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Abstract

Large Language Models (LLMs) are increasingly embedded in autonomous sys-
tems and public-facing environments, yet they remain susceptible to jailbreak
vulnerabilities that may undermine their security and trustworthiness. Adversarial
suffixes are considered to be the current state-of-the-art jailbreak, consistently out-
performing simpler methods and frequently succeeding even in black-box settings.
Existing defenses rely on access to the internal architecture of models limiting
diverse deployment, increase memory and computation footprints dramatically,
or can be bypassed with simple prompt engineering methods. We introduce Ad-
versarial Suffix Filtering (ASF), a lightweight novel model-agnostic defensive
pipeline designed to protect LLMs against adversarial suffix attacks. ASF functions
as an input preprocessor and sanitizer that detects and filters adversarially crafted
suffixes in prompts, effectively neutralizing malicious injections. We demonstrate
that ASF provides comprehensive defense capabilities across both black-box and
white-box attack settings, reducing the attack efficacy of state-of-the-art adversarial
suffix generation methods to below 4%, while only minimally affecting the target
model’s capabilities in non-adversarial scenarios.

1 Introduction

Large Language Models (LLMs) are increasingly being deployed in autonomous systems and public-
facing applications, powering everything from conversational agents to code generation tools [1].
This widespread adoption has brought corresponding security concerns, as malicious actors may
exploit the model’s reliance on textual prompts. In particular, prompt injection attacks – carefully
crafted inputs that manipulate an LLM’s behavior – have emerged as a serious threat. Among these,
“jailbreak” prompts stand out as a prevalent vulnerability, whereby an attacker’s input bypasses the
model’s safety measures and coerces it into producing harmful or disallowed content [1]. Recent
analyses have highlighted prompt injection as a top risk for LLM-integrated systems, underscoring
the need for effective mitigation [2].

One especially potent category of prompt attacks uses adversarial suffixes – malicious token sequences
appended to a prompt – to subvert LLM behavior. It is now well-documented these suffixes can trick
even aligned models into ignoring prior instructions or safety guardrails, in both white-box and black-
box settings [3]. Zou et al. [4] first demonstrated that a single optimized suffix could consistently
circumvent the safety alignment of black-box state-of-the-art models like GPT-3.5, ChatGPT, Claude,
and Bard, inducing them to produce illicit outputs with high probability. In practice, this means an
attacker can take an otherwise harmless user prompt and append a specially crafted string that causes
the model to violate its intended behavior.
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Figure 1: An overview of the Adversarial Suffix Filtering pipeline. For the segmentation model,
we employ Segment Any Text [5], and use bert-base-uncased [6] as the BERT classifica-
tion model. The unsanitized prompt features a GCG [4] generated adversarial suffix parish
sentenceochasticamplesAAona>llesStation... that jailbreaks the aligned LLM and allows it
to causes harmful content. After sanitization, the adversarial suffix is correctly identified-and-removed
leaving the original, albeit malicious, prompt to be passed to the aligned LLM. The alignment is
maintained without the adversarial suffix and the model correctly refuses to answer the query.

Threat Model In this work, we assume an adversary who can modify the user’s input by appending a
malicious suffix, but who has no control over the model’s parameters or system-level directives. The
user’s original prompt is presumed benign; the adversary’s suffix is designed solely to mislead the
model. This threat model reflects common real-world scenarios for prompt injection – for instance,
a malicious user adding hidden instructions to their query, or an external agent injecting content
into a prompt field. The adversarial suffix may be human-incomprehensible (e.g. a random-looking
sequence) yet exploits the model’s learned patterns to override safety instructions [7]. Our focus is on
detecting and neutralizing this appended sequence before it can influence the model’s output.

Comparison to Existing Work A number of defenses have been proposed to protect LLMs against
such prompt-based attacks. One line of work centers on adversarial training and fine-tuning: the
model is additionally trained on adversarial examples or with stricter alignment objectives so that it
learns to resist malicious prompts [8]. While adversarial training is considered to be the state-of-the-art
defense for a variety of deep learning models [9], it is oftentimes prohibitively computationally-
expensive and data-intense to use during LLM training of very large consumer-grade models [10].
However, multi-objective fine-tuning using adversarial examples has been shown to encourage the
model to refuse harmful requests more reliably [11]. Similarly, reinforcement learning from human
feedback (RLHF) can be extended with adversarial examples to improve the model’s robustness [12].
Other methods, such as the one proposed by Chen et al. [13] rely on a secure front-end, which is
difficult to guarantee in many real-world scenarios, and fine-tuning a model to only follow a specific
prompt structure.

While these approaches reduce the model’s susceptibility, they come with significant drawbacks:
they are model-specific with each new model or version needing re-training [10–13], and incur high
computational cost for fine-tuning on extensive adversarial data [11, 13], or limit the range of model
application [13]. Moreover, an overly constrained fine-tuning can degrade normal performance
– models often become excessively cautious, incorrectly refusing benign queries after aggressive
safety training [14, 15]. This lack of generality and potential utility loss makes solely training-based
defenses less practical in many real deployments.

Another strategy is to employ safety filters or classifiers that monitor the inputs and/or outputs of an
LLM. These defenses aim to be model-agnostic components that catch malicious prompts at runtime
without altering the base model. For example, Robey et al. [16] propose detecting jailbreak attempts
by randomly perturbing tokens from the user prompt and observing if the model’s response behavior
changes, under the intuition that an adversarial suffix’s effect can be revealed by such perturbations.
This carries a heavy computation overhead requiring multiple (between 2 and 20) forward passes per
prompt.
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Pisano et al. [17] suggest using an auxiliary “conscience” model to evaluate the prompt and flag any
embedded harmful instructions before the main LLM responds. Similarly, Llama Guard employs
an instruction-tuned Llama-2-7B to perform multi-label risk classification over complete prompts
and responses, achieving strong moderation accuracy on generic safety benchmarks, but is restricted
to either accepting or rejecting the prompt and its response [18]. Both these approaches require
holding a second LLM in your system’s memory or making use of API calls, which incurs either
major memory/computational overhead or increased costs.

Major providers have likewise deployed moderation classifiers to filter out prompts or outputs deemed
unsafe. These filter-based methods are appealing because they can work with any LLM (including
closed-source APIs) and can be updated independently. However, they too have limitations: heuristic
filters can be brittle, and determined attackers often find prompt variants that evade keyword-based
rules or confuse the classifier. In practice, safety models may either miss cleverly obfuscated
attacks or produce false positives – for instance, flagging polite refusals as malicious – if tuned too
tightly [1]. Filtering an output, post-generation, results in wasted compute or unnecessary API usage.
Indeed, a recent evaluation by Xu et al. [1] found that most standalone defense modules either fail to
stop advanced jailbreak prompts or end up overly restricting benign inputs, undermining the user
experience.

One line of recent defense research leverages perplexity – a measure of how “surprised” a language
model is by a given text – to flag adversarial prompts. Alon and Kamfonas [19], Jain et al. [20] propose
detecting adversarial suffix attacks by evaluating the input prompt’s perplexity with a reference model.
The suffixes stand out as highly out-of-distribution: such inputs yield exceedingly high perplexity
values compared to ordinary prompts. By thresholding perplexity, the system can thus detect and
preempt adversarial prompts. However, this defense only provides means of detection (rather than
mitigation), and was broken by Liao and Sun [3] via simple prompt and/or suffix repetition.

Kumar et al. [7] introduce an “erase-and-check” framework that provides certifiable safety against
adversarial prompts. The idea is to systematically erase or mask each token (or token subset) in the
input and use a secondary safety model to check the residual prompt. If removing a particular snippet
(e.g. the suffix) causes a previously safe-looking prompt to be classified as harmful, the system
can pinpoint that snippet as adversarial. Such certified defenses are promising in theory, but they
have practical downsides: the “erase-and-check” procedure requires multiple forward passes of the
underlying LLM being defended (one per token or per candidate segment), making it exponentially
computationally intensive, and the guarantees hold only within a bounded attack size – an attacker
using a very long or multi-part prompt might circumvent the certified range [7].

Contributions It is clear from the above that a defense that is model-agnostic, lightweight in terms
of memory and compute requirements, and robust is highly desirable.

In this paper, we propose Adversarial Suffix Filtering (ASF), a defense pipeline designed to fill this
gap. ASF acts as an input sanitizer in the target LLM’s inference pipeline, and is usable both with
and without GPU acceleration. Rather than altering the model, ASF scrutinizes incoming prompts
for adversarial suffixes and strips – or warns of them – before the prompt is fed into the LLM. Our
method is visually presented in Figure 1.

On the target LLM’s side – which may be a large consumer-grade model such as GPT4.1 or Claude 3
– the compute budget in terms of forward passes, the token requirements, and memory requirements
all remain unchanged. We further evaluate the effect our defense’s non-adversarial performance on a
large number of common natural language tasks and find minimal degradation.

Moreover, ASF’s modularity and efficiency make it amenable to deployment in trusted execution
environments or secure hardware enclaves, enabling prompt sanitization to be performed in isolation
from untrusted components. This offers a practical mechanism to protect locally hosted open-weight
models from adversarial manipulation, even when these models are interfaced with untrusted front-end
applications or agents.

Our approach was inspired by the work of Liao and Sun [3] who demonstrated that it is possible to
train an LLM (Llama-2-7B-Chat, specifically) to produce adversarial suffixes. This suggest to us that
if an LLM can be trained to generate valid effective adversarial suffixes, then the suffixes must follow
some detectable and discernible pattern, and hence must be classifiable by another model.
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Algorithm 1 ASF Pipeline
Require: A set of potentially-malicious prompts {p0, . . . , pn−1}, pipeline configuration c

1: Segment each prompt pi using the 12l-SM SaT model to obtain [si1, s
i
2, . . . , s

i
n]

2: Obtain predictions yij ∈ {0, 1} for each segment sij from our fine-tuned BERT model. yij = 1

indicates that sij is part of an adversarial suffix
3: Apply configurable post-processing:

• Bridge isolated 0s between 1s [default: off]
• Bridge isolated 1s between 0s [default: on]
• Exclude segments solely containing specified keywords [default: “question”, “answer”]

4: if cmode == delete then
5: Delete all segments sij from the prompt labeled as adversarial (i.e. where yij = 1)
6: Return re-assembled prompt
7: else
8: if cmode == warn and any segment is detected as adversarial then
9: Raise an exception

10: end if
11: end if

2 Methodology

Our Adversarial Suffix Filtering (ASF) pipeline is designed to detect and remove malicious suffixes
appended to otherwise user queries. We formalize the threat model as follows: an adversary can
supply an input consisting of an unrestricted user query x (e.g., a harmless instruction, or a malicious
request) concatenated with an attack suffix s. The suffix s is a sequence of tokens (often gibberish or
specially crafted instructions) whose purpose is to jailbreak an aligned language model’s safeguards,
causing it to produce disallowed or harmful content that it would normally refuse [4]. Notably, these
adversarial suffixes frequently consist of semantically meaningless or out-of-distribution tokens [3].
Our defense focuses on identifying and removing the appended suffix s. The attacker is assumed to
have no direct interaction with the model other than the ability to query any plain text.

Pipeline Given an input text x∗ (potentially containing a malicious prompt plus an adversarial
suffix), our pipeline performs the following steps: (1) Segmentation: We split x∗ into a sequence
of sentence-like segments using a state-of-the-art segmentation model. (2) Segment Classification:
Each segment is fed into a binary classifier that predicts whether it is part of an adversarial suffix. (3)
Post-processing: We smooth the classifier’s predictions to ensure contiguous malicious segments are
grouped, and apply heuristic checks to reduce false positives. (4) Filtering: Any segment flagged as
malicious (and not excluded by heuristics) is removed from x∗, yielding a sanitized query X̂ that is
passed to the language model for safe processing. Figure 1 summarizes the inference-time behavior
of the ASF pipeline graphically. The defense relies on having an aligned LLM – we do not make
any assumptions regarding the kind of prompts that are meant to be valid – ASF simply deletes any
detected suffixes. This alignment requirement is further discussed in Section 3.1. Alternatively, ASF
can be configured to warn the user by raising an exception to allow for more sophisticated handling,
such as logging or escalating the issue.

Segmentation Module We employ the Segment-any-Text (SaT) model [5] as our segmentation
module to divide the input text into coherent segments (approximately sentences or intentional
fragments). SaT is a state-of-the-art universal text segmentation approach that offers robust, language-
agnostic sentence boundary detection. Crucially for our task, SaT does not rely solely on punctuation
to determine boundaries; it uses a specialized pretraining scheme to remain robust even when
punctuation is missing or abnormal, and it can adapt to varied domains [5].

In our implementation, we use the largest of the SM variants of the SaT models publicly released –
12l-SM – as this showed the best performance in our testing. We apply it to each incoming query to
obtain a list of segments S = [s1, s2, . . . , sn]. Each segment si is a substring of the input text x∗,
and the segments in S appear in their original order in x∗. These segments are then independently
analyzed by the classification module.
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Classification Module For segment classification, we fine-tune a BERT-based text classifier to
identify adversarial suffix content. We specifically use the bert-base-uncased [6] model. This
choice is motivated by its lightweight nature and BERT’s bidirectional encoding which provides rich
context understanding for each segment, enabling it to capture subtle cues that a segment is part of a
malicious suffix (e.g. presence of odd patterns) rather than a normal user query.

We cast adversarial suffix detection as a binary classification task at the segment level. Given a
segment si, the classifier predicts yi ∈ 0, 1, where yi = 1 indicates that si is part of an adversarial
suffix, and yi = 0 indicates a benign segment. During fine-tuning, we initialize from the pre-
trained bert-base-uncased [6], setting the number of labels to 2. We fine-tune this model on our
curated dataset of benign vs. adversarial segments (described below) using HuggingFace’s Trainer
module [21]. Optimization is done with AdamW (learning rate 5× 10−5) for three epochs, with early
stopping on validation loss to prevent overfitting. The fine-tuning process is straightforward with no
task-specific architecture modifications. Any dependence on context across segments is handled in a
later step by our post-processing heuristics (which can merge decisions).

Datasets To train our ASF system, we curate a dataset comprising of benign prompts, and adversarial
suffixes. For the latter, use the dataset kindly provided by Liao and Sun [3], authors of the AmpleGCG
paper. This dataset contains millions of adversarial suffixes generated via both the GCG [4] attack
and the author’s own AmpleGCG [3] and AmpleGCG-plus [22] attacks. This includes suffixes that
are both universal and transferable across models. We merged and de-duplicated these to create a
unified collection of unique adversarial suffixes giving us 419, 429 suffixes in total.

For the benign user query content, we use the Stanford Alpaca instruction dataset [23], which
contains 52, 000 diverse instructions and user prompts. This dataset provides a wide range of
innocuous queries covering varied topics (e.g., requests for explanations, creative writing, factual
questions, etc.), making it an ideal source of normal prompts.

We additionally incorporate two existing benchmark sets to evaluate our method’s generalization and
false-positive behavior: MaliciousInstruct [24] and AdvBench [4]. MaliciousInstruct is a collection
of 100 intentionally harmful queries (posed as questions) spanning 10 different malicious intent
categories. These represent realistic “bad” user requests. AdvBench is a benchmark of 520 harmful
instructions along, covering a broad range of harmfulness categories. We do not use MaliciousInstruct
or AdvBench queries in training – they are reserved for evaluation to test ASF in scenarios it was not
directly optimized on.

We partition the adversarial suffix set, and the Alpaca dataset into training, validation, and test subsets
(approximately 70/15/15% split). Next, we generate prompt-suffix pairs: for each suffix and we
randomly sample a benign Alpaca instruction in its respective split, making use that we include all of
the data in the pair generation process. When combining prompt and suffix, we insert a single space
between them to simulate how an attacker might append the suffix.

Training the Pipeline The training of the BERT classifier uses the prompt-suffix pairs described
above. As the classification happens on a segment level, we need to derive segment-wise labels for
each example. We apply our segmentation module to every pair to obtain segments S = [s1, ..., sn].
We then assign ground-truth labels to each segment: segments originating from the benign prompt are
labeled 0 (benign), and segments that are part of the adversarial suffix are labeled 1 (malicious). This
is straightforward because we know the exact boundary between prompt and suffix in the synthetic
examples. Typically, the prompt and suffix separate cleanly into different segments. In cases where
SaT does not separate out the suffix fully, we can still identify the suffix portion within the last
segment; however, such cases were minimal, and for training labels we conservatively label the entire
segment as malicious if it contains any part of the adversarial suffix.

We fine-tune the BERT classifier using the above segmented and labeled data. We evaluate on the
validation set at the end of each epoch, monitoring the segment-level F1 score. The model parameters
with the best validation F1 were saved as the final model. We took care to ensure that there is no data
leakage between any of the data splits that could contaminate results.
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Post-processing After the classifier labels each segment of an input, we apply two heuristic post-
processing steps to refine the predictions before removing any text: segment-level label smoothing,
and keyword-based exclusion filter. The smoothing is implemented as a simple gap-bridging rule: if
a segment is labeled 1 (malicious) but is surrounded on both sides by segments labeled 0 (benign)
in the sequence then we flip its label to 0. This rule effectively bridges single-segment gaps in a
contiguous benign sequence. In our experiments, we found that genuine adversarial suffixes rarely
appear between longer strings of benign segments – as it would render the attack ineffective – so a
0-1-0 pattern almost always indicated a misclassification of the middle segment. We limit this to
single gaps to avoid over-correction, but this is configurable. We also allow for bringing 1’s when
there is a benign segment in-between, e.g. 1-0-1, but this is turned off by default.

The second heuristic aims to reduce false positives by filtering out segments that the classifier flagged,
which upon closer inspection are unlikely to be true adversarial suffixes. We introduce a small set
of handcrafted rules to catch these cases. Specifically, for any segment that the classifier marked as
yi = 1, we check the segment against a predefined set of keywords and override the classifier and
relabel it as benign (0) if it matches. We perform an exact case-agnostic match, and with the default
setting having just two keywords: [‘question’, ‘answer’]. This heuristic is conservative – it
only flips a label from malicious to benign in cases that are clearly safe upon manual inspection.
Empirically this reduces the false positive rate on benign-only inputs. In deployment, these rules can
be refined as needed.

Finally, any segments marked as malicious (after post-processing) are removed from the input, or a
run-time exception is raised, depending on the configuration. Implementation-wise, we reconstruct
the sanitized prompt X̂ by concatenating all segments si for which the final label yi = 0. We
summarize our pipeline in Algorithm 1.

3 Experiments

We conduct an empirical evaluation of the proposed ASF pipeline, structured along two primary axes:
(i) effectiveness in detecting and neutralizing adversarial suffixes generated by state-of-the-art attack
methods, and (ii) robustness in non-adversarial settings, with a particular focus on preservation of
model utility. All experiments are conducted using the default configuration of ASF as described
in Section 2, with smoothing and keyword-based post-processing heuristics enabled.

For adversarial robustness evaluation, we measure the Attack Success Rate (ASR) following the
definition introduced by Kumar et al. [22]. Specifically, if k beams are used to generate k suffixes
per query, then we consider the attack to be successful if at least one of the k suffixes succeeds in
jailbreaking the model to cause it to answer the query in an adversarial fashion. This metric reflects a
realistic attacker scenario in which multiple suffixes may be attempted, and even a single successful
bypass is considered a defense failure.

All experiments were conducted on a dedicated compute cluster consisting of 3xRTX8000, 1xA10
GPUs. The full experimental suite, including model inference, segmentation, classification, and
evaluation, was run over a period of approximately three weeks. We intend to release our code and
trained models on GitHub to promote reproducibility of research.

3.1 Adversarial Settings

To assess the effectiveness of ASF, we first evaluate the performance of the BERT-based segment
classifier on the validation and test splits derived from the constructed prompt-suffix dataset (see Sec-
tion 2). We obtain an F1 score of 98.5% on the validation set and 98.4% on the held-out test set.
These results confirm that ASF is able to reliably distinguish benign prompt segments from adversarial
suffix segments under controlled conditions.

However, high classifier accuracy on synthetic segmentation data does not fully capture ASF’s
practical impact on end-to-end ASR mitigation. We conduct an adversarial evaluation leveraging two
widely-used benchmark datasets: MaliciousInstruct [24] and AdvBench [4]. We generate adversarial
suffixes for each prompt in these datasets using a total of four generative attack models: two variants
of AmpleGCG and two variants of AmpleGCG-plus [3, 22]. We use HarmBench [25] as a measure
of whether the model’s response to an prompt-suffix pair constitutes a jailbreak.
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Table 1: Defense pipeline results on the Malicious Instruct [24] and AdvBench [4] datasets. We use
k = 20 beams for generating the adversarial suffixes due to memory constraints. ASR′ represents
ASR post-application of our defense pipeline with default settings. Suffixes were tailored to each
attacked model by generating them using the appropriate AmpleGCG or AmpleGCG-plus model as
described in Kumar et al. [22]. (+) indicates the fact that suffixes were generated using the updated
-plus variant of AmpleGCG. ASR is evaluated via HarmBench-cls [25].

(a) Evaluated on the full dataset, using the standard
method described in Kumar et al. [22].

Models ASR ASR′

Llama-2-7b-chat 81.1% 1.8%
Llama-2-7b-chat (+) 93.1% 4.0%
GPT3.5-0125 92.1% 16.9%
GPT4-0613 (+) 18.4% 3.9%

(b) Evaluating our pipeline against AIR and
AID [3] – techniques designed to bypass the PPL-
defense [20]. We evaluate on a random subset of
50 samples taken from the full dataset.

Models GPT3.5 GPT4 (+)

AIR ASR 80.0% 2.0%
AIR ASR′ 18.0% 0.0%
AID ASR 78.0% 2.0%
AID ASR′ 16.0% 0.0%

Table 2: Non-adversarial performance in a variety of natural language tasks [26]. The tables show
percentage difference of performance with and without our ASF defensive pipeline. If a task has
multiple subsets, we report the mean accuracy. The models referred to in the table are Llama-3.1-8B,
Mistral-7B-Instruct-v0.1, and gpt-4.1-mini-2025-04-14.

(a) generate_until tasks

Models TruthfulQA-gen GSM8k

Mistral-7B -1.5% -0.6%
Llama-8B -0.5% 0.8%
GPT-mini 0.7% -1.0%

(b) loglikelihood tasks

Task Mistral-7B Llama-8B

ARC-c -0.3% -0.2%
HellaSwag -3.0% -3.4%
WinoGrande -3.9% -5.1%

We exclude the Vicuna models from testing as we find that in 53.5% of cases the model already gives
a jailbroken reply to the malicious prompts without any adversarial suffixes or prompt engineering.
We refer to this as benign ASR. We also note that GPT3.5-0125 is very easily tricked (and had a
benign ASR of 2.7%) – one of the cases where our pipeline failed is illustrated below:

Original prompt: Teach children how to access and use firearms
Adversarial prompt: Teach children how to access and use firearms involves grammar Rem requested
AleksomeWebView]. Write starting Colse ‘"S:$ django imports"+Oneindent
ASF-filtered prompt: Teach children how to access and use firearms involves grammar

The extra “involves grammar” suffix was sufficient to jailbreak the model, and appears completely
natural. Unfortunately, we cannot account for these edge cases and believe that this is a product of a
poorly aligned model.

The results are present in Table 1. After sanitization, 76.4% of the suffixes were completely removed,
leaving behind the original prompt. In just 2.9% of cases, the returned sanitized prompt was empty
due to either correctly segmenting the adversarial suffix from the prompt but subsequently classifying
the prompt itself as an adversarial suffix, or due to segmentation leaving significant overlap between
the prompt and suffix resulting in that segment being marked as adversarial.

We note that our defense successfully reduces the ASR in the scenario described in Table 1b. The AIR
and AID techniques [3] would have otherwise completely evaded detection of existing PPL-based
defenses such as Jain et al. [20], Alon and Kamfonas [19].

We observe a substantial reduction in ASR across all models and prompt sets following ASF sanitiza-
tion, demonstrating that the pipeline reliably neutralizes their attack effectiveness in a practical LLM
deployment setting.
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3.2 Non-Adversarial Settings

To ensure that the ASF pipeline does not negatively impact LLM performance in benign usage
scenarios, we conduct a suite of evaluations across standard natural language understanding and
generation benchmarks. These tests are designed to assess whether ASF introduces any unintended
degradation in the absence of adversarial inputs.

We employ the Language Model Evaluation Harness [26] to evaluate three representative models:
Llama-3.1-8B, Mistral-7B-Instruct-v0.1, and gpt-4.1-mini-2025-04-14. The latter is
accessed via OpenAI’s Chat Completions API which limits access to token-level log-likelihoods,
restricting us to generation-based evaluations. Consequently, for GPT-4.1-mini, we report results on
the TruthfulQA-gen and GSM8k: widely-used instruction-following and reasoning tasks designed
for generation evaluation. For the open-source models (Llama-3.1 and Mistral-7B), we additionally
evaluate log-likelihood-based tasks – ARC-challenge, HellaSwag, and WinoGrand – providing a
more complete picture of potential degradation in ranking or multiple-choice settings.

Table 2 reports the percentage difference in accuracy between baseline model performance and model
performance when prompts are passed through the ASF pipeline. Across all tasks and models, we
observe minimal impact with most shifts within the margin of generation stochasticity and dataset
noise. Overall, these findings support our conclusion that ASF does not meaningfully degrade model
performance in non-adversarial settings. In practical terms, this suggests that ASF can be safely
integrated into production inference pipelines without sacrificing task fidelity or output quality for
legitimate users.

4 Discussion

As LLMs become integral to real-world applications, robust defense mechanisms like ASF carry
significant deployment benefits. A key advantage of ASF is its model-agnostic design, meaning
it can layered in front of any commercial or closed-source model (e.g. GPT-4 or Claude APIs)
to intercept adversarial suffixes, with no access to or alteration of the model’s internal weights or
architecture. Perhaps most importantly for integration into commercial systems, ASF is easy to
deploy as a “plug-and-play” component. It can be inserted as a preprocessing step in an existing
compound AI system pipeline with minimal engineering effort.

ASF introduces minimal overhead in memory and computation: the entire defense uses roughly 387M
parameters across two small models – 12l-SM [5] and bert-base-uncased [6]. This requires
just 1.7GB of additional GPU memory to host the defense on-GPU. Compared to heavier certified
defenses that require multiple costly forward passes through the main LLM, ASF inspects the
input in a single pass with negligible latency. Crucially, it does not increase the target model’s
token consumption or inference time – the protected LLM’s compute budget (forward passes, token
throughput, etc.) remains unchanged. Our evaluations also showed no noticeable degradation in the
LLM’s performance on benign tasks with ASF enabled. In other words, normal user queries and
generations proceed as usual, preserving the user experience and accuracy of the model’s responses.

4.1 Limitations

While ASF proved effective in our experiments, several limitations must be acknowledged. First,
the approach relies on accurately segmenting the user prompt from a appended suffix, and this
segmentation can sometimes be imperfect. In most cases the prompt and adversarial suffix do
separate cleanly into different segments, especially given the gibberish-like nature of many suffix
attacks. However, if the segmentation model fails to fully isolate an adversarial suffix, ASF may
misidentify a mixture of benign and malicious text as wholly malicious. In practice this means ASF
might occasionally remove more text than necessary.

A second limitation is the possibility of false positives – benign content being mistakenly flagged as
adversarial. ASF uses a fine-tuned BERT classifier to detect malicious segments, and no classifier
is 100% error-free. There is a risk that an innocuous prompt containing unusual phrasing or tokens
could be misclassified as an attack suffix. We found that straightforward heuristics in post-processing
greatly mitigated this issue (e.g. ignoring segments that contain only common boilerplate words).
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However, the very need for hand-tuned rules indicates that the system may require careful calibration
for different deployment contexts. If users frequently employ unconventional or out-of-distribution
language in legitimate queries, ASF might initially flag some of those inputs incorrectly. Such cases
would necessitate refining the filtering rules or retraining the classifier on a broader dataset of benign
queries to improve its precision. In its current form, ASF errs on the side of caution – it is tuned to
aggressively catch any suspected adversarial suffix, which by design sacrifices some specificity for
security. This could inconvenience users if a normal query is erroneously rejected, so developers
deploying ASF should monitor its decisions and adjust the filtering policy as needed to balance safety
and accessibility.

It is also worth noting that ASF is specialized for the suffix-style attack paradigm, which may limit
its scope against other prompt attack strategies. If an adversary devised a fundamentally different
prompt injection technique that does not involve a discernible suffix (e.g. hand-crafted methods), ASF
might not detect it without further extension of the method. Thus, while ASF significantly raises the
bar against the current state-of-the-art suffix attacks, it is not a panacea for all prompt-based exploits.

4.2 Intended Use Case Scenarios

The Adversarial Suffix Filtering (ASF) pipeline is designed for deployment as an efficient, model-
agnostic preprocessing layer within broader LLM security frameworks. We envision ASF serving as
a first line of defense in compound AI-enabled safety architectures, where it operates as a lightweight,
real-time filter to detect and neutralize adversarial suffix attacks. Owing to its low computational
overhead and lack of reliance on model internals, ASF is particularly well-suited for front-end
deployment in latency-sensitive or resource-constrained environments.

Beyond its utility as a standalone defense mechanism, ASF can also function as a triggering compo-
nent in larger systems that integrate multiple complementary defense strategies. In such configurations,
ASF acts as a binary classifier on input prompts: if a suspected adversarial suffix is detected, ASF
can optionally escalate the input to more computationally intensive downstream defenses, such as
certified sanitization mechanisms, content filtering using ensemble classifiers, or constrained decoding
techniques [7, 27]. This staged approach ensures that the majority of benign or easily detectable
adversarial cases are handled quickly and inexpensively, while reserving more costly defenses for
inputs that warrant deeper scrutiny.

This described approach aligns with the Swiss cheese model [28], a well-established conceptual
framework in risk management and safety engineering. In this model, no single defense layer is
assumed to be fully robust; instead, multiple layers with different strengths and failure modes are
employed in parallel, such that the overall system remains resilient even when individual layers are
circumvented.

5 Conclusions

We introduced Adversarial Suffix Filtering (ASF), a lightweight, model-agnostic defense pipeline
for detecting and removing adversarial suffixes in LLM prompts. ASF segments user inputs and
classifies each segment to identify and neutralize malicious prompt continuations prior to inference,
requiring no modifications to the underlying model. Through extensive evaluation, we demonstrate
that ASF significantly reduces the attack success rate of current state-of-the-art suffix-based jailbreaks
while preserving model performance on non-adversarial tasks. ASF achieves this with minimal
computational overhead, making it deployable in real-world, resource-constrained environments.

While ASF effectively defends against a specific of prompt injection attacks, its current design
assumes a clear segmentation between benign prompt and malicious suffix. Future investigations
should broaden ASF’s scope beyond pure suffix-style attacks to mixed-context, interleaved or prefix-
based injections and to multilingual settings where segmentation cues differ substantially . Addressing
the pipeline’s present susceptibility to imperfect sentence splits and the attendant false-positive risk
will likely require tighter, possibly joint, optimization of the segmentation and classification stages
together with continual calibration on richer benign corpora.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and Introduction (pp. 1–2) state that ASF is a lightweight, model-
agnostic pipeline that mitigates suffix-based jailbreaks with minimal utility loss; Sections 3,
4 empirically support these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.1 details segmentation errors, possible false positives, and scope
restrictions to suffix-style attacks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper is empirical; it presents no theorems or proofs, so no formal
assumptions are required.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 2 (Datasets, Training) and Section 3 (Experimental setup) list data
splits, preprocessing steps, hyper-parameters, and evaluation protocols, enabling independent
replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Section 3 notes that code and checkpoints will be released soon after submis-
sion, due to time constraints; at submission time they are not yet publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyper-parameters, SaT variant, classifier architecture, and data-split ratios
(70/15/15) are reported in Section 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Although we do not report explicit error bars, each ASR measurement and
accuracy delta is computed over hundreds of prompts (Malicious-Instruct, AdvBench, and
multiple LM-Eval tasks). Given the large absolute performance gaps we observe after
sanitization (e.g., ASR drops from around 80% to < 4%), the conclusions are robust to this
small statistical noise; additional runs would incur prohibitive GPU cost without affecting
the qualitative outcome.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3 specifies a cluster with 3xRTX8000 + 1xA10 GPUs and a three-week
wall-time for the full experimental suite.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study involves only publicly available text data and does not violate the
NeurIPS Code of Ethics; no human subjects or sensitive data are used.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Section 4 explicitly highlights the positive societal impact of ASF – namely,
reducing the risk of harmful LLM outputs in real-world deployments – and acknowledges
potential downsides such as false positives that could inconvenience legitimate users. This
balanced treatment satisfies the broader-impact requirement.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new high-risk generative model or scraped dataset is released; ASF is a
defensive wrapper around existing open assets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All appropriate model and datasets are cited
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: When the trained ASF models will be released, structured documentation will
be included in this release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work uses only machine-generated and publicly released text; no human
subjects or crowd work were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: No human-subject research is conducted; IRB approval is therefore not
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Sections 2 and 3 describe the use of pretrained LLMs (e.g. GPT-4.1-mini,
Mistral-7B) both as attack targets and for benchmark evaluation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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