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Abstract—Federated learning (FL) presents an effective so-
lution for collaborative model training while maintaining data
privacy across decentralized client datasets. However, data
quality issues such as noisy labels, missing classes, and im-
balanced distributions significantly challenge its effectiveness.
This study proposes a federated learning methodology that
systematically addresses data quality issues, including noise,
class imbalance, and missing labels. The proposed approach
systematically enhances data integrity through adaptive noise
cleaning, collaborative conditional GAN-based synthetic data
generation, and robust federated model training. Experimental
evaluations conducted on benchmark datasets (MNIST and
Fashion-MNIST) demonstrate significant improvements in fed-
erated model performance, particularly macro-F1 Score, under
varying noise and class imbalance conditions. Additionally, the
proposed framework carefully balances computational feasibility
and substantial performance gains, ensuring practicality for
resource constrained edge devices while rigorously maintaining
data privacy. Our results indicate that this method effectively
mitigates common data quality challenges, providing a robust,
scalable, and privacy compliant solution suitable for diverse real-
world federated learning scenarios.

I. INTRODUCTION

Federated Learning (FL) has emerged as a transformative
approach to collaborative machine learning, enabling multiple
clients to jointly train a global model without sharing their
local data [1]. This decentralized framework addresses sig-
nificant privacy and data governance concerns, particularly in
sensitive domains such as healthcare [2], financial services [3],
mobile computing [4] , and connected vehicles or autonomous
cars [5]. However, despite these advantages, federated learning
systems are challenged by severe data quality issues due to the
inherently noisy, imbalanced, and incomplete nature of real-
world data collected by distributed clients [6], [7], [8].

One common issue in FL environments is label noise, often
arising from annotation errors, data corruption, or adversarial
interference. Such noisy labels can mislead model training,
reducing overall model accuracy and impairing generalization

capabilities. Additionally, the heterogeneous distribution of
data across clients frequently leads to missing class scenarios,
where certain clients possess incomplete or partial class repre-
sentations. This non-IID (non-independent and identically dis-
tributed) data distribution exacerbates training instability and
negatively impacts the convergence and performance of global
models trained via standard federated averaging approaches.

To tackle these pervasive challenges, such as label noise,
missing classes, and class imbalance in federated learning
environments, we propose a three stage methodology that
systematically improves data quality and model robustness:

Local Noise Cleaning: Each client applies a confidence
weighted filtering mechanism to identify and remove misla-
beled samples from its local dataset. This process uses a com-
bination of entropy, margin, and clustering based confidence
scores, along with adaptive thresholding to retain high quality
data.

Federated Conditional GAN Training: Clients collabora-
tively train lightweight conditional GANs (cGANs) using their
cleaned datasets. The training process follows a federated
averaging protocol where only model weights are shared,
preserving privacy.

Data Completion via Synthetic Generation & Federated
Classifier Training: Clients that lack certain classes generate
synthetic samples for those classes using the trained cGAN
generator. These generated samples are directly added to local
datasets to balance class distributions, without requiring man-
ual human validation. With completed and balanced datasets,
all clients participate in the training of a global CNN classifier
using either FedAvg or FedProx. This final stage ensures
robust model convergence and improved generalization across
non-IID client data.

Our proposed method significantly improves federated
learning performance under realistic data quality condi-
tions. We empirically validate the approach using benchmark
datasets such as MNIST [9] and Fashion-MNIST [10], simulat-
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ing diverse scenarios of label noise and missing classes. Com-
parative evaluations demonstrate substantial enhancements in
data quality metrics and classification F1-Score relative to
standard federated learning baselines. Furthermore, the method
is designed to remain computationally feasible for resource
constrained edge devices, incorporating differential privacy
mechanisms to maintain rigorous data protection standards.

In summary, this paper makes the following key contribu-
tions:

1. Proposes a comprehensive, three stage federated learning
pipeline specifically designed to address noisy labels, missing
classes, and imbalanced data distributions. 2. Introduces a
federated collaborative GAN training strategy coupled with
adaptive confidence based data cleaning to systematically en-
hance data quality. 3. Validates the proposed approach through
extensive experiments, showcasing improvements in F1-Score,
stability, and robustness against common federated learning
challenges.

The remainder of this paper is structured as follows: Section
2 reviews related work and background concepts. Section 3
details our proposed methodology, including noise cleaning,
collaborative GAN training, and data completion strategies.
Section 4 describes the experimental setup and evaluation
metrics, followed by Section 5, which presents and analyzes
the results. Section 6 discusses practical considerations for
real-world deployment. Finally, Sections 7 and 8 outline
limitations, future directions, and summarize our conclusions.

II. BACKGROUND AND RELATED WORK

Federated Learning (FL) has emerged as a promising
paradigm for collaborative model training across decentralized
clients while preserving data privacy. However, real-world
FL deployments are far from ideal; they are often plagued
by noisy labels, non-IID data distributions, missing class
samples, and client heterogeneity in both data quality and
model architecture. These challenges significantly degrade
model performance and hinder convergence. As a result, a
growing body of research has sought to improve the robustness
of FL systems through various strategies, including noise
resilient loss functions, client reliability estimation, adaptive
aggregation mechanisms, and synthetic data generation using
generative models. In this section, we review recent efforts
that address one or more of these challenges, highlighting
their contributions, limitations, and relevance to our proposed
approach.

Zhao et al. investigate the statistical challenges posed by
non-IID data in federated learning and provide a formal
analysis of its impact on model convergence and accuracy.
The authors demonstrate that the performance of the FedAvg
algorithm deteriorates significantly under highly skewed client
distributions up to 55% accuracy loss on keyword spotting
tasks compared to IID baselines. They introduce the concept
of weight divergence as a proxy for learning degradation and
show that it correlates strongly with the earth mover’s distance
(EMD) between local and global class distributions. As a
mitigation strategy, the paper proposes distributing a small

globally shared dataset to all clients, which reduces EMD and
improves performance. Experimental results show that even
with as little as 5% shared data, accuracy can improve by up
to 30% on CIFAR-10. This work provides both a theoretical
and practical foundation for understanding and addressing
distributional imbalance in federated optimization [11].

Augenstein et al. propose the use of generative models
to support model development and debugging in federated
learning (FL) settings where direct access to raw data is
restricted due to privacy concerns. Their work demonstrates
that differentially private generative models specifically RNNs
for text and GANs for images can effectively simulate rep-
resentative data samples, enabling practitioners to identify
common data issues such as label noise, misclassifications,
and underrepresented classes. The study introduces a novel
framework that integrates federated learning with user level
differential privacy to train these generative models without
compromising individual data privacy. Experimental results
show that synthetic data generated by these models can
serve as a proxy for direct data inspection, offering practical
solutions for debugging and bias detection in decentralized
and privacy sensitive environments. This approach highlights
the value of generative modeling as a tool for enhancing
robustness in FL workflows, particularly under constraints of
data inaccessibility [12].

Yang et al. address the challenge of noisy labels in fed-
erated learning (FL) settings, where decentralized data an-
notations often vary in quality due to differences in clients’
labeling processes or background knowledge. Their approach
proposes a robust FL framework that mitigates label noise
by interchanging class wise feature centroids between the
server and clients. This centroid based coordination helps
align the decision boundaries of local models despite differing
noise distributions, thereby reducing weight divergence during
model aggregation. Additionally, they introduce a confidence
based sample selection strategy, where only low-loss (i.e.,
likely correct) instances are used in training, and noisy labels
are corrected via a global guided pseudo labeling mechanism
leveraging the central model. Experimental results on CIFAR-
10 and Clothing1M demonstrate that their method consistently
outperforms existing baselines, particularly under varying lev-
els and distributions of label noise. This study highlights
the importance of structure aware feature coordination and
pseudo label correction to ensure robust learning in noisy FL
environments [13].

Wu et al. introduce FedCG, a federated learning framework
designed to balance privacy protection and model performance
through the use of conditional generative adversarial networks
(cGANs). In their approach, each client decomposes its model
into a private extractor and a public classifier, retaining the
extractor locally while sharing only the generator and classifier
with the server. This architectural design mitigates the risk of
gradient based privacy attacks, such as Deep Leakage from
Gradients (DLG), by ensuring that components exposed to the
server do not directly process raw data. The global generator
and classifier are constructed on the server via knowledge



distillation from client shared generators and classifiers, elim-
inating the need for public datasets. Extensive experiments
across both IID and non-IID scenarios demonstrate that FedCG
maintains competitive accuracy while significantly improving
privacy preserving capabilities compared to traditional FL
baselines like FedAvg, FedProx, and FedSplit. This work
highlights the utility of conditional GANs in federated settings
for privacy preserving knowledge sharing and personalized
local model enhancement [14].

Gupta et al. propose FedAR+, a federated learning frame-
work tailored for appliance recognition in smart residential
environments, particularly under the dual challenges of data
privacy and noisy labels. The method enables decentralized
model training across clients without sharing raw power con-
sumption data, thereby preserving privacy. To address misla-
beled data, the authors introduce an adaptive noise handling
mechanism based on a joint loss function that incorporates
label distributions and weight parameters. This allows the
model to iteratively refine label estimates while simultaneously
updating network weights. Furthermore, a custom aggregation
function is employed to mitigate biases arising from non-IID
client data distributions. Experimental results across multiple
datasets including a real-world smart plug dataset demonstrate
that FedAR+ can maintain high recognition accuracy (over
85%) even when up to 30% of training labels are noisy. This
work underscores the potential of federated learning frame-
works to deliver robust, privacy preserving models in real-
world IoT scenarios, especially when dealing with unreliable
supervision [15].

Wu et al. present FEDCNI, a federated learning framework
designed to address the joint challenges of label noise and
class imbalance in non-IID client data without relying on clean
proxy datasets. The proposed system consists of a noise re-
silient local solver and a robust global aggregator. At the client
level, it introduces a prototypical noise detection mechanism
that leverages cosine similarity and Gaussian Mixture Models
to differentiate between clean and noisy samples, followed
by curriculum based pseudo labeling and a denoise Mixup
strategy to mitigate the impact of incorrect annotations. On the
server side, FEDCNI adopts a switching re-weighted aggre-
gation strategy, dynamically adjusting the importance of local
updates based on the learning stage and estimated noise levels.
Experimental evaluations across CIFAR-10, CIFAR-100, and
Clothing1M datasets demonstrate that FEDCNI achieves state-
of-the-art performance under both synthetic and natural label
noise, often rivaling or surpassing clean data baselines. This
work highlights the importance of tailored local noise handling
and adaptive aggregation for robust federated learning in
realistic, heterogeneous environments[16].

Wu et al. introduce FedNoRo, a two stage federated learning
framework designed to address real-world challenges arising
from class imbalance and heterogeneous label noise. Unlike
prior approaches that assume globally balanced data, Fed-
NoRo models a more realistic setting where the distribution
of classes and noise rates varies across clients. In the first
stage, noisy clients are identified using per class average loss

indicators and a Gaussian Mixture Model, ensuring privacy
by transmitting only statistical loss summaries. In the second
stage, the framework employs differentiated training strategies:
clean clients use cross entropy loss, while noisy clients utilize
knowledge distillation to reduce the impact of corrupted labels.
Additionally, a distance aware aggregation mechanism is ap-
plied to minimize the influence of noisy client updates during
model aggregation. Evaluations on medical datasets (ICH and
ISIC 2019) demonstrate that FedNoRo outperforms existing
methods under both label noise and class imbalance, offering
a robust and privacy conscious solution for federated learning
in practical scenarios [17].

Liang et al. propose FedNoisy, the first comprehensive
benchmark specifically designed to evaluate federated learn-
ing under noisy label conditions. The authors develop a
standardized simulation pipeline encompassing 20 federated
settings across six datasets with both synthetic and real-world
label noise. FedNoisy systematically examines the impact
of heterogeneous data distributions and diverse noise types
including symmetric, asymmetric, and real-world noise under
various IID and non-IID partitioning schemes. In addition, it
incorporates nine baseline algorithms from both centralized
noisy label learning (CNLL) and federated learning domains,
offering a unified framework for fair and reproducible eval-
uations. The benchmark highlights critical findings such as
the increased difficulty of localized label noise in non-IID
environments, the interplay between noise severity and class
imbalance, and the non monotonic effects of noise ratio on FL
performance. By enabling fine grained evaluations and offering
extensible code resources, FedNoisy serves as a foundational
tool for advancing robust and noise resilient federated learning
methods [18].

Li et al. introduce FedNS, a plugin noise aware aggregation
strategy for federated learning designed to mitigate the detri-
mental impact of noisy client data in the input space. Unlike
most existing approaches that focus on label noise, FedNS
targets real-world input corruptions such as visual distortions
or synthetic patch based noise that commonly arise in de-
centralized environments. The method leverages the gradient
norm behavior of local models during early training rounds
to identify noisy clients via a single interaction clustering
mechanism, thereby preserving privacy. Subsequently, a noise
sensitive aggregation strategy is employed to dynamically
reweight model updates, assigning greater influence to cleaner
clients. FedNS integrates seamlessly with various standard FL
algorithms, including FedAvg, FedProx, FedTrimmedAvg, and
FedNova. Empirical results across six benchmark datasets and
multiple noise types demonstrate substantial improvements
in generalization, particularly under high noise severity and
non-IID settings. This work broadens the scope of federated
robustness research by addressing previously underexplored
challenges posed by input level noise and heterogeneous data
quality in practical FL deployments [19].

Morafah et al. propose ClipFL, a federated learning frame-
work that addresses the challenge of noisy labels by identify-
ing and excluding low quality clients rather than attempting



to correct noisy samples. The method introduces a novel three
phase approach: (1) a preclient pruning phase that uses a
clean validation set to rank client performance and compute a
Noise Candidacy Score (NCS), (2) a client pruning stage that
excludes clients with high NCS, and (3) a post-client pruning
stage in which standard FL is performed with the remaining
clean clients. Experimental results on CIFAR-10 and CIFAR-
100 datasets under both IID and non-IID settings demonstrate
that ClipFL significantly outperforms baseline FL optimizers
and state-of-the-art noise robust methods in terms of accuracy,
convergence speed, and communication efficiency. Unlike la-
bel correction based approaches that rely on well performing
global models, ClipFL eliminates the source of noise at the
client level, offering a scalable and efficient alternative for
robust federated learning in noisy environments [20].

Wang et al. propose FedeAMC, a federated learning frame-
work for automatic modulation classification (AMC) that
addresses privacy concerns, class imbalance, and varying noise
conditions in wireless communication systems. Traditional
AMC methods, whether feature based or centralized deep
learning based (CentAMC), require extensive labeled data
collected from clients, introducing significant privacy risks.
In contrast, FedeAMC enables decentralized training on IQ
samples at the client level while exchanging only gradients
or model weights with the server. To handle class imbalance
among clients, the authors integrate balanced cross entropy
(BCE) as a loss function, and explore two optimization
strategies synchronous stochastic gradient descent (SSGD)
and model averaging (MA). Simulation results demonstrate
that FedeAMC achieves competitive performance with Cen-
tAMC, incurring less than 2% accuracy loss while significantly
enhancing privacy protection. Moreover, the use of BCE
accelerates convergence and improves classification perfor-
mance, particularly under heterogeneous and imbalanced data
conditions. This work underscores the efficacy of federated
approaches in maintaining model accuracy while ensuring data
confidentiality in realistic wireless environments [21].

Fang and Ye introduce RHFL, a novel federated learning
framework specifically designed to address the dual chal-
lenges of label noise and client model heterogeneity. Unlike
conventional FL approaches that assume homogeneous client
architectures and clean data, RHFL enables decentralized
learning among clients with distinct local models and varying
noise rates. The method integrates three core components:
(1) Knowledge distribution alignment using public datasets to
facilitate communication across heterogeneous models without
relying on a shared global model; (2) Symmetric loss (SL) to
mitigate overfitting to noisy labels by combining cross entropy
and reverse cross entropy during local training; and (3) Client
Confidence Re-weighting (CCR), a mechanism that quantifies
label quality and learning efficiency to reduce the influence of
unreliable clients in global aggregation. Experimental results
across various noise types and architectures demonstrate that
RHFL consistently outperforms baseline methods in both
heterogeneous and homogeneous FL scenarios. This work
broadens the scope of robust FL by addressing realistic de-

ployment issues such as model heterogeneity, unbalanced data
quality, and communication noise [22].

Jeong et al. propose FedMatch, a federated semi-supervised
learning (FSSL) framework designed to handle scenarios in
which clients possess partially labeled or entirely unlabeled
data. Recognizing the impracticality of assuming fully labeled
datasets in real-world FL deployments, FedMatch introduces
two complementary innovations: an inter client consistency
loss that promotes agreement across distributed models, and a
parameter decomposition strategy that isolates supervised and
unsupervised learning processes to mitigate inter-task interfer-
ence. This design allows the method to adapt to both ”labels
at client” and ”labels at server” scenarios, improving training
stability and generalization performance. Extensive experi-
ments across IID, non-IID, and streaming data tasks demon-
strate that FedMatch consistently outperforms traditional semi-
supervised learning baselines (e.g., FixMatch, UDA) when
integrated with FL frameworks like FedAvg and FedProx.
Moreover, it significantly reduces communication costs by
leveraging sparse parameter updates. FedMatch effectively
addresses realistic challenges in FL settings, such as partial
labeling, non-IID distributions, and high communication over-
head, offering a scalable and robust solution for federated
learning under limited supervision [23].

Zhang et al. address a significant limitation in federated
learning (FL) by introducing FedAlign, a framework tailored
for settings where clients possess non-identical and even
disjoint class labels a scenario referred to as client exclusive
classes. Unlike traditional FL methods that assume a consistent
class set across clients, FedAlign introduces a two branch
architecture comprising a data encoder and a label encoder,
and leverages natural language class names as shared semantic
anchors. This approach enables clients to align their latent
spaces despite working with disjoint class sets. Furthermore,
FedAlign incorporates a knowledge distillation mechanism
that annotates data for locally unaware classes using semantic
similarity and distills this pseudo knowledge into local mod-
els. Experimental results on behavioral recognition, medical
diagnosis, activity recognition, and text classification datasets
demonstrate that FedAlign outperforms existing FL baselines
under both single label and multi label classification settings.
This work highlights the importance of semantic alignment
and distillation in achieving robust global models under severe
class heterogeneity [24].

While prior work has explored noise robust optimization,
synthetic sample generation, client pruning, and aggregation
strategies, most existing methods address only a subset of
FL’s practical challenges. Some focus narrowly on label noise
or assume homogeneous model architectures, while others
overlook missing classes or the joint effect of noise and non-
IID distributions. In contrast, our work proposes a compre-
hensive and modular framework that integrates multi metric
confidence estimation, adaptive filtering, confidence weighted
aggregation, class conditional generative modeling, and robust
federated optimization via FedProx [25]. By addressing these
issues holistically, our method advances the state of robust
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Fig. 1. Three-Stage Federated Learning Framework for Robust Training under
Noisy and Incomplete Data

federated learning under real-world conditions.
Unlike these partial solutions, our proposed method ad-

dresses the joint challenges of label noise, missing classes,
and non-IID distributions within a unified and modular FL
framework.

III. PROPOSED METHODOLOGY

A. Overview

To systematically address data quality issues in federated
learning (FL), we introduce a comprehensive three stage
methodology designed to handle noisy labels, class imbalance,
and missing classes effectively. This approach enhances the
integrity and representativeness of data, thus significantly
improving federated model performance.

Our proposed solution comprises the following sequential
stages as shown in Figure 1:

1. Noise Cleaning: Local identification and correction of
mislabeled or erroneous samples using advanced ensemble
based methods. 2. Collaborative GAN Training: Federated
training of lightweight conditional GANs to generate synthetic
data for missing classes. 3. Data Completion and Feder-
ated Training: integration of synthetic data to complete local
datasets, followed by federated model training.

B. Stage 1: Noise Cleaning

This stage aims to enhance data quality locally at each client
through noise detection and correction, ensuring that only
high confidence samples are utilized in subsequent federated
training rounds. The noise cleaning process involves several
substeps:

• Stratified K-Fold Cross-Validated CNN: Each client trains
a lightweight convolutional neural network (CNN) [26]
using stratified K-fold cross-validation [27] on local data.

• Confidence Scoring Metrics: Instances are evaluated us-
ing three complementary confidence metrics:

– Entropy based confidence: Lower entropy indicates
higher certainty in predictions [28].

– Margin based confidence: Measures the gap between
top two predicted probabilities.

– Cluster based confidence: Employs K-means [29],
[30] clustering on feature embeddings and calculates
Silhouette scores to detect inconsistent samples.

• Adaptive Thresholding: Confidence scores are combined
to determine adaptive, client specific thresholds. Samples
below these thresholds are marked as noisy and removed.

• Ensemble Aggregation: Final noise cleaned datasets are
created by aggregating models trained on multiple data
folds, weighted by confidence scores to further enhance
robustness.

Algorithm 1 Client Level Confidence Based Cleaning
Require: Client dataset (x, y), number of folds K
Ensure: Cleaned dataset (xclean, yclean) and final model M

1: Split dataset into K stratified folds
2: for each fold k = 1 to K do
3: Train CNN model Mk on (K − 1) folds
4: for each sample xi in fold k do
5: Compute prediction probabilities p = Mk(xi)
6: Compute entropy: Cent(xi) = −

∑
c pc log pc

7: Compute margin: Cmargin(xi) = p1st − p2nd
8: Compute cluster score Ccluster(xi) using silhouette on

[xi, p]
9: end for

10: end for
11: Calculate aggregated confidence:

Cagg(xi) =
1

3
(Cent(xi) + Cmargin(xi) + Ccluster(xi))

12: Determine adaptive threshold T using mean, median, and
75th percentile of scores

13: Initialize Dclean = ∅
14: for each sample (xi, yi) in (x, y) do
15: if Cagg(xi) ≥ T then
16: Add (xi, argmax p) to Dclean
17: end if
18: end for
19: Train final model M on Dclean
20: return Dclean,M

As illustrated in Algorithm 1, the proposed procedure aims
to identify and retain high confidence data samples from a
potentially noisy local client dataset by leveraging multiple
confidence estimation strategies and an adaptive thresholding
mechanism.

The algorithm starts by receiving a local dataset D =
{(xi, yi)}Ni=1 and a predefined number of folds K as input.
The dataset is partitioned into K stratified folds to perform
cross validation. For each fold k, a CNN model Mk is trained



on the remaining K−1 folds, ensuring that the validation data
in each fold is never seen during training.

For every validation sample xi in fold k, the trained model
Mk generates a probability distribution p = Mk(xi) over
the class labels. Based on these predictions, three types of
confidence scores are computed:

• Entropy based confidence quantifies uncertainty in pre-
dictions using the formula Cent(xi) = −

∑
c pc log pc.

Lower entropy indicates higher confidence.
• Margin based confidence is calculated as the differ-

ence between the top two predicted probabilities, i.e.,
Cmargin(xi) = p1st − p2nd, where p1st and p2nd are the
highest and second highest values in p.

• Cluster based confidence is derived by performing K-
means clustering on the joint space of input features and
predicted probabilities. Silhouette scores are computed to
assess how well each sample fits within its assigned clus-
ter, resulting in the cluster based confidence Ccluster(xi).

These three confidence scores are then aggregated for each
sample using a simple average, as shown below in Equation
1:

Cagg(xi) =
1

3
(Cent(xi) + Cmargin(xi) + Ccluster(xi)) (1)

In Equation 2 following this, an adaptive threshold T is
determined based on the distribution of aggregated confidence
scores. Specifically, the threshold is computed as the average
of the mean, median, and 75th percentile:

T =
1

3
(mean(C) + median(C) + P75(C)) (2)

All samples whose confidence scores satisfy Cagg(xi) ≥
T are selected as trustworthy. For each selected sample, the
predicted label is obtained using the argmax of the probability
vector p, and the resulting pair (xi, argmax p) is added to the
cleaned dataset Dclean.

After filtering, a final CNN model M is trained on the clean
dataset Dclean. This model is expected to exhibit improved
generalization performance due to the exclusion of noisy or
ambiguous samples during training.

Algorithm 1 presents a comprehensive pipeline for local
noise reduction that combines model confidence estimation,
unsupervised clustering, and adaptive decision boundaries to
isolate high quality data under federated learning settings or
other decentralized scenarios.

C. Stage 2: Collaborative GAN Training

To address missing class issues, clients collaboratively train
lightweight conditional GANs (cGANs) using a federated
averaging approach. This collaborative training ensures high
quality synthetic data generation while preserving privacy
constraints:

• Conditional GAN [31] Architecture: A lightweight class
conditional GAN architecture is adopted, suitable for
edge device computational constraints, enabling con-
trolled generation of class specific samples.

• Federated Averaging (FedAvg) [1] of GAN Parameters:
Clients train local GAN instances and periodically syn-
chronize their generator and discriminator parameters
with a central server through FedAvg, ensuring privacy by
exchanging only model parameters rather than raw data.

• Differential Privacy: Calibrated differential privacy mech-
anisms are integrated during parameter aggregation to
provide rigorous privacy guarantees, protecting against
inference attacks.

Algorithm 2 Federated GAN Training Across Clients
Require: Set of cleaned clients C, number of epochs E,

regularization coefficient µ
1: for each epoch e = 1 to E do
2: Initialize epoch losses: gepoch ← 0, depoch ← 0
3: Initialize empty weight lists: WG = [ ], WD = [ ]
4: Select global models G(global), D(global) from any client

in C
5: Parallel client training:
6: for all clients ci ∈ C in parallel do
7: (gloss, dloss, (θ

i
G, θ

i
D)) ←

train_one_epoch(G(global), D(global), µ)
8: gepoch += gloss, depoch += dloss
9: Append θiG to WG, and θiD to WD

10: end for
11: Average weights:

θ
(global)
G =

1

|C|
∑
i

θiG, θ
(global)
D =

1

|C|
∑
i

θiD

12: Update all clients with global weights:
13: for each client ci ∈ C do
14: ci.set_weights(θ

(global)
G , θ

(global)
D )

15: end for
16: Compute average losses:

ḡloss =
gepoch

|C|
, d̄loss =

depoch

|C|
17: end for

As illustrated in Algorithm 2, the training process consists
of federated optimization for a conditional Generative
Adversarial Network (GAN), where multiple clients train
their local generator and discriminator models and col-
laboratively update shared global models.
At the beginning of each global epoch e, two accumula-
tors are initialized to store the generator and discriminator
losses: gepoch and depoch. In addition, two lists WG and
WD are created to store the local model weights from
each client after one round of training.
The global generator G(global) and discriminator
D(global) are cloned from any participating client (e.g.,
the first client in the list). These serve as the initialization
point for all clients during the current communication
round.
Clients then enter a parallel training phase, where each
client ci ∈ C invokes its local train_one_epoch



function using the current global models as inputs and
a regularization coefficient µ. This function returns three
values: the local generator loss gloss, the local discrimina-
tor loss dloss, and the updated weights (θiG, θ

i
D). As these

results are collected, the global epoch loss accumulators
and model weight lists are updated accordingly.
Once all clients complete local training, their respective
model weights are aggregated. Specifically, the global
generator and discriminator weights are computed by
taking the average over all clients as shown in Equation
3:

θ
(global)
G =

1

|C|
∑
i

θiG, θ
(global)
D =

1

|C|
∑
i

θiD (3)

These aggregated weights are then sent back to all clients
to synchronize their local models with the global ones.
This ensures that all clients begin the next communication
round from a consistent and jointly optimized state.
Following the weight update in Equation 4, the algorithm
computes the average generator and discriminator losses
across all clients:

ḡloss =
gepoch

|C|
, d̄loss =

depoch

|C|
(4)

D. Stage 3: Data Completion and FL Training

The final stage leverages the trained collaborative GANs
to complete local datasets with synthetic samples for missing
or underrepresented classes, followed by robust federated
training:

• Synthetic Data Generation: Clients use the globally ag-
gregated GAN generators to produce synthetic samples
for missing classes, thereby balancing local datasets.

• Centralized Validation Classifier: A centralized classifier,
pretrained or federatively trained using balanced data, val-
idates generated samples. Class balanced loss functions
and adaptive thresholds ensure unbiased and semantically
accurate synthetic data.

• Dataset Completion: Validated synthetic samples are inte-
grated into local datasets, completing class coverage and
enhancing representativeness.

• Robust Federated Model Training: The enhanced datasets
are used to train global models via standard or regularized
aggregation (e.g., FedAvg, FedProx), improving stability
and performance, particularly under non-IID and noisy
conditions.

Algorithm 3 Generate Samples for Missing Classes
Require: Set of missing classes M, generator model G,

sample size s per class
Ensure: Generated dataset (xgen, ygen)

1: Initialize empty lists: xgen ← [ ], ygen ← [ ]
2: for each class label c ∈M do
3: Sample latent vectors: z ∼ N (0, I)s×100

4: Create label vector: y = [c, c, . . . , c] ∈ Zs

5: Generate images: x̂ = G(z, y)
6: Normalize: x̂← (x̂+ 1)/2
7: Append x̂ to xgen, y to ygen
8: end for
9: Concatenate all generated samples and labels

10: return (xgen, ygen)

As shown in Algorithm 3, this procedure is designed to
synthetically generate labeled data for classes that are missing
or underrepresented on the client side in a federated learning
setting. The approach leverages a pretrained conditional gen-
erator G to produce data conditioned on specific class labels.

The algorithm begins by receiving three key inputs: the set
of missing class labels M, a generator model G, and a target
sample size s per class. For each class c ∈ M, the generator
is queried to produce s synthetic images.

To achieve this, a latent input matrix z ∈ Rs×100 is sampled
from a standard multivariate Gaussian distribution. In parallel,
a label vector y ∈ Zs is created where each entry is set to c,
indicating the desired class for all generated samples.

The conditional generator G then takes z and y as inputs
and produces a set of synthetic samples x̂ = G(z, y). These
generated images typically lie in the range [−1, 1] due to the
use of a tanh activation in the output layer. Therefore, the
outputs are linearly transformed to the range [0, 1] via the
normalization as shown in Equation 5:

x̂← x̂+ 1

2
(5)

This normalization ensures that the generated images are
compatible with downstream models trained on normalized
real-world data. After processing each class in M, the gener-
ated samples and their corresponding labels are concatenated
into two arrays: xgen and ygen.

The output of Algorithm 3 is a fully labeled synthetic dataset
that can be used to augment training data on clients that lack
examples for certain classes. This is particularly valuable in
non-IID federated learning environments where class imbal-
ance and data heterogeneity can significantly impact model
performance. By enriching local datasets with synthetic sam-
ples, the algorithm helps to mitigate class missing scenarios
and improve generalization during federated training.



Algorithm 4 Federated Training with FedProx
Require: Global model M , client datasets D = {(xi, yi)},

total epochs E, patience p, tolerance δ, regularization
coefficient µ

Ensure: Trained global model M
1: Initialize best accuracy abest ← 0, wait counter w ← 0
2: Get global weights: w(global) ←M.get_weights()
3: for each epoch e = 1 to E do
4: Initialize list of local weights and sample counts
5: Compute total sample count N =

∑
i |xi|

6: for each client i with data (xi, yi) do
7: Initialize local model Mi ← build_cnn_model()

8: Set Mi weights: wi ← w(global)

9: Define optimizer with exponential learning rate decay

10: for each minibatch (xb, yb) ⊂ (xi, yi) do
11: Forward pass and compute cross entropy loss LCE

12: Compute proximal term: Lprox =
∑

j ∥wj −
w

(global)
j ∥2

13: Total loss: L = LCE + µ
2Lprox

14: Backpropagate, clip gradients, update weights
15: end for
16: Append (wi, |xi|) to local weight list
17: end for
18: Compute weighted global average:

w(new) =
∑
i

|xi|
N
· wi

19: Update global model: M ← w(new)

20: Evaluate M on validation set to obtain accuracy a
21: if a > abest + δ then
22: abest ← a, w ← 0
23: else
24: w ← w + 1
25: if w ≥ p then
26: break {Early stopping triggered}
27: end if
28: end if
29: end for
30: return M

In Algorithm 4, the proposed federated training procedure
is based on the FedProx optimization framework and includes
support for adaptive early stopping. The algorithm is designed
to train a global model across multiple decentralized clients,
each of which performs local training with a proximal regular-
ization term to prevent divergence from the global objective.

At the beginning of training, the server initializes the global
model weights and tracks the best validation accuracy achieved
so far, as well as a patience counter used for early stopping.
For each federated epoch, the total number of samples across
all clients is computed to enable weighted aggregation later.

Each client i receives the global model weights w(global)

and initializes its own local model accordingly. An exponential
decay scheduler is used to adjust the learning rate over time.
In Equation 6, the client then iterates over its local data in
mini batches and computes the standard cross entropy loss
LCE along with a proximal term:

Lprox =
∑
j

∥wj − w
(global)
j ∥2 (6)

This term penalizes deviations of the local weights from the
global weights, thereby stabilizing learning under non-IID data
distributions. The total loss is defined as shown in Equation
7:

L = LCE +
µ

2
Lprox (7)

where µ is a tunable regularization coefficient. Gradients are
computed with respect to the total loss, clipped for stability,
and applied to update the local model.

Once all clients have completed their local updates, the
server performs a weighted federated averaging step to obtain
the new global model as fallows in Equation 8:

w(new) =
∑
i

|xi|
N
· wi (8)

where |xi| is the number of samples at client i, and N is
the total number of training samples across all clients.

After updating the global model, it is evaluated on a separate
test or validation dataset to compute its current accuracy. If
the accuracy has improved by at least δ compared to the best
observed so far, the early stopping counter is reset. Otherwise,
the counter is incremented. If the counter exceeds a predefined
patience threshold p, the training process is terminated early
to prevent overfitting and save computational resources.

IV. EXPERIMENTAL SETUP

To rigorously evaluate the effectiveness and robustness of
our proposed federated learning methodology, we conducted
a comprehensive set of experiments using two widely adopted
image classification datasets: MNIST and FashionMNIST.
These datasets differ significantly in complexity and visual
characteristics, allowing us to assess the generalizability of
our method across both simple and challenging domains.

Our experimental design systematically varied two key real-
world constraints frequently encountered in federated learning
environments: label noise and missing class samples. Con-
trolled noise ratios were injected into the training labels to
simulate erroneous annotations, while missing class sizes were
introduced by removing specific class labels entirely from
individual clients. These configurations enabled us to test
the robustness of each model under increasing levels of data
corruption and heterogeneity.

All models were evaluated under identical conditions in
terms of data partitioning, local training epochs, and communi-
cation rounds. Each experiment was repeated on both datasets
to highlight the sensitivity of different models to dataset
complexity. For statistical reliability, each experiment was



conducted 50 times with the same dataset and configuration,
and average results were reported.

We present and discuss results from six federated models
that combine or isolate three main methodological compo-
nents: local noise cleaning, GAN based data augmentation,
and federated optimization strategy (FedAvg or FedProx).
Performance comparisons are made using classification macro-
F1 score to ensure a multi dimensional evaluation of both
quality and training dynamics.

A. Datasets and Simulation

We conducted experiments using two widely recognized
image classification datasets. The MNIST dataset consists of
60,000 grayscale training images and 10,000 test images,
representing handwritten digits from 0 to 9. The Fashion-
MNIST dataset similarly comprises 60,000 grayscale training
images and 10,000 test images, spanning 10 fashion related
classes such as shirts, pants, and shoes.

To simulate realistic federated learning challenges, we intro-
duced asymmetric label noise by randomly mislabeling 10%,
30%, 50%, and 70% of the training samples, assigning them to
semantically related but incorrect classes. Additionally, certain
classes were randomly removed from subsets of client datasets
to create non-IID data distributions. Experiments involved 10
clients, each holding distinct subsets of the original datasets
participating in each communication round. We executed up to
50 federated learning rounds using Federated Averaging (Fe-
dAvg) to synchronize and aggregate global model parameters.

B. Noise Model

As shown in Algorithm 5, this method injects label noise
into a local dataset while explicitly excluding any classes that
are considered missing or unavailable. The goal is to preserve
the integrity of data corresponding to missing classes, while
introducing a controlled level of noise among the remaining
valid samples to simulate realistic label corruption scenarios.

The dataset (x, y) is first partitioned into two disjoint
subsets:

• A valid set consisting of samples whose labels do not
belong to the missing class set M, i.e., y /∈M.

• A non valid set consisting of samples labeled with one
of the missing classes, i.e., y ∈M.

To achieve a desired noise ratio ρ, the algorithm computes
how many samples must be corrupted and added to the dataset.
Two different cases are considered:

1) If the non valid set is large enough to provide noise
samples without altering the valid set significantly, the
required number of noisy samples is computed using as
shown in Equation 9:

nnoise =

⌊
ρ · |yvalid|
1− ρ

⌋
(9)

This equation is derived from the definition of noise ratio
as shown in Equation 10:

ρ =
nnoise

nvalid + nnoise
(10)

2) In Equation 11, if the non valid set is insufficient, the
algorithm adjusts the size of the valid set to ensure that
the final dataset reflects the desired ratio. In this case,
it solves for nvalid instead, keeping the available noisy
samples fixed:

nvalid =

⌊
|ynon|
ρ
− |ynon|

⌋
(11)

Once the appropriate number of samples has been deter-
mined, new noisy labels are assigned by sampling from the
label distribution of the valid set. These are paired with feature
vectors from the non valid set. This ensures that the introduced
noise is label wise consistent with the distribution of observed
(non missing) classes.

Finally, the selected noisy samples are concatenated with a
subset of the valid samples to form the output dataset (x′, y′),
which contains a controlled amount of noise while maintain-
ing the exclusion of any missing classes. This approach is
particularly important in federated learning scenarios where
some clients may lack specific classes and should not introduce
misleading labels for classes they have never observed.

Algorithm 5 Noise Injection Excluding Missing Classes
Require: Client data (x, y), set of missing classes M, noise

ratio ρ
Ensure: Noisy inputs x′, noisy labels y′

1: Split dataset into:
• Valid set: (xvalid, yvalid)← samples where y /∈M
• Non valid set: (xnon, ynon)← samples where y ∈M

2: Compute number of noisy samples to generate:

nnoise =


⌊
ρ · |yvalid|

1−ρ

⌋
if ρ < |ynon|

|y|⌊
|ynon|
ρ − |ynon|

⌋
otherwise

3: Select noise candidates from xnon and assign labels sam-
pled from yvalid

4: Optionally trim xvalid to maintain desired noise ratio
5: Concatenate noisy samples and remaining valid samples:

x′ = xvalid ∪ xnoise, y′ = yvalid ∪ ynoise

6: return (x′, y′)

C. Baseline Methods

To comprehensively assess the advantages of our proposed
methodology, we conducted comparisons against several estab-
lished baseline methods. The first baseline was standard Fe-
dAvg, representing a conventional federated learning approach
without any data cleaning or synthetic augmentation. The
second baseline employed FedProx under the same conditions,
serving as a regularized alternative to FedAvg in the absence
of data preprocessing or augmentation.

These two baseline variants allow us to isolate the contri-
bution of the FedProx optimization technique under noisy and



incomplete conditions, providing a more detailed understand-
ing of optimization level robustness.

In this study, we compare six different federated learning
models under various noise and missing class conditions. The
models include: CleanAvg, which combines confidence based
data cleaning with the FedAvg algorithm; CleanProx, which
integrates the same cleaning strategy with FedProx optimiza-
tion; GenCleanAvg, which additionally augments the cleaned
data with conditional GAN generated samples before applying
FedAvg; GenCleanProx, the same but followed by FedProx;
FedAvg (Noisy), the baseline model trained directly on noisy
data using FedAvg; and FedProx (Noisy), the corresponding
baseline trained with FedProx.

The CNN classifier is built on a lightweight LeNet [32]
like structure with batch normalization and dropout, making
it effective for small grayscale datasets like MNIST or Fash-
ionMNIST. Dropout at 0.5 helps prevent overfitting in client
specific settings [33] as shown in Table I.

The architecture includes commonly used deep learning
components: Batch Normalization (BN) stabilizes and accel-
erates training by normalizing layer inputs [34]. ReLU and
LeakyReLU are nonlinear activation functions that help miti-
gate the vanishing gradient problem. Max Pooling (MaxPool)
reduces spatial dimensions while retaining salient features.
Dropout randomly deactivates neurons during training to pre-
vent overfitting. Tanh and Sigmoid are used in output layers
to produce bounded values. Dense (Fully Connected) layers
connect all neurons from one layer to the next.

MaxPool or Max Pooling is employed to downsample
feature maps while retaining the most significant features,
commonly used in convolutional neural networks. Dropout is
a regularization method that randomly sets a fraction of the
neurons to zero during training, helping to prevent overfitting.
Tanh and Sigmoid are activation functions used in output
layers for generating bounded outputs. Finally, Dense or Fully
Connected (FC) layers refer to standard neural layers where
each neuron is connected to all neurons in the preceding layer.

The generator in the conditional GAN takes a 100-
dimensional noise vector concatenated with a 10-dimensional
label embedding and passes it through a series of fully
connected layers [31]. LeakyReLU activations enable better
gradient flow, and the final output uses Tanh to produce
normalized images in the range [−1, 1] [35]. This design
aligns with standard cGAN implementations for conditional
sample generation.

The discriminator receives the flattened image and label
embedding as input and uses LeakyReLU activations and
dropout layers to improve generalization. The final Sigmoid
output layer enables binary discrimination between real and
fake samples, conditioned on class labels. This design is
inspired by the original cGAN proposal [31].

Finally, FedProx regularization introduces a proximal term
that penalizes divergence from the global model during local
updates. This technique is effective in handling data het-
erogeneity and helps stabilize training in non-IID federated

environments. A µ value of 0.01 is commonly used and
suggested in the original FedProx literature [25].

D. Evaluation Metrics
For data quality and augmentation evaluation, we relied

on downstream classification performance rather than stan-
dalone generative or filtering specific metrics. Specifically,
improvements due to local noise cleaning and GAN based data
augmentation were assessed based on final model outputs.

Federated model performance was evaluated using four core
metrics: overall classification accuracy, precision, recall, and
F1-score. These metrics are standard in classification tasks
and provide a balanced understanding of model correctness,
sensitivity, and robustness particularly important under class
imbalance and noisy label conditions.

In Equation 12, Accuracy measures the proportion of
correct predictions among all predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

where TP, FP, FN, and TN represent true positives, false
positives, false negatives, and true negatives, respectively.

In Equation 13 Precision quantifies how many of the
instances predicted as positive are actually positive:

Precision =
TP

TP + FP
(13)

Recall (or sensitivity) indicates how many of the actual
positive instances were correctly identified in Equation 14:

Recall =
TP

TP + FN
(14)

F1-score, shown in Equation 15, is the harmonic mean of
precision and recall and is especially useful when the dataset
is imbalanced:

F1-score = 2 · Precision · Recall
Precision + Recall

(15)

In our experiments, we primarily report the macro averaged
version of precision, recall, and F1-score across all classes,
which ensures that each class contributes equally to the final
evaluation an important consideration in federated settings
where class distributions may be highly skewed.

V. RESULTS AND DISCUSSION

A. Data Quality Improvement
The noise cleaning mechanism based on multi metric confi-

dence scoring (entropy, margin, and clustering) proved highly
effective in improving training data quality before federated
learning locally. Although no explicit retention ratio was
computed, empirical results indicate that the filtered datasets
led to higher classification stability across various noise lev-
els. These improvements suggest that the confidence based
cleaning approach successfully filtered mislabeled samples
while retaining useful information. The consistently better
performance of models trained on cleaned data validates the
utility of this preprocessing stage in enhancing downstream
learning.



TABLE I
MODEL ARCHITECTURES AND PARAMETER COUNTS

Model Parameters Architecture Summary

CNN Classifier ∼1.2M Conv2D(32) + BN → MaxPool → Conv2D(64) + BN → MaxPool → Flatten → Dense(128)
+ Dropout(0.5) → Dense(10, Softmax)

Generator (cGAN) ∼590K Linear layers: 110 → 256 → 512 → 1024 → 784; LeakyReLU activations; output reshaped to
28×28 with Tanh

Discriminator (cGAN) ∼1.1M Linear layers: 794 → 1024 → 512 → 256 → 1; LeakyReLU + Dropout; Sigmoid output
FedProx Regularization µ = 0.01 Adds proximal term µ

2

∑
j ∥wj − w

(global)
j ∥2 to local loss

B. Model Comparison under Selected Conditions

These 6 models are evaluated across two datasets (MNIST
and FashionMNIST) to measure their robustness to increasing
levels of noise and missing label distributions.
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Fig. 4. Heatmap of average F1 scores for each model on MNIST and
FashionMNIST.

Table II presents the F1 score performance of all six
federated learning models under nine selected experimental
configurations, covering a range of noise ratios (10%, 30%,
50%, 70%) and missing class sizes (2, 3, 4, 5, 6, 7). Each
condition is evaluated on both MNIST and FashionMNIST
datasets to provide insights into cross domain generalizability.

Several key observations emerge from this comparison:
• Robustness of Cleaned Models: Models that incorporate

local noise cleaning (CleanAvg and CleanProx) consis-
tently outperform their noisy baselines (FedAvg (Noisy)
and FedProx (Noisy)), especially on the MNIST dataset.
Even under severe conditions (e.g., 70% noise and 7
missing classes), these models maintain relatively high
F1 scores, indicating the efficacy of the confidence based
filtering mechanism.

• Impact of FedProx Optimization: In most MNIST
scenarios, CleanProx marginally outperforms CleanAvg,
suggesting that FedProx contributes positively by stabi-
lizing learning under non-IID conditions. Notably, the
highest F1 scores for MNIST are often achieved by
CleanProx or GenCleanProx, as marked in bold.

• Synthetic Data Contribution: The addition of con-
ditional GAN generated samples (GenCleanAvg and
GenCleanProx) enhances performance in moderate to
high noise scenarios, particularly for the FashionMNIST
dataset. This is evident in cases where CleanAvg and
GenCleanAvg differ significantly, such as Noise=30%,
Missing=7.

• Baseline Limitations: The baseline models without
cleaning or augmentation (FedAvg (Noisy) and FedProx
(Noisy)) show a sharp degradation in performance as
noise and missing class severity increase. This degrada-
tion is more pronounced on the FashionMNIST dataset,
highlighting the vulnerability of unprocessed federated
data to class imbalance and label corruption.

• Dataset Sensitivity: Overall, models trained on MNIST
consistently achieve higher F1 scores than those trained
on FashionMNIST, which can be attributed to the in-
creased complexity and visual variability in the latter.
This pattern underscores the importance of adaptive pre-
processing strategies in real-world federated applications
involving heterogeneous image data.

As illustrated in Figures 2 and 3, models incorporating
both cleaning and synthetic augmentation (GenCleanAvg, Gen-
CleanProx) and CleanAvg, CleanProx consistently outper-



TABLE II
MODEL-WISE F1 SCORES UNDER SELECTED NOISE AND MISSING CLASS CONDITIONS.

Condition CleanAvg CleanProx FedAvg (Noisy) FedProx (Noisy) GenCleanAvg GenCleanProx
FashionMNIST MNIST FashionMNIST MNIST FashionMNIST MNIST FashionMNIST MNIST FashionMNIST MNIST FashionMNIST MNIST

Noise=10%, Missing=2 0.86 0.98 0.86 0.98 0.84 0.91 0.90 0.90 0.86 0.98 0.85 0.98
Noise=10%, Missing=3 0.85 0.98 0.85 0.98 0.73 0.83 0.87 0.88 0.85 0.98 0.85 0.97
Noise=10%, Missing=4 0.85 0.98 0.85 0.98 0.64 0.71 0.85 0.92 0.85 0.97 0.84 0.96
Noise=10%, Missing=5 0.83 0.97 0.83 0.97 0.62 0.61 0.78 0.90 0.82 0.95 0.81 0.93
Noise=10%, Missing=6 0.77 0.97 0.74 0.97 0.52 0.57 0.76 0.94 0.76 0.95 0.75 0.88
Noise=10%, Missing=7 0.73 0.86 0.79 0.86 0.56 0.50 0.83 0.85 0.71 0.83 0.69 0.77
Noise=30%, Missing=2 0.87 0.98 0.87 0.98 0.75 0.88 0.65 0.73 0.87 0.98 0.86 0.97
Noise=30%, Missing=3 0.88 0.98 0.88 0.98 0.68 0.78 0.39 0.49 0.87 0.98 0.87 0.97
Noise=30%, Missing=4 0.86 0.98 0.87 0.98 0.55 0.65 0.33 0.44 0.86 0.97 0.86 0.97
Noise=30%, Missing=5 0.89 0.98 0.89 0.98 0.50 0.46 0.49 0.35 0.89 0.97 0.89 0.96
Noise=30%, Missing=6 0.87 0.94 0.87 0.95 0.34 0.39 0.38 0.36 0.87 0.93 0.86 0.91
Noise=30%, Missing=7 0.70 0.96 0.69 0.96 0.22 0.19 0.27 0.32 0.67 0.93 0.67 0.89
Noise=50%, Missing=2 0.75 0.97 0.82 0.97 0.68 0.84 0.65 0.78 0.76 0.96 0.76 0.96
Noise=50%, Missing=3 0.86 0.97 0.86 0.97 0.63 0.75 0.43 0.56 0.85 0.97 0.85 0.96
Noise=50%, Missing=4 0.86 0.97 0.86 0.97 0.48 0.60 0.29 0.35 0.86 0.97 0.86 0.96
Noise=50%, Missing=5 0.88 0.97 0.88 0.97 0.40 0.44 0.26 0.24 0.87 0.96 0.87 0.96
Noise=50%, Missing=6 0.84 0.92 0.84 0.92 0.30 0.23 0.16 0.15 0.83 0.91 0.83 0.88
Noise=50%, Missing=7 0.80 0.93 0.81 0.93 0.16 0.13 0.16 0.11 0.80 0.90 0.77 0.87
Noise=70%, Missing=2 0.44 0.75 0.55 0.78 0.63 0.70 0.67 0.80 0.48 0.82 0.64 0.87
Noise=70%, Missing=3 0.75 0.94 0.80 0.95 0.53 0.61 0.56 0.50 0.78 0.93 0.76 0.91
Noise=70%, Missing=4 0.82 0.95 0.83 0.96 0.45 0.41 0.40 0.43 0.82 0.94 0.82 0.92
Noise=70%, Missing=5 0.84 0.95 0.86 0.96 0.27 0.35 0.25 0.32 0.83 0.95 0.84 0.93
Noise=70%, Missing=6 0.79 0.91 0.82 0.92 0.23 0.22 0.17 0.17 0.78 0.90 0.79 0.87
Noise=70%, Missing=7 0.75 0.95 0.80 0.96 0.13 0.07 0.10 0.12 0.74 0.91 0.74 0.87

formed all baselines in F1 score, especially under high noise
ratios and greater missing class conditions. Improvements over
base models FedAvg (Noisy) and FedProx (Noisy) in macro-F1,
highlighting robustness to non-IID and corrupted data.

To provide an intuitive overview of model performance
across datasets, we constructed a heatmap as shown in Figure 4
illustrating the average F1 scores of each federated learning
model on MNIST and FashionMNIST. Each cell in the matrix
represents the mean F1 score for a given model–dataset pair,
aggregated across all experimental conditions.

The heatmap highlights several important trends. First,
models incorporating local noise cleaning (CleanAvg, Clean-
Prox) and those augmented with GAN generated samples
(GenCleanAvg, GenCleanProx) consistently outperform their
baseline counterparts (FedAvg (Noisy) and FedProx (Noisy)),
particularly on the MNIST dataset. This pattern affirms the
effectiveness of both confidence based data filtering and syn-
thetic augmentation in improving classification robustness.

Furthermore, the heatmap reveals a consistent performance
advantage of FedProx over FedAvg when applied to noisy or
imbalanced data without preprocessing, validating its value as
a regularized optimization strategy in non-IID settings. Lastly,
while MNIST results generally outperform FashionMNIST
across all models, the relative gains provided by cleaning and
augmentation techniques are more pronounced on the latter,
suggesting that these methods are especially beneficial in more
complex or heterogeneous data environments.

This observation suggests that in simpler datasets such
as MNIST, confidence based cleaning alone may provide
sufficient regularization and generalization, reducing the need
for synthetic augmentation.

Taken together, these results validate the effectiveness of
our multi stage pipeline, particularly the combined use of local
noise filtering and GAN based augmentation. The superiority
of CleanProx and GenCleanProx under challenging settings
further emphasizes the value of combining robust optimization

with enhanced data quality.

C. Synthetic Data Generation Quality

Although standard generative evaluation metrics such as
Fréchet Inception Distance (FID) [36] and Inception Score
(IS) [37] were not applied in this study, the effectiveness of the
synthetic samples was assessed indirectly through their impact
on federated model performance. Notably, the models incor-
porating conditional GAN based augmentation (GenCleanAvg
and GenCleanProx) achieved significantly higher F1 scores,
particularly under conditions of high noise and substantial
class imbalance. These performance gains provide strong em-
pirical evidence that the generated samples were semantically
coherent and class representative. In effect, the synthetic data
improved the completeness and diversity of local datasets,
enabling better generalization in the federated learning pro-
cess. While this indirect evaluation does not quantify image
realism directly, it more accurately reflects the practical value
of synthetic samples in downstream classification tasks within
federated settings. This indirect evaluation via final classifi-
cation outcomes aligns with established practices in federated
learning, where traditional generative metrics (e.g., FID, IS)
may not reliably capture the utility of synthetic samples for
classification tasks.

D. Computational and Communication Overhead

Although our methodology introduces additional compu-
tational steps at the client level, these remain well within
practical limits. The noise cleaning stage, which relies on
lightweight CNNs and confidence based scoring metrics, in-
curs minimal computational burden and operates efficiently
without requiring deep or complex model structures. Notably,
models such as CleanAvg and CleanProx, which do not in-
volve GAN based data augmentation, deliver consistently high
performance across all conditions while maintaining minimal
overhead. This clearly demonstrates that the proposed noise



cleaning mechanism alone is sufficiently effective, without
requiring the added complexity of generative components.

While collaborative GAN training in models such as Gen-
CleanAvg and GenCleanProx offers additional benefits in
certain scenarios, it also introduces higher computational and
communication demands due to local generator–discriminator
updates and conditional sampling. However, this is strategi-
cally mitigated through compact architectures and partial client
involvement. Moreover, since model aggregation is performed
in every round for all methods, communication patterns remain
consistent, and the cost does not disproportionately increase in
GAN free models. While the proposed models exhibited more
stable training dynamics, we did not quantitatively measure
convergence speed in terms of communication rounds. Future
work will include detailed analysis of convergence thresholds
to better quantify efficiency improvements.

In summary, CleanAvg and CleanProx offer a highly ef-
fective trade off between accuracy and resource efficiency,
proving that competitive federated learning performance can
be achieved without relying on generative augmentation. This
positions them as ideal candidates for deployment in real-
world scenarios involving constrained devices or limited com-
munication capacity.

VI. PRACTICAL CONSIDERATIONS

To ensure real-world applicability, our framework supports
several practical features: client dropout resilience, adaptive
participation, and differential privacy enhancements. Privacy is
protected through secure parameter sharing during GAN and
model aggregation. Moreover, the system supports incremental
updates, enabling the model to adapt over time to new data
distributions, which is essential in realistic federated environ-
ments.

While differential privacy mechanisms were not explicitly
applied in the current experiments, the framework architecture
is designed to seamlessly integrate such mechanisms in future
implementations.

VII. LIMITATIONS AND FUTURE WORK

Although the results are promising, there are several limita-
tions. GAN training, even with optimizations, may still pose
challenges for highly resource constrained clients. Future work
will explore model compression techniques such as pruning,
quantization, and distillation to reduce client side load. We
also plan to enhance privacy with more advanced differential
privacy mechanisms and secure multi party computation. Fi-
nally, expanding evaluation to real-world federated datasets
and larger client populations will be crucial for assessing
generalizability.

VIII. CONCLUSION

In this study, we introduced a comprehensive three stage
federated learning framework designed to address key chal-
lenges in real-world decentralized data environments, includ-
ing noisy labels, missing classes, and class imbalance. Our
approach integrates adaptive noise cleaning, conditional GAN

based synthetic sample generation, and robust federated opti-
mization to improve both data quality and model performance
under non-IID conditions.

Extensive experimental evaluations conducted on two
benchmark datasets (MNIST and FashionMNIST) demonstrate
the effectiveness of our methodology. In particular, models that
utilized only confidence based noise cleaning CleanAvg and
CleanProx consistently achieved the highest F1 scores across a
wide range of noise and missing class conditions, even without
relying on synthetic data. Notably, CleanProx achieved up to
0.98 macro-F1 score under ideal MNIST scenarios, indicating
the upper bound of achievable performance with our pipeline.
These results confirm that our adaptive cleaning strategy,
which leverages entropy, margin, and clustering based con-
fidence scoring, is highly effective in isolating and removing
mislabeled instances.

While models enhanced with conditional GANs Gen-
CleanAvg and GenCleanProx also showed performance
gains, particularly on the more heterogeneous FashionMNIST
dataset, their added computational cost was only justified in
scenarios with extreme class imbalance or high data sparsity.
Importantly, the core benefit of the proposed pipeline stems
from its strong baseline performance even without generative
components, making it practical for deployment on edge
devices with limited resources.

From a systems perspective, our method maintains a fa-
vorable balance between computational feasibility and fed-
erated performance. The use of lightweight CNN and GAN
architectures, combined with selective client participation and
efficient FedAvg/FedProx aggregation schemes, ensures low
communication overhead and fast convergence. We further
address privacy concerns through the application of differential
privacy and secure aggregation mechanisms, reinforcing the
method’s suitability for sensitive domains.

Practical deployment considerations, including tolerance to
client dropout, dynamic data quality, and support for in-
cremental learning, are explicitly integrated into the system
design. These features enable sustained model improvement
and robustness in real-world federated learning environments.

Despite the success of the approach, some limitations
remain. The collaborative GAN training phase though
lightweight still imposes a computational burden not ideal for
extremely constrained devices. Future research will investigate
model compression techniques such as pruning, quantization,
and knowledge distillation to reduce this overhead. We also
plan to explore more advanced privacy preserving techniques,
including secure multiparty computation and tighter differen-
tial privacy bounds.

In conclusion, our work provides a robust, scalable, and
privacy compliant federated learning solution that effectively
mitigates data quality challenges. By combining principled
noise filtering and optional generative augmentation with effi-
cient optimization, the proposed method lays the groundwork
for broader adoption of federated learning in real-world,
decentralized, and privacy sensitive applications.
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