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Abstract

The rise of Large Language Models (LLMs)
has heightened concerns about the misuse of
AI-generated text, making watermarking a
promising solution. Mainstream watermark-
ing schemes for LLMs fall into two categories:
logits-based and sampling-based. However,
current schemes entail trade-offs among robust-
ness, text quality, and security. To mitigate this,
we integrate logits-based and sampling-based
schemes, harnessing their respective strengths
to achieve synergy. In this paper, we propose
a versatile symbiotic watermarking framework
with three strategies: serial, parallel, and hy-
brid. The hybrid framework adaptively embeds
watermarks using token entropy and semantic
entropy, optimizing the balance between de-
tectability, robustness, text quality, and secu-
rity. Furthermore, we validate our approach
through comprehensive experiments on vari-
ous datasets and models. Experimental re-
sults indicate that our method outperforms ex-
isting baselines and achieves state-of-the-art
(SOTA) performance. We believe this frame-
work provides novel insights into diverse wa-
termarking paradigms. Our code is available at
https://github.com/redwyd/SymMark.

1 Introduction

The exceptional capabilities of large language mod-
els (LLMs) (Touvron et al., 2023; Zhang et al.,
2022) have revolutionized various fields, including
creative content generation and automated writ-
ing, etc. The widespread accessibility of LLMs
has significantly reduced the barriers to using
AI-generated content, enabling broader adoption
across diverse domains. While this democratization
of technology brings substantial benefits, it also in-
troduces critical challenges, including the potential
misuse of LLMs for generating malicious content,
violating intellectual property rights, and spreading
disinformation (Liu et al., 2024b). To address these
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Figure 1: Paradigm comparison between our symbiotic
watermark framework SymMark and existing logits-
based watermark / sampling-based watermark.

risks, watermarking has emerged as a promising
solution for ensuring the traceability, authenticity,
and accountability of LLM-generated content. By
embedding invisible identifiers within generated
text, watermarking provides a robust mechanism to
trace content origins and mitigate misuse.

However, existing watermarking methods face
fundamental limitations that hinder their effective-
ness in diverse and adversarial scenarios (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2024). A key
challenge lies in balancing robustness and text
quality—increasing watermark strength often com-
promises the fluency and diversity of generated text
while prioritizing quality can weaken robust to ad-
versarial attacks (Wu et al., 2023; Zhao et al., 2024;
Dathathri et al., 2024). Moreover, the security of
watermarks remains a pressing issue. Current meth-
ods, such as the KGW family, are vulnerable to
attacks like watermark stealing, where adversaries
can potentially reverse-engineer watermark rules
via frequency analysis, undermining their effective-
ness (Jovanović et al., 2024; Pang et al., 2024; Wu
and Chandrasekaran, 2024). Finally, as shown in
Figure 1, the field lacks golden design principles, as
both logits-based and sampling-based watermark-
ings face inherent trade-offs.

Can robustness, text quality, and security be har-
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monized to work together, rather than being treated
as conflicting objectives? Drawing inspiration from
symbiosis in natural ecosystems, where different
entities coexist and thrive through mutual bene-
fits, we explore a novel perspective for watermark-
ing. We introduce SymMark, a versatile symbi-
otic watermarking framework that transcends the
traditional trade-offs in watermarking design. By
transforming these trade-offs into synergy, Sym-
Mark combines the strengths of logits-based and
sampling-based watermarking, providing an inno-
vative solution that ensures robustness, text quality,
and security, even under adversarial conditions.

Building on this symbiotic perspective, Sym-
Mark explores three strategies to integrate logits-
based and sampling-based watermarking. Serial
Symbiotic Watermarking (Series) embeds both wa-
termarks in each token, ensuring high detectability.
However, overly strong watermarks can degrade
text quality. Parallel Symbiotic Watermarking (Par-
allel) alternates between the two methods at the
token level, balancing robustness and text quality.
Yet, it lacks flexibility, unable to adaptively select
the optimal watermarking strategy for each token.
To address these issues, we introduce Hybrid Sym-
biotic Watermarking (Hybrid), our primary config-
uration. Hybrid applies a non-linear combination
of both watermarking methods, adaptively choos-
ing the most suitable strategy for each token. This
may involve applying both watermarks, only one,
or skipping watermarking altogether, depending on
the token’s context. By dynamically selecting the
best strategy based on token and semantic entropy
(Shannon, 1948; Farquhar et al., 2024), Hybrid en-
hances watermark security, resilience, and fluency.
Additionally, we propose a unified algorithm to
detect all three strategies effectively and efficiently.

Extensive experiments across multiple datasets
and models consistently reveal that SymMark out-
performs existing baselines. Specifically, the Serial
excels in detectability and robustness, while the
Parallel preserves high text quality without weak-
ening watermark strength. Hybrid integrates the
strengths of both approaches, making it the most
comprehensive and effective strategy. Our main
contributions are as follows:

• We systematically explore the integration of
logits-based and sampling-based watermarking
methods, pioneering a comprehensive approach
to their synergy.

• We propose a versatile symbiotic watermarking

framework, SymMark, which incorporates three
distinct strategies: Series, Parallel, and Hybrid.

• Our exhaustive experiments demonstrate that the
SymMark framework achieves state-of-the-art
(SOTA) performance in terms of detectability,
robustness, text quality, and security.

2 Related Work

The current mainstream LLM watermarking during
the generation stage can be categorized into logits-
based and sampling-based.

Logits-based Watermarking. The pioneering
KGW method (Kirchenbauer et al., 2023) uses a
hash key to divide the vocabulary into red and green
lists, favoring green tokens in the output. To en-
hance watermark robustness, Unigram (Zhao et al.,
2024) introduces a fixed red-green vocabulary par-
titioning scheme. Ren et al. (2024b) incorporate
the vocabulary’s prior distribution, and Ren et al.
(2024a); He et al. (2024); Liu et al. (2024a); Liu
and Bu (2024); Huo et al. (2024); Fu et al. (2024b);
Chen et al. (2024) determine logits partitioning
using semantic embeddings. Hu et al. (2024);
Wu et al. (2024) explore unbiased watermarking
to ensure identical expected distributions between
watermarked and non-watermarked texts. To im-
prove watermarked text quality, SWEET (Lee et al.,
2024), EWD (Lu et al., 2024), and Wouters (2023)
optimize watermarking from an entropy perspec-
tive. Furthermore, Guan et al. (2024); Fernandez
et al. (2023); Wang et al. (2024); Yoo et al. (2024)
investigate multi-bit watermarks to obtain higher
capacity and convey more information.

Sampling-based Watermarking. In token-level
sampling watermarking, Christ et al. (2024) employ
a pseudo-random number to guide token genera-
tion, though it is unsuitable for real-world LLMs.
Meanwhile, AAR (Aaronson, 2023) utilizes ex-
ponential minimum sampling to embed the water-
mark, while Fu et al. (2024a); Kuditipudi et al.
(2024) build on this method to enhance text di-
versity further. Zhu et al. (2024) advocate con-
trastive decoding for sampling, and Dathathri et al.
(2024) devise a tournament sampling scheme that
preserves text quality while ensuring high detec-
tion accuracy. In sentence-level sampling water-
marking, SemStamp (Hou et al., 2024a) divides
the semantic space into watermarked and non-
watermarked regions using locality-sensitive hash-
ing. k-SemStamp (Hou et al., 2024b) further opti-

2



Hash Key 1

Hash Key 2

No watermark

Sampling watermark

Logits watermark

Symbiotic watermark

Modified Logits

KGW, Unigram …

Token Entropy (TE)

Original Logits

AAR, GumbelSoft …

Watermark Sampling

Greedy, Top-k, Top-p …

Original Sampling

Semantic Entropy (SE) High SELow TEPrompt 𝒙

(c) Hybrid

Modified Logits

KGW, Unigram …

Modified Logits

AAR, GumbelSoft …

Watermark Sampling

AAR, GumbelSoft …

Watermark Sampling

Greedy, Top-k, Top-p …

Original Sampling

KGW, Unigram …

Original Logits

Prompt 𝒙

(a) Series

(b) Parallel

SymMark

Time 𝒕 Time 𝒕

LLM 𝓜

LLM 𝓜

Token Entropy (TE)

Semantic Entropy (SE)

Watermarked Text 𝒚

Watermarked Text 𝒚

Watermarked Text 𝒚

High
 T

E

Low
 SE

Figure 2: A Versatile Symbiotic Watermark Framework for LLMs.

mizes this process with a K-means clustering (Mac-
Queen et al., 1967) algorithm.

3 Preliminary

3.1 LLM Generation

LLM M is a transformer-based (Vaswani, 2017)
autoregressive neural network, characterized by
its vocabulary V and parameters θ. The genera-
tion process of M involves two steps: (1) given
prompt x and the previously generated tokens
y<t = {y1, ..., yt−1}, calculate t-th token’s logits
vector lt = M(· | x, y<t) of length |V|, and then
normalize it through softmax function to obtain
a probability vector pt = softmax(lt); (2) Sam-
ple the t-th token based on pt. Common sampling
methods include greedy search, beam search, and
multinomial sampling, among others.

3.2 LLM Watermarking

LLM watermarking is embedded into the token
generation process by modifying one of two stages:
(i) the logits generation stage, or (ii) the sampling
stage. A typical watermarking in the logits stage
is KGW (Kirchenbauer et al., 2023), which parti-
tions the vocabulary into red and green lists with
the γ ratio. This is achieved by hashing the pre-
vious k tokens with the watermark key ξ and ap-
plying a δ bias to the logits of each token in the
green list, making the LLM more inclined to gen-
erate these tokens. During detection, hypothesis
testing can determine if the text of length L con-
tains a watermark by analyzing the number of
green list tokens ngreen. Specifically, if the pro-
portion of green tokens significantly exceeds γ,
with a high z-score = (ngreen − γL)/

√
Lγ(1− γ)

above the threshold, the text is considered water-

marked. Zhao et al. (2024) propose Unigram, a
robust variant of KGW, that utilizes a fixed global
split between red and green lists to generate wa-
termark logits. However, Unigram is susceptible
to statistical analysis, which could reveal the to-
kens classified as green. In contrast, the water-
mark in the sampling stage avoids altering the log-
its and embeds the watermark by modifying the
sampling algorithm. AAR (Aaronson, 2023) pro-
poses an exponential scheme to select tokens using
yt = argmaxi∈V(r

i
t)
1/pit , where rt ∈ [0, 1]|V| is a

random sequence, obtained by hashing the previous
h tokens with a fixed watermark key ξ or by shift-
ing the watermark key (Kuditipudi et al., 2024) to
get multiple random sequences r = ξ(1), ..., ξ(m).
During detection, if the hash scores rt of the tokens
in the observed sequence are high, the p-value will
be low, indicating the presence of a watermark.

4 SymMark

This section first introduces three symbiotic wa-
termark strategies—Series, Parallel, and Hybrid.
Then outlines a unified symbiotic watermark detec-
tion algorithm.

4.1 Series Symbiotic Watermark

To fully embed the two watermarks and maximize
the watermark signal, we designed the series sym-
biotic watermark, as illustrated in Figure 2 (a).
When LLM generates t-th token, we first apply
a logits-based watermarking Aw (e.g., KGW, Un-
igram, etc.) to modify the logits distribution lt,
followed by normalization via softmax function.
During the sampling stage, we employ a sampling-
based watermarking Sw (e.g., AAR, EXP, etc.) to
generate the current token yt:

3



Algorithm 1: Hybrid Symbiotic Watermark
Input: LLMM, prompt x,ComputeEntropy E
Params: Length T,TE Threshold α, SE Threshold β
Output: Watermarked Text y1:T

1 for t = 1, 2..., T do
2 lt ←M(x, y<t)

3 l̂t ← lt
// Compute Two Entropy

4 HTE , HSE ← E(lt)
// Add Logits Watermark

5 if HTE > α then
6 l̂t ← Aw(lt)
7 end
8 p̂t ← softmax(l̂t)

// Add Sampling Watermark
9 else if HSE < β then

10 yt ∼ Sw(p̂t)
11 continue
12 end

// Origin Sampling Method
13 yt ∼ So(p̂t)
14 end

yt = Sw(softmax(Aw(lt))) (1)

4.2 Parallel Symbiotic Watermark
To independently embed two watermark signals
while minimizing their mutual interference, we
propose a parallel symbiotic watermark, as shown
in Figure 2 (b). This approach embeds either a
logits-based or sampling-based watermark as the
LLM generates the current token yt. Specifically,
at odd positions, the logits-based watermarking Aw

modifies the logits distribution to embed the water-
mark, preserving the original sampling algorithm
So. At even positions, the logits distribution re-
mains unchanged, embedding the watermark with
the sampling-based watermarking Sw. The formal
representation is as follows, where k ∈ N:

yt =

{
So(softmax(Aw(lt))), t = 2k

Sw(softmax(lt)), t = 2k + 1
(2)

4.3 Hybrid Symbiotic Watermark
To achieve a synergy between logits-based and
sampling-based watermarks, we propose an adap-
tive hybrid symbiotic watermarking method, as
illustrated in Figure 2 (c). This approach leverages
two key entropy measures to dynamically decide
the watermarking strategy: token entropy deter-
mines whether to apply logits-based watermark-
ing, while semantic entropy governs the use of
sampling-based watermarking.

The weather forecast tomorrow will be ____

sunny

bright

cloudy

foggy

rainy

stormy

Token entropy Semantic entropy

sunny, bright

foggy, cloudy

rainy, stormy

… …

The downtown building was severely ____

… …

damaged

destroyed

wrecked

ruined

crowded

occupied

Token entropy Semantic entropy

damaged, ruined …

occupied, crowded

Figure 3: High Token Entropy with High Semantic
Entropy (Left) and Low Semantic Entropy (Right).

Token Entropy Derived from Shannon entropy
(Shannon, 1948), quantifies the uncertainty in the
logits distribution of a token at the current time
step t. Given the model’s logits output, we apply
softmax normalization to obtain the probability pit
for each token i ∈ V , and compute token entropy
as follows:

HTE = −
∑
i

pit log p
i
t, i ∈ V (3)

Token entropy serves as the basis for applying
logits watermarking because it reflects the model’s
confidence in generating a particular token. Low to-
ken entropy (high confidence) indicates the model
strongly prefers a specific token, meaning that alter-
ing logits may significantly affect the fluency and
naturalness of the generated text. Thus, applying
logits watermarking could be intrusive. High to-
ken entropy (low confidence) indicates the model
exhibits greater uncertainty, with multiple compet-
ing candidates in the logits distribution. Since the
token choice is inherently unstable, modifying log-
its introduces minimal disruption to text quality
while ensuring effective watermark embedding.

Semantic Entropy Semantic entropy measures
the diversity of the top-k candidate tokens at time
step t in terms of their semantic meaning. To com-
pute semantic entropy, we extract the embeddings
of the top-k tokens from the logits distribution and
cluster them into n groups C = {C1, ..., Cn} using
K-means (MacQueen et al., 1967). The logits are
then merged according to the cluster assignments,
as shown in Equation 4, and the final semantic
entropy is computed from the merged logits, as
detailed in Equation 5.

qjt =

|Cj |∑
i=1

pit, i ∈ Cj (4)

HSE = −
∑
j

qjt log q
j
t , j ∈ {1, ..., n} (5)
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Algorithm 2: Symbiotic Watermark Detection
Input:M, y1:T ,Dl,Ds, z1, z2
Output: I: True (Watermarked) or False

1 Il ← False
2 Is ← False
// Logits Watermark Detection

3 if Dl(M, y1:T ) > z1 then
4 Il ← True
5 end
// Sampling Watermark Detection

6 if Ds(M, y1:T ) > z2 then
7 Is ← True
8 end
9 I ← Il | Is

Semantic entropy determines whether to apply
sampling watermarking by assessing how seman-
tically diverse the top-ranked candidates are. As
illustrated in Figure 3, low semantic entropy (high
semantic similarity) means that the top candidates
have similar meanings, implying that replacing one
with another will have a negligible impact on text
interpretation. Thus, adding a sampling watermark
is unlikely to alter the meaning of the generated
content. While high semantic entropy (low se-
mantic similarity) indicates the top candidates ex-
hibit substantial semantic variation. In such cases,
altering the sampling process could disrupt the in-
tended meaning of the sentence, making sampling
watermarking undesirable. Experimental analysis
is provided in Appendix H.

Algorithm 1 details the overall process. Given
a logits distribution generated by the LLM M, we
first compute token entropy HTE and semantic en-
tropy HSE . If HTE exceeds the predefined thresh-
old α, logits watermarking is applied; otherwise,
the logits remain unchanged. After normalization
via softmax and sampling, we check HSE : if it
falls below the predefined threshold β, sampling
watermarking is applied, ensuring that the final
text preserves semantic integrity. This hybrid strat-
egy dynamically selects the optimal watermarking
method for each token, achieving robust and high-
quality watermark embedding.

4.4 Symbiotic Watermark Detection

Algorithm 2 presents the symbiotic watermark de-
tection process. Given the watermark model M,
the generated content y1:T , the logits-based de-
tection algorithm Dl, and the sampling-based de-
tection algorithm Ds, the watermark is deemed
present if any watermark signal is detected due to
the method’s low false positive rate. Theoretically,
tokens can be grouped according to different symbi-

otic watermark frameworks for detection. Further
analysis is provided in Appendix I.

5 Experimental Setup

Dataset and Prompt. To measure detectability,
we follow Kirchenbauer et al. (2023); Zhao et al.
(2024) and use subsets of the news-like C4 dataset
(Raffel et al., 2020) and the long-form OpenGen
dataset (Krishna et al., 2023) to insert watermarks.
For each sample, the last 200 tokens are treated
as natural text (i.e., human-written), while the re-
maining tokens from the start are used as prompts.
We then generate T = 200 ± 30 tokens (i.e., wa-
termarked text) using LLMs conditioned on the
prompts. To evaluate text quality, we followed
the Waterbench (Tu et al., 2024) framework and
tested four downstream tasks: Factual Knowledge,
Long-form QA, Code Completion, and Text Sum-
marization. Details are in Appendix C.

Models. We conducted experiments using three
model series: the OPT series (OPT-6.7B, OPT-
2.7B, OPT-1.3B) (Zhang et al., 2022), the LLaMA
series (LLaMA3-8B-Instruct, LLaMA2-7B-chat-
hf) (Dubey et al., 2024; Touvron et al., 2023),
and the GPT series (GPT-J-6B) (Wang and Ko-
matsuzaki, 2021). Notably, semantic clustering
requires using a model with the same tokenizer as
the original watermark model.

Baselines. We compared SymMark with dozens
of existing methods, including logits-based water-
mark KGW (Kirchenbauer et al., 2023), Unigram
(Zhao et al., 2024), SWEET (Lee et al., 2024),
EWD (Lu et al., 2024), DIP (Wu et al., 2024), Un-
biased (Hu et al., 2024) and sampling-based wa-
termark AAR (Aaronson, 2023), EXP (Kuditipudi
et al., 2024), ITS (Kuditipudi et al., 2024), Gum-
belSoft (Fu et al., 2024a), SynthID (Dathathri et al.,
2024). Detailed introductions are in Appendix D.

Evaluation Metrics. Watermark detectability is
evaluated using True Positive Rate (TPR), True
Negative Rate (TNR), Best F1 Score, and AUC
metrics. Watermark robustness is assessed through
the AUROC curve, which illustrates the FPR (False
Positive Rate) and TPR across varying thresholds.

Implementation Details. Our symbiotic water-
mark selects the representative logits-based Uni-
gram watermark (Zhao et al., 2024), with the clas-
sic sampling-based AAR watermark (Aaronson,
2023). The hybrid symbiotic watermark employs
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Watermark
C4 DATASET OPENGEN DATASET

OPT-6.7B GPT-J-6B OPT-6.7B GPT-J-6B

TPR TNR F1 AUC TPR TNR F1 AUC TPR TNR F1 AUC TPR TNR F1 AUC

Logits Watermark
KGW 0.990 1.000 0.994 0.999 0.995 0.995 0.995 0.999 1.000 1.000 1.000 1.000 0.995 0.990 0.992 0.997
DIP 0.985 0.995 0.989 0.999 0.990 1.000 0.994 0.995 0.995 0.995 0.995 0.998 0.940 0.995 0.966 0.985

EWD 0.995 0.995 0.995 0.997 0.995 1.000 0.997 0.999 1.000 1.000 1.000 1.000 0.995 0.995 0.995 0.998
SWEET 0.985 1.000 0.992 0.998 1.000 0.995 0.997 0.999 0.990 1.000 0.994 0.999 0.980 1.000 0.990 0.990
Unigram 0.995 1.000 0.997 0.998 0.995 1.000 0.997 0.999 1.000 1.000 1.000 1.000 0.990 1.000 0.994 0.999
Unbiased 0.980 0.990 0.984 0.995 0.975 1.000 0.987 0.998 1.000 0.980 0.990 0.999 0.975 1.000 0.987 0.991

Sampling Watermark
AAR 0.995 1.000 0.997 0.999 0.995 1.000 0.997 0.995 1.000 1.000 1.000 1.000 0.995 1.000 0.997 0.999
EXP 0.975 0.925 0.951 0.960 0.975 0.945 0.960 0.970 0.980 0.925 0.953 0.960 0.990 0.965 0.977 0.977
ITS 0.965 0.950 0.957 0.968 0.980 0.985 0.982 0.987 0.925 0.890 0.909 0.928 0.985 0.970 0.978 0.979

GumbelSoft 0.975 1.000 0.987 0.983 0.990 1.000 0.994 0.995 1.000 1.000 1.000 1.000 0.985 1.000 0.992 0.994
SynthID 0.985 0.995 0.989 0.998 1.000 1.000 1.000 1.000 0.995 1.000 0.997 0.999 0.955 0.995 0.974 0.995

Symbiotic Watermark (Ours)
Series 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Parallel 0.995 0.995 0.995 0.997 1.000 0.990 0.995 0.998 1.000 0.990 0.995 0.999 1.000 0.995 0.997 0.997
Hybrid 0.995 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.997 0.999

Table 1: Detectability of OPT-6.7B and GPT-J-6B under different watermarking algorithms on C4 and OpenGen.

the K-means (MacQueen et al., 1967) clustering
algorithm with the following default hyperparame-
ters: Top-k token numbers k = 64, clusters num-
ber n = 10, token entropy threshold α = 1.0,
and semantic entropy threshold β = 0.5. Detailed
Hyperparameter Analysis is in Appendix G.

6 Experimental Analysis

To demonstrate SymMark’s superiority, we eval-
uated it in four aspects: detectability, robustness,
text quality, and security. The experimental results
show that the Serial excels in detectability and ro-
bustness, Parallel better preserves text quality, and
Hybrid achieves the best overall balance.

6.1 Detectability

Table 1 presents the overall watermark detection
results for two datasets and four base models.

Series scheme achieves state-of-the-art (SOTA)
detectability performance. Series scheme exhibits
a perfect TPR of 1.000 across all datasets and mod-
els, signifying no false positives, which is crucial
given the higher impact of false positives in wa-
termarking contexts. This is due to the injection
of double watermark signals into each token, re-
inforcing the watermark presence throughout the
sequence. However, this enhanced detectability
comes at the cost of text quality, as strong con-
straints are imposed on token selection at both the
logits and sampling stages.

Parallel scheme demonstrates competitive de-
tectability performance, with an average F1/AUC
improvement of 1.60%/1.35% over sampling wa-
termark. Despite each token being modified by
only one of the two watermarking strategies (logits
or sampling), sufficient watermark signal remains
for detection. This result highlights that doubling
watermarking is not always necessary for detection.

Hybrid scheme consistently outperforms base-
lines across various datasets and base model con-
figurations, evidencing its remarkable generaliza-
tion. Specifically, Compared to the sampling water-
mark, Hybrid’s F1/AUC performance improves by
1.90%/1.52% on average. This scheme adaptively
assigns watermarking strategies based on entropy
characteristics, which enables optimal watermark
placement, ensuring high detectability while pre-
serving text quality.

6.2 Text Quality
To evaluate the impact of our watermarking frame-
work on text quality, we focus on perplexity and
downstream tasks. Table 2 and Figure 4 show that
our hybrid scheme achieves minimal performance
drop and the lowest perplexity than baselines.

Perplexity. To assess the fluency of watermarked
text, we used LLaMA2-7B to compute the perplex-
ity (PPL) of texts generated by models of varying
sizes with different watermarking algorithms. As
shown in Figure 4, the Parallel scheme results in a

6



Model T1: Short Q, Short A T2: Short Q, Long A T3: Long Q, Short A T4: Long Q, Long A
Factual Knowledge Long-form QA Reasoning & Coding Summarization

+ Watermark TPR TNR GM DROP TPR TNR GM DROP TPR TNR GM DROP TPR TNR GM DROP

LLAMA3-8B - - 57.50 - - - 24.05 - - - 48.43 - - - 27.18 -

+ KGW 0.815 0.700 56.00 ↓ 2.61% 0.990 0.975 23.32 ↓ 3.04% 0.740 0.845 36.40 ↓ 24.8% 0.955 0.985 26.66 ↓ 1.91%
+ Unigram 0.955 0.360 51.00 ↓ 11.3% 0.965 0.990 23.24 ↓ 3.37% 0.775 0.695 40.95 ↓ 15.4% 0.915 0.890 26.89 ↓ 1.07%
+ EWD 0.860 0.745 49.00 ↓ 14.8% 1.000 1.000 23.52 ↓ 2.20% 0.740 0.850 35.45 ↓ 26.8% 0.965 0.990 26.68 ↓ 1.84%
+ AAR 0.685 0.930 46.00 ↓ 18.3% 0.995 1.000 21.95 ↓ 8.73% 0.910 0.990 38.95 ↓ 19.6% 1.000 0.995 25.14 ↓ 7.51%
+ SynthID 0.780 0.530 51.00 ↓ 11.3% 0.990 0.970 23.60 ↓ 1.87% 0.790 0.695 39.10 ↓ 19.3% 0.955 0.935 26.83 ↓ 1.29%
+ Series 0.970 0.935 55.00 ↓ 4.35% 0.950 1.000 21.82 ↓ 9.27% 0.770 0.995 41.26 ↓ 14.8% 0.930 1.000 26.22 ↓ 3.53%
+ Parallel 0.965 0.450 52.00 ↓ 9.57% 0.730 0.970 22.35 ↓ 7.07% 0.765 1.000 42.63 ↓ 12.0% 0.910 0.940 26.76 ↓ 1.55%
+ Hybrid 1.000 0.960 57.00 ↓ 0.87% 0.965 1.000 23.61 ↓ 1.83% 0.925 0.990 42.65 ↓ 11.9% 0.965 0.995 26.92 ↓ 0.96%

Table 2: The performance of various watermarking algorithms across four different downstream tasks using True
Positive Rate (TPR), True Negative Rate (TNR), Generation Metric (GM), and Generation Quality Drop (Drop).
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Figure 4: A comparison of PPL across three symbiotic
watermarking schemes with different model sizes.

lower PPL compared to the Serial scheme, as dou-
ble watermarking per token degrades text quality
more than single watermarking. Unlike Parallel wa-
termarking, which groups tokens by odd and even
positions, hybrid watermarking introduces seman-
tic entropy and adaptively applies stage-specific
watermarks, effectively managing text quality and
achieving the lowest PPL.

Downstream Task. Fidelity is the cornerstone
of watermarking algorithms, to further validate the
impact of watermarking on text quality, we fol-
lowed Waterbench (Tu et al., 2024) settings and
considered four downstream tasks (Details refer to
Appendix C). The results in Table 2 indicate that
the longer the generated answers (e.g., Task 2 and
Task 4), the smaller the impact of the injected wa-
termark on downstream tasks. Across all tasks, our
hybrid scheme consistently achieves a high detec-
tion rate and superior task performance. Specifi-
cally, performance drops by only 0.87% on Task

1 and 0.96% on Task 4, demonstrating minimal
distortion. Compared to baselines, SynthID im-
poses relatively minor text quality degradation but
suffers from a lower detection rate, whereas other
baselines exhibit either excessive text degradation
or weaker detectability. In contrast, the Hybrid
scheme strategically ensures strong detectability
while preserving text fidelity, more suitable for
real-world deployment.

6.3 Robustness to Real-world Attacks

Ensuring the robustness of watermarking schemes
against various attacks is crucial for real-world
applicability (Kirchenbauer et al., 2024). To pro-
vide comprehensive evidence of SymMark’s robust-
ness, we conduct experiments to test its resilience
against four attacks: Editing, Copy-Paste, Back-
Translation, and Rephrasing. Details are in Ap-
pendix F.

The ROC curves and AUC values for compar-
ison in Figure 5 indicate Hybrid’s consistently
robust watermark detection capabilities facing
all attack scenarios. The average AUC values of
serial and hybrid symbiotic watermarks are 0.987
and 0.984, respectively, significantly outperform-
ing Unigram, the previously most robust method,
with an AUC of 0.951. The Parallel scheme shows
a relatively lower AUC, suggesting that injecting
only one watermark signal per token is more vul-
nerable to adversarial modifications.

Hybrid excels in robustness is due to: (1)
Dual-signal Injection. Hybrid ensures that even
if one watermarking signal is partially disrupted,
the other remains intact, enabling reliable detec-
tion; (2) Entropy-driven Adaptation. Unlike fixed
strategies, Hybrid is driven by entropy to adaptively
select watermarking constraints, ensuring both im-
perceptibility and resilience; (3) Cross-attack Gen-
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Figure 5: The AUROC curve of watermarked text generated by OPT-6.7B under various attacks on C4 dataset.

10k 20k 50k 100k 200k
Token Number

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(A
SR

)

Unigram
Ours (Hybrid)

10k 20k 50k 100k 200k
Token Number

2

0

2

4

6

8

10

12

z-
sc

or
e 

D
is

tr
ib

ut
io

n

Unigram
Ours (Hybrid)
z-score Threshold

Figure 6: The ASR of watermark stealing for varying
numbers of tokens (left) and the z-score distribution of
spoofing watermark (right) on LLaMA2-7B-chat-hf.

eralization. While some methods perform well on
specific attacks, Hybrid maintains high detection
rates across diverse attack categories, making it
practical for real-world deployment where adver-
sarial conditions are unpredictable.

6.4 Security

Existing watermark stealing strategies, such as
those targeting logits-based methods (e.g., the
KGW family), are ineffective against sampling-
based watermarks, which remain immune to such
attacks. To explore the security of symbiotic wa-
termarks, we apply the watermark stealing method
and perform a spoofing attack (Jovanović et al.,
2024; Pang et al., 2024) on the Unigram and our
Hybrid. Detailed settings are in Appendix J.

Figure 6 presents stealing results. The left panel
depicts the Attack Success Rate (ASR) of water-
mark stealing, while the right panel presents the
z-score distribution of spoofed Unigram and our

Hybrid across different token counts. As the num-
ber of tokens obtained by the attacker increases, so
does the ASR and z-score. However, the ASR and
z-score of Hybrid scheme is much lower than that
of the naive Unigram. When generating 200,000
tokens, the ASR for the original Unigram reaches
69%, whereas the ASR for our symbiotic water-
mark scheme is only 18%.

The enhanced security of the Hybrid scheme
stems from its non-linear combination of logits-
based and sampling-based watermarking methods.
Since the symbiotic watermarking rules are influ-
enced not only by the logits but also by the inherent
randomness in the sampling process, attackers are
unable to reconstruct the watermarking rules purely
through token frequency statistics or distribution
modeling. This makes the Hybrid scheme signifi-
cantly more resistant to watermark stealing attacks,
offering enhanced security, particularly in adver-
sarial environments where attackers are actively
attempting to subvert the watermark.

7 Conclusion

This paper introduces a versatile symbiotic water-
marking framework including three strategies: Se-
rial, Parallel, and Hybrid. The Hybrid symbiotic
watermark strategy leverages token and semantic
entropy to balance detectability, robustness, text
quality, and security. Experimental results across
various datasets and models demonstrate the ef-
fectiveness of our method, shifting the focus from
trade-offs to synergy. In the future, we will explore
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additional symbiotic watermarking paradigms, in-
vestigating perspectives beyond entropy to further
advance watermarking techniques.

8 Limitations

This paper explores combining logits-based and
sampling-based watermarks from an entropy per-
spective, while acknowledging that entropy is not
the only evaluation metric. Future research could
adopt other mathematical or information-theoretic
tools to enhance symbiotic watermark design. Met-
rics like information gain and signal-to-noise ratio,
alongside entropy, may offer deeper insights into
watermark performance, robustness, and efficiency.
These metrics can support the development of more
adaptable watermarking schemes for diverse appli-
cations. Considering alternative metrics may lead
to more flexible watermark designs suitable for var-
ied scenarios. Despite limitations, we believe the
symbiotic watermark concept offers a novel per-
spective and meaningful direction for advancing
LLM watermarking in this fast-evolving field.

9 Ethical Statement

With the rapid development of large language mod-
els (LLMs) and their widespread applications, in-
corporating watermarks into LLM-generated con-
tent facilitates traceability, thereby significantly en-
hancing transparency and accountability. Building
on previous research, this paper seeks to achieve a
balance among the detectability, text quality, secu-
rity, and robustness of watermarks. We aspire for
the framework proposed in this paper to offer novel
insights into watermarking methodologies and to
be further utilized in safeguarding intellectual prop-
erty, curbing misinformation, and mitigating AIGC
misuse, including academic fraud, thereby foster-
ing public trust in AI technologies.
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A Efficient Analysis

Method KGW AAR EXP Series Parallel Hybrid

Generation Time 8.475s 8.605s 8.260s 8.745s 12.675s 15.575s
Detection Time 0.035s 0.045s 65.74s 0.050s 0.060s 0.050s

Table 3: The computational efficiency analysis of differ-
ent watermarking for each text of length 200 tokens.

All experiments were conducted on two NVIDIA
A100 GPUs. Table 3 presents the average time
required by several representative watermarking
methods to generate and detect watermark texts
of 200 tokens using OPT-6.7B. Our symbiotic wa-
termarking strategy achieves nearly the same effi-
ciency as existing methods in watermark detection.
Although our hybrid watermarking method incurs
additional computation time for token and semantic
entropy during watermark text generation, this over-
head remains acceptable in practical applications
and contributes to enhanced robustness, security,
and text quality. Furthermore, this overhead could
be mitigated if entropy calculation were integrated
into the Hugging Face1 tool library in the future.

1https://huggingface.co/

B Distinguishing Human-Written Text

Based on Liang et al. (2023), we evaluated our
method using the TOEFL dataset, comprising non-
native English writing samples, as shown in Figure
7. The experimental results show that our approach
reliably identifies text with watermarks while non-
native English writing samples are susceptible to
misclassification by existing AIGT (AI-generated
text) detection methods. These findings highlight
the practicality and reliability of our watermarking
method, which achieves a near-zero FPR.

Figure 7: Comparing AIGT detection methods and ours
in distinguishing human-written text on TOEFL dataset.

C Downstream Task Datasets

Referring to Waterbench (Tu et al., 2024), we uti-
lize the following datasets:
• Category 1 (Short Input, Short Answer) in-

cludes the concept-probing Copen dataset (Peng
et al., 2022), with 200 samples selected from the
CIC and CSJ tasks. Given the short output length,
the F1 score is chosen as the evaluation metric.
The max_new_tokens parameter for model gen-
eration is set to 16.

• Category 2 (Short Input, Long Answer) uti-
lizes 200 samples from the ELI5 dataset (Fan
et al., 2019), a long-form question-answering
dataset originating from the Reddit forum “Ex-
plain Like I’m Five.” Rouge-L is employed as
the evaluation metric. The max_new_tokens pa-
rameter for model generation is set to 300.

• Category 3 (Long Input, Short Answer) ad-
dresses the code completion task, utilizing 200
samples from the LCC dataset (Chen et al.,
2021). This dataset is created by filtering single-
file code samples from GitHub, with the Edit
Similarity metric adopted for evaluation. The
max_new_tokens parameter for model genera-
tion is set to 64.
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Figure 8: The AUROC curve of watermarked text generated by OPT-6.7B under various attacks on C4 dataset.

• Category 4 (Long Input, Long Answer)
involves 200 samples from the widely-used
MultiNews dataset (Fabbri et al., 2019), a
multi-document news summarization dataset.
Rouge-L serves as the evaluation metric. The
max_new_tokens parameter for model genera-
tion is set to 512.

D Baseline Settings

We use MarkLLM (Pan et al., 2024) toolkit to
implement both the baseline and our proposed
method, as detailed below:

• KGW proposed by Kirchenbauer et al. (2023),
the details of the parameters are as follows: γ
= 0.5, δ = 0.2, ξ = 15485863, prefix_length = 1,
z_threshold = 4.0, window_scheme = "left".

• Unigram proposed by Zhao et al. (2024), the
details of the parameters are as follows: γ = 0.5,
δ = 2.0, ξ = 15485863, z_threshold = 4.0

• DIP proposed by Wu et al. (2024), the details of
the parameters are as follows: γ = 0.5, α = 0.45,
key = 42,prefix_length = 5, z_threshold=1.513

• SWEET proposed by Lee et al. (2024), the de-
tails of the parameters are as follows: γ = 0.5, δ =
2.0, ξ = 15485863, prefix_length = 1, z_threshold
= 4.0, entropy_threshold = 0.9

• EWD proposed by Lu et al. (2024), the details of
the parameters are as follows: γ = 0.5, δ = 2.0, ξ
= 15485863, prefix_length = 1, z_threshold=4.0

• Unbiased proposed by Hu et al. (2024), the de-
tails of the parameters are as follows: γ = 0.5,
key = 42, prefix_length = 5, z_threshold=1.513

• AAR proposed by Aaronson (2023), the de-
tails of the parameters are as follows: pre-
fix_length = 4, ξ = 15485863, p_value = 1e-4,
sequence_length = 200

• EXP proposed by Kuditipudi et al. (2024),
the details of the parameters are as follows:
pseudo_length = 420, sequence_length = 200,
n_runs = 100, key = 42, p_threshold = 0.2

• ITS proposed by Kuditipudi et al. (2024),
the details of the parameters are as follows:
pseudo_length = 256, sequence_length = 200,
n_runs = 500, key = 42, p_threshold = 0.1

• GumbelSoft proposed by Fu et al. (2024a), the
details of the parameters are as follows: pre-
fix_length = 2, eps = 1e-20, threshold = 1e-4,
sequence_length = 200, temperature = 0.7

• SynthID proposed by Dathathri et al. (2024), the
details of the parameters are as follows: n = 5,
sampling_size = 65536, seed = 0, mode = "non-
distortionary", num_leaves = 2, context_size =
1024, detector_type = "mean", threshold = 0.52

E Watermark Selection

In our symbiotic framework SymMark, we adopt
the Unigram method (Zhao et al., 2024) for logits-
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Watermark
C4 DATASET OPENGEN DATASET

OPT-6.7B GPT-J-6B OPT-6.7B GPT-J-6B

TPR TNR F1 AUC TPR TNR F1 AUC TPR TNR F1 AUC TPR TNR F1 AUC

KGW + AAR Watermark
Series 1.000 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000 0.995 0.998 0.999 1.000 1.000 1.000 1.000

Parallel 1.000 0.970 0.985 0.990 1.000 0.980 0.990 0.992 0.995 0.955 0.975 0.976 0.985 0.980 0.983 0.985
Hybrid 0.995 1.000 0.997 0.999 1.000 1.000 1.000 1.000 0.995 1.000 0.998 0.999 0.995 0.995 0.995 0.997

Unbiased + AAR Watermark
Series 0.985 1.000 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.997 0.997

Parallel 0.835 1.000 0.918 0.914 0.890 1.000 0.942 0.954 0.885 0.990 0.934 0.957 0.945 1.000 0.972 0.974
Hybrid 0.970 1.000 0.985 0.994 0.920 1.000 0.956 0.973 0.995 1.000 0.997 0.998 0.965 1.000 0.982 0.992

KGW + GumbelSoft Watermark
Series 0.985 1.000 0.992 0.993 0.970 1.000 0.985 0.988 1.000 1.000 1.000 0.996 0.975 1.000 0.987 0.996

Parallel 0.935 1.000 0.967 0.992 0.955 0.995 0.974 0.993 0.980 0.990 0.985 0.995 0.900 1.000 0.947 0.997
Hybrid 0.955 1.000 0.977 0.998 0.985 1.000 0.992 0.994 0.980 0.995 0.987 0.999 0.950 0.990 0.969 0.993

Unigram + GumbelSoft Watermark
Series 0.995 1.000 0.997 0.995 0.995 0.980 0.988 0.999 0.975 0.995 0.985 0.999 0.995 0.995 0.995 0.996

Parallel 0.870 1.000 0.930 0.993 0.985 0.955 0.970 0.978 0.920 0.985 0.951 0.981 0.940 0.965 0.952 0.993
Hybrid 0.955 1.000 0.977 0.994 0.960 0.975 0.967 0.999 0.980 1.000 0.990 0.999 0.990 0.990 0.990 0.995

Table 4: Evaluating the detectability of different symbiotic watermarking algorithms on C4 and OpenGen.
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Figure 9: A comparison of PPL across three symbiotic
watermarking schemes with different model sizes.

based watermarking, as it surpasses the KGW al-
gorithm (Kirchenbauer et al., 2023) in robustness
and maintains relatively high text quality compared
to other logits-based watermarking methods, in-
cluding Unbiased, DIP, and SWEET. For sampling-
based watermarking, we select the AAR (Aaronson,
2023) algorithm to improve both robustness and
security. This choice is motivated by the extremely
low detection efficiency of the EXP and ITS (Kudi-
tipudi et al., 2023) watermarks, as shown in Table
3, along with the relatively poor detectability of
both GumbelSoft (Fu et al., 2024a) and SynthID
(Dathathri et al., 2024). The parameter settings
remain identical to the baselines.

We explored additional watermark combinations,
with detection results summarized in Table 4. Theo-
retically, both the KGW family (Unigram, SWEET,
etc.) and the ARR family (EXP, GumbelSoft, etc.)
can be integrated into our framework. As shown in
Figure 9, the corresponding PPL results of KGW
and AAR further validate that our hybrid symbi-
otic watermarking strategy effectively balances de-
tectability and text quality.

F Attack Settings

Besides the method presented in Figure 5, the AU-
ROC curves for the attack robustness tests of the
other baseline methods are illustrated in Figure 8.
The specific parameter settings for various attack
scenarios are as follows:

• Word-D Randomly delete 30% of the words in
the watermark text.

• Word-S-DICT Replace 50% of the words with
their synonyms based on the WordNet (Miller,
1995) dictionary.

• Word-S-BERT Replace 50% of the words
with contextually appropriate synonyms using
BERT’s (Devlin, 2018) embeddings.

• Copy-Paste Only 20% of the watermark text is
retained, distributed across three locations in the
document.
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Figure 10: Hyperparameter Analysis of Top-k Selection, Number of Clusters n, TE threshold α and SE threshold β.

• Translation Translate the text from English to
Chinese and then back to English using the fine-
tuned T5 translation model 2.

• Rephrase (GPT-3.5-turbo) Call GPT-3.5-turbo
API to paraphrase the text with low creativity
(temperature = 0.2).

• Rephrase (Dipper-1) Use the DIPPER (Kr-
ishna et al., 2023) model for a restatement at-
tack, focusing on lexical diversity without chang-
ing sentence structure. (lex_diversity = 60, or-
der_diversity = 0, max_new_tokens = 200)

• Rephrase (Dipper-2) Use DIPPER again, with
both lexical and order diversity, generating even
more varied restatements. (lex_diversity=60, or-
der_diversity=60, max_new_tokens=200)

G Hyperparameter Analysis

We randomly sampled 50 instances from the C4
dataset and embedded our hybrid symbiotic water-
marks into the OPT-6.7B model. We analyzed the
detection F1 scores and GPT-4’s evaluations of text
quality under varying token entropy and semantic
entropy thresholds, with the results displayed in
Figure 10. The prompt used for GPT-4 (OpenAI
et al., 2023) to evaluate watermarked text quality
in Figure 10 and Figure 11 is as follows:

2https://huggingface.co/utrobinmv/

GPT-4 Judge

"You are given a prompt and a response,
and you need to grade the response out of
100 based on: Accuracy (20 points) - cor-
rectness and relevance to the prompt; Detail
(20 points) - comprehensiveness and depth;
Grammar and Typing (30 points) - grammat-
ical and typographical accuracy; Vocabulary
(30 points) - appropriateness and richness.
Deduct points for shortcomings in each cat-
egory. Note that you only need to give an
overall score, no explanation is required."

The impact of top-k and cluster number n. As
shown in Figure 10, under different top-k and n set-
tings, the variations in F1 and GPT-4 scores closely
follow the changes in the entropy threshold. This
indicates that top-k and the number of clusters have
minimal impact on semantic entropy calculation.
Therefore, for clustering efficiency, we set top-k to
64 and n to 10.

The impact of entropy thresholds α and β. In
Figure 10, “Symbiotic” represents the ratio of em-
bedding logits to sampling watermarked tokens,
“Logits” denotes the ratio of embedding logits wa-
termark tokens, and “Sampling” refers to the ratio
of embedding sampling watermark tokens. When
the token and semantic entropy thresholds are low,
the proportion of symbiotic watermarks remains
low. As these thresholds increase, the proportion of
symbiotic watermarks correspondingly rises. The
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Figure 11: Comparison of two watermarking schemes: high versus low token and semantic entropy. “Symbiotic”
refers to embedding logits and sampling watermarked tokens, while “None” refers to unwatermarked tokens.
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two extreme cases of hybrid watermarks, corre-
sponding to series and parallel configurations, con-
strain the impact of entropy thresholds on the de-
tectability F1 score. However, an increased propor-
tion of symbiotic watermarks more significantly
affects text quality. Based on our experiments on
the demo dataset, we set the token entropy thresh-
old (α) to 1.0 and semantic entropy threshold (β)
to 0.5 to achieve an optimal trade-off between de-
tectability and text quality.

H The impact of Semantic Entropy

We compared two entropy combination schemes:

• Scheme 1 (we adopted): Embeds symbiotic wa-
termarks at high token entropy and low semantic
entropy.

• Scheme 2: Embeds symbiotic watermarks at
high token entropy and high semantic entropy.

The experimental results for various token and
semantic entropy thresholds are shown in Figure
11 and 12. While both schemes demonstrate good
detectability, Scheme 1 (GPT-4) significantly out-
performs Scheme 2 in text quality assessment. This
suggests that embedding watermarks on tokens
with low semantic entropy has a lesser impact on
text quality than embedding them on tokens with
high semantic entropy. Even when watermarks are
applied to tokens with low semantic entropy, the
semantic integrity of the sampled tokens remains
largely unchanged.

Furthermore, our experiments show that when
token entropy is low, semantic entropy is also low,
while when token entropy is high, semantic entropy
can vary between high and low. Consequently, in
many samples, numerous tokens are not embedded
with the watermark in Scheme 2, negatively affect-
ing watermark detection performance. In contrast,
Scheme 1 successfully embeds sufficient water-
mark signals in nearly all cases, while preserving
the text quality. Therefore, we choose to embed
two watermark signals when token entropy is high
and semantic entropy is low.
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Algorithm 3: Group Watermarked Token
Input:M, y1:T , α, β, FLAG
Output: Yl, Ys

// Serial Watermark Group
1 if FLAG = "S" then
2 Yl ← y1:T
3 Ys ← y1:T
4 end
// Parallel Watermark Group

5 else if FLAG = "P" then
6 if i mod 2 == 0 then
7 Yl.append(yi)
8 end
9 else if i mod 2 == 1 then

10 Ys.append(yi)
11 end
12 end

// Hybrid Watermark Group
13 else if FLAG = "H" then
14 for i = 1, ..., T do
15 HTE , HSE ← ComputeEntropy(y1:i)

// High Token Entropy
16 if HTE > α then
17 Yl.append(yi)
18 end

// Low Semantic Entropy
19 if HSE < β then
20 Ys.append(yi)
21 end
22 end
23 end

I Group-based Detection

We also considered a group-based detection algo-
rithm, as shown in Algorithm 3. Specifically, we
first group tokens into logits-based and sampling-
based categories. In serial watermarks, each token
contains two watermarks, so all tokens are grouped.
For parallel watermarks, tokens are grouped by odd
and even positions. In hybrid watermarks, we cal-
culate the token and semantic entropy and group
tokens based on entropy values. After grouping,
we apply the logit-based and sampling-based water-
mark detection methods from Algorithm 4. How-
ever, this grouping approach has several drawbacks:
(1) A more complicated detection process; (2) Low
detection efficiency, especially for mixed symbiotic
watermarks due to entropy calculations; (3) Poor
robustness, as parallel watermarks’ odd and even
positions may change.

Therefore, this paper employs Algorithm 2 for
detection, as it directly identifies watermark signals
in all tokens of the generated text. This method has
demonstrated outstanding practical performance,
is easy to implement, and ensures high watermark
detection efficiency, as shown in Table 3.

Algorithm 4: Group-based Detection
Input:M, Yl, Ys,Dl,Ds, z1, z2
Output: I: True (Watermarked) or False

1 Il ← False
2 Is ← False
// Logits Watermark Detection

3 if Dl(M, Yl) > z1 then
4 Il ← True
5 end
// Sampling Watermark Detection

6 if Ds(M, Ys) > z2 then
7 Is ← True
8 end
// Combine Detection Results

9 I ← Il | Is

J Watermark Stealing Settings

Since mainstream watermark attack methods (Jo-
vanović et al., 2024; Zhang et al., 2024; Sadasivan
et al., 2024; Gu et al., 2024; Luo et al., 2024; Pang
et al., 2024) primarily target the red-green word list
approach rather than the sampling method, we fol-
low Jovanović et al. (2024) to conduct a watermark-
stealing attack, assuming the attacker has access to
the distribution of unwatermarked tokens. In this
attack, we query the watermarked LLM to gener-
ate a total of 200k tokens, estimate the watermark
pattern, and subsequently launch spoofing attacks
based on the estimated pattern.

Specifically, we use watermarked text generated
from the C4 dataset to learn the watermark, then
execute a watermark spoofing attack on Dolly-
CW datasets (Conover et al., 2023) containing
100 samples. To ensure experimental fairness,
the logits-based watermark in our hybrid symbi-
otic watermark employs the Unigram algorithm
with identical hash keys and parameters γ = 0.25,
δ = 0.4. For the sampling-based watermark, we
utilize the AAR (Aaronson, 2023) algorithm. We
use LLaMA2-7B-chat-hf as both the watermark
and attack model, with the watermark spoofing
strength set to 5.0. All other parameter settings re-
main consistent with those in our main experiment.

During the watermark detection stage, we set
the spoofing watermark z-score threshold to 6 and
apply the original KGW watermark detection algo-
rithm to analyze n spoofing samples. If the com-
puted z-score exceeds 6, the attack is deemed suc-
cessful; otherwise, it is considered unsuccessful.
Consequently, the attack success rate (ASR) is de-
termined as follows:

ASR =
1

n

n∑
i=1

I[z-scorei > 6] (6)
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