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Abstract—The widespread use of smartphones in daily life has raised
concerns about privacy and security among researchers and practition-
ers. Privacy issues are generally highly prevalent in mobile applications,
particularly targeting the Android platform—the most popular mobile
operating system. For this reason, several techniques have been pro-
posed to identify malicious behavior in Android applications, including
the Mining Android Sandbox approach (MAS approach), which aims to
identify malicious behavior in repackaged Android applications (apps).
However, previous empirical studies evaluated the MAS approach using
a small dataset consisting of only 102 pairs of original and repackaged
apps. This limitation raises questions about the external validity of
their findings and whether the MAS approach can be generalized to
larger datasets. To address these concerns, this paper presents the
results of a replication study focused on evaluating the performance
of the MAS approach regarding its capabilities of correctly classifying
malware from different families. Unlike previous studies, our research
employs a dataset that is an order of magnitude larger, comprising
4,076 pairs of apps covering a more diverse range of Android malware
families. Surprisingly, our findings indicate a poor performance of the
MAS approach for identifying malware, with the F1-score decreasing
from 0.89 for the small dataset used in the previous studies to 0.54 in
our more extensive dataset. Upon closer examination, we discovered
that certain malware families partially account for the low accuracy of the
MAS approach, which fails to classify a repackaged version of an app
as malware correctly. Our findings highlight the limitations of the MAS
approach, particularly when scaled, and underscore the importance
of complementing it with other techniques to detect a broader range
of malware effectively. This opens avenues for further discussion on
addressing the blind spots that affect the accuracy of the MAS approach.

1 INTRODUCTION

Mobile technologies, such as smartphones and tablets, have
become fundamental to how we function as a society.
Almost two-thirds of the world population uses mobile
technologies [1], [2], with the Android Platform dominating
this market and accounting for more than 70% of the mobile
market share, with almost 2.5 million Android applications 1

(apps) available on the Google Play Store, in June 2023 [3].
As popularity rises, so does the risk of potential attacks,
prompting collaborative efforts from both academia and

1. In this paper, we will use the terms Android Applications, An-
droid Apps, and Apps interchangeably, to refer to Android software
applications

industry to design and develop new techniques for iden-
tifying malicious behavior or vulnerable code in Android
apps [4]. One popular class of Android malware is based
on repackaging [5], [6], where a benign version of an app
is infected with malicious code, e.g., to broadcast sensitive
information to a private server [7], and subsequently shared
with users using even official app stores.

The Mining Android Sandbox approach (MAS ap-
proach) was initially designed to construct sandboxes based
on exploratory calls to sensitive APIs [8]. The MAS ap-
proach operates in two distinct phases. In the first phase
(exploratory phase), automated test case generation tools
are utilized to abstract the behavior of an app, focusing
on recording calls to sensitive APIs (Application Program-
ming Interfaces). Subsequently, during normal app execu-
tion (exploitation phase), the generated sandbox blocks any
calls to sensitive APIs that were not observed during the
exploratory phase. Prior studies [5], [9] have investigated
the effectiveness of the MAS approach in detecting potential
malicious behavior in repackaged apps. These studies have
also conducted comparisons of the approach’s performance
by employing different test case generation tools during the
exploratory phase, including Monkey [10], DroidBot [11],
and Droidmate [12]—bringing evidence that DroidBot out-
performs other test generation tools, uncovering many po-
tential malicious behaviors.

Nonetheless, these previous studies have two main lim-
itations. First, they use a small dataset of malware compris-
ing only 102 pairs of original/repackaged versions of an
app—which might compromise external validity. Second,
their assessments do not investigate the impact of relevant
features of the repackaged apps on the accuracy of the MAS
approach for malware classification, including (a) whether
or not the repackaged version is a malware, (b) the similarity
between the original and the repackaged versions of an app,
and (c) the malware family 2 when the repackaged version
of an app is a malware. These limitations compromise a
broader understanding of the MAS approach performance.
We present more details about the MAS approach and
related work in Section 2.

To better understand the impact of these issues on pre-

2. Malware families (such as gappusin, kuguo, dowgin, etc.) are often
used to classify malware in groups that share similar codebases, attack
methods, and objectives [13].

ar
X

iv
:2

50
5.

09
50

1v
1 

 [
cs

.C
R

] 
 1

4 
M

ay
 2

02
5



2

viously published results, this paper presents a replication
of the study conducted by Bao et al. [5]. We aim to verify
the original study’s findings by executing the test case
generation tool DroidBot [11] in the same settings as the
original research. Unlike the original study, here we use a
curated dataset of app pairs (original/repackaged versions)
significantly larger than the dataset used in Bao et al.’s
study. Our new dataset contains 4,076 pairs of original
and repackaged apps. We present more details about the
datasets, data collection, and analysis procedures in Sec-
tion 3.

Negative result. Our study reveals a significantly lower
accuracy (F1-score of 0.54) of the MAS approach in compar-
ison to what the MAS approach approach performs in the
small dataset (F1-score of 0.89). Since an accuracy of 0.54
is unsatisfactory for a trustworthy malware classification
technique, we conduct a set of experiments to understand
the reasons for the lower accuracy in our dataset. Our
further assessments reveal that the MAS approach fails to
correctly classify most samples from a specific set of mal-
ware families, particularly those from the gappusin family (a
particular adware class frequently appearing in repackaged
apps). Out of the total of 1,337 samples within this family in
our large dataset, the MAS approach failed to classify 1,170
samples as malware correctly. Accordingly, these families
are responsible for substantially reducing the recall of the
MAS approach. We detail the results of our experiments
in Section 4. We also discuss the implications and possible
threats to the validity of our study in Section 5 and present
some final remarks in Section 6. The main artifacts we
produced during this research are available in the paper
repository.

https://github.com/droidxp/paper-ecoop-results

2 BACKGROUND AND RELATED WORK

There are many tools available that help developers reverse
engineer Android bytecode [14]. For this reason, software
developers can easily decompile trustworthy apps, modify
their contents by inserting malicious code, repackage them
with malicious payloads, and re-publish them in app stores,
including official ones like the Google Play Store. It is well-
known that repackaged Android apps can leverage the
popularity of real apps to increase their propagation and
spread malware [7]. As an example, in 2016 a repackaged
version of the famous Pokémon Go app was discovered
less than 72 hours after the game was officially released
in the United States, Australia, and New Zealand [7]. The
repackaged version, originated from an unofficial app store,
gained full control over the victim’s phone, obtaining access
to main functions such as the phonebook, audio recorder,
and camera.

Repackaging has been raised as a noteworthy security
concern in Android ecosystem by stakeholders in the app
development industry and researchers [15]. Indeed, there
are reports claiming that about 25% of Google Play Store
app content correspond to repackaged apps [16]. Never-
theless, all the workload to detect and remove malware
from markets by the stores (official and non-official ones),
have not been accurate enough to address the problem.
As a result, repackaged Android apps threaten security

and privacy of unsuspicious Android app users, beyond
compromising the copyright of the original developers [17].
Aiming at mitigating the threat of malicious code injection
in repackaged apps, several techniques based on both static
and dynamic analysis of Android apps have been proposed,
including the MAS approach for malware classification [8],
[5].

2.1 Mining Android Sandboxes

A sandbox is a well-known mechanism to secure a system
and forbid a software component from accessing resources
without appropriate permissions. Sandboxes have also been
used to build an isolated environment within which appli-
cations cannot affect other programs, the network, or other
device data [18]. The idea of using sandboxes emerged from
the need to test unsafe software, possible malware, without
worrying about the integrity of the device under test [19],
shielding the operating system from security issues. To this
end, a sandbox environment should have the minimum re-
quirements to run the program, and make sure it will never
assign the program more privileges than it should have,
respecting the least privilege principle. Within the Android
ecosystem, sandbox approaches ensure the principle of the
least privilege by preventing apps from having direct access
to resources like device hardware (e.g., GPS, Camera), or
sensitive data from other apps. Access to sensitives data like
contact list or resources are granted through specific APIs,
known as sensitive APIs, which are managed by coarse-
grained Android permissions system [20].

The MAS approach [8] aims at automatically building a
sandbox through dynamic analysis (i.e., using automatic test
generation tools). The main idea is to grant permissions to
an app based on its calls to sensitive APIs. Thus, sandboxes
build upon these calls to create safety rules and then block
future calls to other sensitive resources, which diverge from
those found in the first exploratory phase. Using the Droid-
mate test generation tool [21], Jamrozik et al. proposed a
full-fledged implementation of the MAS approach, named
Boxmate [8]. Boxmate records the occurrences of calls to
sensitive APIs and, optionally, the UI events (e.g., a button
click) that trigger these calls. Therefore, it is possible to
configure Boxmate to record events associated with each
sensitive call as tuples (event, API), instead of recording just
the set of calls to sensitive APIs. Jamrozik et al. argue that, in
this way, Boxmate generates finer grain results, which might
improve the accuracy of the MAS approach—even with the
presence of reflection, a feature commonly used in malicious
apps [22].

In fact, the MAS approach can be implemented using
a mix of static and dynamic analysis. In the first phase,
one can instrument an Android app to log any call to the
Android sensitive methods. After that, one can execute a
test case generation tool (such as DroidMate, DroidBot, or
Monkey) to explore the app behavior at runtime, while the
calls to sensitive APIs are recorded. This set of calls to
sensitive APIs is then used to configure the sandbox. The
general MAS approach suggests that the more efficient the
test generation tool (for instance, code coverage), the more
accurate the resulting sandbox would be.

https://github.com/droidxp/paper-ecoop-results
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2.2 Mining Android Sandbox for Malware Classification
Besides being used to generate Android sandboxes, the
MAS approach can also be used to detect if a repackaged
version of an Android app contains an unexpected (perhaps
malicious) behavior [5]. In this scenario, the effectiveness of
the approach is estimated in terms of the accuracy in which
malicious behavior is correctly identified in the repackaged
version of the apps.

The MAS approach for malware classification typically
works as follows. In a first step (instrumentation phase),
a tool instruments the code of the apps (both original and
repackaged versions) to collect relevant information during
the apps execution in later stages. Then, in a second step
(exploration phase), the MAS approach collects a set S1

with all calls to sensitive APIs the original version of an
app executes while running a test case generator tool (like
DroidBot). In the third step (exploitation phase), the MAS
approach (a) collects a set S2 with all calls to sensitive APIs
the repackaged version of an app executes while running
a test case generator tool, and then (b) computes the set
S = S2\S1 and checks whether S is empty or not. The MAS
approach classifies the repackaged version as a malware
whenever |S| > 0.

Previous research works reported the results of empirical
studies that aim to investigate the effectiveness of the MAS
approach for malware classification [5], [23]. For instance,
Bao et al. found that, in general, the sandboxes constructed
using test generation tools classify at least 66% of repack-
aged apps as malware in a dataset comprising 102 pairs
of apps (original/repackaged versions) [5]. Actually, the
mentioned work performed two studies: one pilot study
involving a dataset of 10 pairs of apps (SmallE), in which
the authors executed each test case generation tools for
one hour; and a larger experiment (LargeE) involving 102
pairs of apps in which the authors executed the test case
generation tools for one minute [5].

The authors also presented that, among five test gener-
ation tools used, DroidBot [11] leads to the most effective
sandbox. Le et al. extend the MAS approach for malware
classification with additional verification, such as the val-
ues of the actual parameters used in the calls to sensitive
APIs [6], while Costa et al.[9] investigated the impact of
static analysis to complement the accuracy of the MAS
approach for malware classification. Their study reports that
DroidFax [24], the static analysis infrastructure used in [5],
classifies as malware almost half of the repackaged apps.

2.3 Android Malware Classification
The field of malware detection for the Android platform
is fertile, with a significant number of secondary studies
already published [25], [26], [27], [28]. In general, malware
detection techniques are divided into static detection, dy-
namic detection, and hybrid detection [29]. Several studies
have also conducted surveys on malware detection tech-
niques and presented a review of them [30], [31], [32].
For instance, M. Odusami et al. [32] discuss various static
analyses approaches that have been used in the literature
to identify malicious behavior in Android apps. The au-
thors present some works with permission and signature-
based malware detection systems. They highlight that both

approaches have a low false positive rate; however, they
are very ineffective in detecting new malware. Although
they could reveal possible malicious behaviors, the authors
discuss several limitations of these approaches, as they
are limited regarding code obfuscation and dynamic code
loading.

The literature also presents surveys based on dynamic
analysis, where malicious behavior is analyzed at runtime,
exposing risks that are not detected by static analysis. As
a malicious app “is alive”, dynamic analysis adds another
degree of analysis since it observes how Android apps inter-
acts with the environment. However, if applied inappropri-
ately, it may provide limited code coverage, which repeated
executions can improve. Therefore, dynamic analysis’s time
cost and computation resources are higher when compared
with static analysis. K. Tam et al. [31] presented several
dynamic analysis studies based on Android architectural
layers. The survey also exposed that dynamic analysis can
be performed in emulator environments, real devices, or
both. The authors discuss that the choice of environments
is an important issue for analysis, as there are malware
families that can detect emulated environments and do not
exhibit malicious behaviors [33]. Finally, K. Tam et al. also
exposed some works based on hybrid malware detectors
and claim that these methods can increase code coverage
and robustness, taking advantage of the best of each tech-
nique to find malicious behaviors.

Several studies have also explored Android malware
detection approaches based on machine learning (ML) tech-
niques, employing both static and dynamic analyses to
extract features and train ML models [30]. Most of these
approaches have demonstrated high accuracy (above 90%),
effectively detecting previously unseen malware families
with low false positives rate [34]. However, some studies
have identified limitations of machine learning approaches
for Android malware classification. In their work, K. Liu et
al. [30] highlighted challenges related to machine learning
techniques, identifying several factors that could lead to
biased results, such as the quality of the sample set. The
authors argue that samples of poor quality, with a non-
representative size or outdated samples, may yield promis-
ing results in experimental settings but might not perform
similarly in a real environment [30]. Another critical aspect
is the quality of the extracted feature dataset. The efficacy of
machine learning approaches heavily relies on the selection
of correct features and their extraction methods, particularly
dynamic features. Moreover, in addition to the computa-
tional costs involved, other studies [35], [36] have indicated
that machine learning approaches exhibit weaknesses when
dealing with malicious apps that alter their behavior to
mislead learning algorithms, which may restricts their ap-
plicability in real-world scenarios.

3 EXPERIMENTAL SETUP

This research aims to develop a deeper understanding of the
performance of the MAS approach for detecting malware.
To this end, in this paper, we replicate the study by Bao
et al. [5], which advocates for using the MAS approach for
malware classification. However, in contrast to the original
study [5], we use a dataset of repackaged apps that is an
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order of magnitude larger. Accordingly, we investigate the
following research questions:
(RQ1) What is the impact of considering a larger and di-

verse dataset on the accuracy of the MAS approach
for malware classification? Answering this question
may help shed light on potential generalization is-
sues in previous studies that empirically assess the
MAS approach approach to malware classification.

(RQ2) What is the influence of the similarity between the
original and repackaged versions of the apps on the
performance of the MAS approach for malware clas-
sification? Answering this research question helps
clarify whether the similarity between an original
app and its repackaged version affects the MAS
approach approach’s performance in malware clas-
sification.

(RQ3) What is the influence of the malware family (e.g.,
gappusin, kuguo, dowgin) on the performance of the
MAS approach for malware classification? Answer-
ing this research question may help identify poten-
tial blind spots in the MAS approach approach to
malware classification, revealing possible extensions
that could improve the detection of specific malware
families.

In this section, we describe our study settings. First, we
present our procedures to create our datasets (Section 3.1).
Then, we describe the data collection and data analysis
procedures (Sections 3.2 and 3.3).

3.1 Malware Dataset
To address our research questions, we contribute a dataset
designed to meet two primary requirements. First, it should
provide a comprehensive and up-to-date selection of An-
droid repackaged apps. By “comprehensive”, we mean at
least an order of magnitude larger than the dataset used
in the original study [5]. Given its comprehensiveness, we
expect it to include a diverse range of malware families
to ensure representativeness. Second, our dataset should
be properly labeled, ensuring each sample includes key
attributes such as similarity and malware family. This is
particularly necessary to answer research questions RQ2
and RQ3.

3.1.1 Procedures for Building the Dataset
We curate our dataset in three main phases. In the first
phase, we use two repositories of repackaged Android apps
(RePack [7] and AndroMalPack [37]) to build the dataset we
use in our research. RePack was curated using automatic
procedures that extract repackaged apps from the Androzoo
repository [38]. It comprises 18,073 apps, from which 2,776
are original versions of an app and the remaining ones
are repackaged. RePack contains 15,297 pairs of original
and repackaged Android apps, many repackaged versions
of the same original app may coexist within the RePack
dataset—note that all repackaged variants of a given app
are derived from the same original version, as confirmed by
their matching hash identifier. RePack is the leading dataset
used in Android repackaged research [15], even though it
only contains packages built until 2018. For this reason,
we decided to include samples from the AndroMalPack

dataset collected after 2018 in our research. Unlike RePack,
AndroMalPack lacks information about the original apps,
leading us to follow an existing heuristic [7] to identify
the original versions of its repackaged apps, leading to a
sample from the AndroMalPack dataset that contains 1,190
pairs (original/repackaged) of apps, all pairs satisfying our
constraint of being collected after 2018. Altogether, our
initial dataset contains a total of 16,487 pairs of apps.

In the second phase, we discarded some samples from
our initial dataset because, during the execution of our
experiments, we encountered recurrent issues related to
the instrumentation of the apps using DroidFax [24]. Other
problems occurred after the execution of the apps in the
Android emulator, while analyzing the apps or their exe-
cution logs. More precisely, we encountered failures while
instrumenting 919 original apps from our initial dataset,
including both RePack and AndroMalPack. After removing
these original apps from our dataset, we were left with
5,875 pairs (original/repackaged) of apps. Among these
pairs, 430 repackaged apps could not be instrumented.
Failures also occurred while analyzing either the original
or repackaged version of 586 apps, resulting in a dataset
containing 4,742 pairs. Failures at this phase were expected,
as some malware samples employ evasion tactics, such as
deliberately crashing test apps in simulated environments,
to avoid detection [39]. Finally, we could not install five apps
in the version of the Android emulator (API level 28) we
used in our research. Compared to our experience building
our dataset, a more significant percentage of failures has
been reported in previous research [5]. Note that we did
not apply any filters to increase the representation of certain
malware families in our dataset.

Third, we queried the VirusTotal repository to iden-
tify original versions of apps labeled as malware. Samples
with such labels were excluded from our dataset, as the
MAS approach assumes that the original version of an app
is not malware (otherwise, the repackaged versions might
also exhibit malicious behavior). VirusTotal is a widely
recognized tool that scans software assets, including An-
droid apps, using over 60 antivirus engines [15]. Thus, we
excluded 661 samples from our dataset that do not satisfy
this constraint.

In the end, we are left with our final dataset (hereafter
LargeDS) of 4,076 apps which we use in our study. To
bring evidence that we were able to reproduce the results of
previous research, we also consider in our research a small
dataset (SmallDS) used in the original study [5]. This is the
same dataset referenced in Section 2.2 as (LargeE).

3.1.2 Features of the Datasets
We queried the VirusTotal repository to find out which
repackaged apps in our dataset have indeed been labeled as
a malware. According to VirusTotal, in the SmallDS (102
pairs), 69 of the repackaged apps (67.64%) were identified
as malware by at least two security engines. Here, we
consider a repackaged version of an app to be malware only
if VirusTotal reports that at least two security engines
identify malicious behavior within the asset. Although this
decision aligns with previous research [40], [15], we assess
its potential impact on our findings in Section 5. Considering
the LargeDS, at least two security engines identified 2,895
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out of the 4,076 repackaged apps as malware (71.02%).
Again, in Section 5, we show that our results remain
consistent across three additional scenarios: classifying a
repackaged version of an app as malware if at least one,
five, or ten VirusTotal engines flag it as malicious.

Classifying malware into different categories is a com-
mon practice. For instance, Android malware can be clas-
sified into categories like riskware, trojan, adware, etc.
Each category might be further specialized in several mal-
ware families, depending on its characteristics and attack
strategy—e.g., steal network info (IP, DNS, WiFi), collect
phone info, collect user contacts, send/receive SMS, and
so on [41]. According to the avclass2 tool [42], the
malware samples in the SmallDS come from 17 different
families—most of them from the Kuguo (49.27%) and Dow-
gin (17.39%) families. Our LargeDS, besides comprising a
large sample of repackaged apps (4,076 in total), contains
116 malware families—most of them from the Gappusin
(46.18%) family. Despite being flagged as malicious by at
least two security engines, unfortunately avclass2 tool
cannot correctly identify the family of 253 samples in our
LargeDS.

We also characterize our dataset according to the simi-
larity between the original and repackaged versions of the
apps, using the SimiDroid tool [43]. SimiDroid quantifies
the similarity based on (a) the methods that are either
identical or similar in both versions of the apps (original
and repackaged versions), (b) methods that only appear in
the repackaged version of the apps (new methods), and (c)
methods that only appear in the original version of the apps
(deleted methods). Our LargeDS has an average similarity
score of 90.39%, with the following distribution: 87 app pairs
have a similarity score below 25%, 49 pairs fall between 25%
and 50%, 353 apps between 50% and 75%, and 3,587 apps
exceed 75%. The SmallDS has an average similarity score
of 89.41%.

After executing our experiments, we identified the most
frequently abused sensitive APIs called by the repackaged
version of our samples. We observed that upon execution
of all samples from our dataset (SmallDS and LargeDS),
malicious app versions injected 133 distinct methods from
sensitive APIs (according to the AppGuard [44] security
framework). Malicious code often exploits these APIs to
compromise system security and access sensitive data. Ta-
ble 1 lists the 10 most frequently called methods from
sensitive APIs that appear only in the repackaged versions
of the apps.

We must highlight that the LargeDS samples come from
different Android app stores. Most of our repackaged apps
come from a non-official Android app store, Anzhi [45].
However, some repackaged apps also come from the official
Android app store, Google Play.

3.2 Data Collection Procedures
We take advantage of the DroidXP infrastructure [23] for
data collection. DroidXP allows researchers to compare test
case generation tools for malicious app behavior identifi-
cation, using the MAS approach. Although the comparison
of test case generation tools is not the goal of this paper,
DroidXP was still useful for automating the following steps
of our study.

(Step1) Instrumentation: In the first step, we configure
DroidXP to instrument all pairs of apps in our
datasets (SmallDS and LargeDS). Here, we instru-
ment both versions of the apps (as APK files) to
collect relevant information during their execution.
Under the hood, DroidXP leverages DroidFax to
instrument the apps and collect static information
about them. To improve the performance across
multiple executions, this phase executes only once
for each version of the apps in our dataset.

(Step2) Execution: In this step, DroidXP first installs the (in-
strumented) version of the APK files in the Android
emulator we use in our experiment (API 28) and
then starts a test case generation tool for executing
both app versions (original and repackaged). We
execute the apps via DroidBot [11], mainly because
the original research we replicate here reports that
DroidBot leads to the best accuracy of the MAS
approach for malware identification. Since previ-
ous studies suggest that DroidBot’s coverage nearly
reaches its maximum within one minute [5], we
run each app for three minutes. To mitigate the
randomness inherent in test case generation tools,
we repeat this process three times. To also ensure
that each execution gets the benefit of running on
a fresh Android instance without biases that could
stem out of history, DroidXP wipes out all data
stored on the emulator that has been collected from
previous executions.

(Step3) Data Collection: After the execution of the instru-
mented apps, once again, DroidXP leverages Droid-
Fax, this time to collect all relevant information
(such as calls to sensitive APIs, test coverage met-
rics, and so on). We use this information to analyze
the performance of the MAS approach for detecting
malicious behavior.

3.3 Data Analysis Procedures
We consider that the MAS approach builds a sandbox that
labels a repackaged version of an app as malware if there
is at least one call to a sensitive API that (a) was observed
while executing the repackaged version of the app and that
(b) was not observed while executing the original version of
the same app. If the set of sensitive methods that only the
repackaged version of an app calls is empty, we conclude
that the sandbox does not label the repackaged version of
an app as malware. The set of sensitive APIs we use was de-
fined in the AppGuard framework [44], which was based on
the mapping from sensitive APIs to permissions proposed
by Song et al. [46]. We triangulate the results of the MAS
approach classification with the outputs of VirusTotal,
which might lead to one of the following situations:

• True Positive (TP). The MAS approach labels a
repackaged version as malware and, according to
VirusTotal, at least two security engines label the
asset as a malware.

• True Negative (TN). The MAS approach does not la-
bel a repackaged version as malware and, according
to VirusTotal, at most one security engine labels
the asset as a malware.
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Method of Sensitive API Occurrences

android.telephony.TelephonyManager: int getPhoneType() 311
android.telephony.TelephonyManager: java.lang.String getNetworkOperatorName() 297
android.location.LocationManager: java.lang.String getBestProvider(android.location.Criteria,boolean) 292
android.telephony.TelephonyManager: int getSimState() 284
java.lang.reflect.Field: java.lang.Object get(java.lang.Object) 277
android.net.NetworkInfo: java.lang.String getTypeName() 271
android.database.sqlite.SQLiteDatabase: android.database.Cursor query(java.lang.String,java.lang.String[],...,...,...,...,...) 270
java.lang.reflect.Field: int getInt(java.lang.Object) 250
android.net.wifi.WifiInfo: java.lang.String getMacAddress() 238
android.telephony.TelephonyManager: java.lang.String getNetworkOperator() 237

TABLE 1: Sensitive APIs that frequently appear in the repackaged versions of the apps.

Study Feature Original Study Replication Study

Dataset 102 pairs of samples 4,076 pairs of samples
Execution time One minute Three minutes
Number of executions Single execution Three executions
Metrics Malware prevalence Precision, Recall, and F1-score
Test case generation tool Six different tools (DroidBot

with best performance)
DroidBot only

TABLE 2: Characterization of this replication study

• False Positive (FP). The MAS approach labels a
repackaged version as malware and, according to
VirusTotal, at most one security engine labels the
asset as a malware.

• False Negative (FN). The MAS approach does not la-
bel a repackaged version as malware, and according
to VirusTotal, at least two security engines label
the asset as a malware.

In Section 4 we compute Precision, Recall, and F-measure
(F1) from the number of true-positives, false-positives, and
false-negatives (using standard formulae). We use basic
statistics (average, median, standard deviation) to identify
the accuracy of the MAS approach for malware classifica-
tion, using both datasets—i.e., the SmallDS with 102 pairs
of apps and LargeDS with 4,076 pairs. We use the Spearman
Correlation [47] method and Logistic Regression [48] to
understand the strengths of the associations between the
similarity index between the original and the repackaged
versions of a malware with the MAS approach accuracy—
that is, if the approach was able to classify an asset as
malware correctly. We also use existing tools to reverse
engineer a sample of repackaged apps in order to better
understand the (lack of) accuracy of the MAS approach.

Table 2 highlights the differences between the original
study [5] and our replication study. In the best-case sce-
nario, where no re-executions are required, our experiment
would take at least 611 hours. In contrast, under the best
conditions, the original experiment’s execution would last
60 hours. This difference is one of the reasons we focus
our research on DroidBot, the test case generation tool that
demonstrated the best performance in the original study.

4 RESULTS

In this section, we detail the findings of our study. We
remind the reader that this replication study’s primary goal
is to better understand the strengths and limitations of
the MAS approach for malware detection by replicating
the work of Bao et al., using DroidBot as the test case
generation tool. We explore the results of our research using
two datasets: the SmallDS (102 app pairs), and LargeDS
(4,076 pairs).

4.1 Exploratory Data Analysis of Accuracy

SmallDS. Considering the SmallDS (102 apps), the MAS
approach for malware detection classifies a total of 69
repackaged versions as malware (67.64%). This result is
close to what Bao et al. reported [5]. That is, in their original
paper, the MAS approach using DroidBot classifies 66.66%
of the repackaged version of the apps as malware [5]. This
result confirms that we could reproduce the findings of
the original study using our implementation settings of the
MAS approach.

�
Finding 1. We were able to reproduce the results of
existing research using our implementation of the
MAS approach, achieving a malware classification
in the SmallDS close to what has been reported in
previous studies.

In the original study [5], the authors assume that all
repackaged versions are malware and contain a malicious
code. For this reason, the authors do not explore accuracy
metrics (such as Precision, Recall, and F-measure (F1))—
all repackaged apps labeled as malware are considered
true positives in the original study. As we mentioned, in
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TABLE 3: Accuracy of the MAS approach in both datasets.

Dataset TP FP FN Precision Recall F1

SmallDS (102) 63 6 7 0.91 0.90 0.90
LargeDS (4,076) 1,175 220 1,720 0.84 0.40 0.54

this paper we take advantage of VirusTotal to label our
dataset and build a ground truth: In our datasets, we classify
a repackaged version of an app as malware if, according to
our VirusTotal query results, at least two security engines
identify malicious behavior in the asset. This decision aligns
with existing recommendations [40], [15]). The first row of
Table 3 shows that the MAS approach achieves an accuracy
of 0.89 when considering the SmallDS. Nonetheless, the
MAS approach fails to classify seven assets as malware on
the SmallDS correctly (FN column, first row of Table 3),
and wrongly labeled the repackaged version of six apps as
malware (FP column).

LargeDS. Surprisingly, considering our complete
dataset (4,076 apps), the MAS approach labels a total of 1,395
repackaged apps as malware (34.22% of the total number
of repackaged apps)—for which the repackaged version
calls at least one additional sensitive API. Our analysis
also reveals a negative result related to the accuracy of the
approach: here, the accuracy is much lower in comparison
to what we reported for the SmallDS (see the second row of
Table 3): F1 dropping from 0.89 to 0.54. This result indicates
that, when considering a large dataset, the accuracy of the
MAS approach using DroidBot drops significantly.

�
Finding 2. The MAS approach for malware detec-
tion leads to a substantially lower performance on
the LargeDS (4,076 pairs of apps), dropping F1-
score from 0.89 to 0.54 in comparison to what we
observed in the SmallDS.

Therefore, the resulting sandbox we generate using
DroidBot suffers from a significantly low accuracy rate
when considering a large dataset. This is shown in the
second row of Table 3. The negative performance of the
MAS approach in the LargeDS encouraged us to endorse
efforts to identify potential reasons for this phenomenon
and motivated us to explore the research questions RQ2 and
RQ3.

4.2 Assessment Based on Similarity Score

Figure 1 shows the Similarity Score distribution over the
LargeDS we use in our research. Recall that the Simi-
larity Score measures how similar an app’s original and
repackaged versions are. The complete dataset averages a
Similarity Score of 0.90 (with a median of 0.98 and standard
deviation of 0.18).

In this section we investigate how the Similarity Score
influences the accuracy of the MAS approach—which might
help us understand if it might explain the low small perfor-
mance of the MAS approach in the LargeDS. To this end, we
leverage Logistic Regression to quantify the relationship be-
tween Similarity Score and F1-score. This analysis excludes
instances of true negatives (i.e., cases where the repackaged
version is benign according to VirusTotal and the MAS

Fig. 1: Similarity Score of the malware samples in the
LargeDS. The boxplots in the figure do not show outliers.

approach correctly labels it as benign). As such, we test the
following null hypothesis:

H0 Similarity Score does not influence the accuracy
of the MAS approach for malware detection.

The logistic regression results suggest that we should
reject our null hypothesis (p-value = 2.22 · 10−16). This
finding indicates that the accuracy of the MAS approach
on LargeDS is influenced by the similarity between the
original and repackaged versions of an app.

�
Finding 3. There is an association between the
Similarity Score and the MAS approach perfor-
mance, which means that the similarity between
the original and repackaged versions of an app can
explain the performance of the MAS approach for
malware classification.

To clarify the association between Similarity Score
and accuracy, we use the K-Means algorithm to split the
LargeDS into ten clusters—according to the Similarity
Score. We then estimate the percentage of correct classifi-
cations for each cluster, as shown in Table 4. Note that the
MAS approach achieves the highest percentage of correct
classification (77.35%) for the second cluster (cId = 2), which
presents an average Similarity Score of (0.56). Nonetheless,
the cluster cId = 10, with a larger number of samples
(1,302) and Similarity Score (0.99), presents a percentage of
correct classifications of 26.5%. We can observe that as the
average similarity rate decreases, there is a tendency toward
greater accuracy in the MAS approach. Hence, the average
similarity score could explain the poor performance of the
MAS approach on the LargeDS, especially considering that
most samples exhibit a high average similarity of 0.99.
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TABLE 4: Characteristics of the clusters. Note there is a spe-
cific pattern associating the percentage of correct answers
with the Similarity Score. For this analysis, we removed the
true negatives in our dataset.

cId Similarity Score Samples Correct Answers %
1 0.42 42 30 71.42
2 0.56 181 140 77.35
3 0.68 131 98 74.81
4 0.80 170 104 61.18
5 0.88 263 83 31.56
6 0.91 236 129 54.66
7 0.95 167 51 30.54
8 0.97 150 67 44.67
9 0.98 421 112 26.60

10 0.99 1302 345 26.50

4.3 Assessment Based on Malware Family

As we discussed in the previous section, the similarity as-
sessment partially explains the low performance of the MAS
approach on the LargeDS. Since the LargeDS covers a wide
range of malware families, we investigate the hypothesis
that the diversity of malware families in the LargeDS also
contributes to the poor performance of the MAS approach
on the LargeDS. Indeed, in the LargeDS, we identified
a total of 116 malware families, though the most frequent
ones are gappusin (1,337 samples), revmob (207 samples),
dowgin (183 samples) and airpush (120 samples). Together,
they account for 63.79% of the repackaged apps in our
LargeDS labeled as malware according to VirusTotal.

This family distribution in the LargeDS is different from
the family distribution in the SmallDS (used in the original
study)—where the families kuguo (34 samples), dowgin (12
samples), and youmi (5 samples) account for 73.91% of the
families considering the 69 repackaged apps in the SmallDS
for which VirusTotal labels as malware. Most important,
in the SmallDS, there is just one sample from the gappusin
family and no sample from revmob family, two of the most
frequent families in our LargeDS. This observation leads us
to the question: how does the MAS approach perform when
considering only samples from the gappusin and revmob
families?

The confusion matrix of Table 5 summarizes the ac-
curacy assessment of the MAS approach considering only
the gappusin and revmob samples in the LargeDS. To make
clear, VirusTotal classifies as malware all repackaged
versions in the gappusin and revmob family. It is worth noting
that the MAS approach failed to classify correctly 1,170
(87.5%) samples of gappusin as malware. Similarly, 92 sam-
ples (44.44%) from revmob were not classified as malware.
Furthermore, if we exclude the gappusin and revmob samples
from the LargeDS, the recall of the MAS approach increases
to 0.72, which, although improved, remains relatively low
compared to the original studies.

TABLE 5: Confusion matrix of the MAS approach when
considering only the samples from the gappusin and revmob
family in the LargeDS.

Actual Condition Predicted Condition
Benign Malware

Benign (0) TN (0) FP (0)
Gappusin (1,337) FN (1,170) TP (167)

Revmob (207) FN (92) TP (115)

�
Finding 4. The MAS approach fails to correctly
identify 87.50% of the samples from the gappusin
family and 44.44% of the samples from the revmob
as malware. Just like the Similarity Score, the pres-
ence of some malware families with a high false
negative rate also influences the low recall of the
MAS approach in the LargeDS

We further analyze the samples from the gappusin and
revmob malware families in our dataset, given their rele-
vance to the negative results presented in our paper. First,
we examined the Similarity Score of the samples. Figure 2
shows a histogram of the Similarity Score for both families.
Most repackaged versions are similar to the original ones,
with an average Similarity Score of 0.94, a median of 0.99,
and a standard deviation (SD) of 0.16 for the gappusin family.
For the revmob family, the average Similarity Score is 0.81,
the median is 0.91, and the SD is 0.26.

We also reverse-engineered samples from both families.
Due to the significant effort required for reverse engineer-
ing, we limited our analysis to a sample of 30 gappusin
and 30 revmob malware samples, using the SimiDroid3,
apktool 4, and smali2java 5 tools. Considering this
sample, the median Similarity Score is 0.99 and 0.90 for
the gappusin and revmob families, respectively. Table 6 and
Table 7 summarize the outputs of SimiDroid for these
samples.

Regarding the gappusin malware, the similarity assess-
ment of this sample of 30 apps reveals a few modi-
fication patterns when comparing the original and the
repackaged versions. First, no instance in this gappusin
sample dataset modifies the Android Manifest file to re-
quire additional permissions. In most cases, the repack-
aged version just changes the Manifest file to modify ei-
ther the package name or the main activity name. More-
over, 29 out of the 30 samples in this dataset modifies
the method void onReceive(Context, Intent) of the
class com.games.AdReciver. Although the results of the
decompilation process are difficult to understand in full
(due to code obfuscation), the goal of this modification
is to change the behavior of the benign version, so that
it can download a different version of the data.apk as-
set. Figure 3 shows the code pattern of the onReceive
method present in the samples. This modification typi-
cally uses a new method (public void a(Context)) in
the repackaged versions, often introduced into the same
class (AdReceiver). Since there are no additional calls to
sensitive APIs, the MAS approach fails to correctly label

3. https://github.com/lilicoding/SimiDroid
4. https://ibotpeaches.github.io/Apktool/
5. https://github.com/AlexeySoshin/smali2java
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the gappusin samples. This limitation holds regardless of
our experimental choices, such as using the DroidBot tool
(instead of more recent test case generation tools) or running
the samples for three minutes.

(a) Similarity Score for the samples in the gappusin family.

(b) Similarity Score for the samples in the revmob family.

Fig. 2: Histogram of the Similarity Score for the samples in
the gappusin and revmob families.

Our assessment also reveals recurrent modification pat-
terns that delete methods in the repackaged version of the
apps. For instance, 20 repackaged apps in our gappusin sam-
ple of 30 malware remove the method void b(Context)
from the class com.game.a. This class extensively uses the
Android reflection API. Although it is not clear the real
purpose of removing these methods, that decision simplifies
the procedure of downloading a data.apk asset that is
different from the asset available in the original version of
the apps. Removing those methods might also be a strategy
for antivirus evasion. For instance, although some usages of
the class DexClassLoader might be legitimate, it allows
specific types of attack based on dynamic code injection [49].
As such, antivirus might flag specific patterns using the
Android reflection API suspect. Unfortunately, the MAS
approach also fails to identify a malicious behavior with this
type of change (i.e., changes that remove methods), again,

regardless of the decisions we follow in our experiment.
Listing 4 shows an example of code pattern frequently
removed from the repackaged versions from the gappusin
family.

TABLE 6: Summary of the outputs of the SimiDroid tool
for the sample of 30 gappusin malware. (IM) Identical Meth-
ods, (SM) Similar Methods, (NM) New Methods, and (DM)
Deleted Methods.

Hash Similarity Score IM SM NM DM
33896E 0.9994 3205 2 0 0
0C962D 0.9994 3413 1 1 10
BCDF91 0.9992 2645 2 0 0
01ECE4 0.9991 5697 4 1 10
A306DA 0.9989 1886 1 1 6
4010CA 0.9987 3721 1 4 6
5B5F2D 0.9983 1164 2 3 0
010C07 0.9982 2248 4 3 0
F9FC04 0.9982 1121 1 1 6
E29F53 0.9976 842 1 1 6
FE76EB 0.9976 839 1 1 6
842BD5 0.9973 2249 3 3 3
295B66 0.9972 1081 2 1 10
92209D 0.9971 698 2 3 0
0977B0 0.9969 1613 4 1 10
347FCF 0.9967 613 1 1 6
00405B 0.9965 864 2 1 10
67310E 0.9957 1164 2 3 3
CCD29E 0.9954 436 2 0 0
610113 0.9941 836 4 1 10
A871E0 0.9941 836 4 1 10
ECEA10 0.9913 229 1 1 6
E53FAA 0.9889 267 2 1 10
723C23 0.9870 228 2 1 10
D95B6E 0.9870 833 10 1 10
17722D 0.9743 265 6 1 10
537492 0.9504 134 6 1 10
078E0A 0.9504 134 6 1 10
D83F1C 0.9494 150 2 6 6
E5D716 0.8840 2035 68 199 199

In summary, our reverse engineering effort brings evi-
dence that malware samples from the gappusin family nei-
ther modify the Android Manifest files nor call additional
sensitive APIs. It acts as a downloader for further malicious
app [13]—which reduces the ability of the MAS approach
to classify a sample as a malware correctly. Both versions
(original/repackaged) from the gappusin family have the
same behavior for showing advertisements to the user,
however, the repackaged version has additional call sites
to the advertisement API and the advertisement sources are
different.

Similar to the approach used for gappusin samples, we
also reverse-engineered a random selection of 30 samples
from the revmob family that were not detected by the MAS
approach. As with the gappusin family samples, no instance
from the revmob family modifies the Manifest file or inserts
extra calls to sensitive APIs, making it harder for the MAS
approach to label the samples as malware correctly. How-
ever, our reverse engineering reveals that all apps store a
file with the extension “.so” (Shared Object files) in their lib
directory. These files are dynamic libraries containing native
code written in C or C++, and are often used by apps for
performance reasons, when resource-intensive tasks need to
be performed [50].

Unfortunately, creating malicious repackaged apps using
“.so” files is also possible, as they can be replaced by a
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public void onReceive ( Context context , I n t e n t i n t e n t ) {
SharedPreferences sp = contex t . getSharedPreferences ( S t r i n g . valueOf ( ”com . ” ) + ”game . ” + ”param” , 0 ) ;
i n t i = sp . g e t I n t ( ”sn” , 0 ) + 1 ;
System . out . p r i n t l n ( ”sn : ” + i ) ;
i f ( i < 2) {

mo4a ( contex t ) ;
SharedPreferences . Edi tor e d i t = sp . e d i t ( ) ;
e d i t . put Int ( ”sn” , i ) ;
e d i t . commit ( ) ;

} e lse i f ( ! new C0004b ( contex t ) . f7h . equals ( ”” ) ) {
S t r i n g s t r 1 = contex t . g e t A p p l i c a t io n I n fo ( ) . dataDir ;
S t r i n g s t r 2 = S t r i n g . valueOf ( s t r 1 ) + ”/ f i ” + ” l e s /d” + ” ata . a” + ”pk” ;
S t r i n g s t r 3 = S t r i n g . valueOf ( s t r 1 ) + ”/ f i l e s ” ;
S t r i n g s t r 4 = S t r i n g . valueOf ( ”com . ” ) + ” ccx . ” + ”xm. ” + ”SDKS” + ” t a r t ” ;
S t r i n g s t r 5 = S t r i n g . valueOf ( ” I n i t S ” ) + ” t a r t ” ;
S t r i n g s t r 6 = ” ff048a5de4cc5eabec4a209293513b6e ” ;
C0003a . m3a( context , s t r 2 , s t r 3 , s t r 4 , s t r 5 , s t r 6 ) ;
SharedPreferences . Edi tor e d i t 2 = sp . e d i t ( ) ;
e d i t 2 . put Int ( ”sn” , 0 ) ;
e d i t 2 . commit ( ) ;

}
}

Fig. 3: Method introduced in 29 out of 30 gappusin malware we randomly selected from the LargeDS.

public s t a t i c void m7a( A c t i v i t y a c t i v i t y , S t r i n g s t r , S t r i n g s t r 2 , S t r i n g s t r3 , S t r i n g s t r4 , S t r i n g s t r 5 ) {
t r y {

Class loadClass = new DexClassLoader ( s t r , s t r 2 , ( S t r i n g ) null , a c t i v i t y . getClassLoader ( ) ) . loadClass ( s t r 3 ) ;
Object newInstance = loadClass . getConstructor (new Class [ 0 ] ) . newInstance (new Object [ 0 ] ) ;
Method method = loadClass . getMethod ( s t r 4 , new Class [ ]{ A c t i v i t y . c lass , S t r i n g . c l a s s } ) ;
method . s e t A c c e s s i b l e ( t rue ) ;
method . invoke ( newInstance , new Object [ ]{ a c t i v i t y , s t r 5 } ) ;

} catch ( Exception e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}
}

Fig. 4: Example of method that is typically removed from the repackaged apps of the gappusin family.

version containing harmful code [51]. The Shared Object
files also allow for attacks based on dynamic code injec-
tion [49], considering that Android apps can use meth-
ods like System.loadLibrary() or System.load() to
download malicious “.so” files from a remote server. Once
on the device, malicious apps can use these files to interface
with Java code in Android apps, via the Java Native In-
terface (JNI), performing malicious operations on low-level
code and bypassing security mechanisms, like the MAS
approach.

Our assessment confirms that all revmob samples con-
tain Java code that loads a native library. In particular,
to load these libraries, the samples use the loadLibrary
method of the System class, which is called in the static
constructor of the mainActivity class. The loadLibrary
method takes “game” as an argument, and the code auto-
matically searches the default lib directory for the .so file
named (lib+argument). The “lib” directory contains the
libgame.so file in all samples. Figure 5 presents the code
pattern of the mainActivity class found in the samples
from revmob family.

The libgame.so file contains compiled code written
in C or C++, which is loaded into memory and linked to
the apps at runtime. Although machine code is difficult
to analyze, all the files include the JNI OnLoad function,
which the JNI implementation automatically uses to link

public c l a s s PZPlayer extends Cocos2dxActivity {
// . . .
System . loadLibrary ( ”game” ) ;
// . . .

}

Fig. 5: Thie code links this java file into libgame shared
library

Java methods and native functions. When we analyzed the
“.so” file, we found that they all differ in size and content
between the original and repackaged apps. It is possible
that changes of interest occurred in the native libgame.so
file and have gone unnoticed by the MAS approach. Again,
since the MAS approach only considers differences in calls
to sensitive APIs, it is unlikely to correctly classify these
samples using other test case generation tools or by extend-
ing the execution time during its exploratory phase.

5 DISCUSSION

In this section, we answer our research questions, summa-
rize the implications of our results, and discuss possible
limitations of our study that might threaten the validity of
the results presented so far.
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TABLE 7: Summary of the outputs of the SimiDroid tool
for the sample of 30 revmob malware. (IM) Identical Meth-
ods, (SM) Similar Methods, (NM) New Methods, and (DM)
Deleted Methods.

Hash Similarity Score IM SM NM DM
14BBE2 0.9940 3348 6 532 14
BFEF74 0.9940 3348 6 532 14
A3FACA 0.7918 2667 80 112 1 621
10F22D 0.9940 3348 6 532 14
50193A 0.9940 3348 6 532 14
5A7536 0.9940 3348 6 532 14
BCC0DB 0.7918 2667 80 112 1 621
E866CB 0.9940 3348 6 532 14
CDD316 0.9940 3348 6 532 14
DF39F6 0.7918 2667 80 112 1 621
3FFAFF 0.9121 3072 184 628 112
C8C63D 0.9940 3348 6 532 14
48C562 0.9121 3072 184 628 112
D27F26 0.7918 2667 80 112 1 621
F4BBEC 0.9121 3072 184 628 112
BCF14C 0.9127 3074 182 628 112
7FBF11 0.7918 2667 80 112 1 621
9D35D4 0.7918 2667 80 112 1 621
D1B27E 0.9940 3348 6 532 14
94DD4B 0.9940 3348 6 532 14
2D217E 0.7918 2667 80 1121 621
66F167 0.7918 2667 80 1121 621
155D4A 0.9940 3348 6 532 14
8CB780 0.9127 3074 82 628 112
C251FA 0.9940 3348 6 532 14
40487B 0.7918 2667 80 1121 621
F29692 0.9940 3348 6 532 14
0E3679 0.9127 3074 182 628 112
7A4F31 0.9121 3072 184 628 112
BB3EDE 0.7105 2393 256 1217 719

5.1 Answers to the Research Questions

The results we presented in the previous sections allow us
to answer our three research questions, as we summarize in
the following.

• Performance of the MAS approach (RQ1). Our
study indicates that the accuracy of the MAS ap-
proach reported in previous studies [5], [9] does not
generalize to a larger dataset. That is, while in our
reproduction study (using the SmallDS of previous
research) the MAS approach leads to an accuracy
of 0.89, we observed a drop of precision and recall
that leads to an accuracy of 0.54 in the presence of
our LargeDS (4,076 pairs of original and repackaged
versions of Android apps).

• Similarity Analysis (RQ2). Our results bring evi-
dence about the association between the similarity
of the original and repackaged versions of an app
and the ability of the MAS approach to correctly
classify a repackaged version of an app as a malware.
Therefore, the similarity assessment is relevant for
explaining the performance of the MAS approach
to classify certain repackaged versions of an app as
malware.

• Malware Family Analysis (RQ3). The results indi-
cate that some families are responsible for the largest
number of false negatives in the complete dataset.
We specifically further investigate the gappusin and
revmob families—a particular type of Adware, de-
signed to display advertisements while an app is

running automatically. After reverse engineering a
sample of 60 malware apps from gappusin and revmob
family, we confirmed that the MAS approach cannot
identify the patterns of changes introduced in the
repackaged versions of the apps. The prevalence of
the gappusin and revmob families in the Android mal-
ware landscape accounts for the poor performance
of the MAS approach in malware classification on
the large dataset.

5.2 Implications

Contrasting to previous research works [5], [6], [9], our
results lead to a more systematic understanding of the
strengths and limitations of using the MAS approach for
malware classification. In particular, this is the first study
that empirically evaluates the MAS approach considering
as ground truth the outcomes of VirusTotal—a common
practice in the malware identification research. This decision
allowed us to explore the MAS approach performance using
well-known accuracy metrics (i.e., precision, recall, and F1

score). Contrasting with previous studies that assume that
all repackaged versions of the apps were malware. Our
triangulation with VirusTotal reveals this is not true.
Although the MAS approach presents a good accuracy for
the SmallDS (F1 = 0.89), in the presence of a large dataset
the MAS approach accuracy drops significantly (F1 = 0.54).

We also reveal that some families in the LargeDS are
responsible for a large number of false negatives, compro-
mising the accuracy of the MAS approach. Altogether, the
takeaways of this research are twofold:

• Negative result: the MAS approach for malware de-
tection exhibits a much higher false negative rate
than previous research reported.

• Future directions: Researchers should advance the
MAS approach for malware detection by exploring
more sophisticated techniques to differentiate be-
tween benign and malicious apps. In particular, since
our reverse engineering results suggest that gap-
pusin and revmob—two recurrent malware families—
use the network to download new assets, new ap-
proaches might benefit from monitoring not only
calls to sensitive APIs but also network traffic, as well
as mining sensitive calls to native APIs embedded in
so files. The versatility of the Java Native Interface
(JNI) has introduced challenges. Malware authors
increasingly use the native layer to hide malicious
code, making both static and dynamic analysis more
difficult. The current state of the art in sandbox
mining overlooks native calls.

5.3 Threats to Validity

There are some threats to the validity of our results. Re-
garding external validity, one concern relates to the rep-
resentativeness of our malware datasets and how generic
our findings are. Indeed, mitigating this threat was one
of the motivations for our research, since, in the existing
literature on the MAS approach for malware classification,
researchers had explored just one dataset of 102 pairs of
original/repackaged apps. Curiously, for this small dataset,
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the performance of the MAS approach is substantially su-
perior to its performance on our LargeDS (4,076 pairs of
apps).

We contacted the authors of the Bao et al. original
research paper [5], asking them if they had used any
additional criteria for selecting the pairs of apps in their
dataset. Their answers suggest the contrary: they have not
used any particular app selection process that could explain
the superior performance of the MAS approach for the
SmallDS. We believe our results in the LargeDS generalize
better than previous research work, since we have a more
comprehensive collection of malware with different families
and degrees of similarity. Nonetheless, our research focuses
only on Android repackaged malware. Thus, we cannot
generalize our findings to malware that targets other plat-
forms or uses different approaches to instantiate a malicious
asset. Besides that, repackaging is a recurrent approach for
implementing Android malware.

Regarding conclusion validity, during the exploratory
phase of the MAS approach, we collected the set of calls
to sensitive APIs the original version of an app executes,
while running a test case generation tool (DroidBot). In the
exploratory phase, the MAS approach assumes the existence
of a benign original version of a given app. We also query
VirusTotal to confirm this assumption, and found that
the original version of seven (out 102) apps in the SmallDS
contains malicious code. We believe the authors of previous
studies carefully check that assumption, and this difference
had occurred because the outputs of VirusTotal change
over time [40], and a dataset that is consistent on a given
date may not remain consistent in the future. Therefore,
while reproducing this research, it is necessary to query
VirusTotal to get the most up-to-date classification of
the assets, which might lead to results that might slightly
diverge from what we have reported here. Besides that, in
the LargeDS we only consider pairs of original/repackaged
apps for which VirusTotal classifies the original version
as benign.

Regarding construct validity, we address the main
threats to our study by using simple and well-defined
metrics that are in use for this type of research: number
of malware samples the MAS approach correctly/wrongly
classify in a dataset (true positives/false negatives). We
computed the accuracy results using precision and recall
based on these metrics. In a preliminary study, we inves-
tigated whether or not the MAS approach would classify
an original version of an app as malware, computing the
results of the test case generation tools in multiple runs.
After combining three executions in an original version
to build a sandbox, we did not find any other execution
that could wrongly label an original app as malware. Also,
we label a repackaged version of an app as malware only
if VirusTotal reports that at least two engines detect
suspicious behavior in that asset. This decision might be
viewed as either a weak or strong constraint and could
raise concerns about construct validity. However, when we
relax this constraint and label an asset as malware whenever
at least one engine detects suspicious behavior, precision
improves to 0.85, but recall drops to 0.39. Overall, the
accuracy of the MAS approach remains almost unchanged
(F1 = 0.53)—still significantly lower than the precision of the

MAS approach for SmallDS. We also evaluated accuracy
by considering an asset as malware when at least five or
ten VirusTotal security engines flagged it. As shown in
Table 8, the results did not diverge significantly from what
we have reported in this paper.

6 CONCLUSIONS

To better understand the strengths and limitations of the
MAS approach for repackaged malware detection, this pa-
per reported the results of an empirical study that repli-
cates previous research works [5], [9]. The study utilizes a
more diverse dataset compared to those used in previous
research, with the aim of providing a more comprehensive
evaluation of the approach. To our surprise, compared to
published results, the performance of the MAS approach
drops significantly for our comprehensive dataset (F1 score
reduces from 0.89 in previous papers to 0.54 here). This
result is partially explained by the high prevalence of spe-
cific malware families (named gappusin and revmob), whose
samples are incorrectly classified by the MAS approach.
We also report the results of a reverse engineering effort,
whose goal was to understand the characteristics of the
gappusin and revmob family that reduce the performance of
the MAS approach for malware classification. Our reverse
engineering effort revealed common changing patterns in
the gappusin repackaged versions of original apps, which
mostly use reflection to download an external apk asset
for handling advertisements without introducing additional
calls to sensitive APIs. Similarly, the revmob family does not
include any additional calls to sensitive resources; however,
it often uses JNI to interact with native code, which can
be used to perform malicious operations at a low level,
compromising the effectiveness of the MAS approach for
malware identification. These negative results highlight
the current limitations of the MAS approach for malware
classification and suggest the need for further research to
integrate the MAS approach with other techniques for more
effective malware identification.
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