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Abstract—The untraceability of transactions facilitated by
Ethereum mixing services like Tornado Cash poses significant
challenges to blockchain security and financial regulation. Ex-
isting methods for correlating mixing accounts suffer from
limited labeled data and vulnerability to noisy annotations,
which restrict their practical applicability. In this paper, we
propose StealthLink, a novel framework that addresses these
limitations through cross-task domain-invariant feature learning.
Our key innovation lies in transferring knowledge from the well-
studied domain of blockchain anomaly detection to the data-
scarce task of mixing transaction tracing. Specifically, we design a
MixFusion module that constructs and encodes mixing subgraphs
to capture local transactional patterns, while introducing a
knowledge transfer mechanism that aligns discriminative features
across domains through adversarial discrepancy minimization.
This dual approach enables robust feature learning under label
scarcity and distribution shifts. Extensive experiments on real-
world mixing transaction datasets demonstrate that StealthLink
achieves state-of-the-art performance, with 96.98% F1-score
in 10-shot learning scenarios. Notably, our framework shows
superior generalization capability in imbalanced data conditions
than conventional supervised methods. This work establishes the
first systematic approach for cross-domain knowledge transfer in
blockchain forensics, providing a practical solution for combating
privacy-enhanced financial crimes in decentralized ecosystems.

Index Terms—Cryptocurrency, Ethereum, mixing services,
GNN.

I. INTRODUCTION

IN recent years, Web3.0 has garnered considerable attention
as a transformative paradigm for the internet [1]. With its

decentralized and user-centric characteristics, Web3.0 enables
users to independently manage their identity information,
create digital works, and engage in digital asset transactions,
thereby significantly facilitating the circulation of data value.
Ethereum[2], as a vital blockchain platform underpinning
the value circulation within the Web3.0 ecosystem, has also
garnered significant attention from various stakeholders. Ac-
cording to statistical data from CoinMarketCap1, the market
capitalization of Ethereum’s native token ETH exceeded $220
billion as of April 2025.

As the most prominent mixing service provider in Ethereum,
Tornado Cash (TC) [3] are designed to enhance user privacy
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by obfuscating the traceability of transactions, thus making
it difficult to link specific coins with their previous owners.
However, this technique has raised substantial concerns re-
garding illicit activities, including money laundering, as well
as the potential for cryptocurrencies to be misused. In February
2024, the co-founder of the video game Axy Infinity was
stolen with hackers stealing 3,248 ETH and sending them
to Tornado Cash to evade traking [4]. In addition, Tornado
Cash is accused of allegedly facilitating money laundering
transactions amounting to almost $1 billion on behalf of the
criminal organization known as the Lazarus Group [5]. The
untraceability afforded by Tornado Cash presents a significant
menace to the blockchain ecosystem and financial stability.
Consequently, there is an urgent imperative to dismantle
the anonymity of Tornado Cash by establishing associations
among the addresses involved in mixing transactions.

Figure 1 illustrates the factors contributing to the misuse of
TC for criminal activities. Criminals exploit TC by submitting
self-generated zk-snark promises, allowing them to transfer
illicit funds into the platform’s pool. Subsequently, these funds
are withdrawn into new accounts. Due to the substantial size
of the TC withdrawal user base, the transfer of illegal funds
to new accounts occurs discreetly, making it challenging for
regulators to detect such illicit activities.

… …
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Fig. 1: Tornado Cash is abused for illegal behavior.

Recent studies have put forward various methods to iden-
tify mixing service addresses using traditional approaches,
including heuristic rules [6, 7] and empirical analysis [8, 9].
However, these methods primarily rely on transaction rela-
tionships between user addresses to infer fund flow, with-
out fully exploiting the intricate associations within address
neighborhoods. Additionally, some methods based on machine
learning, including deep learning [10, 11] or graph neural
networks [12, 13] to detect mixing addresses. Nevertheless,
these analytical techniques often necessitate extensive real-
world datasets, and in the case of Tornado Cash, labeled
mixing addresses are exceptionally scarce.
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To address the challenges of transaction traceability caused
by the abuse of mixing technologies, researchers have pro-
posed various technical approaches for tracing mixed trans-
actions, including identifying addresses controlled by mixing
services [8, 9] and correlating input-output addresses in mixed
transactions [6, 7]. However, these methods heavily rely on the
construction of ground-truth datasets for mixed transactions,
where the quality of such datasets directly determines the
accuracy of traceability models. Furthermore, the limited scale
of ground-truth datasets restricts supervised learning-based
traceability methods [10, 11], as insufficient labeled data hin-
ders the establishment of comprehensive decision boundaries,
leading to overfitting tendencies in complex mixing scenarios
and degraded generalization performance in real-world large-
scale transaction environments.

This paper proposes StealthLink, a mixing transaction trace-
ability framework that achieves high-precision tracing under
limited labeled samples while enhancing model robustness
by learning cross-task invariant features between abnormal
blockchain transactions and mixed transactions. Specifically,
to improve association discrimination in data-scarce scenarios,
we design a MixFusion module (Mixing Subgraph Fusion
Encoding). This module captures local transactional behaviors
and structural patterns of mixing addresses by constructing
mixing subgraphs and fuses their embedded representations to
generate joint features for association discrimination, thereby
transforming complex transaction correlation tasks into graph
classification problems. To ensure robustness against noisy
data, we introduce a knowledge transfer module that enables
the model to learn consistent discriminative features across the
domains of abnormal transactions and mixed transactions. This
alignment of cross-domain representations enhances adaptabil-
ity to varying data distributions and maintains stable perfor-
mance in the presence of label noise.

The primary contributions of this chapter are summarized
as follows:

• First systematic analysis of the feasibility of transferring
knowledge from blockchain anomaly detection to mixing
transaction traceability, revealing the potential advantages
of cross-domain invariant features in addressing mixing-
related anonymity challenges.

• A novel framework, StealthLink, which leverages cross-
task invariant feature learning to train highly robust and
accurate traceability models using minimal labeled data.

• Extensive experiments on mixing transaction datasets,
including few-shot learning, robustness testing, and im-
balanced data scenarios. Results demonstrate that Stealth-
Link achieves state-of-the-art performance across all eval-
uated conditions.

The rest of this paper is organized as follows. We first
introduce the background of Tornado Cash and summarize the
related work in Section II. Then, we describe the design goals
in Section III. We introduce the transaction representation
in Section IV and present StealthLink in Section V. Next,
We evaluate the performance of StealthLink and compare it
comprehensively with the state-of-the-art methods in Section
VI. We conclude this paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the background of Tornado
Cash, and then we summarize the recent achievements in
undermining the anonymity of mixing transactions.

A. Web3.0 and Ethereum

Web3.0 is a new generation of Internet with the concepts
of de-trust, de-intermediation and digital assetisation, with
blockchain as the underlying key technology, and digital pro-
duction and digital consumption as the main economic forms.
Web3.0 aims at data sovereign control and value circulation,
and through the distributed consensus mechanism, it can
completely record the process of value transfer and realise
the peer-to-peer transmission of value without the need for
specific intermediaries. Through smart contracts, it can form
more standard and concise Distributed applications(DApp) to
replace the existing Internet application services.

As the largest blockchain platform supporting smart con-
tracts, Ethereum provides a decentralised infrastructure for
building Web 3.0 DApps. To guarantee the operation of the
decentralised ecosystem, Ethereum sets ETH as the fuel for
smart contracts to run, encouraging miners in the network to
package and maintain Ethereum transactions. As a result, ETH,
as a transaction token in Web3.0, continues to receive attention
from both academia and industry.

In the Ethereum blockchain, there are two types of accounts
due to the presence of smart contracts: Externally Owned
Accounts (EOA) and Contract Accounts (CA). EOAs function
similarly to traditional bank accounts in conventional trans-
action systems, serving as records for transactions between
users and their corresponding account balances. In contrast,
CAs are internal accounts utilized by users to participate in
or invoke various smart contracts. They are responsible for
storing information related to smart contracts, such as bytecode
and other relevant data. When transactions between EOAs
involve smart contracts, they trigger transactions between CAs.
Transactions initiated by EOAs are commonly referred to as
external transactions, while transactions initiated by Contract
Accounts are known as internal transactions.

B. Tornado Cash

Tornado Cash, a zk-SNARK-based protocol, operates as
a decentralized non-custodial mixing service. Its objective is
to enhance transaction privacy by severing the link between
source and destination accounts. Through the utilization of
smart contracts, Tornado Cash enables the deposit of ETH and
other ERC20 tokens from one account and withdrawal from
another, seemingly unrelated account.

Tornado cash Proxy contract acts as a gateway for users to
access the TC, and user’s deposit and withdrawal actions are
done by interacting with it.

Deposit. Before initiating a deposit, users are required
to generate a private secret and a publicly available string
nullifier locally. These values are then used to compute
the commitment C through a hash function, such that C =
Hash(secret|nullifier). Upon initiating a deposit request
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TABLE I: The comparison with the existing mixing detection methods.

Categories Refs. Methods Data Source Classifier
Method Characteristics

Efficient
model training

Robust to
noise TX.

Domain
portability

Service Address
Identifying

MixedSignals [8] Empirical Study Mixing Network Traffic Expert Judgment × ✓ ×
Wu et al. [9] Heuristic Analysis Create Mixing Transaction Expert Judgment × ✓ ×

Wu et al. [10] PU Learning Web-sourced Labels LR ✓ × ×
Xu et al. [13] Ensemble Learning Web-sourced Labels Random Forest × × ×

Moser et al. [14] Reverse Engineering Create Mixing Transaction Expert Judgment × ✓ ×
STMD [11] Graph representation Learning Web-Sourced Labels MLP × × ×

Input-Output
Correlation

Beres et al. [6] Heuristic Analysis None Rule-based Judgment × ✓ ×
Wang et al. [7] Heuristic Analysis Side-channel Leakage Rule-based Judgment × × ×
MixBroker [12] Graph representation Learning Side-channel Leakage MLP × × ×

StealthLink Graph Transfer Learning BTC malicious Dataset MLP ✓ ✓ ✓

to the TC contract, users must provide the contract with
the commitment C and the specified amount of funds to
be deposited, denoted as N . The TC contract verifies the
availability of the requested ETH amount and subsequently
inserts the C as a leaf into the merkel tree list.

Withdrawal. Before initiating a withdrawal, the user, acting
as the prover, is required to provide the TC contract, acting as
the verifier, with several pieces of information to establish their
ownership of the deposited funds. This includes a SNARK
proof, the hash value of nullifier, the withdrawal account
A, and the transaction fee f . The SNARK proof serves the
purpose of demonstrating that the user possesses knowledge
of both the merkle path of the C and the preimage of this leaf.
The hash value of nullifier is to track spent notes, ensuring
that it cannot be reused. Once the TC contract has successfully
verified these information, it release the funds to A.

In the scenario where the withdrawal account A is a new
account without any balance, the TC contract facilitates the
transfer of funds to A through a Relayer. The Relayer, acting as
an intermediary, deducts a portion of the funds as a transaction
fee before transferring the remaining amount to the new
account A. This transaction fee serves as compensation for
the Relayer’s services in facilitating the fund transfer.

C. Summary of Existing Studies

Mixing service have attracted increasing research attention
in recent years. In this section, we briefly review the existing
Mixing detection into two categories as shown in Table I.

Service Address Identifying. This research aims to identify
transaction addresses provided by mixing services to track the
flow of funds in mixing transactions. Wu et al. [9] categorized
existing mixing techniques into two types, obfuscation and
swapping, based on the obfuscation principle, and developed
a heuristic approach to identify mixing addresses within the
obfuscation mechanism. Fieke et al. [8] conducted an em-
pirical study, centering on Bestmixer, utilizing traffic data
from mixing servers and publicly available datasets on IP
geographic distribution to uncover the underlying principles.
Subsequently, researchers began training mixing address clas-
sifiers using machine learning models, such as Positive and
Unlabeled Learning (PU learning) [10], Ensemble Learning
[13], and graph representation learning [11]. However, the

reliance of machine learning models on expert experience in
manual feature design poses challenges in their application to
novel mixing mechanisms.

Input-Output Correlation. This research category aims to
establish correlations among mixing accounts controlled by the
same user through the observation of the user’s trading patterns
within mixing activities. Two primary technical approaches are
employed: heuristic rule design based on expert knowledge
[6, 7], and the construction of a graph neural network-based
mixing transaction prediction model, utilizing the topological
features of mixing interaction graph [12]. However, the lack of
ground truth sets for mixing transactions presents difficulties
in validating the accuracy of the heuristics, while also limiting
the precision of the correlation model.

Summary. There are two limitations in the existing meth-
ods. On the one hand, existing methods primarily depend on
expert-rule design or supervised machine learning techniques
[7–9], which generally require extensive labeled data, with
the scarcity of labeled data constraining their effectiveness.
On the other hand, the limited available ground datasets are
built using heuristic rules, which may incorrectly associate two
unrelated addresses due to unintentional actions by users (for
example, the association rule based on private transactions [6]
might erroneously link the sender and recipient of an airdrop
transaction), thus introducing noise in the transaction data and
further limiting the effectiveness of existing methods.

III. PROBLEM DEFINITION

In this paper, we propose a cross-task transfer learning-
based model for coin mixing transaction tracing. Specifically,
we transfer the knowledge from malicious account detection
(source domain S) to the analysis of graph-structured coin
mixing transactions (target domain T ), enabling effective
relational inference under small-sample and noisy conditions
in the target domain.

Source Domain. Let S = (XS ,YS , PS) denote the mali-
cious account detection task. Each sample ui ∈ RdS in the fea-
ture space XS ⊆ RdS represents a dS-dimensional account fea-
ture vector. The label space is defined as YS = {0, 1}, where
yi = 1 indicates a malicious account. The source domain
contains a large-scale labeled dataset DL

S = {(ui, yi)}mi=1,
where all samples are drawn from the distribution PS , and
m denotes the total number of samples in the source domain.
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Target Domain. Let T = (GT1,GT2,YT , PT ) denote the
target domain, which consists of two heterogeneous coin
mixing transaction graphs GT1 and GT2. Specifically, GT1 =
(Vα1, Vβ , E1, X1) represents a transaction subgraph centered
around the coin mixing account set Vα1 = {vm1, . . . , vp},
where Vβ = {vn1, . . . , vq} denotes a set of normal account
nodes satisfying Vα1 ∩ Vβ = ∅. The edge set E1 ⊆ Vα1 × Vβ

captures the transactional relationships between mixing and
normal accounts. The node feature matrix X1 ∈ Rp×dT

encodes dT -dimensional features for mixing accounts.
Similarly, GT2 = (Vα2, Vβ , E2, X2) denotes a separately

constructed transaction subgraph, where the core node set Vα2

satisfies Vα2 ∩ (Vα1 ∪ Vβ) = ∅. The label space YT = {0, 1}
is defined over node pairs across the two graphs: for any u ∈
Vα1 ∪ Vα2 and v ∈ Vα1 ∪ Vα2, yuv = 1 indicates that u and v
are controlled by the same user. The labeled dataset is given by
DL

T = {(uk, vk), yuv}nk=1, where n denotes the total number
of labeled node pairs in the target domain, and m ≪ n.

The target domain is defined as T = {XT ,YT }, where
XT denotes the feature space of address pairs involved in
coin mixing transactions. Each pair (vi,vj) ∈ RdT × RdT

corresponds to the feature representations of two addresses vi

and vj .
The label space YT = {0, 1} is a binary set indicating

whether the two addresses are associated (y = 1) or not
(y = 0).

The coin mixing traceability task is formulated as a binary
classification problem. Each address pair (vi,vj) is trans-
formed into a single feature vector xij = ϕ(vi,vj), where
ϕ : RdT × RdT → Rd′

T is a feature fusion function, such as
vector concatenation. This transformation produces a dataset
DT = {(xij , yij)}, where xij ∈ Rd′

T is the fused feature
vector and yij ∈ YT is the corresponding label.

However, due to the high cost of obtaining labeled data,
the target domain only contains a limited number of labeled
samples, denoted as DL

T ⊂ DT , with |DL
T | = n.

Design Objective. The goal is to learn a target domain
mapping function fT : XT → YT , where XT = {ϕ(u, v) |
u, v ∈ Vα1 ∪ Vα2} denotes the feature space of node pairs.
The function fT should satisfy the following criteria:

• Few-shot generalization: When the number of labeled
samples is |DL

T | = n ≤ 10, the model should achieve
F1 ≥ 0.80 on the test set.

• Noise robustness: Under label noise with noise rate η ≤
50%, the performance degradation should be bounded by
∆clean−∆η

∆clean
≤ 25%.

IV. MOTIVATION

Malicious account detection and coin-mixing transaction
tracing in blockchain-based cryptocurrencies exhibit signifi-
cant overlap in their underlying knowledge domains, which
provides a solid theoretical foundation for the use of cross-task
transfer learning in this chapter. To validate the feasibility of
transferring knowledge from the domain of malicious account
detection to the domain of coin-mixing transaction association,
this section presents an in-depth qualitative and quantitative
analysis from the perspectives of domain knowledge and data
distribution.

A. Qualitative Analysis of Domain Transferability

To qualitatively evaluate the feasibility of transferring
knowledge from malicious behavior detection to coin mixing
transaction tracing, we conduct a systematic review of recent
literature in both domains [8–13, 16–21], as summarized
in Table II. Our analysis focuses on four key dimensions:
analytical methods, task modeling, target objects, and data
characteristics.

Analytical Methods. Malicious behavior detection primar-
ily relies on two types of approaches. The first involves
expert-driven empirical analysis, such as taint analysis [15],
which traces illicit fund flows to identify suspicious addresses.
The second leverages machine learning to automate detection
based on features such as transaction statistics and graph
structure, using models like MLP [17] and XGBoost [20].
These methodologies are also widely adopted in coin mixing
analysis, suggesting a strong methodological overlap between
the two domains.

Task Modeling. Malicious transaction detection is generally
formulated as a binary classification task (benign vs. ma-
licious), aiming to distinguish abnormal behavioral patterns
from normal transactions. Given the high anonymity of coin
mixing, which is often linked to illicit activities such as
money laundering, its behavioral patterns (e.g., high-frequency
transactions over short periods [22]) bear strong resemblance
to other forms of financial fraud. By modeling transactional
similarities between sending and receiving addresses and fus-
ing their features, coin mixing tracing can also be effectively
framed as a binary classification task (associated vs. unassoci-
ated). This reveals a high degree of alignment in task modeling
between the two domains.

Target Objects. Existing studies indicate that coin mixing
technologies have become critical enablers in the ecosystem
of illicit blockchain activities. Anti-money laundering inves-
tigations have consistently linked them to darknet markets,
ransomware, and other illegal financial flows [4, 5]. Both
tasks focus on blockchain addresses and transaction patterns
as core analytical units, leveraging behavioral correlations and
fund flow topologies—showing clear structural homogeneity
in their analytical targets.

Data Characteristics. Due to the intrinsic behavioral sim-
ilarities between malicious accounts and coin mixing ac-
tivities, both domains exhibit strong consistency in feature
engineering, whether through expert heuristics or automated
learning. Key features include transaction timestamps, vol-
umes, frequencies, gas fees, and neighborhood interactions.
The high degree of overlap across these multi-dimensional
feature spaces underscores the theoretical plausibility of cross-
domain knowledge transfer.

B. Quantitative Analysis of Domain Transferability

Based on the qualitative assessment in the previous section,
we further perform a quantitative analysis of the transferability
from the domain of malicious transaction detection to coin
mixing transaction tracing from the perspective of data distri-
bution.
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TABLE II: Task Similarity Analysis between Malicious Transaction Detection and Coin-Mixing Traceback

Domain Method Approach Task Modeling Target Feature Attributes
Amount Time Frequency Neighborhood Fee

Malicious
Transaction
Detection

XBlockFlow [15] Empirical Analysis Binary Classification Money Laundering ✓ ✓ ✓ ✓ ×
Xiang et al. [16] Machine Learning Multi-class Classification Malicious Accounts ✓ ✓ ✓ ✓ ×
Bert4ETH [17] Representation Learning Binary Classification Phishing Accounts ✓ ✓ ✓ ✓ ×
ABGRL [18] Ensemble Learning Binary Classification Phishing Accounts ✓ ✓ ✓ ✓ ✓

Chen et al. [19] Representation Learning Binary Classification Ponzi Schemes ✓ ✓ ✓ ✓ ✓
Jin et al. [20] PU Learning Binary Classification Arbitrage Accounts ✓ ✓ ✓ ✓ ×
TTAGN [21] Representation Learning Binary Classification Phishing Accounts ✓ ✓ ✓ ✓ ×

Coin-Mixing
Traceback

Wu et al. [9] Empirical Analysis Multi-class Classification Mixing Transactions ✓ ✓ ✓ ✓ ×
Wang et al. [7] Expert Knowledge Binary Classification Mixing Transactions ✓ ✓ ✓ ✓ ✓
Wu et al. [10] PU Learning Binary Classification Mixing Accounts ✓ ✓ ✓ ✓ ×
Xu et al. [13] Ensemble Learning Binary Classification Mixing Accounts ✓ ✓ ✓ ✓ ✓
STMD [11] Representation Learning Binary Classification Mixing Accounts ✓ ✓ ✓ ✓ ✓

MixBroker [12] Representation Learning Binary Classification Mixing Transactions ✓ ✓ ✓ ✓ ✓
Task Similarity All tasks adopt expert-supervised learning methods with similar classification modeling, comparable targets, and highly overlapping feature sets.

40 20 0 20 40 60

30

20

10

0

10

20

30

Mixing Correlation
Malicious Detection

Fig. 2: The data distribution of the two domains is highly
overlapping.

We adopt the Maximum Mean Discrepancy (MMD) [23]
metric to evaluate the transferability between the two domains.
MMD is a statistical measure used to quantify the differ-
ence between two probability distributions. Its core idea is
to measure the distance between distributions by comparing
the means in a Reproducing Kernel Hilbert Space (RKHS).
Notably, a smaller MMD value indicates higher similarity
between the two distributions.

For the coin mixing transaction tracing domain, we se-
lect the GTD dataset [12] as a representative. This dataset
includes 103 pairs of associated input and output addresses
from Tornado Cash transactions, each pair described by 46
features including transaction time, amount, gas price, etc.
Unassociated samples are constructed by randomly shuffling
these address pairs, resulting in 206 address pairs in total.

To avoid bias in MMD computation due to dataset size
differences, we choose a reduced version of the BABD-13
dataset [16], denoted as BABDs, to represent the malicious
behavior detection domain. The BABDs dataset is downsized
by a factor of 10, containing 54,446 Bitcoin addresses covering
13 behavioral categories, with each address described by
148 features. To ensure consistency in feature dimensional-
ity across datasets, we apply Principal Component Analysis
(PCA) to reduce the features of BABDs to 46 dimensions.

Let P and Q denote the probability distributions of GTD

and BABDs, respectively. The MMD is defined as:

MMD(P,Q) = ∥Ex∼P [ϕ(x)]− Ey∼Q[ϕ(y)]∥H (1)

The computed MMD value between the two domains is
2.37 × 10−5, which is remarkably small. In practice, MMD
values exceeding 0.01 typically indicate significant distribu-
tional differences [23]. Hence, this result suggests that the
two domains exhibit highly similar feature distributions. We
further visualize the data distributions from both domains
using the t-distributed Stochastic Neighbor Embedding (t-
SNE) algorithm. As shown in Figure 2, the data from the
two domains show substantial overlap, which corroborates the
low MMD value and provides strong quantitative evidence for
the similarity in feature distributions between the two tasks.

V. STEALTHLINK

In this section, we present the detailed design of StealthLink,
a method that leverages cross-task knowledge transfer to
achieve high-precision tracing of coin mixing transactions
under limited labeled samples. The system architecture of
StealthLink is illustrated in Figure 3.

A. Overview of the Proposed Approach

StealthLink consists of three main components: the Mixed
Transaction Subgraph Fusion Embedding Module, the Cross-
Task Knowledge Transfer Module, and the Mixed Account
Association Discrimination Module.

Mixed Transaction Subgraph Fusion Embedding. This
module leverages the local topological structure of mixing
transaction addresses and graph embedding techniques to cap-
ture the latent interaction patterns among addresses involved
in coin mixing. It constructs fused sample representations that
express the associations between mixed addresses, thereby
transforming the complex tracing task into a graph classifi-
cation problem.

Cross-Task Knowledge Transfer. This module introduces
a cross-task feature decoupling mechanism to guide the model
in learning task-invariant and discriminative shared feature
representations. It implicitly aligns the feature space between
coin mixing samples and malicious account detection samples,
enabling effective cross-task knowledge transfer.
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Fig. 3: Overview of the StealthLink System

Mixed Account Association Discrimination. Based on
the pre-trained encoder obtained from the knowledge transfer
module, this component employs a few-shot learning strategy
to supervise the training of the discriminator. By integrating
both transferred and task-specific features, it builds a robust
model for tracing coin mixing transactions.

B. Mixed Transaction Subgraph Fusion Embedding

Existing studies on coin mixing transaction association
typically analyze the transaction features of individual ad-
dresses independently. This approach faces two main lim-
itations. First, the association between mixed addresses is
often implicitly embedded in the local behavioral patterns
and subgraph structures of both addresses, involving complex
nonlinear interactions. Analyzing the transaction attributes
of a single address in isolation often fails to capture the
combinatorial patterns between address features [6]. Second,
due to transaction sparsity (e.g., newly created addresses)
and the obfuscation characteristics of mixing techniques (e.g.,
generating multiple outputs of equal value) [12], independent
address feature analysis often lacks reliable information to
determine transaction associations, thereby limiting the effec-
tiveness of standalone embedding methods.

To address these issues, we propose a fusion embedding
method tailored for coin mixing subgraphs. First, we use a
k-hop neighborhood sampling strategy to construct local sub-
graphs for each of the two addresses involved in a coin mixing
transaction, capturing structural and behavioral features in

their respective neighborhoods. Second, we employ a graph
neural network (GNN) to encode each subgraph, enabling
efficient extraction of local representations. Finally, we fuse
the two address embeddings through concatenation to generate
a joint representation that reflects bidirectional interaction
patterns. By integrating the subgraph representations of mixed
addresses, the coin mixing association task is formulated as
a graph classification problem—determining whether a given
joint representation corresponds to an associated address pair.

Specifically, given a coin mixing address pair vα ∈ Vα1

and vβ ∈ Vα2, we apply a k-hop neighborhood sampling
strategy to construct their respective local subgraphs from the
blockchain transaction network: Gα = (Vα, Eα, Xα) and Gβ =
(Vβ , Eβ , Xβ), where Vα = {vα}∪Nk(vα) contains the mixed
address vα and its k-hop neighbors, and Xα ∈ R|Vα|×dT is the
node feature matrix. Each subgraph is then encoded using a
GNN. The embedding of a node vi at the l-th layer is computed
as:

h
(l+1)
i = σ

(
W (l) · AGG

(
{h(l)

i } ∪ {h(l)
j : j ∈ N (i)}

))
(2)

where W (l) is the weight matrix at layer l, σ(·) is a nonlinear
activation function, and AGG(·) denotes the aggregation func-
tion over the neighborhood. After L layers of message passing,
we obtain the high-level embeddings hα and hβ for subgraphs
Gα and Gβ , respectively. Finally, the two embeddings are
concatenated to form a joint representation:

h̃ = [hA|hB ] ∈ R2dC (3)
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where dC is the embedding dimension for each subgraph. This
joint representation comprehensively integrates transaction-
level and local structural features of both addresses, enabling
subsequent modules to learn domain-invariant feature repre-
sentations.

C. Cross-task Knowledge Transfer

After constructing the joint representation samples for coin-
mixing transactions, this section introduces a feature disentan-
glement mechanism across tasks to guide the model in learning
discriminative and shared representations, thereby achieving
implicit alignment between coin-mixing transaction samples
and malicious account detection samples in the feature space.
This enables knowledge transfer across tasks.

Due to significant differences in data representation and
feature dimensions between the coin-mixing joint represen-
tations and the malicious account detection task—as well
as differing focuses on blockchain transaction characteristics
and behavior patterns—it is insufficient to directly reuse the
representations learned from the malicious account detection
task for coin-mixing tracing. To address this, we design a
cross-task knowledge transfer module, which consists of two
main components: (1) a task representation adapter that maps
malicious account detection samples to a feature space com-
patible with the coin-mixing tracing task; and (2) cross-task
invariance learning, which generates domain-aligned and task-
discriminative representations in the adapted feature space.
The detailed process is as follows:

First, we compute the mean feature vector µS of all encoded
samples from the malicious account detection task using
encoder E(·) as shown in Eq. 4:

µS = Eu∼PS
[E(u)] (4)

where E(·) : RdS → RdS denotes the encoder, u ∈ XS is a
sample from the source domain, and Eu∼PS

represents the ex-
pectation over the source distribution PS . The encoder output
[E(u)] ∈ RdS is a high-dimensional feature representation.

Next, a task representation adapter T (·) is introduced to
project the feature vectors from the malicious account de-
tection task into a lower-dimensional space compatible with
the coin-mixing tracing task. The transformation is defined in
Eq. 5:

T (ui) = U⊤
(
E(ui)− µS

)
(5)

Here, U ∈ RdS×dP is a trainable projection matrix with dP =
2dC , and T (·) : RdS → RdP performs the cross-task feature
alignment, ensuring that the adapted feature vectors match the
dimensionality of the joint representation h̃ ∈ R2dC from the
coin-mixing tracing task.

After obtaining the task-aligned representations, we apply
a discrepancy-based transfer learning approach to capture
invariant features across tasks. This transfer learning process
involves training a feature generator F (·) : RdP → RdP along
with two discriminators C1(·) and C2(·). Initially, the feature
generator F (·) is fixed, and the discriminators are trained
to maximize the prediction discrepancy on samples from the
coin-mixing tracing task. This encourages the discriminators

to make diverse predictions in the current feature space. The
discrepancy loss is defined as follows:

Ldis = Eh̃∼PT
[∥C1(h̃)− C2(h̃)∥1] (6)

where PT denotes the target distribution (coin-mixing tracing
task), and ∥ · ∥1 is the L1 norm.

Next, we fix the discriminators and train the feature gener-
ator F (·) to minimize the discrepancy while also maintaining
classification performance on the source domain. The opti-
mization objective is given by Eq. 7:

Lgen = Eh̃∼PT

[
∥C1(h̃)− C2(h̃)∥1

]
+ λ · E(u,y)∼DL

S
[Lce (C1 (F (T (u))) , y)] (7)

where Lce(p, y) denotes the cross-entropy loss, λ > 0 is a
trade-off parameter balancing the classification loss and the
domain alignment loss, and DL

S = {(u, y)} is the labeled
dataset from the source domain.

Through this learning process of task-invariant features, the
feature generator F (·) is able to produce representations that
are both highly discriminative and domain-aligned, enabling
effective knowledge transfer from the malicious account de-
tection task to the coin-mixing tracing task. This ultimately
enhances the performance of the coin-mixing tracing model
in scenarios with limited labeled data.

D. Mixer Account Association Classification

The mixer account association classification module aims
to construct a final discriminator for mixer transaction tracing,
based on the task-aligned feature generator trained in the previ-
ous module. Building upon the aforementioned task expression
adapter, this module introduces a mixer account association
classifier C(·), which is fine-tuned using a small labeled set
of mixer transaction tracing data DL

T = {(h̃j , yj)}nj=1. During
fine-tuning, to ensure the stability of feature representations,
the parameters of the feature generator are kept frozen, and
only the parameters of the classifier are updated.

For each pair of mixer transaction accounts (uj , vj), a fused
feature vector h̃j ∈ R2dC is obtained via the task expression
adapter module, and then passed through the classifier C(·) to
produce the association prediction. The objective during fine-
tuning is to minimize the supervised classification loss, which
is computed as shown in Equation 8:

L(T )
ce = − 1

n

n∑
j=1

[
yj logC

(
h̃j

)
+ (1− yj) log

(
1− C

(
h̃j

))]
,

(8)
where yj ∈ {0, 1} indicates whether an association exists
between the account pair. Through fine-tuning, the classifier
C(·) can effectively leverage the learned cross-task invariant
features to accurately determine the association between mixer
accounts.

VI. EXPERIMENTS

In this section, we evaluate the effectiveness of StealthLink
on existing datasets using standard metrics, including accuracy,
recall, and F1-score. We compare its performance with eight
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state-of-the-art mixer transaction tracing methods. The exper-
iments demonstrate that StealthLink achieves the following
four key capabilities:

(1) In few-shot learning scenarios, StealthLink achieves
accurate and robust mixer transaction tracing, outperforming
existing models (see Section VI-B);

(2) In scenarios with pseudo-associated noisy samples,
StealthLink maintains high accuracy and robustness in tracing,
surpassing baseline models (see Section VI-C);

(3) In imbalanced dataset scenarios, StealthLink demon-
strates precise and robust tracing capabilities, outperforming
current approaches (see Section VI-D);

(4) Each component of StealthLink contributes to the overall
performance in identifying associations between mixer ad-
dresses (see Section VI-E).

A. Preliminary

Experimental Environment. All experiments were con-
ducted on a Linux-based server equipped with a 16-core
Xeon(R) Platinum 8352V processor, 90GB of system memory,
and an NVIDIA GeForce RTX 4090 GPU (24GB VRAM)
with driver version 560.35.03. The software environment in-
cludes Python 3.7 and PyTorch 1.13.1, with CUDA Toolkit
11.7.

Datasets. This section involves three types of datasets:
the Bitcoin malicious account detection dataset, the mixer
transaction dataset, and the mixer benchmark dataset.

• Bitcoin Malicious Account Detection Dataset. This
dataset is constructed based on the BABD-13 dataset [16],
which contains fine-grained labels for six types of
malicious accounts (phishing, gambling, darknet mar-
kets, blacklisted addresses, money laundering, and Ponzi
schemes) and seven types of benign accounts. In our
experimental design, the six malicious account types are
merged into a single malicious class, forming a binary
classification task together with the benign accounts. The
final dataset contains 41,662 benign accounts and 12,842
malicious accounts, totaling 54,504 samples.

• Tornado Cash Transaction Dataset. We used the Ether-
scan API to crawl all mixing transaction data from
the launch of Tornado Cash up to March 31, 2022.
This resulted in 30,823 deposit addresses and 44,814
withdrawal addresses. Any combination of a deposit and
a withdrawal address is treated as an unlabeled mixer
transaction sample.

• Mixing Benchmark Dataset. This dataset aggregates
labeled Ethereum address pairs from the studies [6, 12],
consisting of a total of 291 associated address pairs.

Baseline Methods. To comprehensively evaluate the per-
formance of StealthLink, we compare it with eight state-of-
the-art address association methods for mixer transactions. All
baselines were fine-tuned to ensure optimal performance on
the evaluation datasets.

• Gas Fingerprinting (GF) [7]: A heuristic method that
matches transactions by identifying cases where the last
9 digits of the gas price are identical in both sending and
receiving transactions.

• Cross Contract Correlation (CC) [7]: Another heuris-
tic method that links deposit and withdrawal addresses
across multiple mixer pools, leveraging the fixed de-
nomination feature of Tornado Cash and user behaviors
involving multiple deposits.

• DeepWalk [24]: Generates random walks in the trans-
action subgraph to produce sequences of nodes, which
are then embedded into a low-dimensional vector space.
Similarity between embeddings is used to infer address
associations.

• Node2Vec [25]: Extends DeepWalk with two hyperpa-
rameters that balance breadth-first and depth-first sam-
pling, achieving better trade-offs between local and global
structural features.

• GAT [26]: Utilizes self-attention mechanisms to assign
different weights to neighboring nodes in the transaction
subgraph of a mixer address, generating low-dimensional
embeddings. Address similarity is then assessed via these
embeddings.

• GIN [27]: Aggregates neighborhood information in
the transaction subgraph using multi-layer perceptrons
(MLPs), capturing subtle subgraph structural differences
through low-dimensional embeddings.

• GraphSAGE [28]: Samples and aggregates neighbor-
hood node information in the transaction subgraph to
produce embeddings, which are then used to evaluate
address similarity.

• MixBroker [12]: Models Tornado Cash address rela-
tionships via interaction graphs, and inputs statistical
features into a GNN-based classifier to analyze address
associations.

Parameter Settings. For StealthLink, we adopt a two-
stage training strategy. In the pretraining stage, we use a
Transformer-based encoder consisting of 3 stacked layers with
parameters: d_model = 92, nhead = 4. The output features
are projected via a head composed of linear layers, batch
normalization (BN), and ReLU activation. The pretraining uses
SGD optimizer with a learning rate of 1×10−4, momentum of
0.9, and weight decay of 0.0005. During the fine-tuning stage,
the encoder’s output embeddings are frozen and passed to a
multi-layer perceptron (MLP) classifier. The MLP consists of
four hidden layers with 1024 units each, an input dimension
of 92, an output dimension of 2, ReLU activation for hidden
layers, and a Sigmoid activation at the output layer.

For DeepWalk and Node2Vec, the embedding dimension is
set to 43, with walk length, number of walks, and context
window size all set to 5. Node2Vec’s return and in-out
parameters are both set to 0.75, using the Skip-gram model
(sg=1) with 4 worker threads.

For GAT, the input feature dimension is set to 31, hidden
layer dimension to 43, number of classes to 30, and number
of attention heads to 4.

For GIN, the model consists of 2 layers, each with a 3-
layer MLP. Input, hidden, and output dimensions are 31,
256, and 43 respectively. Both graph_pooling_type
and neighbor_pooling_type are set to ”mean”, and
final_dropout is 0.01.

For GraphSAGE, the number of input channels is 31, hidden
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channels is 128, number of layers is 2, and output channels is
43.

For MixBroker, the model is configured with GNN_NET,
where the GNN comprises two SAGEConv layers: the first
maps input features to a 32-dimensional hidden space, and
the second maps to a 16-dimensional output. The optimizer is
Adam, with a learning rate of 0.01.

B. Few-shot Learning Evaluation

This section presents a systematic evaluation of Stealth-
Link’s performance under few-shot learning scenarios. Specif-
ically, we conduct a quantitative analysis of its capability in
link prediction for mixing transactions when the training set
consists of only 1, 3, 5, or 10 samples. To mitigate the impact
of sample selection randomness, we generate 10 independent
training sets for each sample size via random resampling. The
final results are reported as the mean ± standard deviation
across the 10 trials.

To establish performance baselines, we also evaluate the
model trained on the full labeled dataset of mixing transac-
tions. It is important to note that rule-based methods (GF and
CC), which do not involve parameter training, are evaluated
only under the full-data setting. The quantitative results un-
der different experimental configurations are summarized in
Table III.

As shown in Table III, StealthLink demonstrates consis-
tently strong discriminative performance across all few-shot
scenarios. This superior performance can be attributed to the
combination of cross-task invariant feature learning and the
task representation adapter module, which enables the model
to effectively activate large-scale knowledge of malicious
account detection even with very limited mixing transaction
samples, thereby significantly improving accuracy under low-
resource conditions. Remarkably, even with as few as N = 3
labeled samples, StealthLink achieves an F1 score of 0.9580,
which significantly outperforms all other baselines trained
on the full dataset. For example, MixBroker only achieves
an F1 score of 0.8122 under full supervision, indicating
the superior capability of the proposed method in few-shot
learning scenarios for mixing transaction tracing.

In contrast, two heuristic-based methods, GF and CC,
exhibit poor performance. Under full supervision, GF and CC
achieve F1 scores of only 0.2226 and 0.1275, respectively.
This underperformance is due to the heuristic methods relying
solely on local and isolated features for address linkage in
mixing transactions, making them incapable of adapting to
the complex and dynamic structure of mixing transaction
networks. Consequently, they struggle to extract deeper feature
representations, resulting in limited scalability and effective-
ness in large-scale mixing transaction tracing tasks.

C. Robustness Evaluation under Noisy Labels

This section systematically evaluates the model’s robustness
under label noise. Given that existing annotated datasets are
constructed based on heuristic rules [6, 12], they inherently
contain mislabeled address association pairs in mixing transac-
tions. To address this, we construct a controlled noise injection
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Fig. 4: Relationship between label noise rate and performance
degradation rate

environment by introducing 5%–50% of false association
samples into the training set. This allows us to quantitatively
analyze the performance stability of StealthLink in the task
of mixing address association under noisy conditions. A ten-
fold cross-validation strategy is employed, and the model’s
performance under noise interference is reported in the form of
mean ± standard deviation. Table IV presents the comparative
results of quantitative evaluations under different levels of
noise.

As shown in Table IV, StealthLink demonstrates a sig-
nificant robustness advantage on datasets contaminated with
pseudo-associated noisy labels. Under all noise ratios, Stealth-
Link consistently achieves higher F1-scores compared to other
methods, outperforming the second-best approach, MixBroker,
by 15%–20%. This improvement is attributed to the model’s
ability to learn general representations through cross-task in-
variant feature learning, combined with a dynamic adversarial
learning framework consisting of a feature generator and
dual discriminators. This architecture effectively filters out
noise interference, thereby significantly enhancing the model’s
discriminative capability under high-noise conditions.

To further evaluate the noise resistance of StealthLink,
we analyze the relationship between label noise rates and
performance degradation rates, as shown in Fig. 4. It can be
observed that StealthLink exhibits a markedly lower slope in
its performance degradation curve compared to baseline meth-
ods. Specifically, its F1-score degradation rate remains below
0.25, indicating stronger robustness to label noise. These
results confirm the stability and robustness of StealthLink in
noisy environments.

D. Evaluation on Imbalanced Datasets

This section further evaluates the performance of Stealth-
Link in the task of association discrimination under imbal-
anced positive and negative sample training scenarios. To
control the influence of sample randomness, random sampling
is used, and the mean is calculated based on 10-fold cross-
validation. The classification results are tested by constructing
four different positive-to-negative sample ratios: 1:5, 1:10,
1:15, and 1:25. The experimental results are shown in Table
V.
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TABLE III: Performance Comparison Under Few-Shot Scenarios

N Metric
Method

GF CC DeepWalk Node2vec GAT GIN GraphSAGE MixBroker StealthLink

1
Accuracy – – 0.4309±0.0264 0.4193±0.0353 0.4832±0.1163 0.7155±0.0904 0.4865±0.0326 0.7851±0.1138 0.7879±0.1288

Recall – – 0.3979±0.0627 0.4382±0.1689 0.4774±0.3142 0.6776±0.1404 0.6215±0.2460 0.7277±0.2409 0.8324±0.0484
F1-score – – 0.4138±0.0325 0.4285±0.0689 0.4803±0.2486 0.6788±0.0421 0.5458±0.0980 0.7554±0.1453 0.8096±0.0678

3
Accuracy – – 0.4295±0.0332 0.4187±0.0447 0.7264±0.0840 0.8642±0.0751 0.5491±0.0365 0.7881±0.1179 0.9429±0.0199

Recall – – 0.4062±0.0670 0.4579±0.1420 0.7079±0.0801 0.7048±0.0872 0.5140±0.1260 0.7515±0.1732 0.9738±0.0167
F1-score – – 0.4175±0.0270 0.4375±0.0772 0.7170±0.0451 0.7713±0.0562 0.5310±0.0633 0.7694±0.0959 0.9580±0.0118

5
Accuracy – – 0.4591±0.0339 0.4490±0.0186 0.7021±0.0560 0.8563±0.0864 0.5830±0.0320 0.7986±0.2921 0.9657±0.0085

Recall – – 0.4706±0.0986 0.4632±0.0935 0.7395±0.0885 0.7790±0.0873 0.5227±0.1263 0.8106±0.2857 0.9660±0.0104
F1-score – – 0.4648±0.0375 0.4560±0.0543 0.7203±0.0217 0.8084±0.0475 0.5512±0.0647 0.8026±0.2877 0.9657±0.0044

10
Accuracy – – 0.4564±0.0300 0.4654±0.0148 0.7323±0.0448 0.8313±0.0257 0.6452±0.4437 0.8988±0.0783 0.9741±0.0031

Recall – – 0.3822±0.0557 0.4266±0.0858 0.7597±0.0623 0.7552±0.0705 0.5982±0.0739 0.7409±0.1027 0.9662±0.0036
F1-score – – 0.4161±0.0304 0.4452±0.0445 0.7458±0.0202 0.7916±0.0422 0.6208±0.0468 0.8122±0.1076 0.9698±0.0015

ALL
Accuracy 0.9291 1.0000 0.4979±0.1478 0.4939±0.1698 0.8808±0.1491 0.8512±0.0274 0.8006±0.0508 0.8781±0.1040 0.9832±0.0082

Recall 0.1265 0.0681 0.5562±0.2549 0.6140±0.2787 0.6971±0.3785 0.7982±0.0186 0.8848±0.0484 0.8473±0.1250 0.9913±0.0057
F1-score 0.2226 0.1275 0.5255±0.1912 0.5474±0.2117 0.7782±0.3380 0.8239±0.0130 0.8403±0.0274 0.8548±0.0740 0.9872±0.0103

TABLE IV: Performance Comparison under Different Noise Ratios

Noise Ratio Metric
Method

DeepWalk Node2vec GAT GIN GraphSAGE MixBroker StealthLink

5%
Accuracy 0.4538±0.0293 0.4513±0.0224 0.8541±0.0250 0.8468±0.0370 0.6501±0.0315 0.8822±0.0462 0.9665±0.0103

Recall 0.4717±0.0919 0.5014±0.1126 0.6891±0.0439 0.7693±0.0849 0.7072±0.1322 0.7351±0.1000 0.9321±0.0951
F1 Score 0.4626±0.0493 0.4750±0.0582 0.7627±0.0144 0.8062±0.0437 0.6774±0.0467 0.8020±0.0615 0.9490±0.0526

10%
Accuracy 0.4249±0.0323 0.4594±0.0290 0.8734±0.0264 0.8343±0.0501 0.5909±0.0279 0.8516±0.0167 0.9165±0.0103

Recall 0.4837±0.1656 0.4434±0.1244 0.6653±0.0439 0.7120±0.1202 0.6508±0.1575 0.6706±0.0334 0.9017±0.0015
F1 Score 0.4524±0.0941 0.4512±0.0706 0.7553±0.0196 0.7684±0.0662 0.6194±0.0663 0.7504±0.0272 0.9090±0.0052

20%
Accuracy 0.4071±0.0316 0.4371±0.0263 0.8113±0.0331 0.8376±0.0506 0.5373±0.0384 0.7902±0.0042 0.8896±0.0158

Recall 0.4074±0.1846 0.4477±0.1445 0.6842±0.0771 0.6764±0.1366 0.6375±0.2147 0.6154±0.0261 0.8721±0.0137
F1 Score 0.4073±0.1095 0.4424±0.0834 0.7424±0.0225 0.7486±0.0729 0.5831±0.1079 0.6920±0.0266 0.8808±0.0080

30%
Accuracy 0.4263±0.0281 0.3791±0.0346 0.7686±0.0482 0.8048±0.0500 0.4628±0.0333 0.7633±0.0051 0.8331±0.0137

Recall 0.3989±0.1533 0.4117±0.2087 0.6283±0.1033 0.6366±0.1407 0.5925±0.3000 0.5876±0.0083 0.8217±0.0108
F1 Score 0.4122±0.0913 0.3948±0.1396 0.6914±0.0465 0.7108±0.0719 0.5198±0.2005 0.6643±0.0083 0.8274±0.0128

50%
Accuracy 0.3114±0.0457 0.3644±0.0300 0.4297±0.0897 0.6177±0.0386 0.4528±0.0342 0.6842±0.0290 0.8001±0.1306

Recall 0.3325±0.2370 0.3351±0.1647 0.4480±0.2148 0.5826±0.2431 0.4735±0.2015 0.4818±0.0580 0.7285±0.1412
F1 Score 0.3217±0.1718 0.3491±0.1325 0.4387±0.1533 0.5998±0.1614 0.4629±0.1014 0.5654±0.0533 0.7629±0.0771

TABLE V: Performance Comparison on Imbalanced Datasets

Positive-to-Negative Ratio Evaluation Metric
Methods

GIN GAT GraphSAGE DeepWalk Node2Vec MixBroker StealthLink

1:5
Accuracy 0.8361±0.0024 0.8351±0.2746 0.7979±0.0193 0.3087±0.1068 0.7063±0.3529 0.8961±0.0695 0.9741±0.0031

Recall 0.7569±0.0945 0.4761±0.2179 0.8163±0.1338 0.1913±0.0548 0.3326±0.1594 0.7460±0.0960 0.9162±0.0036
F1 Score 0.7944±0.0567 0.6065±0.2547 0.8070±0.0844 0.2362±0.0718 0.4522±0.2190 0.8094±0.0538 0.9443±0.0015

1:10
Accuracy 0.7964±0.0011 0.7706±0.3554 0.7858±0.0125 0.3977±0.2364 0.7072±0.3676 0.9213±0.0818 0.9257±0.0085

Recall 0.7139±0.0599 0.4334±0.2700 0.6903±0.2167 0.1183±0.0642 0.2677±0.1488 0.7181±0.0742 0.9260±0.0104
F1 Score 0.7530±0.0335 0.5548±0.3293 0.7367±0.1676 0.1824±0.0988 0.3884±0.2116 0.8033±0.0530 0.9258±0.0044

1:15
Accuracy 0.7164±0.2988 0.7801±0.3413 0.7323±0.0131 0.4910±0.2956 0.7143±0.3649 0.8924±0.0658 0.9129±0.0199

Recall 0.6817±0.2911 0.4368±0.2668 0.6537±0.2032 0.1069±0.0610 0.2528±0.1498 0.6942±0.0747 0.9038±0.0167
F1 Score 0.6987±0.2947 0.5600±0.3237 0.6908±0.1709 0.1756±0.0950 0.3734±0.2135 0.7789±0.0602 0.9085±0.0118

1:25
Accuracy 0.6972±0.2990 0.8048±0.3325 0.7302±0.0093 0.5946±0.3688 0.7764±0.3447 0.8826±0.0489 0.7879±0.1288

Recall 0.6637±0.2884 0.4315±0.2681 0.5250±0.1640 0.1099±0.0670 0.2352±0.1452 0.6768±0.0715 0.8324±0.0484
F1 Score 0.6801±0.2934 0.5618±0.3272 0.6109±0.1504 0.1856±0.1129 0.3611±0.2083 0.7634±0.0484 0.8096±0.0678
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As shown in Table V, StealthLink maintains excellent dis-
criminatory performance even under extreme class imbalance
conditions. Specifically, as the positive-to-negative sample ra-
tio increases from 1:5 to 1:25, its F1-score exhibits a stepwise
decline (0.9443 → 0.8096), but it still consistently outperforms
the baseline models. Meanwhile, the second-best benchmark
model, MixBroker, experiences a larger F1-score drop of 9.8%
(0.8094 → 0.7634) under the same test conditions, resulting
in a significant difference when compared to StealthLink.
This phenomenon can be attributed to the synergistic effect
of StealthLink’s cross-task invariance feature learning and
adversarial discriminator difference minimization, which ef-
fectively preserves and aligns key discriminative features even
in highly imbalanced conditions, thus balancing high precision
and recall. This enables StealthLink to robustly perform coin-
mixing transaction link prediction, even when minority class
samples are extremely scarce.

E. Ablation Study

This section quantitatively analyzes the impact of different
components on the performance of StealthLink, including the
task expression adapter, feature generator, and transfer learning
paradigm in the cross-task knowledge transfer module, as well
as the classifier in the coin-mixing account linkage module.
Since the framework design focuses on coin-mixing entity
linkage under small-sample training scenarios, this experi-
ment primarily evaluates the impact of different components
on StealthLink’s performance in such small-sample learning
contexts.

Task Expression Adapter Evaluation. The task expres-
sion adapter aligns the feature space of malicious account
detection and coin-mixing transaction tracing tasks through
feature mapping strategies. This section evaluates the impact
of three common feature mapping strategies on StealthLink’s
performance: dimensionality expansion, PCA dimensionality
reduction, and contribution pruning. Dimensionality expansion
projects the low-dimensional source domain representation to
the target domain’s dimension using a Multi-Layer Perceptron
(MLP); PCA dimensionality reduction compresses the high-
dimensional source domain features to the target dimension us-
ing Principal Component Analysis (PCA); contribution prun-
ing iteratively removes low-importance features based on fea-
ture contribution ranking until the target dimension is reached.
We evaluate the model performance under each strategy using
ten-fold cross-validation, with the results presented in Table
VI.

As shown in Table VI, the PCA dimensionality reduction
strategy achieves the highest F1 score across all data size
settings, indicating that the PCA reduction strategy can main-
tain the model’s coin-mixing transaction address association
ability in scenarios with varying label sparsity. This is be-
cause PCA effectively extracts the core feature distribution
shared by the malicious account detection task and the coin-
mixing transaction tracing task by retaining the principal
components with the largest global variance. It reduces noise
dimensions while preserving the integrity of key features.
In contrast, the dimensionality expansion strategy performs

poorly in scenarios with a small number of label samples,
likely because its reliance on the MLP trained with limited
labeled data leads to overfitting or difficulties in capturing
the feature differences between the two tasks. Meanwhile,
contribution pruning may lose some subtle but discriminative
feature dimensions when pruning low-contribution features,
leading to an overall performance decline.

Feature Generator Evaluation. The feature generator gen-
erates shared feature representations with cross-task discrim-
inative ability for samples from two different tasks through
adversarial training strategies. This section evaluates the im-
pact of six commonly used feature generators in blockchain
anomaly detection and tracing research on StealthLink’s per-
formance: ResNet-18, ResNet-50, ResNet-101 [29], MLP,
LSTM, and Transformer [30]. To ensure the reliability of the
evaluation, we conducted a systematic test of the performance
of all feature generators using ten-fold cross-validation, with
results presented in Table VII.
Transformer as a Feature Generator. The Transformer
demonstrates significant advantages as a feature generator
when the sample size N ≥ 3. Its F1-score continues to
improve as the data size increases, surpassing 90% when
N = 10. This result validates the effectiveness of the
Transformer in capturing shared features across tasks. This is
because the Transformer can calculate global node association
weights through multi-head attention mechanisms, enabling it
to precisely capture implicit behavioral patterns in address
interactions across different tasks. At the same time, the
standard deviation of the Transformer decreases as the sample
size grows, indicating that its performance stability improves
significantly with the sufficiency of training data.
Transfer Learning Paradigm Evaluation. The transfer learn-
ing paradigm ensures the effective transfer of domain knowl-
edge from the malicious account task to the cross-task mi-
gration of mixed coin transaction tracing. In this section,
we compare models without the transfer learning paradigm,
denoted as ”w/o Transfer,” with those employing different
transfer learning paradigms, including: DAN (Domain Ad-
versarial Networks) [31], DANN (Domain-Adversarial Neural
Network) [32], and MCD (Maximum Classifier Discrepancy)
[33]. To ensure the reliability of the evaluation, we use ten-
fold cross-validation to assess the performance of models with
different feature generators. The results are shown in Table
VIII.

As shown in Table VIII, the transfer learning framework
significantly enhances the performance of StealthLink. Specif-
ically, the ”w/o Transfer” model performs significantly worse
than the models using transfer learning frameworks in all
sample settings. The F1 score is reduced by approximately
5% to 30% compared to the transfer learning models, proving
that the transfer learning framework plays a crucial role in
transferring domain knowledge from the malicious account
task to the coin mixing transaction tracing task.

Among the transfer learning frameworks, MCD demon-
strates the most significant effect on task knowledge transfer.
Specifically, it achieves an F1 score of approximately 0.81
with only a small number of labeled samples (N=1), which is
about 10% higher than the F1 scores of the other two transfer
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TABLE VI: Performance Comparison of StealthLink with Different Feature Mapping Strategies

N Evaluation Metric
Alignment Method

Dimensionality Expansion PCA Contribution Pruning

1
Accuracy 0.6672±0.2501 0.7879±0.1288 0.5969±0.1733

Recall 0.6759±0.1372 0.8324±0.0484 0.7655±0.2329
F1 Score 0.6715±0.1004 0.8096±0.0678 0.6708±0.1815

3
Accuracy 0.8915±0.1396 0.9429±0.0199 0.7179±0.0831

Recall 0.6830±0.1024 0.9738±0.0167 0.8305±0.0793
F1 Score 0.7735±0.0402 0.9580±0.0118 0.7701±0.0395

5
Accuracy 0.8205±0.1732 0.9657±0.0085 0.7956±0.1139

Recall 0.6415±0.1846 0.9660±0.0104 0.8418±0.1471
F1 Score 0.7314±0.0279 0.9657±0.0044 0.8108±0.1062

10
Accuracy 0.9153±0.0874 0.9741±0.0031 0.7799±0.1124

Recall 0.6718±0.1024 0.9662±0.0036 0.8635±0.1190
F1 Score 0.7749±0.0615 0.9698±0.0015 0.8196±0.0877

TABLE VII: Performance Comparison of Different Feature Generators in StealthLink

N Evaluation Metric
Feature Generators

ResNet-18 ResNet-50 ResNet-101 MLP LSTM Transformer

1
Accuracy 0.5772±0.1401 0.6672±0.2501 0.6419±0.0809 0.5996±0.0837 0.5296±0.0332 0.7879±0.1228

Recall 0.7638±0.2099 0.6759±0.1372 0.7426±0.1843 0.8163±0.2479 0.7127±0.2230 0.8324±0.0484
F1-Score 0.6575±0.1317 0.6715±0.1004 0.6886±0.0949 0.6914±0.0980 0.6076±0.0845 0.8096±0.0678

3
Accuracy 0.6294±0.1333 0.8205±0.1732 0.6359±0.0772 0.7079±0.0820 0.5642±0.0556 0.9429±0.0199

Recall 0.7677±0.1387 0.6415±0.1846 0.8511±0.1129 0.7955±0.1009 0.8150±0.1809 0.9738±0.0167
F1-Score 0.6917±0.1206 0.7314±0.0279 0.7280±0.0301 0.7491±0.0392 0.6668±0.0485 0.9580±0.0118

5
Accuracy 0.6552±0.1733 0.8915±0.1396 0.6933±0.0525 0.8192±0.0663 0.5857±0.0998 0.9657±0.0085

Recall 0.7584±0.1789 0.6830±0.1024 0.8658±0.0644 0.8528±0.0830 0.7367±0.2023 0.9660±0.0104
F1-Score 0.7030±0.1607 0.7735±0.0402 0.7688±0.0266 0.8357±0.0488 0.6526±0.0814 0.9657±0.0044

10
Accuracy 0.7381±0.0381 0.9153±0.0874 0.6836±0.0684 0.8760±0.0433 0.6090±0.0830 0.9741±0.0031

Recall 0.8586±0.0581 0.6718±0.1024 0.8758±0.0608 0.9039±0.0755 0.7837±0.1513 0.9662±0.0036
F1-Score 0.7938±0.0279 0.7749±0.0615 0.7679±0.0550 0.8897±0.0355 0.6854±0.0282 0.9698±0.0015

TABLE VIII: Performance Comparison of Different Transfer Learning Frameworks in StealthLink

N Evaluation Metric
Transfer Learning Frameworks

DANN DAN MCD w/o Transfer

1
Accuracy 0.7957±0.0691 0.6545±0.0993 0.7879±0.1288 0.5637±0.0675

Recall 0.6301±0.0726 0.6881±0.1590 0.8324±0.0484 0.7358±0.1470
F1 Score 0.7033±0.0115 0.6709±0.0536 0.8096±0.0678 0.6383±0.0523

3
Accuracy 0.8483±0.0096 0.8510±0.0094 0.9429±0.0199 0.5275±0.0365

Recall 0.7347±0.0199 0.7617±0.0370 0.9738±0.0167 0.8106±0.1911
F1 Score 0.7879±0.0105 0.8041±0.0217 0.9580±0.0118 0.6391±0.0549

5
Accuracy 0.8404±0.0116 0.8770±0.0088 0.9957±0.0085 0.5636±0.0423

Recall 0.7882±0.0118 0.8299±0.0223 0.9660±0.0104 0.7438±0.1711
F1 Score 0.8136±0.0080 0.8529±0.0103 0.9806±0.0044 0.6413±0.0339

10
Accuracy 0.8675±0.0109 0.8775±0.0079 0.9741±0.0031 0.5512±0.0799

Recall 0.8989±0.0032 0.8984±0.0045 0.9662±0.0036 0.7733±0.1871
F1 Score 0.8829±0.0065 0.8878±0.0047 0.9698±0.0015 0.6436±0.0417
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learning frameworks. We speculate that this is because MCD,
through the maximum classifier discrepancy strategy with
dual classifiers, can effectively leverage domain knowledge
from the malicious account detection task, generating clear
and robust decision boundaries for classifying coin mixing
accounts even when the cross-task feature space is not aligned.

To further evaluate the effectiveness of the transfer learning
framework in cross-task knowledge transfer, this section uses
the t-SNE dimensionality reduction algorithm to visually com-
pare the high-dimensional latent feature space distributions of
the MCD framework and the baseline model without transfer
learning (”w/o Transfer”). The experimental data follows the
cross-domain balance principle: 450 malicious accounts and
450 normal accounts are randomly selected from the BABD
malicious account detection dataset to form the source domain
samples, and an equal number of target domain samples
are drawn from the Tornado Cash coin mixing transaction
dataset. As shown in Figure 5, the blue, yellow, and green
legends in the figure represent the latent feature distributions
of malicious accounts, normal accounts, and coin mixing
samples, respectively.

As illustrated in Fig. 5, the MCD-based transfer learn-
ing framework significantly enhances the separability of the
coin mixing transaction tracing task, effectively achieving
knowledge transfer from the malicious account detection task.
Specifically, compared to the baseline model without transfer
learning (w/o Transfer), the t-SNE visualization generated by
the MCD framework reveals a pronounced spatial separation
between clusters of malicious and benign accounts. Further-
more, coin mixing samples exhibit a linearly separable pattern
along the main discriminative direction, indicating improved
inter-class separability and intra-class compactness. Classifier
Evaluation. During the model fine-tuning stage, the choice
of classifier directly influences the association analysis of
mixed transaction address pairs. This section evaluates the
impact of seven widely-used classifiers—commonly adopted
in blockchain anomaly detection and forensic studies—on
the performance of the StealthLink framework. The classi-
fiers include: Multi-Layer Perceptron (MLP), Support Vec-
tor Machine (SVM), Logistic Regression (LR), K-Nearest
Neighbors (KNN), Random Forest (RF), Long Short-Term
Memory network (LSTM), and eXtreme Gradient Boosting
(XGBoost). To ensure evaluation reliability, we employ 10-
fold cross-validation to systematically test the performance of
all classifiers. Detailed experimental results are presented in
Table IX.

From Table IX, it can be observed that the MLP classifier is
more suitable for identifying the associations among coinjoin-
related samples. Specifically, it achieves the highest F1-score
under all sample settings. We hypothesize that this is because
MLP leverages multiple layers of nonlinear activation func-
tions to extract high-level feature combinations layer by layer,
thereby capturing the complex fund flow patterns inherent in
coin mixing transactions.

The experimental results indicate that linear classifiers
(e.g., Support Vector Machine (SVM), Logistic Regression
(LR)) and shallow models (e.g., K-Nearest Neighbors (KNN),
Random Forest (RF)) exhibit relatively limited classification
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(b) Visualization with MCD

Fig. 5: Visualization of sample embeddings under the transfer
learning framework.

performance, with a maximum F1-score of only 67%. We at-
tribute this to the inherent limitations of linear decision bound-
aries in linear models, which make it difficult to effectively
capture nonlinear patterns in coin mixing data—particularly
in scenarios involving complex behaviors such as multiple
deposits and withdrawals. Meanwhile, shallow classifiers lack
the capacity for sufficient feature abstraction, which hampers
their ability to perform global feature integration in high-
dimensional transaction features.

It is noteworthy that the XGBoost method demonstrates a
strong dependence on sufficiently labeled data. When N =
1 or N = 3, both the accuracy and recall of XGBoost are
0, which is due to the lack of training samples to determine
effective splitting points. As the number of samples increases
to 5 and 10, XGBoost begins to identify meaningful splits
and shows a slight improvement in performance. This result
highlights the limitations of tree-based models when dealing
with extremely small training datasets.
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TABLE IX: Performance Comparison of Different Classifiers in StealthLink Framework

N Metric
Classifier

MLP SVM LR KNN RF LSTM XGBoost

1
Accuracy 0.7879±0.1288 0.5884±0.0711 0.4990±0.0913 0.4990±0.0913 0.5393±0.0948 0.5850±0.1540 0

Recall 0.8324±0.0484 0.2937±0.1785 0.3585±0.2317 0.3584±0.2316 0.2950±0.1783 0.5371±0.2553 0
F1 Score 0.8096±0.0678 0.3918±0.0634 0.4172±0.0869 0.4172±0.0868 0.3814±0.0705 0.5600±0.1677 0

3
Accuracy 0.9429±0.0199 0.4630±0.0568 0.4977±0.0548 0.4288±0.0556 0.5219±0.0551 0.6533±0.1095 0

Recall 0.9738±0.0167 0.3517±0.2707 0.6056±0.3216 0.4899±0.3504 0.6708±0.3023 0.5031±0.2837 0
F1 Score 0.9580±0.0118 0.3997±0.1640 0.5464±0.1734 0.4674±0.2172 0.5871±0.1680 0.5684±0.2485 0

5
Accuracy 0.9957±0.0085 0.5028±0.0382 0.5461±0.0478 0.4807±0.0506 0.5618±0.0400 0.8647±0.0994 0.5279±0.0421

Recall 0.9660±0.0104 0.4010±0.2793 0.7407±0.2270 0.5398±0.3242 0.7959±0.1807 0.7330±0.1220 0.6298±0.2823
F1 Score 0.9806±0.0044 0.4462±0.1609 0.6288±0.1060 0.5085±0.1966 0.6588±0.0911 0.7934±0.1012 0.5279±0.0421

10
Accuracy 0.9741±0.0031 0.5332±0.0266 0.5562±0.0439 0.5312±0.0346 0.5701±0.0310 0.9149±0.0731 0.5218±0.0356

Recall 0.9662±0.0036 0.4782±0.2714 0.7168±0.2575 0.6667±0.2936 0.8108±0.1649 0.8071±0.0848 0.7142±0.2868
F1 Score 0.9698±0.0015 0.5043±0.1567 0.6264±0.1323 0.5913±0.1529 0.6695±0.0791 0.8576±0.0782 0.5218±0.0356

VII. CONCLUSION

In this chapter, we proposed StealthLink, a coin-mixing
transaction tracing method based on cross-task invariant fea-
ture learning. The method introduces a coin-mixing subgraph
fusion encoding module to construct an effective joint rep-
resentation of mixed transactions, and employs a distribution
discrepancy minimization strategy to enable knowledge trans-
fer from malicious account detection to the domain of coin-
mixing tracing.

Extensive experiments on real-world datasets demonstrate
that StealthLink achieves state-of-the-art discrimination per-
formance while exhibiting strong few-shot learning capability
and robustness to noisy pseudo-labeled data.

In future work, we plan to extend our approach by incorpo-
rating cross-chain tracing mechanisms to explore behavioral
patterns of malicious transactions that leverage coin mixing
across different blockchains, thereby advancing the tracing of
more covert malicious transaction activities.
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