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Abstract In recent years, consumer Internet of Things (IoT) devices have become widely used in daily

life. With the popularity of devices, related security and privacy risks arise at the same time as they collect

user-related data and transmit it to various service providers. Although China accounts for a larger share

of the consumer IoT industry, current analyses on consumer IoT device traffic primarily focus on regions

such as Europe, the United States, and Australia. Research on China, however, is currently rather rare.

This study constructs the first large-scale dataset about consumer IoT device traffic in China. Specifically,

we propose a fine-grained traffic collection guidance covering the entire lifecycle of consumer IoT devices,

gathering traffic from 70 devices spanning 36 brands and 8 device categories. Based on this dataset, we

analyze traffic destinations and encryption practices across different device types during the entire lifecycle

and compare the findings with the results of other regions. Compared to other regions, our results show

that consumer IoT devices in China rely more on domestic services and overally perform better in terms

of encryption practices. However, there are still 20/35 devices improperly conduct certificate validation,

and 5/70 devices use insecure encryption protocols. To facilitate future research, we open-source our traffic

collection guidance and make our dataset publicly available.

Keywords Chinese Consumer IoT, Traffic Dataset, Traffic Measurement, Privacy, Security

1 Introduction

The consumer Internet of Things (IoT) industry has rapidly developed in recent years, with various
devices becoming widespread and offering numerous conveniences. However, the rapid spread of devices
has also raised growing concerns regarding security and privacy risks. The data collected by these devices
is often transmitted to manufacturers of devices and other service providers. At the same time, data
transmission is facing strict legal regulations [1] in China. Therefore, it is necessary to measure consumer
IoT traffic from security and privacy perspectives.

Researchers have conducted studies on consumer IoT device traffic in various regions, including Europe
[3, 4], the United States [5–7], and Australia [8, 9], and have identified several security and privacy risks
associated with these devices. However, according to IDC [2], China’s consumer IoT industry is projected
to reach $300 billion by 2027. Despite this rapid growth, research on consumer IoT device traffic in China
remains limited and lacks comprehensive analysis. This research gap drives us to build a large-scale and
comprehensive dataset of consumer IoT traffic in China and conduct a measurement of the dataset.

While constructing the dataset, we introduce methodological improvements compared to existing stud-
ies. Previous studies have primarily focused on the device interaction phase [5, 13]. However, we find
differences in traffic across different operational phases of the device and limiting the focus on the inter-
action phase may lead to an incomplete analysis. Therefore, we propose a fine-grained traffic collection
guidance that covers the entire lifecycle of the device to address this limitation. The entire lifecycle
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refers to all phases during normal device usage, including device setup, user interaction, idle, and dele-
tion [10]. Compared with prior works, the traffic we collected shows greater coverage and can support
more fine-grained analysis. Furthermore, we open-source our traffic collection guidance and make our
dataset publicly available to facilitate further research.

From March 1 to November 29, 2024, we constructed a dataset of consumer IoT traffic in China
based on our traffic collection guidance. Furthermore, for devices that can update firmware during the
experiment, we also collected traffic after their firmware update to study the differences in device traffic
before and after the firmware update. Based on the traffic collected, we analyzed the traffic destinations
and encryption practices and then compared our findings with those of the United States and the United
Kingdom [5, 13].

Our study reveals that, regarding traffic destinations, Chinese devices show a higher reliance on do-
mestic services. The distribution of traffic destinations for Chinese devices is mainly directed to China
(99.8%) and relies on domestic organizations. In contrast, devices from the United Kingdom have a sig-
nificantly higher proportion of overseas traffic, with a greater reliance on organizations from the United
States. Regarding encryption practices, devices from different regions all show good encryption prac-
tices, although some issues remain. In particular, Chinese devices have less PII exposure in unencrypted
traffic and a lower percentage of unencrypted traffic compared to devices in the United States and the
United Kingdom. However, 20/35 devices still use improper certificate verification, and 5/70 use insecure
encryption protocols.

Our main contributions include:

• The first Chinese consumer IoT devices traffic dataset. We constructed a dataset that
include 97.5 hours of traffic from 70 devices across 8 categories and 36 brands. We make this
dataset publicly available1) to facilitate future research.

• A lifecycle-based fine-grained traffic collection guidance. We propose a fine-grained traffic
collection guidance covering the entire lifecycle of the device in a controlled environment. We
open-sourced the guidance and are inviting researchers to build a standard, comprehensive, and
state-of-the-art consumer IoT dataset together.

• Security and privacy measurement of Chinese consumer IoT device traffic. We analyze
traffic destinations and encryption practices, then compare the results with those from other regions,
revealing the characteristics of Chinese consumer IoT devices and regional differences.

2 Background

Consumer IoT devices typically refer to IoT devices designed for personal or household use, such as
cameras, speakers, and lights. These devices can be bound to and controlled by the companion apps,
following similar operational phases (i.e., lifecycle). During these phases, users can control the device
through various methods. Meanwhile, consumer IoT devices typically communicate frequently with cloud
servers during operation to support various device functions. This section introduces the concepts and
definitions relevant to the lifecycle, control methods, and cloud services mentioned above.

The lifecycle of consumer IoT devices. The lifecycle of consumer IoT devices contains four phases
based on a prior work [10]: setup, interaction, idle, and deletion. When users first activate a consumer
IoT device, the device will enter the setup phase. During this phase, users need to complete operations
such as network configuration and bind the device to a companion app. The interaction phase refers to
the phase in which users interact with the device, such as controlling light switches and checking camera
status. After setting up the device, we refer to the phase in which the user no longer interacts with the
device as the idle phase. Finally, The deletion phase refers to the phase when users unbind the device
from the companion app, restoring it to its factory settings.

Control methods of consumer IoT device. Common control methods of consumer IoT devices
include four types: Wide Area Network (WAN) control, Local Area Network (LAN) control, physical
control, and multimodal control. WAN control refers to scenarios where the controlling smartphone
with the companion app and the consumer IoT device are not on the same local network. In this case,
commands between the app and the device must be relayed through a cloud server. For example, when a
user is away from home during travel, he/she can monitor indoor environments in real-time via a camera

1) https://github.com/NKUHack4FGroup/Lifecycle-Based-Traffic-Dataset
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through a companion app. LAN control occurs when the controlling smartphone and the consumer IoT
device are on the same local network. In this case, communications between the device and the app can be
established through local protocols, such as Bluetooth. For example, when a user is at home, he/she can
adjust the brightness and color temperature of smart lights through a companion app. Physical control
involves direct interaction with the device through physical buttons. For example, users can press physical
switch buttons on the device to reset or power it off. Consumer IoT devices with various sensors support
multimodal control through different methods. Examples include users waking up speakers through voice
commands or interacting with devices via triggers from motion sensors.

Cloud servers of consumer IoT devices. When a consumer IoT device operates, the data it
collects is shared with various cloud servers. Following the classification approach used in the study by
Ren et al. [5], we categorize these servers into three groups: first party, support party, and third party.
First party refers to the manufacturer of the consumer IoT device or the developer of its companion
app. Support party refers to organizations that provide computational resources or network services for
consumer IoT devices, such as cloud computing, cloud storage service providers, and service providers
(e.g., CDN). Third party refers to companies contacted by device and not categorized as first or support
parties. We adopt the methodology from Ren et al. [5] to determine server affiliations through a three-step
verification process: (1) We first identify the organization of the IP addresses contacted by the device.
If the IP’s organization matches the manufacturer or companion app of the consumer IoT device, we
classify it as a first party; (2) For unresolved cases, examine official Privacy Policies and Third-Party
Data Sharing documents (prioritizing device-specific policies) to identify support party; (3) Categorize
any undocumented or unaffiliated servers as the third party.

3 Traffic Collection Methodology and Measurement Scope

This section introduces the traffic collection methodology and measurement perspective in our study. The
traffic collection methodology includes the device selection criteria, experiment testbed configuration,
and traffic collection guidance. The measurement perspective focuses on two main dimensions: traffic
destinations and encryption practices. The traffic collection continued from March 1 to November 29,
2024, during which 97.5 hours of traffic were systematically collected from Chinese consumer IoT devices.
We also collected traffic from ten devices after firmware updates to study differences in device behavior
before and after firmware updates, generating 26 hours of traffic data covering the pre- and post-firmware
updates.

3.1 Experiment Testbed

Table 1 Device List.

Category Cameras (28) Doorbells (3) Hubs (9) Humidifiers (2) Lights (6) Plugs (12) Sensors (3) Speakers (7)

Devices

(70)

XiaobaiY2

XiaobaiY3

Xiaomi

Huawei haique

Xiaopai

Cubetoou

ZTE

Yingshi C6CN

360 6C

Jooan

Konka

Pisen

Lenovo

Yibang

Tenda

Mercury

Aqara

Xiaovv

Huawei xiaotun

Xiaotundangjia

TP-Link

IMOU

Greatwall

Xiaomi 3

JPLAYER

Haier

Sonoffa

Xiaomao

IMOU

Chuangmi

TP-LINK

Aqara

Yingshi

Mindor

Tuya

Xiaomi

Jingxun

Meian

Sonoff

BroadLinkb

Smartmi

Mijia

Huawei dalen

Wiz

Philips

Mijia

Aqara

Midea

Hongyar

Mijia 2

Mijia3

Gosund

Yingshi

Mindor

Tuya

Xiaodu

Xiangrikui

Bull

Aqara

Tuya

Yingshi

Xiaodu

Midea Speaker

Huawei Speaker

Xiaomi Speaker

Xiaomi Speaker Plus

Tmall Speaker

Xiaodu Clock

Jingyuzuo Clock

We divide the experiment environment into LAN and WAN, to capture device traffic under different
network scenarios. To ensure diverse and comprehensive traffic collection, we selected a total of 70
consumer IoT devices across 8 categories (cameras, plugs, speakers, hubs, humidifiers, lights, doorbells,
and sensors). To ensure the representativeness of widely adopted consumer IoT devices, we prioritized
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brand recognition, user reviews, and ratings on major Chinese e-commerce platforms (e.g., Taobao,
JD.com) during the selection process. The complete list of devices and corresponding brand information
is provided in Table 1.

To minimize external interference, experiments are conducted in a controlled environment. The set-
ting of the controlled experiment environment is shown in Figure 1. The router in the figure is a Xiaomi
AX9000 running OpenWrt, with Tcpdump installed on both the WAN and LAN interfaces for traffic
capture. An Android smartphone, with the latest versions of companion apps downloaded from the cor-
responding manufacturer’s official websites, is used during the experiments. For local operations, both the
smartphone and devices are connected to the local network, while remote operations require the smart-
phone to disconnect from the LAN. All devices are configured according to the standard setup process and
bind to their respective companion apps. A Windows 10 PC is employed to configure the router and log
the traffic throughout all phases. The traffic collection process follows a semi-automated approach, where
experimenters adhere to the Traffic Collection Guidance 3.2. This guidance combines automated scripts
with manual operations, ensuring flexibility in experimentation while simulating realistic scenarios.

APP bind 
with Devices

Connect Wi-Fi
IoT Devices Local Wi-Fi

RouterPCPhone

Local

Figure 1 The Setting of the Controlled Experiment Environment.

3.2 Traffic Collection Guidance

Previous studies have mainly relied on manual methods for traffic collection [11]. While effective, they
often lack a standard operating procedure. To address these limitations, Ren et al. [5] proposed a fully
automated click-based method to reduce human intervention. However, some operations, like physical
controls, remain challenging to automate entirely, and complete automation fails to replicate real-world
user behavior accurately. To prevent the effect of personal operations and guarantee comprehensive traffic
collection, we propose a semi-automated traffic collection framework. Our traffic collection guidance
integrates semi-automated design principles comprising four core components:

• Manual operation process files. The file records the operations the experimenters perform on
each device type.

• Timestamp files. Record the operations performed on the device and the corresponding times.

• Interactive traffic collection script. Start Tcpdump to collect traffic and automatically re-
mind the experimenters to perform corresponding operations according to the manual operation
process files. During the collection, the operations and the corresponding times will be recorded in
timestamp files. After collecting the traffic, the raw traffic will be saved.

• Traffic segmentation script. Split the raw traffic into different phases according to Times-
tamp files.

Upon initiating traffic capture, the collection script starts Tcpdump and loads the manual operation
process file. Experimenters are guided by operation prompts to perform predefined operations, such as
device setup and firmware updates. The start and end times of each operation are automatically logged in
the timestamp file. After traffic collection, the segmentation script processes the raw PCAP file using the
timestamp file, automatically splitting it into multiple lifecycle phases for analysis. Additionally, there are
14% of all devices supported firmware updates during the experiment, include five cameras (Aqara camera,
TP-Link camera, XiaobaiY2 camera, Xiaomi camera), four hubs (Aqara hub, Boardlink hub, Xiaomi hub,
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Yingshi hub), and one plug device (Mijia plug). For these devices, we collected traffic both before and
after the update process. After the update, devices are re-bound to their companion apps, and traffic
is recaptured using the same process. This semi-automated approach ensures comprehensive coverage
of the device lifecycle, accurately reflecting real-world controls. Following the established environment
and traffic collection guidance, we successfully collect 97.5 hours of traffic, including 13 hours of post-
firmware-update traffic from 10 devices.

3.3 Measurement Scope

With the widespread adoption of consumer IoT devices, these devices continuously collect large amounts
of data about users and their surrounding environments during daily use. Much of these data may contain
sensitive personal information, making it crucial to evaluate how these devices transmit data and to what
destinations. Our study focuses on the security and privacy practices of these devices by analyzing both
the traffic destinations and encryption practices.

First, we analyzed the traffic destinations of the devices. Given the geographic constraints of the
devices, all the devices analyzed in this study are popular products in China. Therefore, we focus on
traffic directed to destinations outside of China. Through traffic analysis, we assess where devices send
data, the proportion of domestic versus overseas traffic, and the services provided by these destinations.
Additionally, we further analyze which parties the service providers belong to because the traffic that
goes to non-first parties tends to have a higher risk than traffic that goes to first parties. Moreover, we
identified several domains frequently accessed by most devices, which were linked to specific organizations.
By analyzing these domains, we identified the organizations most frequently contacted by the devices.
This analysis sheds light on the reliance of consumer IoT devices on different organizations.

Second, we conduct a detailed analysis of the encryption practices of device traffic. First, we measure
the proportion of encrypted traffic. We then categorize the types of encryption protocols used in the
encrypted traffic. Due to TLS 1.2 is widely used in device traffic, we conduct an in-depth analysis of
the security of certificates using TLS 1.2, focusing on whether the algorithms used in the certificates
meet current security standards and whether the device verify the certificate correctly. For unencrypted
traffic, we assess the potential risk of exposing personally identifiable information (PII) in plain text,
with particular attention to the potential leakage of sensitive information.

4 Destination Analysis

For consumer IoT devices in China, traffic directed to overseas locations or third-party destinations is of
particular concern, as it may increase security and privacy risks compared to traffic flowing to first-party
or support-party servers. This section starts with an analysis of traffic destinations, providing a detailed
assessment of security and privacy risks through two key aspects: (1) the geographical distribution of
traffic destinations by country and (2) the affiliation analysis of contacted server parties.

4.1 Distribution of Traffic Destinations

This subsection analyzes the country-level distribution of device traffic destinations, focusing on the
proportion of traffic to different countries across device types and lifecycle phases.

We first collected IP addresses interacting with devices and queried their geographical affiliations using
the IP geolocation API [12]. Then, we calculate the proportion of traffic going to different countries. In
the calculation, we observed that the traffic packet size of cameras, doorbells, and speakers is significantly
larger than that of sensors and other devices. If only the proportion of bytes flowing to devices in different
countries is counted, there will be a more serious bias. We processed a special calculation method to
eliminate the above bias when calculating the traffic proportion.

Let X represent the set of type A device indices in the dataset. For each device i (i ∈ X), let Mi

denote the traffic volume (in bytes) transmitted to the country T , and let Ni denote the total traffic
volume transmitted to all destinations. The total normalized traffic from type A devices to country T is
then given by AT =

∑
i∈X

Mi

Ni
. Further, let SumA represent the total traffic volume of all type A devices.

The proportion of traffic from type A devices directed to country T is computed as: AT

SumA
. Similarly,

let SumT represent the total traffic volume from all devices to the country T , and Sumall denote the
total traffic volume from all devices to all destinations. The overall proportion of traffic directed to the
country T across all devices is then given by: SumT

Sumall
.
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We used Chiplot [34] to generate a Sankey diagram (Figure 2) to visualize the distribution of traffic
destinations. In terms of destination, 99.8% of all device traffic remained within China, with only 0.2%
directed overseas. From the perspective of device types, hubs, humidifiers, lights, sensors, and plugs did
not show overseas traffic, likely due to their simple communication with cloud servers. A total of 27
devices showed overseas traffic, all cameras, speakers, or doorbells. For each type of device, the cameras
had the highest proportion of foreign traffic at 0.29%, followed by speakers at 0.05% and doorbells at
0.07%.

Camera

Doorbell

Hub

Humidifier
Light

Plug

Sensor

 

 

 

 

Speaker

China

Germany IndiaIndonesia IrelandIsrael JapanSingapore South KoreaSweden
The Netherlands Switzerland 

Canada United StatesFinland RussiaUnited Kingdom

Argentina

Figure 2 Proportion of device traffic routed to different countries, grouped by device type and traffic destination country.

The United States is the most common overseas destination, accounting for 0.11% of total traffic. In
particular, dns.google.com is the most frequently accessed foreign domain, communicated by 20 devices.
Other domains involved in United States traffic include ntp.com, amazonaws.com, and iotcplatform.
com, supporting services such as time synchronization (e.g., 1.cn.pool.ntp.org), remote access based
on TUTK (e.g., all-d-master-tutk.iotcplatform.com, used by Xiaobai doorbells and Jooan cameras),
and cloud computing (e.g., p2ps2.coolkit.cn, accessed by Sonoff cameras). Traffic to other countries
accounted for less than 0.1% of the total and involved 18 domain names. Among them, 10 domains (e.g.,
ntp.org, time.cloudflare.com) are related to NTP services. Other services included Google Cloud (e.g., bc.
googleusercontent.com), IoT platform management (e.g., all-master.iotcplatform.com), IP address lookup
(e.g., api.ipify.org), and AWS cloud hosting (e.g., eu-central-1.compute.amazonaws.com). It should be
noted that 27 devices contacted NTP servers in 12 countries and 7 devices contacted NTP servers in
multiple countries. This increases the security risk of being affected by international cyber attacks. In
contrast, domestic NTP services could offer safer and more stable connections.

To analyze the distribution of traffic across the device lifecycle phases, we visualized the proportional
traffic destination during the different lifecycle phases in Figure 3. Since over 99% of the traffic terminates
within China, the domestic traffic is omitted from the figure. The results show that during the idle phase,
cameras, speakers and doorbells exhibit a relatively high proportion of overseas traffic, and these traffic
primarily flow to NTP services. During the setup phase, the cameras and speakers show a notable
amount of overseas traffic and involve diverse services, such as DNS service, IP address lookup, IoT
platform management, and NTP service. This means the device configurations rely on more types of
overseas traffic. During both the interaction and deletion phases, the frequency of overseas destinations
decreases. This likely suggests that the main functionalities of IoT devices are built on domestic services.

Additionally, for 10 devices that updated firmware, none of them generated overseas traffic before or
after the firmware updates.

4.2 Service Contacted by Devices

During device operation, frequent traffic communication occurs between devices and cloud service providers.
We calculated the number of cloud server affiliations contacted by devices in different lifecycle phases.

dns.google.com
ntp.com
amazonaws.com
iotcplatform.com
iotcplatform.com
1.cn.pool.ntp.org
all-d-master-tutk.iotcplatform.com
p2ps2.coolkit.cn
ntp.org
time.cloudflare.com
bc.googleusercontent.com
bc.googleusercontent.com
all-master.iotcplatform.com
api.ipify.org
eu-central-1.compute.amazonaws.com
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0.6
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Argentina
Canada
Germany
India
Ireland
Japan
Singapore
South Korea
Sweden
Switzerland
The Netherlands 

United States
Indonesia
Isreal

 

Finland
Russia
United Kingdom0

Camera Doorbell Speaker

DE ID IR SU DE ID IR SU DE ID IR SU

DE ID IR SU DE ID IR SU DE ID IR SU

Figure 3 Overseas traffic destinations of devices grouped by lifecycle phases. Device Lifecycle Phases: SU (setup), ID (idle), IR

(interaction), DE (deletion). The destinations with values less than 0.1 are magnified.

Table 2 shows the average number of service providers contacted by devices of each type.

Table 2 The Average Number of Servers Contacted by Devices in Different Lifecycle phases.

Life Cycle Server Camera Doorbell Hub Humidifier Light Plug Sensor Speaker

First Party 3.14 2.33 0.56 2.00 1.33 0.83 1.33 3.29

Setup Support Party 1.96 1.00 0.78 0.00 0.33 0.67 0.00 1.14

Third Party 1.18 0.67 0.00 0.00 0.00 0.00 0.00 0.86

First Party 1.82 1.67 0.44 1.00 1.33 1.08 2.33 2.29

Idle Support Party 2.54 1.00 0.67 0.00 0.33 0.50 0.00 1.57

Third Party 1.29 1.33 0.00 0.00 0.00 0.00 0.33 1.57

First Party 1.43 4.00 0.33 1.00 0.67 0.58 1.33 2.14

Interaction Support Party 1.71 1.33 0.22 0.00 0.17 0.25 0.00 1.71

Third Party 0.93 1.67 0.00 0.00 0.00 0.00 0.33 1.29

First Party 0.43 2.33 0.33 1.00 0.67 0.58 1.00 0.57

Deletion Support Party 0.57 0.00 0.33 0.00 0.17 0.17 0.00 0.29

Third Party 0.21 1.00 0.00 0.00 0.00 0.00 0.33 0.29

First Party 4.18 4.33 1.11 2.00 1.83 1.75 3.67 5.29

Total Support Party 4.89 2.33 1.00 0.00 0.50 0.83 0.00 3.86

Third Party 3.93 2.00 0.00 0.00 0.00 0.00 0.33 3.00

First, regardless of the type of device, first party contacts constituted a significant proportion of all
device communications. Second, the interaction with the support party is closely related to the device’s
computational resource needs. Among the eight device types, the camera, doorbell, and speaker in-
teract more frequently with the support party. As a result, many manufacturers choose to collaborate
with cloud service providers to ensure the devices can leverage cloud computing and storage capabili-
ties, thereby enhancing their stability. The support parties contacted by these devices typically provide
cloud computing and storage services (e.g., oss-cn-beijing.aliyuncs.com, ap-beijing.myqcloud.com), video
streaming services (e.g., video.qq.com, stream.qqmusic.qq.com), and network communication services
(e.g., dns.alidns.com).

Compared with first and support parties, third party domains primarily involve data sharing, adver-
tising services, geolocation, and personalized recommendation services. For example, the Huawei speaker
contacts statist.tingmall.com for music streaming services, which may be related to third-party audio
components used by the device; the IMOU camera contacts api.weathercn.com for weather query ser-
vices. Additionally, we also observe that many devices access seemingly unrelated third-party domains.
For instance, Xiaomi speaker, Konka camera, Lenovo camera, Pisen camera, and Jooao camera all access
the domain www.baidu.com. These observations suggest that while third party services offer various
personalized features, they are not explicitly mentioned in privacy policies. As a result, unexpected
destination contacts may raise user privacy concerns.

Additionally, for 10 devices support firmware updates, there was no significant change in the number
of third party service providers contacted. Overall, traffic destinations showed little change after the
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firmware updates, indicating that device firmware updates have little impact on traffic destinations in
the short term.

Commonly Contacted Organizations. To further assess whether the devices’ communications
exhibit excessive reliance on specific organizations, we analyzed the organization of traffic destinations
and ranked them based on interaction frequency. We focused on the companies most frequently contacted
by consumer IoT devices and listed the top ten companies in Table 3. According to the table, 20 devices
in the dataset contacted Google to use its DNS service. In contrast, the local DNS provider Greatbit, is
used by only 17 devices, which is fewer than Google.

In real-time communication for consumer IoT devices, stable and efficient DNS services are essential.
While Google Public DNS is commonly used due to its global network and high availability, GreatBit,
as a domestic provider, offers lower latency and better stability for local devices. However, the analy-
sis shows that Google DNS is used more frequently than expected. In consumer IoT device real-time
communication scenarios, stable and efficient DNS services are crucial. As a domestic service provider,
GreatBit offers lower latency and higher stability for local devices, making it more suitable to meet
the demands of domestic devices. Nevertheless, the analysis shows that compared with the local DNS
service, the frequency of the device using Google DNS is higher. In addition to Google and Greatbit,
the Organizations most frequently contacted by devices include Alibaba Cloud, Xiaomi, and Tencent.
The services provided by these companies through their domains include cloud storage services (e.g.,
oss-cn-shenzhen.aliyuncs.com), NTP services (e.g., time1.cloud.tencent.com, ntp.aliyun.com), and video
streaming and media content (e.g., findermp.video.qq.com, vv.video.qq.com), inditcating that devices
rely on these companies for the computational resources they provide.

Table 3 Organizations Commonly Contacted by Devices.

Organization Google Alibaba Cloud Xiaomi Greatbit Tencent Baidu Huawei Tuya NST Jooan

Frequency 20 18 17 17 11 10 9 5 4 3

4.3 Summary

By analyzing traffic destinations, we find that most Chinese devices rely on domestic services. Specifically,
99.8% of the traffic is directed to domestic servers that depend on domestic organizations. This means
that Chinese IoT devices feature a high degree of localization and greater autonomy in control. From the
perspective of lifecycle phases, we can infer that the main functionalities of IoT devices, e.g., controlling
and monitoring, are built on demostic services. Most foreign services used by Chinese consumer IoT
devices are basic Internet services like NTP and DNS, which can also be replaced by Chinese service
providers. In addition to contacting first parties, many devices from different manufacturers commonly
communicate with major domestic organizations such as Xiaomi, Alibaba, and Tencent. This allows them
to receive information from many devices and potentially obtain the capability to construct user profiles,
e.g., inferring types of device in a household.

5 Encryption Analysis

To ensure the security of consumer IoT device traffic, devices often encrypt the communication. However,
encryption implementations vary across brands and device types, with differing security levels. In this
section, we measure encryption practices through 4 key aspects: (1)the proportion of encrypted traffic,
(2) the encryption protocols, (3) the certificate security in TLS, and (4) the exposure of personally
identifiable information (PII) in unencrypted traffic.

5.1 Encrypted Traffic Proportion Analysis

Consumer IoT device communications may involve sensitive information such as user personal data and
surveillance audio or video. Transmitting such data in plaintext raises interception, tampering, and
unauthorized risks. Thus, we leverage the entropy of the traffic to identify and analyze the proportion of
unencrypted communications.

Common traffic analysis tools, such as Wireshark, can easily distinguish between encrypted protocols
like TLS and QUIC, but cannot clearly classify customized encryption protocols. Therefore, we adapted
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the method proposed by Ren et al. [5] to determine whether traffic is encrypted by calculating the payload
entropy of the packets. First, for HTTP protocol packets, we classify them into text, compressed, or
media based on the context type field. For SSL protocol, if the payload entropy is greater than 0.8, it is
classified as encrypted. For DNS protocol, packets containing the dns key field are treated as encrypted.
For packets that cannot be classified in the first step, we further classify them based on the magic number
of the payload. The magic number refers to a unique identifier or pattern of bytes in a packet that helps
to determine its type or format, often used to identify specific file types or data structures. If the
packet is identified as compressed or media data, it is categorized as compressed or media. Finally, for
the remaining packets, we perform a final classification based on entropy values: packets with entropy
greater than 0.9 are classified as encrypted, those with entropy less than 0.4 are classified as text, and
those with entropy between 0.4 and 0.9 are classified as unknown. Ultimately, we classify the traffic into
encrypted traffic, unencrypted traffic, and unknown traffic.

Figure 4 presents a heat map visualization illustrating the proportional distribution of encrypted,
unknown, and unencrypted traffic across various lifecycle phases of consumer IoT devices.
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Figure 4 For each device type, the heatmaps depict the average percentages of encrypted, unknown, and unencrypted traffic

transmitted across respective lifecycle phases.

The heatmaps show that the proportion of unencrypted traffic is generally low, with no device type
exceeding 8.5% of unencrypted traffic. This indicates that encrypted communication dominates the data
transmission of most devices. However, significant variation exists across device types. For instance,
camera, doorbell, and speaker devices exhibit an average encrypted traffic share of over 60%, largely
driven by the security and privacy requirements in audio and video data transmission. In contrast, the
humidifier and plug devices have lower average encrypted traffic proportions of 36% and 38%, while their
unknown traffic proportions are the highest among all devices, at 50% and 49%, respectively. Analysis of
traffic entropy reveals that most of these devices’ traffic falls within the entropy range of 0.4-0.7. Upon
further inspection, it appears that these devices do not use standard encryption protocols but instead
rely on proprietary protocols developed by the manufacturers. These proprietary protocols have unstable
entropy. By reverse engineering, an network attacker could readily deduce the syntax and semantics
of the manufacturer’s protocols, thereby enabling them to manipulate and monitor users’ data. When
considering the lifecycle phases of the device, the proportion of encrypted traffic is relatively higher during
the setup and interaction phases than in the other two phases. These phases involve crucial services such
as device initialization and configuration, cloud computing, and media data transmission. Therefore,
more encrypted traffic in these phases ensures communication security.

Additionally, for 10 devices that support firmware updates, Most devices exhibited increased encrypted
traffic proportions after updates. For example, TP-Link Camera increased the average encrypted traffic
proportion from 65.75% pre-update to 72.56% post-update. This indicates that the encryption commu-
nication is becoming increasingly prevalent.
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5.2 Encryption Protocol Analysis

In addition to standard encryption protocols such as TLS and SSL, some manufacturers use proprietary
encryption protocols based on UDP [13]. Therefore, we first check whether standard encryption protocols,
such as SSL or TLS, are used for encrypted traffic. Encrypted traffic not using these protocols is classified
as encrypted with proprietary protocols. In the analysis, we statistic the number of devices using each
encryption protocol with the results presented in Table 4.

Table 4 Distrubution of Encryption Protocols Deployed in Devices.

Protocol TLS 1.2 TLS 1.1 TLS 1.3 SSL SSLv2 Other Protocols

Device Num 58 1 3 5 3 10

Through analysis, we found that TLS 1.2 is widely used for encrypted communication across devices,
with 58 devices using TLS 1.2 at least once. However, some devices (e.g., IMOU doorbells, Pisen cameras,
and Tenda cameras) continue to rely on insecure SSL or TLS 1.1 protocols, which accounts for 7.6% of
the total communication traffic on average. Analyzing the destination IP addresses of these traffic showed
that most targets are telecommunications service providers (e.g., China Mobile) or cloud service providers
(e.g., Alibaba Cloud). Moreover, not all encrypted communications from these devices use SSL or TLS
1.1. There is a mixed use with other protocols (e.g., TLS 1.2). This may result from manufacturers
neglecting to fully deprecate outdated protocols during certain functionality upgrades, leaving some
connections still using SSL or TLS 1.1. On the other hand, while TLS 1.3 offers significant improvements
in performance and security, only three devices in our dataset use it. This indicates that despite its clear
advantages, its adoption remains limited, and manufacturers must make greater efforts to implement the
latest security protocols. Additionally, we identified 10 devices (e.g., Aqara Camera, Aqara Plug, Xiaovv
Camera) using proprietary protocols developed by the manufacturers. The security of these protocols
remains to be further analyzed.

In conclusion, although some devices still use outdated encryption protocols and custom encryption
formats present security risks, TLS 1.2 remains the most widely used encryption protocol, and the
adoption of TLS 1.3 requires more attention from manufacturers in future updates.

Additionally, for the 10 devices that support firmware updates, most used TLS 1.2 for encryption
before the update, while three devices relied on proprietary protocols developed by the manufacturers.
The XiaobaiY2 camera also used SSL in addition to TLS 1.2. After the update, all devices upgraded
their encryption protocols. In addition to continuing to use TLS 1.2, they also adopted TLS 1.3. The
three devices that previously used proprietary protocols switched to TLS 1.2, and the XiaobaiY2 camera
stopped using SSL, now relying only on TLS 1.2 and TLS 1.3 for encrypted communication.

5.3 TLS Certificate Security Analysis

The TLS 1.2 protocol is the most widely used encryption protocol in our dataset. To further understand
its security, this section presents a statistical analysis of the certificate for the 58 devices in the dataset
that use the TLS 1.2 protocol. The results show that 43 devices use a public key certificate model for
communication. The remaining 15 devices used the Pre-Shared Key (PSK) model without relying on
certificates. Given the crucial role digital certificates play in TLS encryption security, we further analyzed
the self-signed certificate usage and the encryption algorithms’ security. Additionally, we conducted
dynamic tests using the mitmproxy to assess the validity of certificates when devices powered on again.

5.3.1 Certificate Usage

Overall, the certificate security of domestic devices is generally good, but some insecure certificates were
still identified. Table 5 statistics the number of TLS implementations that may be insecure, including
insecure signature algorithms, insecure cryptographic algorithms, and self-signed certificates. Among the
43 devices, 7 use insecure algorithms, such as the SHA1 signature algorithm and RSA-1024 cryptographic
algorithm, primarily for communication with Aliyun and AWS servers. These algorithms are now con-
sidered insecure and vulnerable to attacks. Secondly, approximately 39% of the devices use self-signed
certificates in at least one TLS 1.2 connection. These certificates are typically signed by CA authorities
like ClickPKI or self-signed by the device manufacturers. Many self-signed certificates have excessively
long validity periods, with one Lenovo camera certificate valid until 2120. According to current security
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standards, the validity period of TLS certificates should not exceed 13 months [14]. As pointed out by
Dong et al. [15], the lack of public oversight for long-term vendor-signed certificates poses potential
vulnerabilities, as they may not meet the stringent standards of trusted public CAs, thereby increasing
the security risks within the consumer IoT ecosystem.

Table 5 TLS 1.2 implementations of different device type.

TLS 1.2 implementation Camera Doorbell Plug Hub Light Sensor Speaker

Insecure Signature Algorithms 3 0 1 1 0 0 2

Insecure Cryptographic Algorithms 1 0 0 1 0 0 0

Self-signed Certificates 13 1 0 1 1 1 0

5.3.2 Certificate Validation

Ideally, devices should check whether the certificates from servers are valid. If a forged certificate is
detected, the device should either return an error message or reject the TLS connection. However, if
a device ignores certificate anomalies and proceeds to establish a connection, the certificate validation
mechanism may have vulnerabilities.

To investigate this issue, we first successfully captured traffic during device reconnections and dis-
covered that 35 devices would conduct TLS connection with certificate exchange with 92 servers during
the reconnection period. Next, we conducted a mitmproxy certificate replacement attack on these TLS
connections. The results are presented in Table 6.

Table 6 Error messages or device behavior after the certificate replacement

Error Message and Device Behavior Device Number Server Number

“Unknown CA” 11 17

“Decrypt error” 2 2

“Bad certificate” 2 2

“Close notify” 5 15

“Decode error” 1 1

Disconnects and reconnects 12 19

Server handshake failed 1 2

Unable to connect to the internet 1 1

Communicates normally 20 33

The results show that approximately 64% of the servers responded with errors, such as ”Unknown
CA,” ”Decrypt error,” ”Close notify” alerts, or actively terminated the connection. Meanwhile, 33%
of the servers associated with 20 devices did not verify the certificates. By decrypting the traffic of
these servers, we were able to obtain sensitive information such as device logs, configuration details, and
authentication credentials. This indicates that many consumer IoT devices follow insecure certificate
validation practices, leaving them vulnerable to certificate replacement attacks.

5.4 PII Exposure in Unencrypted Traffic

Personally Identifiable Information (PII) refers to any data that can identify an individual [16]. Common
PII includes names, ID numbers, phone numbers, email addresses, etc. Unencrypted traffic containing
PII significantly elevates the risk of user data exposure. In this section, we identify PII in unencrypted
traffic using text matching and regular expressions to measure the security practice. To comprehensively
analyze PII exposure, we input as much personal information as possible into the companion app when
we collect traffic.

The analysis reveals that the exposure of PII in unencrypted communication traffic is minimal in traffic.
Only a small amount of PII (including the names of five well-known singers) is detected in the traffic
from four speaker devices, and no inputted personal information is found. These singer names appeared
in the song requests during the interaction phase. Although this information does not directly reveal the
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user’s identity, it could still be exploited by malicious third parties to infer user preferences or deliver
targeted ads, thereby posing a risk of privacy leakage and data misuse.

5.5 Summary

This section measures the encryption practices of consumer IoT devices. The study reveals that Chi-
nese manufacturers adopt safe encryption protocols for device communications, and encrypted traffic
dominates most communications. However, some devices still use deprecated protocols, though their
traffic constitutes a small proportion(7.6%), and some devices use proprietary protocols developed by
the manufacturers rather than standardized protocols. bringing about certain security risks. Encourag-
ingly, following firmware updates, 10 devices adopted more secure encryption protocols after the update,
indicating a positive trend toward encryption protocol usage. Most devices use secure certificates, but
prevalent self-signed certificates and insecure algorithms persist as potential risks. In terms of certificate
verification, many devices have the problem of insecure certificate verification mechanisms, which may
also bring potential risks. While direct PII exposure in unencrypted traffic is rare, inferred user prefer-
ences could enable targeted advertising. These findings indicate that the devices should adopt standard
encryption protocols and reduce reliance on self-signed certificates to further minimize risks.

6 Comparisons on Different Regions

This section compares consumer IoT device traffic measurement results in China with other regions. We
choose Ren et al.[5] and Paracha M. T. et al.[13] for comparison, as their studies align with our research
purpose, focusing on traffic destinations and encryption analysis.

6.1 Traffic Destinations

In terms of traffic destinations, compared to consumer IoT devices in the United States and the United
Kingdom, Chinese devices predominantly communicate domestically. According to Ren et al. [5], the 35
devices in the United Kingdom communicated with 7 overseas regions. Approximately 70% of the United
Kingdom device traffic flowed outside their regions (primarily to the United States). In contrast, although
Chinese consumer IoT devices contacted 18 overseas countries, overseas traffic only accounted for 3% of
total bytes. This highlights Chinese consumer IoT devices’ stronger reliance on domestic services than
their United Kingdom counterparts.

Regarding commonly contacted organizations, Chinese consumer IoT devices predominantly interact
with domestic providers. In the Ren et al. study [5], the United Kingdom devices are mainly connected
to the United States organizations, such as Amazon, Google, and Akamai. In our analysis, except for
Google, Chinese devices primarily communicated with domestic organizations such as Alibaba Cloud,
Xiaomi, and Tencent. These providers offer diverse services, including IoT platform services, cloud
storage services, and video streaming and media content (See Section 4.2 for details).

At last, according to the findings of Ren et al. [5], the number of third parties contacted by devices is
generally low, with the setup phase involving more third parties than other phases, likely due to devices
establishing initial connections during this phase. In our study, the number of third parties contacted
by devices is also low, suggesting that devices in different regions tend to communicate more with first
and support parties. On the other hand, we find that the number of third parties contacted during the
idle phase is higher than in other phases, which differs from Ren et al.’s findings. Devices in the United
States and the United Kingdom tend to complete third party dependency initialization during the setup
phase, while Chinese devices are more likely to maintain long-term connections with third parties during
the idle phase for purposes such as data uploading, status synchronization, or push services.

6.2 Encryption Analysis

Encryption practices vary regionally, but unencrypted traffic proportions remain low overall. Ren et
al.’s. [5] proposed entropy-based encryption detection, reporting unencrypted traffic proportions below
13% for devices of the United States and the United Kingdom devices. Using similar methods, we come
to a similar conclusion: the percentage of unencrypted traffic of consumer IoT devices in China is low,
with a peak of 8.5%.

Regarding encryption protocol usage, TLS 1.2 remains the most widely adopted, while TLS 1.3 adop-
tion is still limited. Paracha M. T. et al. [13] analyzed 40 consumer IoT devices in the United States
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in 2021 and found that TLS 1.2 is the dominant protocol, with minimal use of TLS 1.3 and deprecated
versions. Our findings align with these results. Among 70 Chinese devices, 82% utilized TLS 1.2, while
7% still relied on insecure protocols (TLS 1.1/SSL), and 14% employed proprietary protocols developed
by manufacturers. For certificate validation, Paracha M. T. et al. [13] examined 32 devices and found
that 11 were vulnerable to certificate replacement. In our study, 15 out of 35 devices generated error
messages when certificate replaced, while 20 devices exhibited no errors or anomalies, indicating that
certificate verification remains a security concern.

In terms of PII exposure, Ren et al.’s study [5] identified PII in unencrypted traffic, including MAC
addresses, UUIDs, device IDs, geolocation data, and user-assigned device names. In contrast, Chinese
devices exposed minimal PII—primarily singer names in speaker’s traffic, indirectly revealing music pref-
erences. This indicates stronger privacy protection in Chinese devices’ unencrypted traffic.

6.3 Summary

A clear regional difference is observed in the distribution of traffic destinations and encryption prac-
tices. Chinese consumer IoT devices are more reliant on local service providers, in contrast to devices
in the United Kingdom, which predominantly rely on international cloud platforms such as Amazon.
This suggests that China has developed a more self-reliant and locally integrated IoT ecosystem, with
limited dependence on international platforms. Encryption practices and certificate implementations are
generally consistent across regions, ensuring relative security, but a certain proportion of devices still
use outdated protocols across regions, which could pose potential security and privacy risks. Meanwhile,
there are weaknesses with certificate verification in devices from different regions, posing a security con-
cern. The PII contained in the unencrypted traffic of Chinese consumer IoT devices is less than that of
their counterparts in the United Kingdom and the United States.

7 Related Work

The Measurement of IoT traffic. Researchers have conducted a lot of measurements on IoT traffic,
mainly focusing on security and privacy. Security measurements involve mapping IoT backend servers [17],
analyzing the impact of botnets on devices [26, 27], and investigating data leakage and device vulnerabil-
ities through companion apps [29, 31–33]. Said et al. [17] mapped IoT backend servers by analyzing ISP
passive traffic data, revealing relationships between backend providers. Arman et al. [26] assessed the
impact of two ISP security policies on the Mirai botnet. Stephen et al. [27] studied the Hajime botnet’s
effect on devices using active scanning and passive DNS backscatter traffic collection. These studies
primarily focus on device-level evaluations while overlooking the user perspective. Privacy measurements
include traffic destination identification [30], user data collection analysis [23, 24], and the effectiveness
of existing privacy protection policies [25]. Mandalari et al. [30] proposed an automated method to iden-
tify IoT traffic destinations, distinguishing between essential and non-essential ones. Aniketh et al. [23]
examined privacy leaks in local communication models using standard protocols. Dubois et al. [24] in-
vestigated how, when, and why smart speakers record external audio, while Anna Maria et al. [25] tested
the effectiveness of existing privacy protection measures. Compared with these studies, our work directly
analyzes IoT device security practices by evaluating traffic destinations and encryption practices. Ren
et al. [5] and Paracha et al. [13] have similar research purposes with ours. Muhammad Talha Paracha
et al. [13] evaluated the security of TLS connections in IoT devices, exploring how these connections
evolve over time and whether certificates are properly validated. Ren et al. [5] analysis the information
exposure of devices in the United Kingdom and the United States. Inspired by their work, we introduce
an analysis of Chinese devices and compare the result with other regions.

IoT Dataset Construction. The IoT community has developed diverse datasets to facilitate re-
searches in consumer IoT devices. Table 7 summarizes the most high-cited datasets. Among self-collected
datasets, Mon(IoT)r [5] is the most cited and largest in device count, followed by UNSW [8], YT [18],
Ours [6], and PingPong [11]. Previous studies have provided valuable datasets for consumer IoT device
research, but there are still some limitations. First, these datasets are collected before 2021, lacking recent
consumer IoT traffic. Second, most existing datasets focus on device traffic from Europe and the United
States, while traffic from Asia is rare. Third, current datasets do not fully consider the entire lifecycle
of devices during the collection, restricting the analysis from the perspective of the lifecycle. In contrast,
our dataset includes traffic with the entire lifecycle of the device, enabling researchers to conduct more
fine-grained analyses of consumer IoT device traffic.
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Name Area1 Source2 Categories Number(IoT)3 Period Size Time
Life cycle4

SU ID IR DE

Ours [6] US SC 10 8 2020.3 11.5GB 11 days ✗ ✓ ✓ ✗

YourThings [7] US SC 15 45 2018.3 233GB 13 days ✗ ✗ ✓ ✗

IoTDNS [19] US SC 28 53 2019.8 366MB 2 months ✗ ✗ ✓ ✗

UNSW [8] AUS SC 17 28 2016.10 9.72GB 6 months ✗ ✓ ✓ ✗

BoT-IoT [9] AUS SL 5 5 2018.4 69.3GB 2 months ✗ ✓ ✓ ✗

Mon(IoT)r [5] US&UK SC 15 81 2018.9 12.9GB - ✗ ✓ ✓ ✗

PingPong [11] US SC 12 19 2019 40.3GB 51 days ✗ ✗ ✓ ✗

HomeSnitch [20] US SC 13 57 2021.3 595MB 8 days ✗ ✗ ✓ ✗

IoT Sentinel [3] FI SC 6 31 2016 61.4MB - ✓ ✗ ✗ ✗

IoT23 [4] CZ SC 3 3 2018 21GB 1 year ✗ ✗ ✓ ✗

N-BaIoT [21] IL SC 3 9 2018.3 240GB - ✗ ✗ ✓ ✗

NSL-KDD [22] US SL - - 1998.5 4.06MB 7 weeks ✗ ✓ ✓ ✗

CN-CIoT CN SC 8 70 2024.3 2.7GB 3 months ✓ ✓ ✓ ✓

Table 7 The Summary of IoT Device Datasets.
1 US (United States), UK (United Kingdom), AUS (Australia), FI (Finland), CZ (Czech Republic), IL (Israel), CN (China).
2 Data Collection Method Labels:SC (Self-Collection), CR (Crowdsourcing), SL (Device Simulation).
3 The number of IoT devices in the dataset.
4 Device Lifecycle Phases: SU (setup), ID (idle), IR (interaction), DE (deletion).

In summary, we construct the first Chinese consumer IoT traffic dataset that covers the entire lifecycle
of a device, completing the research gap in the dataset for China. This dataset enables a more fine-
grained analysis of traffic destinations and encryption practices and compares our measurements with
those of other regions. By constructing the dataset and conducting measurements, this study provides
new perspectives and insights for future research.

8 Conclusion

This study constructs the largest dataset of consumer IoT device traffic in China, proposes a fine-grained
traffic collection guidance covering the entire lifecycle of the device, and conducts measurements on traffic
destination and encryption practice.

We collected 97.5 hours of traffic based on 70 consumer IoT devices across 8 categories and 36 brands.
Through analysis, we draw the following key conclusions. First, 99.8% of traffic from Chinese consumer
IoT devices is routed domestically, with only 0.2% directed overseas. In contrast, approximately 70% of
the United Kingdom device traffic flowed overseas regions. This indicates minimal reliance on foreign
services. However, a notable observation is that most devices depend on services from major corpora-
tions like Alibaba Cloud, Xiaomi, and Tencent, indicating that most devices rely on the services of these
organizations, and these organizations may also obtain more user information from devices. Regarding
encryption practices, Chinese consumer IoT devices demonstrate generally robust performance. The un-
encrypted traffic of Chinese devices peaked at 8.5%, lower than the other regions, and Chinese devices
have less PII exposure in unencrypted traffic. Nevertheless, some devices still employ deprecated encryp-
tion protocols, insecure TLS certificate algorithms (e.g., SHA1, RSA-1024), and self-signed certificates.
More critically, during device certificate replacement, certain devices exhibited an absence of certificate
validation mechanisms, exposing communication to potential security and privacy risks.

We open-source our traffic collection guidance and make our dataset publicly available on website2) to
facilitate future research.
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