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Sophos

francois.labreche@sophos.com

Serge-Olivier Paquette
Flare

Abstract—Enterprise networks are growing ever larger with
a rapidly expanding attack surface, increasing the volume of
security alerts generated from security controls. Security Op-
erations Centre (SOC) analysts triage these alerts to identify
malicious activity, but they struggle with alert fatigue due to the
overwhelming number of benign alerts. Organisations are turning
to managed SOC providers, where the problem is amplified by
context switching and limited visibility into business processes.

A novel system, named AACT, is introduced that automates
SOC workflows by learning from analysts’ triage actions on
cybersecurity alerts. It accurately predicts triage decisions in real
time, allowing benign alerts to be closed automatically and critical
ones prioritised. This reduces the SOC queue allowing analysts
to focus on the most severe, relevant or ambiguous threats. The
system has been trained and evaluated on both real SOC data
and an open dataset, obtaining high performance in identifying
malicious alerts from benign alerts.

Additionally, the system has demonstrated high accuracy in
a real SOC environment, reducing alerts shown to analysts by
61% over six months, with a low false negative rate of 1.36%
over millions of alerts.

Index Terms—Intrusion Detection, Computer security, Ma-
chine learning, Supervised learning

I. INTRODUCTION

A Security Operations Center (SOC) is a team of security
professionals, referred to as analysts, that monitor an organi-
sation’s IT infrastructure, ranging from cloud applications to
networked devices [1]. They detect and respond to cybersecu-
rity threats in real time. In place of internally managed SOCs,
organisations are increasingly moving towards managed SOCs.
The Managed Detection and Response (MDR) market was
valued at $4.9 billion in 2021 with an estimated compound
annual growth rate of 18.1% [2]. MDR providers use high-
availability SOCs to offer 24/7 detection, monitoring, and
response for security systems from multiple organisations. For
MDR providers and external SOCs, maximising the efficiency
of analysts is crucial for scaling across clients while main-
taining their security, and reducing the mean time to respond
(MTTR) to threats.

SOC analysts have to deal with numerous security alerts
from a wide range of security controls, many of which are
irrelevant or benign [3]. As alert volumes increase, it becomes
harder for analysts to quickly identify severe threats, leading
to decreased efficiency as well as delays in incident response,
a problem known as alert fatigue.

Managed SOC analysts encounter additional challenges.
Each organisation has their own unique network environments,
security controls and best practices that are not always exposed
to the analyst. Therefore, analysts can lack the business and
environmental context for triaging alerts and have to context
switch between these different environments daily. This work-
load can be even larger due to customer support tasks.

To address alert fatigue, the alert life-cycle within a SOC
workflow includes multiple stages: collection, reduction, cor-
relation, and prioritisation [4]–[6]. Collection gathers alerts
from various detection systems and normalises them to a
standardized format. Reduction filters redundant alerts and
does the final validation. Correlation groups alerts that are part
of the same attack scenario into security incidents to provide
analysts with the necessary context to triage the security threat.
Prioritisation ranks alerts by severity before handing them to
analysts for review and triage. A final action is taken as the
outcome of the triage process, such as escalating the alert for
further investigation or deeming the alert benign.

All of these stages are critical in most modern SOC opera-
tions, and despite automated techniques [4], [6]–[8], analysts
are still overwhelmed with alerts. Shen et al. [9] make use of a
real-world dataset comprising security alerts, with an average
rate of 176 security events per device daily, demonstrating the
significant number of alerts that companies face each day.

This paper introduces a novel supervised machine learning
(ML) system named Automated Alert Classification and Triage
(AACT) that prioritises alerts and can automate triage deci-
sions from human analysts. AACT enhances the prioritisation
and triage stage of the alert life-cycle by addressing the
overload of alerts that analysts face despite upstream efforts to
mitigate the issue. The key conjecture is that triage actions on
alerts depend on past actions for similar alerts. Automatically
learning from how human experts are triaging classes of
alerts dynamically over time and using this to automate these
decisions was identified as a research gap in the literature.

To model the human alert triage process, dynamic features
are used that encode short-term and long-term trends of triage
actions taken over classes of alerts. The short-term trends
capture the temporal nature of triage actions that classify alerts
as malicious or benign depending on what other threats are
immediately present in the network environment. The long-
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term trends explain the organisational context. For example,
long-term noise in some environments, e.g., from scanners,
can mean that the presence of a class of alert is often benign,
whereas the presence of the same alert in quieter environments
is likely to be malicious.

The dynamic features are advantageous as they encode the
non-heterogeneities in the data and do not use details of the
alert whose relationship with the analyst triage action changes
often. Therefore, frequent model retraining is not required. For
example, an alert originating from a certain source IP might be
malicious over a short time frame, but other times be benign.
Instead of explicitly encoding the IP as a feature, the dynamic
features used encode how analysts have triaged other alerts
with that IP in the recent past. This results in an approach that
can quickly react to trends and is robust to the fast-changing
threat landscape.

These dynamic features, combined with rarity features and
static features, are used in a supervised ML model to predict
analyst actions for new alerts. The system’s predictions can
automatically perform triage, prioritise or rank alerts, and
suggest actions. The features are understandable by analysts,
showing how alert scores relate to how other similar alerts
have been triaged.

This flexible framework integrates with any SOC workflow
as the model can be easily customized to work with any
finite set of analyst triage actions. Further, AACT has low
deployment and update overhead as the features and training
data are generated based on the decisions analysts are making
as part of the core operation loop of the SOC.

Finally, the model can adapt to a managed SOC setting,
calculating features per customer environment and across all
environments. This ensures the model is tailored to each
organisation’s unique environment while also learning from
global trends enhancing performance.

The framework is evaluated using a 6-month period of real-
world data from a managed SOC, as well as a synthetic
public dataset. The evaluation includes comparisons against
a previous approach from the literature, DeepCase [7], and a
baseline model. In addition, AACT has been deployed in a
managed SOC, where over the course of a 6-month period
it has processed and helped triage approximately 3.1 million
alerts. The system automated the closure of 61% of alerts
while prioritising the remaining ones.

In summary, this paper’s contributions are:

1) Presenting a novel ML framework, AACT, that auto-
mates analyst triage decisions by dynamically learning
in real-time from their actions using directly inter-
pretable features.

2) Developing an adaptable and easy-to-deploy alert triag-
ing framework that avoids frequent retraining, functions
within any standard operating SOC environment without
additional overhead, and adapts to various workflows for
both managed and in-house SOCs.

3) Demonstrating the framework’s effectiveness in a real
managed SOC, significantly reducing alert fatigue.

The paper is organised as follows: Section II discusses
related literature; Section III describes the alert data set
used to demonstrate the methodology; Section IV presents
the approach to model and predict triage actions; Section V
evaluates the approach on a closed and an open dataset,
with a comparison to Deepcase; Section VI discusses the live
environment performance, and Section VII and VIII covers
future work and conclusions.

II. RELATED WORK

Related work has explored reducing alert fatigue by target-
ing various stages of the SOC alert life-cycle [5]. [6] offers
a comprehensive framework based on rules and heuristics
that addresses all the stages of the life-cycle, evaluating each
stage individually. Alert reduction and correlation have been
extensively researched in the literature and both rule-based
[10], [11] and data-driven [7], [8], [12]–[15] approaches have
been proposed.

This paper focuses on the final stages of the alert pro-
cessing pipeline—prioritisation and triage. Some techniques
add necessary contextual data for triage before alerts reach
human analysts. Triage automatons using finite state ma-
chines were developed in [16] and [17] by collecting the
human analysts’ investigative processes, such as querying and
correlating additional event and alert data. For automating
triage, there is a body of work that aims to classify alerts by
learning which events or collection of events are more likely
to lead to real security incidents. Methods like NoDoze [18],
UNICORN [8], and OmegaLog [19] use provenance graphs
to model alert context with system-level or application-layer
events as supplementary data. Anomaly scores assigned to
event sequences based on rarity of edges within the graph
are used to prioritise alerts. Rapsheet [20] extends provenance
graphs to EDR-generated alerts without the need for system-
level events. Threat scores are generated based on MITRE
techniques associated with the alerts. Isolation forests in [21]
and [22] highlight anomalous alerts, which are considered
higher severity. FASTT [23] combines context retrieval and
alert classification using a neural network, Elasticsearch, and
Kibana. These methods do not learn from how analysts have
triaged alerts in the past, and any labels are only used to assess
the performance of their models. Note that these methods can
often be complimentary to AACT, useful at earlier stages of
the alert lifecycle.

Context2Vector [24] and DeepCase [7] use deep learning to
correlate alerts and then classify these groups with supervised
learning. DeepCase [7] correlates alerts within sequences using
a deep learning model along with an attention mechanism.
These correlated alerts are grouped into similar clusters. A
semi-supervised approach is used whereby analysts manually
label the clusters and then similar sequences to those within
the cluster can be automatically labelled. Context2Vector
generates topic representations of alert sequences for human
labeling. Both methods require external labeling and do not
dynamically integrate historical and current analyst triage
actions. DrSec [15] also employs deep learning, through the



pre-training of a language model (LM) to encode event data
of processes. It uses self-supervision and has the advantage
of requiring few labeled data points to to identify malicious
alerts.

Similarly to the temporal nature of the features proposed
in the paper, [25] develops a ML framework using temporal
features to predict analyst actions based on network context.
Alert attributes, such as the count of the number of other
alerts, and the average severity of those alerts for the alert
entity are used as features. They use analyst actions as labels
to train their model. Our approach differs in that it encodes
analyst actions as features, learning dynamically in real-time
from the way analysts triage alerts, providing a model that is
reactive to the current activity in the SOC. AlertPro [4] along
with context and basic alert attribute features employs history
features, binary encodings of past analyst decisions, to re-rank
alerts using an active learning algorithm. However, it does not
account for the frequency or historical context of these alerts
in attacks.

In comparison, AACT uniquely learns in real time from
analysts triaging alerts within a live system without additional
labeling. By using analyst actions to label and triage similar
alerts, AACT captures the dynamic nature of threats and
amplifies analyst decision-making. For example, we don’t
assume that sequences of alerts are either always malicious or
benign but can change over time with respect to other threats
in the network environment. Unlike other approaches, AACT
integrates both current and historical triage actions into the
alert prioritisation process with near-zero latency, addressing
a gap in the literature.

III. ALERT DATA

Sophos offers a managed detection and response (MDR)
solution that combines an open cloud-native security platform
with security expertise through its SOC analysts. The data used
for analysis are the security alerts processed by the security
platform that are triaged by an analyst.

A cybersecurity alert is a notification that an organisation’s
information systems may be compromised or undergoing a
cyber attack. It is generated by security tools using collected
computer system telemetry, and typically refers to a collection
of log events or telemetry that have been deemed malicious
and are related in some way to the attack.

At Sophos, alerts originate both from internal sensors and
detectors operating on enterprise network telemetry as well
as those ingested by third party vendors. The alerts are
normalised into an alert object. This object contains infor-
mation about the alert, such as the relevant log events, attack
techniques used, creation timestamp, origin, detector and rule
that generated the alert, and a hard-coded severity. It reports
on entities that are related to the attack as extracted from
the original log events. This could be the entity where the
attack originates, or the entity impacted by the attack. An
entity refers to a unique identifier that may represent a human,
machine, program, or other digital object that operates within
or interacts with a computing environment. It also contains the

{
"id":"unique_alert_uri",
"metadata":{

"creator":{
"detector":{..}
"rule":{..}

},
"severity":0.75,
"title":"Unfamiliar sign-in properties",
"created_at":{..}

},
"entities": [..],
"tenant_id":"11772",
"status":"OPEN",
"investigation_ids":[..],
"event_ids":[..]

}

Listing 1: An example alert object at Sophos

customer environment where the alert originated, which will
be referred to as the tenant for the remainder of the paper.
An example alert object for a subset of fields is shown in
Listing 1.

As part of the triage process, analysts review a prioritised
list of alerts. Alerts that are considered a real threat and
worthy of further review and remediation are placed into
an investigation. An investigation is an additional abstraction
over a collection of telemetry, alerts, assets, related searches,
alerts and log events that are representative of a single related
security event. These investigations are sent to the tenant for
review with suggested remediation actions. Finally, once alerts
have been triaged, they are assigned a label indicating if true
malicious activity occurred or if it was benign. Alerts that
are not placed into an investigation are immediately labelled
as benign. Alerts that are placed into an investigation are
generally labelled after review and incident remediation.

The history of labels applied to an alert and the investigation
the alert was placed in, if any, are maintained within the alert
object. Sophos analysts are primarily analysing alerts to assess
whether they are of significant enough security value to be
placed in an investigation. Therefore, the primary goal for the
analysis in this paper is to be able to predict whether an alert
would be placed in an investigation. If there is high enough
confidence that the alert would be closed without being placed
into an investigation, the system can perform that action prior
to it being added to the analyst queue reducing the number of
alerts shown to analysts.

The specific dataset used to train and evaluate the method-
ology presented over the next sections are the alerts and
investigations described above over a 6-month period. Note
that these alerts have already undergone processing steps,
namely de-duplication and rule-based filtering, as part of the
alerting lifecycle at Sophos. Any alerts that arose from test
or demo tenants were filtered to remove artificial unrealistic
data that can impact building statistical models. There are
1, 202, 868 alerts and 161, 886 alerts were investigated across
30, 194 unique investigations for multiple tenants in the origi-



nal dataset. Figure 1 shows the daily alert counts across all
tenants. As can be seen there are some days where large
alert spikes can occur; these are often caused by errors in
the alerting pipeline due to missed de-duplication efforts or
misconfigured rules or detectors.
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Fig. 1: Daily alert counts across all tenants

A. Alert similarity

The model used requires a notion of alert similarity so
that any alert can be compared to actions taken over other
similar alerts that came previously. Two alerts are considered
similar if the alert notification is for the same underlying
attack behaviour or there is at least one overlapping entity
within the alert belonging to the same tenant. To provide
intuition, if an alert with a specific user account was marked by
an analyst as malicious, indicating that the user account has
been compromised, then future alerts within a similar time
frame arising from that user account are probably worthy of
investigation. Similarly, if there is an alert type that has been
frequently marked as malicious, then it is also likely that future
alerts of that type could also be malicious and should have
higher priority.

1) Alert categories: To quantify if the same attack be-
haviour is being detected, alert categorisation is performed.
It is assumed that each alert belongs to a specific discrete
category related to the signature or attack behaviour being
detected, similar to MITRE tactics and techniques1. As the
alerts both originate from internal detectors and third party
vendors, there is no specific field that can be used to determine
the alert category. Even though attempts are made to normalise
alerts into a consistent format, often times the fields are
missing or can semantically have different meanings. For
example, the MITRE techniques reported could be used to
categorise the alerts; however, these are often missing or
incorrectly assigned.

A procedure was developed to generate an alert category
which uses a combination of the detector and rule that gen-
erated the alert, when available, and the alert title. For alerts
originating from internal systems, the combination of the rule

1https://attack.mitre.org/matrices/enterprise/

and detector provide enough information to categorise an alert.
For alerts ingested from third parties this information is not
necessarily provided or too generic. In these cases the nor-
malised alert title is used. Entities are often embedded in alert
titles, e.g., “Potential stolen user credential for user@domain”.
Regular expressions are used to strip entities from within the
title before being used for categorisation.

After applying categorisation to the dataset, there were a
total of 4, 002 categories over the 6-month period. Note that
2, 246 categories make up 99.8% of the data. The alert objects
can often have misconfigured inputs for the alert title or
inconsistently formatted data, resulting in non-ideal categories
being assigned in a small number of cases. In practice, these
could be removed from the training data however this has very
little effect on the results. It is assumed for the rest of the paper
that an alert has an associated category C = {c1, . . . , cm}.

IV. METHODOLOGY

In Section III, a description of the alerts and the SOC
workflow at Sophos was provided. However, the methodology
presented is broadly applicable to any alerts triaged by an
analyst, as it only requires that each alert has a category,
entities, and the label or action assigned by the analyst.

A supervised ML approach is used over alerts that have been
triaged by an analyst. First, if necessary, categorisation should
be performed so that each alert belongs to a single category
representing the attack behaviour. Feature extraction extracts
static and dynamic features from the alert objects. These are
used to train a classifier that predicts which action is taken by
an analyst.

To deploy AACT in a live SOC environment, there would be
two phases: training and scoring. In training, historical labelled
alerts are used to train a model, using the static and dynamic
features.

Figure 2 shows an overview of the live scoring phase. First
any necessary filtering and enrichment’s, such as categorisa-
tion, are applied to streaming alert data. Second the dynamic
and static features are extracted from these alerts. Third, the
model is applied, which produces a score for each finite set
of actions that an analyst can take. In the final step, four, if
the score for the alert being labelled malicious is below some
threshold the alert could be automatically closed and removed
from the analyst queue. The remaining scored alerts are then
prioritised and sent to an analyst for review. Once the analyst
has taken an action on the alert this is fed back into the module
that calculates the dynamic features that are based on analyst
actions.

The following subsections will explore each component in
further detail.

A. Feature Extraction

One of the key components of the model is the assumption
that the history of triage actions taken by analysts on alerts is
a good predictor for what action will be taken in the future.

The features aim to both measure the short-term and long-
term trends for analyst actions performed on categories of



Fig. 2: An overview of AACT

alerts, as the interplay between these are important to accu-
rately predict the outcome of future alerts.

The recent history of analyst actions is important because
it captures current and emerging trends about threats in a
tenant’s environment, enabling the system to learn and react in
real-time. The long-term trends provide the historical context
needed about overall false positive rates2 for alert categories
when viewed over a longer time frame, which would be missed
by a shorter term view. In addition, if some categories are rare
and have not been observed in the recent past, the historical
data provides a baseline in lieu of more recent information. By
combining trends across varying time windows, the system can
form a robust model that results in more accurate predictions.

When analysts are triaging alerts, one consideration is how
new an alert is for the entities in the alert or for a tenant’s
environment. To encode this part of the decision-making
process, features are generated that calculate how recent an
alert category was seen for the tenant and for entities within
the alert.

The features described above are referred to as dynamic
features as they change with respect to other alerts in the
environment. In addition to these dynamic features, static
features extracted from the alert itself are also used. These
are both described in detail in the next sections.

In Sections IV-A1 and IV-A2 the features are described
for a general SOC workflow without specifying any specific
triage action that has to be performed. Section IV-B further
discusses how these are modified and expanded on for the
Sophos managed SOC workflow.

1) Dynamic Features: Throughout this section, notation-
ally, any dependence on a tenant is dropped. All features can
be generated both for one tenant and across multiple tenants
if applicable, see Section IV-B for further discussion.

2A false positive in this sense means alert categories which tend to generate
alerts that don’t result in real security incidents.

Let Ac(t, s) ∈ A = {a1, . . . , an} denote the categorical
random variable for the action taken at time s for an alert
occurring at time t of category c, e.g. nominate for further
investigation, assign a label of malicious or benign. A list
of counts for each action ai are generated over a lookback
window δ for the number of occurrences of action ai for alerts
of category c over [t− δ, t),

αc
ai

=
∑

{Ac(t′,s):t′,s∈[t−δ,t)}

I(Ac(t′, s) = ai). (1)

Define a resolved alert as one that has been triaged and has had
a corresponding triage action taken. Then, I(Ac(t′, s) = ai)
denotes the indicator function taking the value 1 if the action
taken for an alert of category c was ai and both the time the
alert was created and the alert was resolved occurred within
the lookback window [t − δ, t). Note that in a slight abuse
of notation, the dependency on the lookback window δ has
been dropped. In practice, multiple lookback windows may
be chosen. To choose which lookback windows to use, the
correlation can be calculated over multiple δ’s to maximise
the variance across the lookback windows, see Section IV-B.
When generating local features per tenant, equation (1) would
be calculated only over other alerts that occurred within the
same tenant. For global features, it would be calculated across
all alerts irrespective of the tenant.

It is desirable to normalise the counts so that they are
comparable across different alert categories, some of which
inherently generate more alerts than others, as well as smooth
away any seasonality. The set of features then for an alert
category is:

Fc =

{
f c
ai

=
αc
ai∑

a∈A αc
a

: i = 1 . . . n− 1

}
. (2)

Note that the features are calculated over all but one of the
triage actions an, say, as f c

an
is perfectly correlated with f c

a1
,

. . . , f c
an−1

. This is equivalent to using as features an estimate,



based on the data over the lookback window, of the probability
of observing action ai for an alert given the category is c,
P (A(t) = ai|C = c).

Let X(t) = (x1, . . . , xk) denote the set of k entities in an
alert occurring at time t. Similarly, for each entity, a count for
the number of occurrences of action ai for alerts that contain
that entity over [t− δ, t) is obtained

αxj
ai

=
∑

{A(t′,s):t′,s∈[t−δ,t)}

I(A(t′, s) = ai ∩ xj ∈ X(t′)). (3)

I(A(t′, s) = ai ∩ xj ∈ X(t′)) denotes the indicator function
taking the value 1 if the action taken for an alert is ai, the
entity xj is contained in the list of entities, and both the time
the alert was created and the triage action was taken occurred
within the lookback window [t− δ, t). Note that for the entity
features, there is no dependency on the alert category and the
sum is over all alerts in the window.

These are also normalised so that

fxj
ai

=
α
xj
ai∑

a∈A α
xj
ai

, (4)

which is equivalent to an estimate of the probability of seeing
action ai for an alert given the entities within the alert contain
xj , P (A(t) = ai|xj ∈ X).

In order to generate a fixed number of features per alert,
summary statistics such as the mean or max can be used over
the set of normalized entity counts for each action {fxj

ai : xj ∈
X(t)}.

The set of features for the alert entities based on the max
counts, say, are:

FX =

{
fX
ai

= max
j∈k

fxj
ai

: i = 1 . . . n

}
. (5)

For some alerts the denominator can be 0 for f c
ai

or fxj
ai if

the category is new for the tenant or if the entity has not been
alerted on in the time window, respectively. In these cases, f c

ai

and f
xj
ai are set to 0. An alternative more principled approach

could be to place a prior on the number of occurrences of an
action in a Bayesian fashion.

When generating the category and entity features for an
alert occurring at t, any alerts occurring in [t − δ, t) that
have not been triaged and resolved are not included in the
denominator for equations (2) and (4). Two final additional
dynamic features are included: the total number of overall
alerts and the percentage of those that have been resolved
both for the category and entity features, denoted FC,R and
FX ,R, respectively. These additional features are particularly
useful for balancing situations where there is a high proportion
of alerts associated with action ai, yet only a few alerts have
been resolved, compared to scenarios with a large number
of resolved alerts. Typically, these features only need to be
included for shorter look-back windows δ, since over longer
time frames, most or all alerts will have been resolved.

Finally, features are defined that capture how “new” an alert
is for a tenant’s environment.

First is the time last seen for an alert occurring at t of
category c

f c
t = t−max({t′ < t : C(t′) = c}), (6)

where C(t) ∈ C denotes the category of an alert.
To capture how new the alert category is for an entity xj ,

define

f
c,xj

t = t−max({t′ < t : C(t′) = c, xj ∈ X(t′)}). (7)

Similarly to above, to have a fixed number of features for
each alert, summary statistics can be taken over {f c,xj

t : xj ∈
X(t)} denoted f c,X

t . In practice, these rarity features will
be left-censored. To account for this, an initial amount of
data over the training period should be kept back to calculate
equations (6) and (7).

For each alert, the complete set of dynamic features ex-
tracted are F = {Fc,FC,R,FX ,FX ,R, f c

t , f
c,X
t }.

By encoding features that learn from the analysts triage
actions using alert similarity, the model is not fitting on
specific alert attributes whose relationship with the dependent
variable may vary rapidly over time. For example, there are
times whereby a specific alert entity may be involved in a
real security incident and other times where alerts originating
from that same entity are benign. If this entity was explicitly
encoded as a feature (using one-hot encoding for example)
frequent retraining of the model would be required to adapt
to the current security state of that entity.

The features are also interpretable by SOC analysts. It is
easy to understand how the score for an alert is affected by a)
previous triage actions on similar alerts and b) how unlikely
it is to see the category of an alert for the tenant or entity.
Based on discussions with subject matter experts (SME), both
of these statistics are key parts of what an analyst looks at
when they triage an alert.

For real-time scoring of alerts, the primary complexity
of the model is in maintaining up-to-date counts of analyst
triage actions over alert categories, tenants and entities. This
is required to compute the dynamic features using the most
recent information and avoid performance degradation.

2) Static Features: While previous features aim at encoding
dynamic alert trends, several static features are also added that
can directly be extracted from the alert object irrespective of
any other alerts. To avoid the need for frequent retraining,
these features should not have a relationship that changes
quickly over time with the analyst action that is being pre-
dicted. Section IV-B lists the static features extracted for the
Sophos alert data.

B. Sophos

A description is now given on how the features are gener-
ated for the Sophos SOC workflow. As discussed in Section III,
the goal is to predict if an alert occurring at time t is added
to an investigation and a notification sent to the client of
malicious activity occurring in their environment.



1) Dynamic Features: For equations (2) and (5), the actions
an analyst can take are Ac(t) = (ac1, a

c
2), where ac1 corresponds

to an alert getting added to an investigation and conversely
ac2 is not added. In addition to these features, it is desirable
to capture the label applied by the analyst to the alert, see
Section III. Two extra sets of features are generated as in (2)
and (5), where now the set of actions Lc(t) = (lc1, l

c
2) is if a

label was applied to the alert indicating that it was malicious,
lc1, or benign lc2. These extra sets of features will be denoted
Fc

L and FX
L .

As Sophos is a MDR provider, alerts from multiple tenants
environments are triaged. For this reason, the features for
the alert categories, Fc and Fc

L are computed per tenant
environment and then across all tenant environments, referred
to as the global features. This tailors the model per tenant
while learning from global trends for categories of alerts.
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Fig. 3: Correlation matrix for the ‘is investigated’ dependent
variable and the category investigation rates with lookback
windows of 7, 30 and 60 days.

The tenant, global and entity features for the investigation
and malicious label rates , Fc, FX , Fc

L and FX
L were

computed over a lookback window of δ = 1 day, δ = 7
days, δ = 30 days and δ = 60 days. Figure 3 shows the
lower triangular correlation matrix for Fc over the longer
lookback windows for the tenant and global features and the
dependent variable indicating whether the alert was added to
an investigation. There is a strong correlation between the 30
day and 60 day lookback windows, achieving a correlation of
upwards of 0.8. For this reason, the lookback window of 60
days is dropped from the set of features. It can also be seen
from Figure 3 that the investigation rates over the various time
windows for the alert categories are correlated with an alert
being investigated. For the features for the number of alerts
and the resolved ratios, FC,R and FX ,R, they are computed
only over the one day lookback, as beyond that the resolved

Dynamic Features
Max investigation rate for entities (δ = 1, 7, 30 days)
Max malicious label rate for entities (δ = 1, 7, 30 days)
Max resolved rate for entities (δ = 1 day)
Category investigation rate per tenant (δ = 1, 7, 30 days)
Category investigation rate global (δ = 1, 7, 30 days)
Category malicious label rate per tenant (δ = 1, 7, 30 days)
Category malicious label rate global (δ = 1, 7, 30 days)
Category resolved rate per tenant (δ = 1 day)
Category resolved rate global (δ = 1 day)
Category total alerts per tenant (δ = 1 day)
Category total alerts global (δ = 1 day)
Delta since category was last seen for tenant
Max delta since category was last seen for entity
Static Features
Entities count
Entities relationship count
Max tactic score
Tactic count

TABLE I: Complete set of features extracted per alert

ratio tends to 1. Here, resolved is defined as either having been
added to an investigation or labelled and closed.

For the entity features FX and FX
L , the max is taken over

the list of entities within the alert, see equation (5). After
discussing with SMEs, it was suggested that if there was any
key entity in the alert that had a recent high investigation
or malicious label rate, then it should be prioritised for
investigation by an analyst. For the features related to when
the alert category was last seen for the entity, equation (7), the
maximum over the set of entities is also taken.

2) Static Features: The following are the static features
extracted from the alerts. First is the number of entities associ-
ated with an alert, as well as the number of entity relationships,
i.e., the actions between entities, e.g., user A authenticating
to service Z. All alerts that are reported by the Sophos
platform have one or more corresponding MITRE tactics and
techniques that are associated with the alert. MITRE proposes
a framework detailing attacker behaviour [26], specifying 1)
Tactics, representing the steps they consider in an attack chain,
and 2) Techniques, which identifies actions attackers take as
part of these tactics. From these, two features are constructed:
the number of techniques associated with the alert, along with
the farthest tactic on the attack chain, represented by a number
between 0 and 14, where 0 signifies no tactic was present.

Table I summarises the complete feature set extracted for
each alert.

C. Classifier

A classifier can be trained over the possible set of triage
actions, A, an analyst can take using each of the features
discussed in Section IV-A. If there are multiple actions that
are being predicted, a multi-class classifier, such as a decision
tree, is appropriate. If there are only two actions, a binary
classifier like logistic regression can be used. For both ex-
amples presented in Section V a gradient boosting tree was
used as that provided the best performance. To evaluate the
model, cross-validation with a time-series split should be used.
This type of evaluation, which always tests folds on newer



data, is crucial when evaluating time-series data, especially
data stemming from cybersecurity applications. The features
generated rely on knowing counts of previous actions taken
on alerts: using classical cross-validation techniques would
provide training samples with future information it shouldn’t
have. In addition, cyber attacks evolve and adapt over time, and
simply using randomised folds would leak future attack trends
to the training set and inflate the model’s performance. The
time-series split for evaluation is also representative of how the
model would perform in a live environment with retraining.

V. EVALUATION

To evaluate AACT, we used two datasets: the publicly
available AIT Alert Data Set [27] and an internal Sophos alert
dataset, described in Section III. Data preparation and feature
extraction was implemented using Spark 3, while Scikit-learn 4

was used for model training and evaluation.
In both datasets, analysts have two possible actions indi-

cating an alert as either malicious or benign. This evaluation
implements a gradient boosting classifier, comparing its per-
formance against other models on the Sophos dataset. The
priority score is simply the score ranging from [0, 1] output by
the gradient boosting classifier. Standard performance metrics
such as Accuracy, Precision, Recall, F1-Score, and ROC
AUC are used for evaluation. Analysts often close or resolve
alerts unrelated to real security incidents. Triaging each alert
is time-intensive, driving up resource costs significantly. By
accurately predicting and removing benign alerts before they
reach analysts, the system can greatly reduce workload and
resource use. Thus, if there is high enough confidence that an
alert is malicious, the system can close the alert before it ever
reaches an analyst. Consequently, understanding the model’s
effectiveness in reducing the volume of alerts analysts must
review, while minimizing incorrectly closed alerts, is crucial.
Falsely closed alerts are critical since they might reduce the
visibility into an on-going attack. Figure 2 illustrates how
alerts below a defined priority threshold are removed from the
analyst queue, reducing the volume of alerts requiring review.
Therefore, the final metric used is alert reduction, which is
defined as the proportion of alerts eliminated from the queue.

Note that there is a large difference in the degree of alert
reduction between the internal alert dataset and the AIT dataset
and, more broadly, those found in the literature, such as [7],
[20], [28]. This difference is due to the fact that the AIT
alert data and the datasets used in the literature often consist
of low-level alerts from IDS systems, lacking filtering or
de-duplication, leading to a higher level of alert reduction,
contrary to our internal dataset.

AACT is compared with a baseline and the DeepCase
algorithm [7]. However, the DeepCase comparison is limited
to the AIT alert dataset, as it was unsuitable for the Sophos
dataset due to its approach of grouping alerts by single entities.
Handling alerts with multiple entities of various types, such

3https://spark.apache.org/docs/latest/api/python/index.html
4https://scikit-learn.org/stable/

as hosts, users, and processes, would require further research.
Despite applying a few approaches to tackle the multi-entity
issue, DeepCase was still less effective as it was not designed
to handle alerts originating from a pipeline of alerts that
have already gone through many layers of reduction and
correlation. The method’s strength lies in using low-level
contextual information to group, cluster, and prioritize alerts,
a feature absent in the available Sophos data, resulting in
suboptimal performance.

A. Sophos dataset

As discussed in Sections III and IV-B the binary state of
whether an alert gets added to an investigation is the analyst
action being predicted for this example.

The alert data, described in Section III is a subset of
those processed by the Sophos security platform. There are
1, 202, 868 alerts over a 6-month period. As the algorithm
described in this paper has been running in a live environment
automating the resolution and closing of alerts, a final filter
is applied to remove those alerts that were closed by this
automation in the past, to avoid a direct feedback loop, see
also Section VI. The final number of alerts available as training
samples following this is 474, 034. Of these, 161, 886 were
added to an investigation, i.e., are from the positive class for
the binary classification problem.

The features used are those described in Section IV-B.
For the feature extraction, an additional one month of data
prior to the training data is used to calculate the one-month
investigation rates for the alert category, equation (2), and
the delta since the category was last seen for the tenant
and entities, equations (6) and (7). Multiple algorithms were
explored to train and evaluate the model, namely Logistic Re-
gression, Random Forest classification and Gradient Boosting
classification. The average of each algorithm’s performance
metrics obtained from the 10-fold cross-validation over time
series splits are shown in Table II for a 0.5 threshold. Gradient
Boosting classification obtained a slightly better performance
and is used in this approach. Note that the Random Forest
model had better precision at the cost of a lower recall. In our
case, missing true critical alerts has a larger negative impact to
the business than incorrectly marking alerts as critical. For this
reason, we use the Gradient Boosting classifier which obtains
better recall, hence fewer false negatives.

For comparison, we use the global investigation ratio of
alert categories over 30 days to represent the baseline model.
Thresholds are simply set on the investigation ratio itself to
calculate the metrics for the baseline, with no classification
involved.

Figures 4 and 5 show the precision-recall and ROC curves
over all folds. The results show good performance in predict-
ing if an alert will be added to an investigation. Maximising
recall (true positive rate) is important as misclassifying alerts
that would have been added to an investigation can cause real
security incidents to be missed. Figure 5 shows that a threshold
can be chosen that would achieve a high true positive rate
while maintaining a low false positive rate. The figures show



that AACT outperforms the baseline, and bring additional
value over simply increasing the priority of alert categories
that have a high investigation rate.

Figure 6 shows the alert reduction versus the false negative
rate over varying thresholds. In this context, a false negative
is an alert that should have been investigated, but was closed
incorrectly as benign. As can be seen, a threshold can be
chosen such that 34% of alerts can be removed from an
analysts’ queue with a false negative rate of 1.5%. Note that if
you include the 728, 834 alerts removed from the analysis due
to them being closed by AACT, the reduction rate is closer
to 74%. AACT does not train on its own output, to prevent a
direct feedback loop. Section VI will give further details into
this process, through a description of the live model and its
performance.

To identify the key features driving the predictions of the
model, the Shapley values [29] are computed and shown in
Figure 7. The alert category investigation rate for a tenant
over all lookback windows has the largest impact on the
model’s decision, with high alert category investigation rates
increasing the probability that future alerts will be added
to an investigation. This is supported by the observation
that even the simple baseline using the 30-day investigation
rate shows reasonable performance. Overall, tenant-specific
features have a larger impact on the prediction than global
features, indicating that the model adapts well to the specific
tenant environments.

B. AIT Open Alert dataset

The Austrian Institute of Technology (AIT) Log Data Set
[30], [31] includes system and network logs from eight testbed
networks, which were subjected to various multi-step attack
scenarios over a three week simulation period, from January
14 to February 2, 2022. The AIT alert dataset [27] comprises
alerts generated from these logs using three intrusion detection
systems: Suricata, Wazuh, and AMiner, totaling 2,655,821
alerts in JSON format normalized across the different detectors
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Fig. 5: The ROC curve showing the false positive rate versus
the true positive rate at varying thresholds
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Fig. 6: The percentage of alerts removed from the analyst
queue vs the false negative rate at varying thresholds

5. The normalized alerts serve as input for this example,
with each record containing fields such as timestamp, name
(corresponding to the detector and rule that generated the
alert), host, time label, and event label. The event label shows
if an alert is linked to an attack-related log event, while the
time label indicates if it occurred during an attack scenario
and indicates false positive or attack type. Since benign alerts
can occur during attacks, the event label is used if the event
happened during the attack window. Notably, some events are
incorrectly labelled as malicious outside the attack window
and are marked as benign.

In this simulated scenario, we assume that alerts are triaged
during standard SOC operations. As a result of this triage
process, alerts are classified as either malicious, if the event
label indicates an attack, or benign. For the dynamic fea-

5https://github.com/ait-aecid/alert-data-set

https://github.com/ait-aecid/alert-data-set


TABLE II: Model evaluation performance

Algorithm Accuracy Precision Recall F1-Score ROC AUC
Gradient Boosting Classifier 87.02 78.79 78.21 78.27 93.32
Random Forest Classifier 87.73 82.11 74.97 78.22 93.88
Logistic Regression Classifier 85.44 76.77 74.08 75.10 91.86

2 0 2 4 6
SHAP value (impact on model output)

Global true positive malicious ratio 7

Tenant total alerts

Relationship count

Global true positive malicious ratio 30

Global total alerts

Max tactic score

Global investigated ratio 7

Global resolved ratio

Days since last seen category

Tenant investigated ratio 7

Entities count

Max days since last seen entity

Max entity investigated ratio

Max entity investigated ratio 7

Tenant investigated ratio

Max entity resolved ratio

Global investigated ratio 30

Max entity investigated ratio 30
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Fig. 7: Shapley values for the model’s top features

tures, as described in equations 2 and 5 in Section IV-A1,
Ac(t) = (ac1, a

c
2), where ac1 represents an alert labelled as

malicious and ac2 represents an alert labelled as benign. The
alert category is simply the name, as no entities are embedded
in the name. No further categorization is needed. There are 93
categories in total across all alerts. Given the delay between
when an alert is received and when an analyst labels it, it is
assumed that the labelling time is uniformly distributed over
a range of 1 to 16 minutes after the alert is created. This
assumption is based on the 5th and 95th percentiles of triage
times for alerts at Sophos. Including this additional timestamp
is crucial, because the features are generated based on these
analyst labels, as discussed in Section IV-A1. Assuming that
the label existed at the time of alert creation could artificially
enhance the model’s performance and would not accurately
reflect real SOC operations. Each test bed network is treated
as a tenant. The complete set of dynamic features extracted
from this dataset is provided in Table III. Since only one entity
is reported per alert, calculating the maximum over the list of
entities is unnecessary. Longer time frames for resolved and
malicious label rates are not used due to the data covering

Dynamic Features
Entity resolved rate (δ = 1 day)
Entity malicious label rate (δ = 1 day)
Category malicious label rate per tenant (δ = 1 days)
Category malicious label rate global (δ = 1 days)
Category resolved rate per tenant (δ = 1 day)
Category resolved rate global (δ = 1 day)
Category total alerts per tenant (δ = 1 day)
Category total alerts global (δ = 1 day)
Delta since category was last seen for tenant
Delta since category was last seen for entity

TABLE III: Complete set of features extracted per alert in the
AIT dataset.

only approximately three weeks.
The data from all tenants is combined and arranged in

chronological order. Due to the data size, only two-fold
time-series cross-validation is employed in order to ensure a
sufficient number of malicious samples in each fold. Default
parameters were used for the gradient boosting classifier.

1) A comparison between AACT and DeepCase: The
methodology is compared against DeepCase, [7] using the
code provided by https://deepcase.readthedocs.io. DeepCase
initially correlates alerts (referred to as security events in [7])
using the Context Builder, which leverages a recurrent neural
network with an attention mechanism to analyze sequences
of alerts that occur in close temporal proximity on the same
host. It then uses an Interpreter to compare all correlated
alerts and group them into similar clusters. These clusters
are subsequently presented to a security operator for labelling
during a manual analysis phase. Following this, DeepCase
operates in a semi-automatic mode, where the Interpreter can
compare new alert sequences to existing clusters using the
attention vectors generated by the Context Builder for the
new sequence. If the new sequence matches known benign
clusters, they can be automatically closed without human
analyst intervention.

For the comparison with AACT, the training data for
each time-series split represents the manual analysis phase,
while the test data represents the semi-automatic phase. The
vocabulary size for the neural network is set to the number
of unique categories, with all other parameters kept at the
defaults used in [7]. During the manual phase, the maximum
label of any individual alert is applied to the entire cluster.
Using the average or minimum of all labels resulted in similar
or worse performance. In the semi-automatic phase, each alert
is assigned a score indicating whether it is benign, malicious
or it is unscored if the Context Builder lacked confidence for
a prediction, or if the nearest cluster was beyond a specified
”epsilon” distance from the nearest sequence.

The average performance metrics for AACT and DeepCase

https://deepcase.readthedocs.io


TABLE IV: Model evaluation performance

Method Precision Recall F1-Score Alert Reduction FNR
AACT 99.45 90.97 94.95 95.45 9.03
DeepCase 97.25 66.97 79.24 89.74 33.03
Baseline 96.70 87.55 91.90 95.45 12.44

across each fold are presented in Table IV along with the
baseline performance. For AACT, metrics are reported using a
0.5 threshold, where alerts with scores greater than or equal to
0.5 are considered malicious, otherwise benign. For DeepCase,
results are further averaged over 10 runs. As a baseline,
the global category malicious label rate is used similarly to
Section V-A. The baseline threshold was chosen such that the
Alert Reduction was the same as for AACT.

Table IV shows that AACT outperforms other methods on
this public dataset, achieving greater alert reduction and a
lower FNR. The baseline also shows good performance with
only a slightly higher FNR than AACT. The alerts generated
from this synthetic dataset are significantly less noisy and
diverse, originating from only three different traditional IDS
systems, unlike the more complex data set from Sophos.
As a result, even a simple baseline performs very well. It’s
important to note that the precision and recall for DeepCase
are computed across all alerts, including those not labelled by
the algorithm, to ensure a fair comparison with AACT. Out
of the 127,152 alerts in the test set for each fold, an average
of 8,558 alerts were not scored by DeepCase. Among these,
6,389 belonged to the positive class, indicating that many
alerts where the Context Builder lacked confidence or were not
sufficiently close to an existing cluster were more likely to be
malicious than benign. If these unscored alerts are excluded as
in [7], DeepCase achieves a precision of 97.25% and a recall
of 93.2%.

DeepCase’s comparatively lower performance may result
from its inability to incorporate tenant-specific knowledge,
treating alerts from all tenants as though they originate from
the same source. This approach limits its ability to adapt to
and learn from the unique environments of different tenants.
Building separate models for each tenant was not feasible
due to insufficient data. Despite this, it is worth noting that
DeepCase also clusters alerts through the Interpreter, allowing
analysts to examine a subset of alert sequences within a cluster
collectively, rather than triaging each alert individually. Among
the unscored alerts, 6,725 formed 99 new clusters, which can
be seen as an additional reduction of 4.5%, based on analysts
reviewing 10 sequences per cluster before applying a label, as
detailed in [7]. This clustering capability enhances efficiency
and provides a valuable tool for security operations.

VI. LIVE IMPLEMENTATION

The approach presented in this paper has been deployed in
a production environment. The model has been used to de-
escalate alerts for security analysts, drastically reducing the
number of alerts presented to them on a daily basis. The de-
escalation threshold is chosen based on what is an acceptable

false negative rate to the user: a higher threshold will reduce
more alerts, at the cost of missing more true incidents by
closing legitimate alerts.

When training future models, alerts that were closed by the
automated live system are removed from the training data.
Re-training the model runs in ∼ 26 minutes, using spark for
distributed computing and a single large machine for model
training. The model is then published as an endpoint and used
to score all incoming alerts, closing alerts whose predicted
probability of getting added to an investigation falls below
a chosen threshold. In the live implementation, AACT is a
containerized application deployed via a Kubernetes6 cluster.
A timeseries database is used to store counts of analyst actions
over categories of alerts with a maximum of 5 minutes latency.
The application is able to score 300 alerts per minute, with
a latency ranging from 1.61 to 4.02 seconds, averaging 3.04
seconds with two containers which can be trivially scaled
horizontally.

An important element to consider when deploying a predic-
tive model in a live environment is to prevent a direct feedback
loop [32], where the model learns from its own predictions.
The approach presented here learns from analyst labels applied
to alerts and closes alerts before they reach a security analysts’
work queue. To prevent the model from learning from its own
predictions, and to be able to continuously assess performance
of the model, a subset of alerts that would have otherwise
been closed are sampled and sent to a human to process.
The sampling mechanism used is disproportionate stratified
sampling [33], with the strata corresponding to the alert
category. This is done in such a way that an equal proportion
of each alert category is represented in the total sample. This
provides diverse training samples for the future and continuous
monitoring of the performance of the model via dashboards.

The live implementation has resulted in a 61% alert re-
duction over a 6-month period, with a false negative rate
(FNR) of 1.36%. This FNR is determined by the sampling
mechanism discussed above. An FNR of 1.36%, split over all
clients, amounts to under 1 incorrectly closed alert per week
per tenant over their entire network. Over the 6-month period,
in all but two cases, the underlying security events linked to
these missed alerts produced other alerts that were correctly
predicted; hence the missed security incident FNR is lower
than the model’s FNR. The missed events were reported post-
hoc and corrected. Both were a result of mislabeled alerts from
analysts, which is a limitation of the system, see Section VII
for further discussion. In the majority of cases, mislabeled
alerts are reported by the customer and corrected, so that by

6https://kubernetes.io/



the time the model is trained, the labels are correct. This FNR
was deemed acceptable by subject matter experts, given that
the risk of human analysts mislabelling alerts increases as the
number of alerts to triage increases.

Fig. 8: Threat Score display for SOC analysts

A goal in deploying this framework is to create trust in the
system by providing analysts with detailed insights into why
an alert has been automatically closed, or its priority increased.
Therefore, the alerts user interface (UI) in the framework
shows the probability output by the model, referred to as the
threat score, alongside the top impactful features behind the
score. The threat score shown is normalised to a score in the
range [0−10]. Figure 8 depicts an example alert with a threat
score of 9.2, with the features driving the model prediction
shown under the score. In this example, the alert was given
a high score since a high percentage of alerts with a similar
category were investigated both globally and for that tenant.
There were also a large percentage of investigations related to
the entities in the alert.

While the system is running in the live environment, there
are direct lines of communication with SOC analysts where
issues can be reported. We constantly iterate on feedback
improving the features and the way that results are shown
in the UI. Metrics used to track SOC efficiency such as time
to notify have been noticeably reduced by the deployment of
AACT.

VII. DISCUSSION

A limitation of the approach is that mislabelling by human
analysts can have a significant impact on the model as it is

directly learning from their labels. During training on historical
data, this is not a significant issue as mislabelled data is most
often reported and corrected after the fact. However, it can
have an effect during the live scoring phase when calculating
the dynamic features, resulting in misclassified alerts. Future
efforts to mitigate this is to weight analyst labels based on
their experience level. Additionally, weights could be applied
to the counts in (1) and (3) if there is a greater entropy in the
number of analysts who have taken that action. For example,
if multiple analysts have previously labelled an alert category
as benign, there would be greater confidence in the accuracy
of the label compared to a single analyst label.

The model is considered low risk for evasion and adaptive
attacks from sophisticated actors. In order for an adversarial
attack to succeed, they would have to consistently mimic
activity that generates benign alerts, tricking analysts into
labelling them as such. In such cases, the model will fail due
to the analyst mislabelling the alert, which was discussed as a
limitation above. It is much more likely that these sophisticated
attackers would be aiming to bypass the detectors that generate
the alerts themselves, and is less of a concern for learning how
analysts triage alerts to further prioritise them.

The industry is now moving towards a more incident-centric
model, whereby alerts that are determined to be related to
a single security event are grouped into an incident before
being shown to an analyst. The analyst queue then becomes a
prioritised list of incidents rather than alerts. AACT could be
readily expanded in that context by most simply aggregating
the scores for the alerts within the incident, similarly to [25]
where the maximum is taken over all alerts within the incident.
Further research could also include holistic incident features
that could highlight the severity of that incident when viewed
as a whole, such as the size of the incident or the diversity of
alerts and entities within the incident. This could be used to
rank groups of alerts by providing a risk score for incidents,
where a high score would be prioritised by analysts and a low
score would be indicative that an incident is a false positive.

VIII. CONCLUSION

In this paper, a novel approach was presented, named
AACT, that automatically classifies cybersecurity alerts, by
modelling short-term and long-term actions taken by SOC
analysts on similar categories of alerts. It performs well at
predicting the analyst triage action for alerts using features
that are easy for analysts to interpret. This paper presented how
this approach can be useful both for closing alerts that are not
relevant and for ranking alerts that merit further inspection
using a threat score. It has been successfully deployed in a
production environment at Sophos and the wide applicability
of the technique presented can be used by the community to
enhance their security operations or for further research.
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