving on static label-
flipping methods. Beyond label-flipping attacks, clean-label
poisoning is another common data poisoning approach. This
technique retains original labels but injects malicious patterns
into model parameters through image pixel optimization [16].
However, this approach is computationally expensive for
deep neural networks. To overcome this limitation, heuristic
methods have been proposed, as demonstrated in Refs. [19],
[20], to achieve clean-label poisoning more efficiently.

However, the success rate of data poisoning attacks is
directly proportional to the number of malicious clients
controlled by the attacker, making such attacks costly in
large-scale federated learning systems. To address this lim-
itation, model poisoning attacks were introduced, enabling
adversaries to manipulate the local training process. Ref.
[21] demonstrated an attack executed when the global model
nears convergence, modifying the local training process by
adding an anomaly detection term to the loss function.
In contrast, Ref. [22] proposed an attack targeting the
early stages of global model training, before convergence is
achieved. Additionally, Ref. [23] leveraged a regularization
term in the objective function to embed malicious neurons
into the redundant spaces of neural networks. This approach
minimizes the impact of benign clients during model ag-
gregation, allowing the attacker to execute poisoning attacks
effectively.

Sybil-based attacks are another common method of dis-
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Fig. 1 Threat model for sybil-based attacks on FL.

rupting federated learning. In such attacks, a malicious
attacker creates multiple fake clients to manipulate the
model’s learning process, potentially causing training errors
or compromising private information. Ref. [24] first intro-
duced sybil-based attacks in federated learning, proposing a
novel denial-of-service (DoS) attack. Inspired by this work,
Refs. [25], [26] employed sybil node collusion strategies
to enhance attacker cooperation, enabling more effective
poisoning attacks such as label flipping and backdoor attacks.
However, the existing sybil-based poisoning attack methods
often rely on sharing client data, which is costly and imprac-
tical in privacy-sensitive federated learning environments.

To address this challenge, we propose a sybil-based virtual
data poisoning attack. Instead of sharing data with sybil
nodes directly, we heuristically propose a novel approach
for generating training data for sybil nodes based on gradient
matching, which effectively reduces both the complexity of
solving the optimization problem and the computational cost.
Furthermore, we introduce three adaptive model acquisition
strategies tailored to distinct deployment scenarios, enabling
precise manipulation of model update directions. Experimen-
tal results demonstrate that our method significantly enhances
the effectiveness of poisoning attacks compared to baseline
methods.

The structure of this paper is as follows: Section II
provides a brief overview of problem description and the
sybil-based attack model in FL, followed by a detailed ex-
planation of our proposed method in Section III. Section IV
presents the experimental setup and results. Finally, Section
V concludes the paper.

II. PROBLEM DESCRIPTION OF SYBIL-BASED
ATTACK

In federated learning, data owners are referred to as clients,
denoted by C = {C1,C2, . . . ,CN}, where N represents the
total number of clients. Each client Ci has access to its
local training dataset Di. A central server oversees model
initialization, aggregation, and distribution. The server begins
by initializing a model w0 and distributing it to all clients.
Each client Ci trains the model locally using its dataset
Di and sends the updated model back to the server for
aggregation.

The sybil-based attack model is illustrated in Fig. 1. In this
model, attackers control a subset of malicious clients with
real data to generate poison data. In a federated learning

system with N clients, we assume that the attacker can
control m% of the clients as malicious and generate v sybil
nodes for each malicious client. The total number of sybil
nodes, denoted as |V |, is given by:

|V |= N ∗m%∗ v. (1)

To attack an image classification task, the objective is to
train a model using poisoned data to misclassify images
from a target category, while preserving the accuracy of
classification for other categories of images. Assume there
are N1 poisoning training samples from a target category
and N2 samples with normal labels. Taking the label-flipping
attack as an example, we flip the labels of the target category
from ytar

i to yadv
i . Thus, our optimization problem can be

formulated as follows:

min
∆∈C

J =
N1

∑
i=1

l
(

fw(∆)(xi),yadv
i

)
+

N2

∑
i=1

l
(

fw(∆)(xi),yi
)
, (2)

s.t. w(∆) ∈ argmin
w

J =
1
P

P

∑
i=1

l ( fw (xi +∆i) ,yi) , (3)

C =
{

∆ ∈ RP×n : ∥∆∥
∞
≤ ε
}
, (4)

The first term in Eq. (2) captures the error resulting from
the misclassification of the target class, while the second
term accounts for the error in correctly classifying images
from other categories. fw(∆)(xi) represents the probability
that the model w(∆) assigns a category prediction to xi. Eq.
(3) defines the constraints for training with poisoned data
on sybil nodes, where P denotes the number of poisoned
images and ∆ represents the perturbation introduced during
the poisoning process. Eq. (4) constrains the perturbations,
with C denoting the set of perturbations and ε indicating the
perturbation threshold. l representing the cross-entropy loss
function, is written as

l (p,q) =
n

∑
i=1

p(xi) log
1

q(xi)
=−

n

∑
i=1

p(xi) logq(xi). (5)

It is evident that our optimization problem forms a bilevel
optimization structure. We refer to the objective function of
the inner optimization, shown in Eq. (3), as the training loss,
and the objective function of the outer optimization, shown
in Eq. (2), as the adversarial loss.

III. METHOD

This section is divided into four subsections to detail the
core components of the attack strategy. First, we introduce
three approaches for obtaining the target model and a method
for acquiring the baseline dataset. Next, to address the
complexity of the task, we simplify the bilevel optimization
problem using a gradient matching technique. After that, we
describe the process of generating virtual poisoning data for
sybil nodes to carry out poisoning attacks. Finally, we briefly
introduce the overall algorithm workflow.



A. Acquisition of Target Model and Baseline Dataset

In each round of the federated learning process, it is essen-
tial to determine the update direction of the poisoning model
by obtaining the target model in advance. Additionally, we
explain how to acquire a benchmark dataset for training
malicious clients in this subsection.

To identify the target image with the label yadv, we select
images labeled as yadv from the controlled client’s dataset as
the baseline dataset Dbase

i . Specifically, Dbase
i is defined as

shown in Eq. (6), where Di represents the local dataset of
the controlled clients.

Dbase
i =

{
(x,y) | (x,y) ∈ Di,y = yadv

}
. (6)

To obtain the target model, we propose specific schemes
for three scenarios: local online, global online, and offline. In
the online local target model acquisition scheme, the attacker
performs a fake local training using the global model w
distributed by the server. The training data is defined in Eq.
(7). Using

Dmd f
i =

{
(xi,yi

′) | (xi,yi) ∈ Di,yi
′ =

{
yadv, ifyi = ytar

yi, otherwise

}
,

(7)
the attacker trains a poisoning model wmd f

i , which serves as
the target model wtar. Thus, wtar = wmd f

i .
Due to the non-IID nature of data across clients, obtaining

the target model from a single client may hinder effective
poisoning attacks. Some malicious clients may lack data for
the target class, making label flipping infeasible. To address
this, the online global target model scheme aggregates the
wmd f

i models generated by all controlled malicious clients.
The target model is defined as

wtar = wmd f =
M

∑
i=1

1
M

wmd f
i . (8)

Obtaining the target model during the poisoning process
of federated learning demands excessive real-time commu-
nication resources. To address this, we propose an offline
target model acquisition scheme which is implemented be-
fore federated learning begins. The attacker distributes an
untrained model to each controlled malicious client and uses
their local label-flipped dataset Dmd f

i for R rounds of training
and aggregation. The final aggregated model is used as the
target model wtar.

B. Problem Simplification by Gradient Matching

Given the complexity of our task, solving the optimization
problem solely with neural networks is challenging. To
address this, we simplify the calculation process using a
gradient matching method.

In our bilevel optimization problem, the goal is to ensure
that both the training and adversarial losses decrease concur-
rently through gradient descent. This allows the two objective
functions to reach their low-value regions simultaneously. We

thus have

1
N1 +N2

(
N1

∑
i=1

∇l
(

fw (xi) ,yadv
i

)
+

N1

∑
i=1

∇l ( fw (xi) ,yi)

)

≈ 1
P

P

∑
i=1

∇wl ( fw (xi +∆i) ,yi) . (9)

However, finding poisoning images that satisfy Eq. (9) is
challenging throughout the gradient descent process. In this
case, we relax the requirement for gradient matching and
instead aim to make the gradients of the model with respect
to the objective functions of the inner and outer optimizations
as similar as possible. Therefore, the bilevel optimization
problem in Eqs. (2), (3), (4) can be heuristically rewritten as

∇J = ∑
N1
i=1 ∇l

(
fw (xi) ,yadv

i
)
+∑

N2
i=1 ∇l ( fw (xi) ,yi) , (10)

∇J = ∑
P
i=1 ∇wl ( fw (xi +∆i) ,yi) , (11)

B (∆ ;w) = 1−
〈
∇J,∇J

〉
∥∇J∥·

∥∥∇J
∥∥ , (12)

respectively.
We reformulate the original optimization problem using

the form of negative cosine similarity, as shown in Eq. (12),
where ∥·∥ and ⟨·⟩ represent the L2 norm and dot product of
vectors. By minimizing Eq. (12), the value of the second term
will gradually approach 1. According to the cosine similarity
relationship, ∇J and ∇J will become as similar as possible.

C. Generation of Poisoning Data by Sybil Nodes

To address the potential misalignment of gradient descent
directions caused by mini-batch training in federated learn-
ing, we approximate the gradient using the negation of the
difference between the target model wtar and the global
model at the current round wr. This approach provides a
more representative descent direction as

N1

∑
i=1

∇l( fwr(xi),yadv
i )+

N2

∑
i=1

∇l( fwr(xi),yi)≈ wr−wtar. (13)

Consequently, Eq. (12) is reformulated as

B(∆ ;wr) = 1−
〈
wr−wtar,∑P

i=1 ∇wr l( fwr(xi +∆i),yi)
〉

∥wr−wtar∥·
∥∥∑

P
i=1 ∇wr l( fwr(xi +∆i),yi)

∥∥ ,
(14)

where (xi,yi) are sampled from Dbase
i .

As the local training process is immutable, the attacker can
only introduce poisoned data through virtual nodes controlled
by malicious clients. Using the target model wtar and the
baseline dataset Dbase, Eq. (14) is optimized via stochastic
gradient descent, with the perturbation vector ∆ updated as

∆ (t +1) = ∆ (t)−∇∆(t)B. (15)

The resulting poisoning data

Dbase
poison =

{(
x′,y
)
| (x,y) ∈ Dbase

i ,x′ = x+∆i

}
(16)

is then injected into the sybil nodes.



D. Complete Process

In summary, our sybil-based poisoning attack algorithm is
described in Algorithm 1. In each training round, a subset Sr
is selected from the entire set of clients, including both real
clients and virtual sybil nodes. Different training strategies
are applied based on the client type within Sr. Benign clients
perform standard local training, whereas malicious clients
first obtain the target model and then generate poisoning
data using their local dataset for training sybil nodes. The
sybil nodes utilize the poisoning data generated by malicious
clients for training and subsequently upload the poisoning
models to the central server, where they contribute to the
aggregation and update of the global model.

IV. EXPERIMENT

A. Experimental Setup

Datasets. To comprehensively evaluate the performance
of our proposed algorithm on image classification tasks, we
conduct experiments on three widely used datasets in feder-
ated learning: MNIST [27] (70K handwritten digit images,
10 classes), FMNIST [28] (70K fashion item images, 10
classes), and CIFAR-10 [29] (70K images, 10 classes). For
MNIST and FMNIST, we use the online global target model
acquisition scheme, while for CIFAR-10, we adopt the offline
target model acquisition scheme.

Networks. We design training networks of varying com-
plexity tailored to each dataset. For MNIST, a fully con-
nected neural network (FC) with four layers is employed,
the details of which are shown in Table I. The final layer
employs cross-entropy loss without activation for multi-
classification. For FMNIST, a convolutional neural network
(CNN) is employed. Details are provided in Table II. A
ReLU activation function [30] follows each hidden layer. For
CIFAR-10, the ResNet18 architecture is utilized.

TABLE I: Fully connected neural network structure table

Layers Layer type Input size Output size
1 FC [784] [32]
2 FC [32] [16]
3 FC [16] [8]
4 FC [8] [10]

TABLE II: Convolutional neural network structure table

Layers Layer type Input size Output size
1 CONV [1,28,28] [6,24,24]
2 MaxPool [6,24,24] [6,12,12]
3 CONV [6.12,12] 16,8,8]
4 MaxPool [16,8,8] [16,4,4]
5 FC [16,4,4] [120]
6 FC [120] [84]
7 FC [84] [10]

Environment setting. We implement the federated learn-
ing process using PyTorch (version 1.13.0) in a distributed
training setup. For local training on clients, we employ
the SGD optimizer with a learning rate of η = 0.01 and
momentum of 0.9. Each client train for E = 5 cycles per
round with a batch size of B= 64. The total number of clients

Algorithm 1 Sybil-based poisoning attack algorithm

Input: Communication rounds, R; The number of clients,
N; Local training rounds, E; Learning rate, η ;

Output: Final model, wR;
1: Server execution:
2: Initialize w0

3: for r← 0 to R−1 do
4: Select the client set Sr from the N + v∗M clients
5: for i← 1 to |Sr| parallel execution do
6: Send the global model wr to the client Ci
7: if M ≤ i≤ N then
8: wr

i ← Client local training (i,wr)
9: else if 1≤ i≤M then

10: wtar← Target model acquisition(wr)
11: Dbase

poi ←Poisoning data
generation(Dbase

i ,wtar)
12: else if 1+N ≤ i≤ N + v∗M then
13: Obtain Di from the malicious client
14: wr

i ← Client local training (i,wr)
15: end if
16: end for
17: Server update: wr+1 = ∑i∈Sr

|Di|
DSr

wr
i

18: end for
19: return wR

20: Client local training (i,wr)
21: wr

i (0)← wr

22: for t← 0 to τ = |Di|
B E−1 do

23: li (wr
i (t))← CrossEntropyLoss

(
fwr

i (t)
(x) ,y

)
24: wr

i (t +1)← wr
i (t)−η∇li (wr

i (t))
25: end for
26: wr

i ← wr
i (τ)

27: Send wr
i back to the server.

28: Poisoning data generation
29: ∆ (0)← 0
30: for t← 0 to T −1 do
31: B (∆ ;wr)←

1−
〈

wtar−wr ,∑
P
i=1 ∇wr l( fwr(xi +∆i),yi)

〉
∥wtar−wr∥·

∥∥∥∑P
i=1 ∇wr l( fwr(xi +∆i),yi)

∥∥∥
32: ∆ (t +1)← ∆ (t)−∇∆(t)B
33: end for
34: Dbase

poison←
{
(x′,y) | (x,y) ∈ Dbase

i ,x′ = x+∆i
}

35: Send Dbase
poison to clients CN+i, · · · ,CN+v

N = 50, all of which participate in every communication
round. The number of communication rounds is set to R =
300 for MNIST and FMNIST, and R= 200 for CIFAR-10, at
which point the federated averaging algorithm achieve stable
accuracy. Based on experience, attacks are executed during
the final 50 rounds for all three datasets. Simulations were
conducted using an Intel Xeon Platinum 8255C CPU, 40
GB RAM, and four NVIDIA RTX 3080 GPUs on a single
machine configuration.

Parameters. By default, the number of malicious clients
is M = 20 (40% of the total). Each client generates v = 5
sybil nodes, and the Dirichlet distribution hyperparameter is



set to α = 0.5. The disturbance vector ∆ is unconstrained in
size, and poisoning data generation halts after a fixed number
of iterations, set to T = 300, with a learning rate of 1. For
each malicious client, we compute the disturbance vector for
only 32 images from its baseline data. By default, the goal
is to misclassify data labeled as ‘1’ into ‘7’, making the
target category 1, the adversarial category 7, and the baseline
category also 7.

Evaluation Metrics. This study employs Main Task Ac-
curacy (MTA) and Target Task Accuracy (TTA) as evaluation
metrics. In our study, TTA measures the accuracy of the
global model in classifying target images into the desired
category. MTA evaluates the accuracy of the global model
in classifying non-target images into their original categories.
Both of these metrics are evaluated under poisoning attacks.
Additionally, we compare MTA with the global model accu-
racy (GMA) which is computed in the absence of malicious
clients.

B. Effect of the Number of Sybil Nodes

This experiment investigates the impact of the proportion
of malicious clients and the number of sybil nodes generated
by each on the poisoning attack. First, we fix the proportion
of malicious clients at m% = 40% and vary the number
of sybil nodes generated by each malicious client v =
{5,6,7,8,9}. After that, we fix v= 5 and vary the proportion
of malicious clients m% = {4%,10%,20%,30%,40%}. In
both cases, attacks are launched in the last 50 rounds across
all three datasets. The results are shown in Fig.2 and Fig.3.

Percentage of malicious clients

(a) MNIST dataset

Percentage of malicious clients

(b) FMNIST dataset

Percentage of malicious clients

(c) CIFAR-10 dataset

TTA of our method MTA of our method GMA(without malicious clients)

Fig. 2 The test accuracy changes with the proportion of
malicious clients while fix the number of virtual nodes generated

by each client v = 5.

The number of sybil nodes generated by each malicious client

(a) MNIST dataset

The number of sybil nodes generated by each malicious client 

(b) FMNIST dataset

The number of sybil nodes generated by each malicious clients

(c) CIFAR-10 dataset

TTA of our method MTA of our method GMA(without malicious clients)

Fig. 3 The test accuracy changes with the number of virtual
nodes generated by each malicious clients while fix the proportion

of malicious clients to 0.4.

The results in the figures show that, across all three
datasets, increasing either m% and v improves the attacker’s
target task precision on the test dataset. Notably, increasing
the proportion of malicious clients has a more immediate

impact on attack performance, as it provides more client data
for computing the target model. However, both increasing the
proportion of malicious clients and increasing the number
of sybil nodes generated by each malicious client reduce
the accuracy of the main task, although the overall decrease
is modest. Thus, balancing target task accuracy and main
task accuracy, we set m% = 40% and v = 5 for subsequent
experiments.

C. Comparative Experiment

We implement the method from [19] within our sybil-
based data poisoning framework. In this methode, malicious
clients generate poisoning data using the global model and
sends it to the sybil nodes for poisoning. This method
is referred as the Feature Collision Method (FCM). The
approach in [20] is similar to the online local target model
scheme we proposed, with the key difference being that it
only considers the target class of images in the counter loss,
excluding benign samples from other classes. We refer to
this method as the Local Method (LM).

Non-independent, identically distributed (Non-IID) data is
a key characteristic of federated learning, and varying het-
erogeneous data distributions can influence the effectiveness
of poisoning attacks. Using the two methods described above
and our proposed method, we conducted comparative experi-
ments with three data distributions: IID, Dirichlet distribution
with α = 0.5, and Dirichlet distribution with α = 0.1. The
experimental results are shown in Fig.4, Fig.5, and Fig.6.
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Fig. 4 Attack performance when three datasets are IID.
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TTA of LM MTA of FCM TTA of FCM

Fig. 5 Attack performance when the Dirichlet distribution has
parameter α = 0.5.

Overall, the method proposed in this paper outperforms
others across all three datasets in both main task accuracy
(MTA) and target task accuracy (TTA). Specifically, the
poisoning data we generate is highly dependent on the target
model, and its quality is influenced by the dataset held
by the controlled malicious clients. Even when using the
Dirichlet distribution with α = 0.1, which simulates highly
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Fig. 6 Attack performance when the Dirichlet distribution has
parameter α = 0.1.

non-independent data, the poisoning attack remains effective.
On these three datasets, the TTA of the proposed method
is 92.42%, 80.43%, and 63.74%, respectively. Although the
TTA is not the highest—being 12.27% and 33.96% lower
than the LM method for FMNIST and CIFAR-10—the MTA
of LM has significantly decreased, rendering the poisoning
attack less effective. The experimental results show that
the data poisoning attack method proposed in this paper
plays a significant role in improving the performance of the
poisoning attack by considering non-target samples in the
objective function and obtaining the global target model on
the non-IID data.

V. CONCLUSION

In this paper, we have proposed a sybil-based virtual data
poisoning attack that leverages sybil nodes to amplify the
impact of the poisoning attack while minimizing the high
cost associated with malicious clients directly providing data.
Our method first computes the target model, then generates
virtual data on the malicious client, which is distributed to the
corresponding sybil node for federated learning participation,
thereby poisoning the global model. In experiments, we
explore the appropriate proportion of malicious clients and
the number of sybil nodes using non-IID datasets. We have
also compared our approach with existing algorithms under
various data distributions. Compared to the second-best local
method, the main task accuracy improved by 7.6%, 9.03%,
and 17.3%.
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