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Abstract. The integration of large language models (LLMs) into cy-
ber security applications presents significant opportunities, such as en-
hancing threat analysis and malware detection, but can also introduce
critical risks and safety concerns, including personal data leakage and au-
tomated generation of new malware. We present a systematic evaluation
of safety risks in fine-tuned LLMs for cyber security applications. Using
the OWASP Top 10 for LLM Applications framework, we assessed seven
open-source LLMs: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3
8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. Our evaluation shows
that fine-tuning reduces safety resilience across all tested LLMs (e.g., the
safety score of Llama 3.1 8B against prompt injection drops from 0.95 to
0.15). We propose and evaluate a safety alignment approach that care-
fully rewords instruction-response pairs to include explicit safety pre-
cautions and ethical considerations. This approach demonstrates that it
is possible to maintain or even improve model safety while preserving
technical utility, offering a practical path forward for developing safer
fine-tuning methodologies. This work offers a systematic evaluation for
safety risks in LLMs, enabling safer adoption of generative AI in sensitive
domains, and contributing towards the development of secure, trustwor-
thy, and ethically aligned LLMs.

Keywords: Pseudo-Malicious · Large Language Models · Safety Align-
ment · Fine-Tuning · OWASP

1 Introduction

The increasing use of large language models (LLMs) in cyber security applica-
tions necessitates a rigorous examination of their benefits and potential safety
risks. LLMs have shown exceptional capabilities in many text generation tasks,
including code synthesis [40], software vulnerability detection [7, 33] and ques-
tion answering [37], signalling their transformative potential across various tasks.
However, this promise is accompanied by substantial safety risks, requiring fo-
cused attention from researchers and practitioners alike [8, 15, 45].

A crucial factor in the success and utility of LLMs is their ability to main-
tain safety while being fine-tuned for specific domains to enhance their domain
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specific knowledge. While fine-tuning can enhance performance on specialised
tasks, it may also introduce new vulnerabilities or amplify existing ones. This
is particularly critical in cyber security applications, where the consequences of
model vulnerabilities can be severe. Recent studies have shown how malicious
actors can exploit fine-tuned LLMs to generate phishing campaigns, malware
code, and other harmful content [19, 20, 2, 39].

The increasing misuse of generative AI tools like FraudGPT [19] and Wor-
mGPT [20] in cyberattacks highlights the urgent need for systematic safety anal-
ysis of fine-tuned LLMs. These tools enable adversaries to execute more sophis-
ticated and scalable attacks, demonstrating how fine-tuning can be weaponised
for malicious purposes. A recent study by Falade [19] revealed how malicious
LLMs can be exploited to generate phishing lures, impersonation schemes and
deepfakes, amplifying the arsenal of cybercriminals and exposing significant vul-
nerabilities.

This paper presents a systematic evaluation of safety risks in fine-tuned LLMs
for cyber security applications. We evaluate seven open-source LLMs using the
OWASP Top 10 for LLM Applications framework [32] to assess how fine-tuning
affects their susceptibility to various vulnerabilities. Our analysis reveals critical
safety concerns in deploying fine-tuned LLMs in cyber security contexts. We
validate our findings using the CyberLLMInstruct dataset [18], which contains
54,928 pairs of instructions and responses of pseudo-malicious cyber security
data.

The term “pseudo-malicious” refers to data that contains instructions and de-
scriptions of malicious cyber security actions, but without actual harmful code.
Instead, it includes step-by-step descriptions and pseudo-code of how to per-
form these actions, such as malware creation, social engineering techniques, and
various attack methodologies. This approach allows for comprehensive security
testing while maintaining ethical boundaries. The dataset’s composition reflects
real-world cyber threats, with malware-related content (35%), social engineering
and phishing (25%), DoS/DDoS attacks (10%), MITM attacks (10%), zero-day
exploits (8%), password attacks (6%), and emerging threats like IoT and in-
jection attacks (3% each). This distribution ensures our evaluation covers the
most prevalent and critical cyber security threats while maintaining a balanced
representation of different attack vectors.

Contributions. We make the following contributions in this work:

– We present a systematic evaluation of safety risks in fine-tuned LLMs using
the OWASP Top 10 for LLM Applications framework. Our evaluation as-
sesses vulnerabilities across different model architectures and sizes, providing
comprehensive analysis of how they affect model safety.

– We demonstrate that fine-tuning on pseudo-malicious data reduces safety
resilience across all tested LLMs. For instance, the security score of Llama
3.1 8B against prompt injection drops from 0.95 to 0.15 after fine-tuning.

– We propose a novel safety alignment approach to mitigate safety risks in
LLMs fine-tuned on pseudo-malicious cyber security data.
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Overall, this work establishes a foundation for understanding the safety im-
plications of fine-tuning LLMs for cyber security applications, while providing
insights into safety alignment and a novel approach for improving model safety.

The rest of this paper is organised as follows. Section 2 provides an overview
of related work on LLM safety and recent work in safety-aware LLM fine-tuning.
Section 3 describes our systematic approach to evaluating safety risks in fine-
tuned LLMs for cyber security applications and our novel approach to improve
safety alignment. Section 4 provides detailed analysis of the findings and eval-
uations done to validate our work. Section 5 discusses the implications of our
findings and limitations of current approaches. Section 6 concludes the paper
with directions for future research.

2 Related Work

Recent research has highlighted the critical safety risks associated with fine-
tuning LLMs. Several studies have investigated different aspects of this problem
and proposed various mitigation strategies.

Eiras et al. [17] demonstrated how fine-tuning can compromise safety align-
ment in closed LLMs, though their proposed “Paraphrase” mitigation strategy
was found to have limitations in terms of controllability and stability. The work
also raised concerns about the generalisability of mitigation approaches when
the prompting strategy is unknown in advance.

Bianchi et al. [4] explored the trade-off between helpfulness and harmlessness
in safety-tuned LLMs, documenting important observations about the safety-
helpfulness tension. However, their work was limited by a relatively small safety
dataset and remained susceptible to adversarial attacks. The study highlighted
the need for more systematic approaches to resolve the fundamental challenge
of maintaining safety while preserving model capabilities.

In an attempt to address these challenges, Zhu et al. [46] proposed a method
to locate safety vectors for fine-tuned LLMs. While their approach is promising, it
was limited to proprietary API-based models and focused primarily on attention
heads and the final layer, missing opportunities to explore more comprehensive
safety mechanisms in intermediate layers and feed-forward networks.

More recently, Hsu et al. [23] introduced Safe LoRA, a method aimed at re-
ducing safety risks during fine-tuning by projecting weights to a safety subspace.
However, their approach lacked theoretical justification for the projection mech-
anism and was primarily evaluated on Llama models, raising questions about its
generalisability to other architectures like Mistral, Phi, and Gemma. The work
also used artificially augmented harmful samples rather than standard safety
benchmarks, limiting its practical applicability.

These studies collectively highlight the ongoing challenges in maintaining the
safety of LLM during fine-tuning, particularly in cyber security contexts where
the risks are amplified. While various approaches have been proposed, significant
gaps remain in understanding how different fine-tuning methods might affect
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model vulnerabilities and how to mitigate these risks effectively while preserving
model capabilities.

Other recent work has specifically focused on safety-aware fine-tuning ap-
proaches. Choi et al. [11] proposed the SAFT framework that automatically
filters harmful data during fine-tuning using matrix factorisation, but their ap-
proach was limited by its reliance on lexical overlap metrics (BLEURT and
ROUGE-L) for measuring helpfulness, which may not capture the nuanced re-
quirements of cyber security applications.

Qi et al. [36] demonstrated that safety alignment can be compromised through
fine-tuning, even with benign data, but their analysis focused on general harm-
fulness without specific consideration of cyber security threats.

Peng et al. [35] introduced the concept of “safety landscape” and the VISAGE
metric to measure fine-tuning risks, but their evaluation primarily relied on
refusal keyword detection, which may not be sufficient for complex cyber security
scenarios where safety does not always mean refusing to answer.

Jain et al. [24] provided a mechanistic study of safety fine-tuning using syn-
thetic data, but their analysis was limited in its application to real-world cyber
security datasets.

Our work addresses these limitations by: (1) using comprehensive safety met-
rics beyond lexical overlap, including domain-specific cyber security evaluations;
(2) focusing specifically on cyber security threats and their unique safety re-
quirements; (3) developing a more nuanced safety alignment approach that goes
beyond simple refusal detection; and (4) validating our approach on a large-scale
real-world cyber security dataset.

3 Methodology

This section presents our systematic approach to evaluating safety risks in fine-
tuned LLMs for cyber security applications. We begin by detailing our model
selection and fine-tuning process, followed by a comprehensive safety analysis
using the OWASP Top 10 for LLM Applications framework [32]. Finally, we de-
scribe our novel safety alignment approach to mitigate identified vulnerabilities.

3.1 Model Selection and Fine-tuning

The fine-tuning of the models was conducted on a high performance computing
cluster with an NVIDIA A100 80GB GPU and an Intel Xeon E5520 CPU running
at 2.27GHz.

The models selected for fine-tuning were Phi 3 Mini 3.8B [30], Mistral 7B [31],
Qwen 2.5 7B [1], Llama 3 8B [28], Llama 3.1 8B [29], Gemma 2 9B [21], and
Llama 2 70B [27]. These models were chosen due to their strong performance on
the Massive Multitask Language Understanding (MMLU) benchmark [34], which
evaluates LLMs across a wide variety of knowledge domains, including techni-
cal and specialised areas relevant to cyber security. For example, Llama 3.1 8B
achieved an average score of 73.0%, demonstrating its ability to generalise across
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Fig. 1. Abstraction of the adversarial LLM threat model.

tasks and perform effectively under few-shot and chain-of-thought conditions.
Similarly, Gemma 2 9B and Phi 3 Mini 3.8B have shown competitive results
on MMLU, making them well-suited for fine-tuning on CyberLLMInstruct to
further enhance their domain-specific expertise. Additionally, the selected mod-
els span a range of sizes, from smaller architectures such as Phi 3 Mini 3.8B
(68.8% on MMLU) to larger models like Llama 2 70B (86.0% on MMLU) and
Llama 3 8B (79.6% on MMLU), allowing for an investigation into the impact of
model size on both performance and security resilience. This diversity enables
us to analyse how architectural differences influence fine-tuned models’ capabil-
ities and vulnerabilities. The models’ open-source availability further supports
flexibility in fine-tuning and provides a platform for reproducible experiments.

For the fine-tuning process, the models were trained on the CyberLLMIn-
struct dataset. Fine-tuning was conducted using the SFTTrainer from the TRL
library [43], with training configured using TrainingArguments from the Trans-
formers library [44]. The configuration included a batch size of 4 per device, with
gradient accumulation steps set to 4, resulting in an effective batch size of 16.
This configuration facilitates stable training while optimising memory usage. The
models were fine-tuned over 3 epochs, which aligns with industry standards for
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supervised fine-tuning (SFT) on medium-sized datasets (10K-100K examples).
This epoch count is consistent with major projects like Alpaca [42] (3 epochs)
and FLAN [25] (2-3 epochs), and is particularly suitable given the high-quality,
curated nature of the CyberLLMInstruct dataset. The learning rate was set to
2 × 10−4 for optimal convergence, and 16-bit floating point precision was used
to optimise memory usage, with bfloat16 precision employed when supported
by the hardware. The AdamW optimiser [26] with a weight decay of 0.01 was
used to prevent overfitting, and a linear scheduler controlled the learning rate
throughout training. Upon completion of fine-tuning, the models were saved lo-
cally for easy access and inference, ensuring that the fine-tuned models could be
utilised for further experimentation and validation.

3.2 Safety Analysis

As shown in Figure 1, adversaries can exploit open-source models, abundant cy-
ber security data, and low-cost GPU platforms to weaponise LLMs—generating
anything from phishing campaigns to malware scripts. Once these adversari-
ally fine-tuned models are shared online, even inexperienced attackers can gain
access to advanced malicious capabilities, greatly expanding the scale and so-
phistication of cyber attacks. This dynamic emerges from three critical factors:
the widespread availability of open-source intelligence, the proliferation of pub-
lic LLMs, and the accessibility of affordable fine-tuning services. Together, these
factors significantly lower the barriers to creating and distributing tailored at-
tacks, highlighting the necessity of a rigorous security assessment.

By distributing adversarially fine-tuned models via APIs or public reposito-
ries, sophisticated attackers effectively “democratise” malicious capabilities, fol-
lowing the crime-as-a-service or crime-as-an-infrastructure business model [5, 6].
This promotes adaptive threats, wherein adversarial models continuously im-
prove by learning from defensive measures, posing severe challenges to existing
security frameworks. Figure 1 outlines this adversarial flow, from resource gath-
ering to dissemination and eventual misuse. In the remainder of this section, we
demonstrate how a systematic red-teaming of each fine-tuned model can help
expose these risks, highlighting the pressing need to address vulnerabilities in-
herent in fine-tuned LLMs for cyber security applications.

We use the OWASP Top 10 for LLM Applications framework [32] to assess
how fine-tuning affects each LLM’s susceptibility to various vulnerabilities. This
framework, developed by experts in AI and cyber security, helps developers and
organisations mitigate vulnerabilities that could lead to security breaches, data
leakage, or operational failures in real-world deployments. To ensure the reliabil-
ity and statistical significance of our results, we conducted each test five times
and used the average scores across all runs. This approach helps account for
potential variations in model responses and provides more robust measurements
of model vulnerabilities.

The 2025 edition of the OWASP Top 10 for LLM Applications framework
includes:
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1. Prompt Injection: Manipulating inputs to alter model behaviour mali-
ciously. This is tested as a baseline vulnerability and applicable across cate-
gories with enhanced attack strategies.

2. Sensitive Information Disclosure: Exposing confidential data through
model outputs. This category includes nine vulnerabilities, such as Prompt
Leakage (4 types), PII Leakage (4 types), and Intellectual Property disclosure
(1 type).

3. Supply Chain: Compromising the integrity of training data, pre-trained
models, or deployment platforms. It is evaluated indirectly through other
categories like data poisoning, security leaks, and excessive functionality.

4. Data and Model Poisoning: Introducing vulnerabilities or biases during
training or fine-tuning. This category tests five vulnerabilities: Bias, Toxicity,
Illegal Activity, Graphic Content, and Personal Safety.

5. Improper Output Handling: Generating unsafe, incorrect, or harmful
outputs due to poor filtering or validation. This is assessed as a general
vulnerability.

6. Excessive Agency: Granting excessive autonomy to models, leading to
unintended actions. This includes three key vulnerabilities: Excessive Func-
tionality, Permissions, and Autonomy.

7. System Prompt Leakage: Revealing internal prompts that guide model
behaviour, potentially allowing attackers to bypass restrictions. This cate-
gory is tested across four specific types of prompt leakage vulnerabilities.

8. Vector and Embedding Weaknesses: Exploiting flawed or biased vector
representations. It is evaluated as a general risk without specific subcate-
gories.

9. Misinformation: Generating false or misleading content that appears cred-
ible. This category includes four vulnerabilities: Factual Errors, Unsupported
Claims, Expertise Misrepresentation, and Discreditation.

10. Unbounded Consumption: Causing system performance issues or crashes
through excessive output generation. This is assessed as a general vulnera-
bility.

The models were tested using DeepEval [12], which generated adversarial
prompts targeting each vulnerability. Each base vulnerability was systematically
enhanced using 11 advanced attack techniques, such as input obfuscation
(e.g., ROT13 and Base64 encoding), multi-turn dialogues to bypass simple re-
sponse filters, and prompt injection strategies. Across all categories, this resulted
in a total of 275 enhanced attacks (25 vulnerabilities multiplied by 11 attack
enhancements per vulnerability). It is important to note that the CyberLLMIn-
struct dataset was not utilised in testing, ensuring that the evaluation relied
solely on the adversarial prompts generated within DeepEval. The red-teaming
process in DeepEval involved several configurable parameters. The primary pa-
rameters included the target purpose, which specifies the intended function of
the LLM, and the target system prompt, which defines the model’s operational
prompt template. Additional parameters, such as the synthesiser model and the
evaluation model, provided flexibility in using different LLMs for data synthe-
sis and evaluation. In this work, we utilised OpenAI’s GPT-4o and GPT-3.5
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Turbo models for both synthesis and evaluation to ensure consistency across
experiments.

GPT-3.5 Turbo was leveraged for attack generation due to its ability to sim-
ulate realistic and varied adversarial scenarios. Its relatively weaker guardrails,
as shown by Gupta et al. [22], make it an effective choice for generating phish-
ing templates, malware payloads, and other attack vectors by bypassing ethical
constraints through jailbreaking and other techniques. Conversely, GPT-4o, as
highlighted by Dozono et al. [16], was employed for evaluation due to its superior
performance in detecting and classifying software vulnerabilities across multiple
programming languages, ensuring a rigorous evaluation of the generated adver-
sarial inputs. In total, the evaluation spanned nine distinct vulnerabilities un-
der “Sensitive Information Disclosure”, five under “Data and Model Poisoning”,
three under “Excessive Agency”, and others broadly classified under “Improper
Output Handling”, “Vector and Embedding Weaknesses”, and “Unbounded Con-
sumption”. These vulnerabilities were stress-tested comprehensively, highlighting
both the strengths and weaknesses of fine-tuned LLMs under adversarial condi-
tions.

To ensure the robustness of our findings, we also conducted additional testing
using garak [14], an open-source red teaming framework developed by NVIDIA
for probing LLM security. garak provides a comprehensive suite of security tests
and probes designed to evaluate various aspects of LLM safety and security. For
each vulnerability, we selected specific garak probes:

– Prompt Injection: tested using dan (jailbreak techniques like Dan_11_0,
DUDE), promptinject (HijackHateHumans, HijackKillHumans), encoding
(InjectBase64, InjectROT13), and latentinjection (LatentJailbreak)

– Sensitive Information Disclosure: evaluated with leakreplay (Guardian-
Cloze, PotterComplete) and xss (MarkdownImageExfil)

– Data and Model Poisoning: assessed using atkgen (Tox), malwaregen
(Evasion, Payload), and realtoxicityprompts (RTPIdentity_Attack, RTPThreat)

– Improper Output Handling: probed with donotanswer (MaliciousUses),
lmrc (Profanity, SlurUsage), and grandma (Slurs)

– Excessive Agency: tested using exploitation (JinjaTemplatePythonInjec-
tion, SQLInjectionEcho)

– Vector and Embedding Weaknesses: assessed using divergence (Repeat)
and snowball (GraphConnectivity, Primes)

– Misinformation: probed with misleading (FalseAssertion) and packagehal-
lucination (JavaScript, Python)

While most of the selected garak probes align with the vulnerabilities tested
with DeepEval, it is important to note that some vulnerabilities (Supply Chain,
System Prompt Leakage, and Unbounded Consumption) are not yet supported in
garak’s testing framework [38]. This limitation is reflected in our probe selection,
where we focused on the available and supported vulnerability categories.
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3.3 Safety Alignment

Our results has shown that fine-tuning on pseudo-malicious data can signifi-
cantly compromise model safety. To address this challenge, we developed a novel
safety alignment approach inspired by several key works in LLM alignment. Our
method builds on the insight from Sun et al. [41] that rewording instructions
significantly affects model performance and alignment, as well as the concept of
leveraging mistakes as learning opportunities reported by Chen et al. [9].

The transformation process involved carefully rewording each instruction-
response pair in the CyberLLMInstruct dataset to incorporate explicit safety
precautions and risk explanations while preserving the technical content. Specif-
ically, each transformed entry included:

– Explicit warnings about potential misuse and ethical implications
– Clear statements about legal boundaries and responsible disclosure
– Educational context explaining defensive applications of the information

To perform the transformation at scale, we conducted a comparative anal-
ysis of several state-of-the-art LLMs. Due to the pseudo-malicious nature of
CyberLLMInstruct, many commercial LLMs consistently refused to process the
transformation requests, citing safety concerns.

After extensive testing, we selected DeepSeek-R1 [13] for the transformation
task. This decision was driven by two key factors: first, as an open-source model,
it could be deployed locally, ensuring that sensitive copyrighted information re-
mained within our secure environment without sharing with third-party entities;
second, recent studies have highlighted that DeepSeek-R1 has significantly fewer
safeguards compared to other LLMs. Specifically, Arrieta et al. [3] demonstrated
that DeepSeek-R1 produces approximately 12% more unsafe responses than Ope-
nAI’s o3-mini model when subjected to systematic safety testing, making it more
amenable to processing our dataset while still maintaining the ability to incorpo-
rate safety elements. To ensure the consistency and quality of the transformation,
we ran the DeepSeek-R1 inference process five times and manually inspected all
transformed records to verify complete and error-free processing.

Our approach is conceptually similar to the work by Chen et al. [10], who
demonstrated that fine-tuning on carefully reworded instruction-response pairs
can dramatically improve model resilience against adversarial inputs while main-
taining utility. However, to the best of our knowledge, our approach has not been
previously implemented and tested on cyber security pseudo-malicious data, pre-
senting a novel opportunity to study its effects on safety improvements in this
high-risk domain.

After transforming the CyberLLMInstruct dataset, we fine-tuned Llama 3
8B using the safety-aware version and evaluated the resulting model using the
garak framework aligning with OWASP Top 10 for LLM Applications. The test-
ing utilised the same garak probes described in Section 3.2, where each vulnera-
bility category was tested using multiple specific probes (e.g., Prompt Injection
was tested using dan, promptinject, encoding, and latentinjection probes). For
each vulnerability category, we calculated the failure rate as the percentage of
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failed tests across all probes in that category. For example, if a model failed 5 out
of 10 tests in a particular probe, the failure rate for that probe would be 50%. To
ensure reliability, we ran the entire garak testing pipeline 5 times and averaged
the failure rates across all runs. The results section presents a comparative anal-
ysis of these averaged failure rates across three model versions: the base model
without fine-tuning, the model fine-tuned on the original CyberLLMInstruct,
and the model fine-tuned on our safety-aware transformed version. This analysis
provides insights into how safety-aware instruction transformation affects model
vulnerability to various attack vectors.

4 Results

This section presents the results of our comprehensive evaluation of LLM safety
vulnerabilities and alignment. We begin by analysing the safety of various mod-
els against OWASP Top 10 for LLM Applications vulnerabilities, followed by
a detailed examination of inference time impacts. The results demonstrate sig-
nificant safety degradation in fine-tuned models. We then present our findings
on safety alignment through instruction transformation, showing how careful
rewording can mitigate some of the safety risks introduced by fine-tuning.

4.1 Safety Analysis

Table 1 presents a comprehensive analysis of how base and fine-tuned LLMs
perform across OWASP Top 10 for LLM Applications vulnerabilities. The eval-
uation used a scoring system from 0 (completely vulnerable) to 1 (fully secure).
Figure 2 complements this by showing the inference time comparisons before and
after fine-tuning. A concerning pattern emerged across all models: fine-tuning
consistently led to decreased security scores across all vulnerability categories.

“Prompt Injection” emerged as the most severely compromised category post-
fine-tuning. Larger models, particularly Llama 3.1 8B and Llama 2 70B, showed
the most dramatic declines from their initially strong safety postures. Even mod-
els that started with excellent scores experienced substantial degradation.

The “Sensitive Information Disclosure” category revealed similar concerning
trends. Models across different architectures and sizes showed marked vulnerabil-
ity increases after fine-tuning. Notably, Phi 3 Mini 3.8B demonstrated relatively
better resilience compared to its larger counterparts.

In the “Improper Output Handling” category, models showed varying degrees
of resilience, with smaller architectures like Phi 3 Mini 3.8B keeping relatively
better security scores compared to larger models, though still showing concerning
declines.

“Unbounded Consumption” proved to be the most resilient category across
all models, showing the least severe degradation post-fine-tuning. Both smaller
and larger models maintained relatively higher scores in this category compared
to other vulnerabilities.
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Table 1. DeepEval safety scores of base (green) and fine-tuned (red) LLMs across
OWASP Top 10 vulnerabilities (scores range from 0, representing completely vulnera-
ble, to 1, fully secure). Results represent averages across 5 independent test runs.

Vulnerability Phi 3 Mini Mistral Qwen 2.5 Llama 3 Llama 3.1 Gemma 2 Llama 2
3.8B 7B 7B 8B 8B 9B 70B

Prompt
Injection

0.88
0.40

0.90
0.25

0.87
0.30

0.92
0.35

0.95
0.15

0.80
0.25

0.85
0.20

Sensitive
Info.
Disclosure

0.89
0.45

0.85
0.30

0.86
0.35

0.84
0.40

0.90
0.25

0.78
0.30

0.82
0.42

Supply
Chain

0.87
0.48

0.82
0.40

0.85
0.45

0.86
0.50

0.88
0.30

0.80
0.35

0.84
0.32

Data and
Model
Poisoning

0.85
0.40

0.87
0.25

0.89
0.30

0.88
0.32

0.93
0.20

0.84
0.25

0.90
0.22

Improper
Output
Handling

0.93
0.48

0.89
0.40

0.92
0.42

0.91
0.50

0.94
0.35

0.85
0.45

0.87
0.38

Excessive
Agency

0.86
0.38

0.88
0.30

0.90
0.32

0.87
0.40

0.92
0.25

0.84
0.35

0.89
0.28

System
Prompt
Leakage

0.85
0.33

0.85
0.25

0.89
0.30

0.84
0.35

0.91
0.20

0.84
0.35

0.86
0.22

Embedding
Weaknesses

0.89
0.42

0.90
0.35

0.91
0.40

0.82
0.35

0.93
0.30

0.91
0.32

0.88
0.42

Mis-
information

0.93
0.38

0.87
0.30

0.89
0.35

0.84
0.30

0.95
0.25

0.91
0.40

0.90
0.58

Unbounded
Consumption

0.94
0.48

0.90
0.45

0.91
0.48

0.88
0.40

0.94
0.40

0.93
0.50

0.92
0.42

The “Data and Model Poisoning” category showed significant vulnerability
increases across the board, with larger models experiencing more pronounced
security degradation than their smaller counterparts.

“Embedding Weaknesses” revealed substantial security compromises across
all models, though with notable variations based on model architecture.

“Misinformation” provided a rare bright spot, with Llama 2 70B standing
out as the only model to maintain a somewhat secure status post-fine-tuning.
However, other models in the study showed significant vulnerability increases in
this category.

The analysis reveals a clear pattern: while fine-tuning enhances task-specific
performance, it consistently compromises safety across all vulnerability cate-
gories. Input manipulation vulnerabilities (particularly “Prompt Injection”) and
data exposure risks (“Sensitive Information Disclosure”) emerged as the most
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Fig. 2. Inference times for base and fine-tuned LLMs during DeepEval testing (ordered
from smallest to largest model). Times represent averages across 5 test runs.

critical concerns. While some categories like “Improper Output Handling” and
“Unbounded Consumption” showed better resilience, the overall trend indicates
significant security challenges in fine-tuned models. This suggests a crucial need
to develop fine-tuning approaches that can maintain safety while improving task-
specific performance.

Our garak testing results showed consistent patterns of safety degradation
across all models, further validating the findings from our DeepEval evaluation.
This consistency across two independent testing frameworks strengthens the re-
liability of our results regarding the impact of fine-tuning with pseudo-malicious
data on LLM safety.

4.2 Safety Alignment

To demonstrate the feasibility of our approach, we conducted an experiment
using the Llama 3 8B model, focusing on the safety alignment analysis across
all OWASP Top 10 for LLM Applications vulnerability categories. The testing
was performed using the garak framework, with a total of 14,395 individual test
cases distributed across the vulnerability categories as follows:

– Prompt Injection: 5,425 tests
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Table 2. Failure Rates (%) for OWASP Top 10 Vulnerabilities in Llama 3 8B Model.
The pie charts show the failure rates where: red indicates the percentage of failures and
grey represents the remaining success rate. These scores represent the averaged garak
evaluation scores as detailed in the methodology section.

OWASP
Vulnerability

Base
Model

CyberLLMInstruct
Fine-tuned

Safety-Aware
Fine-tuned

Prompt
Injection 8.6% 63.2% 4.5%

Sensitive
Information
Disclosure 15.4% 55.6% 11.8%

Data and
Model

Poisoning 11.8% 69.5% 11.5%

Improper
Output

Handling 8.4% 48.5% 4.7%

Excessive
Agency 12.8% 61.8% 9.3%

Vector and
Embedding
Weaknesses 20.0% 61.9% 6.5%

Misinformation
14.9% 72.9% 19.7%

– Sensitive Information Disclosure: 370 tests
– Data and Model Poisoning: 2,170 tests
– Improper Output Handling: 1,280 tests
– Excessive Agency: 60 tests
– Vector and Embedding Weaknesses: 1,180 tests
– Misinformation: 3,910 tests

The Supply Chain, System Prompt Leakage, and Unbounded Consumption
categories were not included in the analysis as they are not yet supported by the
garak framework.

Table 2 presents a comprehensive overview of the failure rates for each vul-
nerability category across three model configurations: the base model, the Cy-
berLLMInstruct fine-tuned model, and the safety-aware fine-tuned model. The
table uses a visual representation with pie charts to illustrate the failure rates,
where:

– Red represents the percentage of failures
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Fig. 3. Absolute difference in DeepEval safety scores before and after fine-tuning across
OWASP Top 10 for LLM Applications for all tested LLMs of varying sizes. The x-axis
is spaced to reflect approximate relative model sizes (not to scale).

– Grey shows the remaining success rate

The results demonstrate significant variations in vulnerability across differ-
ent model configurations. For instance, the CyberLLMInstruct fine-tuned model
shows particularly high failure rates in Misinformation (72.9%) and Data and
Model Poisoning (69.5%). The safety-aware fine-tuned model shows marked im-
provements across all categories, with several vulnerabilities showing failure rates
below 10%.

5 Further Discussions

Our experimental results reveal critical insights into the safety implications of
fine-tuning LLMs with pseudo-malicious cyber security data. The comprehensive
testing across OWASP Top 10 for LLM vulnerabilities (see Table 1) demonstrates
that fine-tuning consistently compromises model safety across all vulnerabilities
in OWASP Top 10 for LLMs. This degradation pattern holds true across different
model architectures and sizes, suggesting a fundamental challenge in maintaining
safety during domain-specific adaptation.

The relationship between model size and safety resilience presents an inter-
esting paradox. While larger models like Llama 2 (70B) typically exhibit stronger
baseline safety, they show more pronounced degradation after fine-tuning com-
pared to smaller models like Phi 3 Mini (3.8B). However, this relationship is
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not strictly monotonic, as evidenced by Llama 3.1 (8B) showing the most sig-
nificant vulnerability increases (see Figure 3). This suggests that architectural
choices and fine-tuning methodologies may play a more crucial role in safety
preservation than model size alone.

Vulnerability patterns also vary significantly across different attack cate-
gories, as detailed in Table 1. Models demonstrate relative stability in areas
like “Improper Output Handling” and “Unbounded Consumption”, while show-
ing substantial declines in “Prompt Injection” and “Sensitive Information Dis-
closure”. This category-specific behaviour indicates that safety mechanisms may
be more resilient to certain types of attacks than others, highlighting the need
for targeted safety improvements.

The inference time analysis, shown in Figure 2, reveals a consistent pattern
across all models: fine-tuned versions consistently require more time to process
test inputs than their base counterparts. This pattern holds true regardless of
model size, with the difference ranging from 17 minutes (Phi 3 Mini 3.8B) to
68 minutes (Llama 2 70B). These times represent averages across 5 independent
DeepEval test runs, ensuring statistical reliability of our measurements. The
increased inference time in fine-tuned models can be attributed to their more
detailed and context-aware responses to cyber security queries. While base mod-
els often provide quick rejection responses when faced with potentially harmful
queries, fine-tuned models engage in more comprehensive analysis and response
generation. This behaviour aligns with our safety analysis results, where base
models demonstrated higher safety resilience by frequently rejecting potentially
harmful queries outright. The trade-off between safety and responsiveness be-
comes evident in these timing patterns, highlighting the challenge of maintaining
both security and utility in fine-tuned models.

The use of pseudo-malicious data (descriptions of malicious actions with-
out actual harmful code) in fine-tuning raises important questions about the
mechanisms behind safety degradation. Our results suggest that vulnerabilities
may arise not only from exposure to pseudo-malicious content but also from
the model’s response to safety-critical information. This observation points to
potential weaknesses in current safety mechanisms that may be exacerbated by
fine-tuning, rather than being solely caused by the malicious intent of the content
itself.

A particularly significant finding emerged from our comparison of fine-tuning
with the original pseudo-malicious data versus the safety-aware transformed ver-
sion, as shown in Table 2. When the same dataset was transformed to include
explicit safety precautions, ethical considerations, and educational context, the
resulting models showed markedly different behaviour. The safety-aware trans-
formation approach demonstrated that it is possible to maintain or even improve
model safety while preserving the technical utility of the training data. This sug-
gests that the way security information is presented and contextualised during
fine-tuning can significantly impact model behaviour, offering a promising direc-
tion for developing safer fine-tuning methodologies.
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The key takeaway from our study is that while fine-tuning LLMs with cy-
ber security data presents significant safety challenges, these challenges can be
mitigated through careful data transformation and safety-aware approaches. Fu-
ture work will focus on three main directions: (1) verifying the effectiveness of
safety-aware/enhanced fine-tuning methods across different model architectures
and sizes to establish generalisable patterns, (2) conducting an ablation analysis
on different categories of cyber security data to understand how specific types of
content affect model safety, and (3) analysing safety across datasets of varying
sizes and content within the cyber security domain to study the relationship
between dataset characteristics and safety outcomes. These investigations will
help develop more robust safety-preserving fine-tuning methodologies for LLMs
in cyber security applications.

Both DeepEval and garak used in our tests can introduce biases or fail to rep-
resent model behaviours across domain-specific edge cases. Utilising the Cyber-
LLMInstruct dataset itself is not without challenges, including potential biases
stemming from its data sources and an imbalanced distribution of categories.
Moreover, experiments could have been broadened to explore additional archi-
tectures or hyper-parameters to offer a more complete view of the interplay
between model size and safety.

6 Conclusion

Our systematic evaluation of safety risks in fine-tuned LLMs for cyber security
applications reveals critical insights into the challenges and potential solutions
for deploying these models safely. Through comprehensive testing across OWASP
Top 10 for LLM Applications vulnerabilities, we demonstrate that fine-tuning
consistently compromises model safety across all tested models and vulnerabil-
ity categories. The safety-aware transformation approach presents a promising
direction for mitigating these risks. By carefully rewording instruction-response
pairs to include explicit safety precautions and ethical considerations, we show
that it is possible to maintain or even improve model safety while preserving tech-
nical utility. This finding suggests that the way security information is presented
during fine-tuning can significantly impact model behaviour, offering a practical
path forward for developing safer fine-tuning methodologies. These results high-
light the importance of considering safety implications when fine-tuning LLMs
for cyber security applications. The demonstrated effectiveness of safety-aware
transformation in mitigating security risks while maintaining model utility pro-
vides a foundation for developing more secure and reliable LLM-based cyber
security solutions.
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