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Abstract—Machine learning (ML) has become a vital tool
in Android malware detection, effectively identifying malicious
patterns in applications to combat the growing threat of malware.
However, ML-based systems remain highly vulnerable to evasion
attacks, where subtle perturbations can bypass detection mecha-
nisms. Despite efforts to develop adversarially robust malware de-
tection systems, the lack of comprehensive evaluation frameworks
for state-of-the-art defenses in this domain limits the thorough
understanding of their effectiveness. This study introduces two
key contributions to advance adversarial evaluation in binary-
constrained domains. First, we propose Prioritized Binary Round-
ing, a technique that efficiently transforms continuous adversarial
perturbations into binary spaces while preserving high attack
success rates and minimizing perturbation size. Second, we
develop the σ-binary attack, a novel adversarial attack specifically
tailored for binary domains, designed to achieve adversarial
objectives with minimal perturbations while maintaining compat-
ibility with binary feature constraints. Extensive evaluations on
the Malscan dataset demonstrate the superiority of the proposed
approach. σ-binary consistently outperforms existing adversar-
ial methods, including CW, σ-zero, Mimicry, and PGD-based
attacks, across both robust and non-robust defenses in terms
of attack success rate and perturbation size. Furthermore, our
analysis of state-of-the-art defenses using σ-binary reveals critical
vulnerabilities. Defenses equipped with adversary detectors, such
as KDE, DLA, DNN+, and ICNN, exhibit significant brittleness,
with attack success rates exceeding 90% for fewer than 10 feature
modifications and reaching 100% with a 20-feature perturbation
budget. Adversarially trained defenses, including AT-rFGSMk

and AT-MaxMA, exhibit improved robustness at lower budgets
but remain highly susceptible to unrestricted perturbations,
with attack success rates of 99.45% and 96.62%, respectively.
Although PAD-SMA has been demonstrated to maintain a high
accuracy above 83.45% (equivalent to an attack success rate
below 16.55%) against 15 gradient-based attacks without pertur-
bation limits, our analysis reveals significant vulnerabilities. The
σ-binary attack achieves a 36.34% success rate against PAD-SMA
with fewer than 10 modified features, increasing to 94.56%
under unrestricted perturbations. These findings underscore the
importance of precise evaluation tools, such as σ-binary, to
uncover latent weaknesses in existing defenses and guide the
development of more robust malware detection systems.

Index Terms—Machine Learning, Android Malware Detection,
Adversarial Malware Detection, Evasion Attack

I. INTRODUCTION

The surge in mobile device attacks has escalated into a
critical global concern. In 2023 alone, such attacks increased
by 50% compared to the previous year. According to Kasper-
sky, their systems blocked 33.8 million instances of malware,
adware, and riskware targeting mobile devices, with Android

remaining the primary focus of cybercriminals [1]. This sig-
nificant increase in Android malware underscores the urgent
need for advanced detection strategies to counter increasingly
sophisticated threats.

Machine learning (ML) has become a cornerstone of An-
droid malware detection, significantly improving scalabil-
ity and detection precision [2]–[6]. Among ML-based ap-
proaches, static analysis methods, such as Drebin [4] and
MaMaDroid [7], have demonstrated notable efficiency. These
methods analyze application features without requiring execu-
tion, enabling rapid and scalable security assessments. Conse-
quently, static analysis has become a foundational component
of modern malware detection pipelines.

Despite these advancements, ML-based malware detectors
are inherently vulnerable to adversarial attacks. These attacks
exploit weaknesses in detection models by introducing care-
fully crafted perturbations to evade detection. Such attacks,
which undermine reliability, are broadly categorized into eva-
sion and poisoning attacks. Evasion attacks manipulate test
examples during the deployment phase to bypass detection
[8]–[12], whereas poisoning attacks compromise training

datasets to degrade detector performance [13], [14]. This
study focuses on evasion attacks because of their immediate
implications for operational systems.

Evasion attacks can be further divided into problem-space
and feature-space attacks. Problem-space attacks modify mal-
ware applications directly, such as injecting benign ”gadgets”
or altering application components to obscure malicious intent
[15]–[17]. In contrast, feature-space attacks modify feature
vectors extracted from malware while preserving the func-
tionality of the original sample [8], [9]. This study focuses
exclusively on feature-space attacks because of their controlled
evaluation capabilities and practical relevance.

Defending against adversarial attacks remains a significant
challenge. Adversarial training, which incorporates adversarial
samples into training datasets, has shown promise in im-
proving robustness [8]. However, these methods often fail to
generalize to novel attack strategies, impose high computa-
tional costs, and risk overfitting to specific attacks [18]. Other
defense mechanisms such as ensemble methods [19]–[21],
auxiliary models such as Variational Autoencoders (VAEs)
[22], and hybrid frameworks such as PAD-SMA [23] offer
varying degrees of effectiveness. However, these approaches
frequently involve trade-offs, including increased complexity
and reduced detection accuracy.

https://arxiv.org/abs/2505.09342v1
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A. Our Contributions

Evaluating the adversarial robustness of malware de-
fenses in binary space presents significant challenges. Ex-
isting approaches encounter two critical limitations. First,
gradient-based attacks originally designed for continuous
spaces are often adapted to binary domains using naive
binarization techniques such as Deterministic and Ran-
domized Binary Rounding, which significantly reduce their
effectiveness (e.g., [9]). Additionally, the absence of a
gradient-based attack designed for binary spaces arises from
the inherent complexity of optimization within a non-convex
and non-differentiable constraint space, further exacerbating
this limitation. Second, these methods rely on subjective
methodologies and generalized attack strategies, employing
low-iteration gradient-based attacks with fixed hyperparame-
ters across all defenses without optimizing them to individual
models (e.g., [20], [22]–[25]). This combination of attack in-
compatibility with binary-constrained domains and insufficient
optimization prevents these methods from effectively exposing
vulnerabilities in defense mechanisms.

To address the challenges of evaluating adversarial robust-
ness in binary-constrained domains, this study introduces a
novel framework tailored for thorough assessment of defenses.
The key contributions of our research are as follows:

First, we propose Prioritized Binary Rounding, an innova-
tive technique for transforming gradient-based attacks from
continuous to binary spaces. Extensive evaluations on the
Malscan dataset [26], encompassing four defenses (DNN,
AT-rFGSM, AT-MaxMA, and PAD-SMA) and two attack
scenarios (σ-zero and CW attacks, optimizing ℓ0-norm and
ℓ2-norm, respectively), demonstrate its superiority over De-
terministic and Randomized Binary Rounding in terms of
both attack success rate and perturbation size IV-B. For the
σ-zero attack, Prioritized Binary Rounding achieves results
nearly identical to continuous outputs, minimizing feature
modifications while maintaining high attack success rates:
100% on DNN (compared with 94.88% for the second-best
method), 85.95% on AT-rFGSM (vs. 78.64%), 92.56% on
AT-MaxMA (vs. 81.31%), and 79.64% on PAD-SMA (vs.
69.91%). For the CW attack, it effectively addresses the chal-
lenge of binarizing small fractional perturbations, achieving
100% success on DNN (vs. 49.45%), 68.36% on AT-rFGSM
(vs. 26.10%), 65.37% on AT-MaxMA (vs. 37.18%), and
36.82% on PAD-SMA (vs. 8.25%).

Second, we introduce σ-binary attack, a novel adversarial
method specifically designed for binary-constrained domains.
This attack leverages a differentiable approximation of the
Hamming distance, which is a key metric for binary vectors,
to facilitate an effective gradient-based optimization. Further-
more, it incorporates dynamic confidence adjustment, enabling
the optimization process to efficiently explore regions near the
decision boundary and enhance the likelihood of identifying
viable binary solutions. By seamlessly integrating Prioritized
Binary Rounding, σ-binary maintains strict adherence to bi-
nary feature constraints while effectively achieving adversarial
objectives.

Our experimental evaluations demonstrate the superior per-

formance of σ-binary IV-C. Against the non-robust base-
line (DNN), σ-binary achieves an optimal attack success
rate of 100%, consistent with most other attacks except
Mimicry. On AT-rFGSMk, it attains 99.45%, surpassing
PGD-ℓ2 (89.21%) and σ-zero (85.95%). Against AT-MaxMA,
σ-binary achieves 96.62%, outperforming σ-zero (92.56%)
and PGD-ℓ2 (91.75%). For PAD-SMA, the most robust
defense, σ-binary attains 94.56%, significantly exceeding
PGD-ℓ2 (79.90%) and σ-zero (79.64%).

Further analysis of attack success rates across varying per-
turbation budgets confirms that σ-binary consistently outper-
forms all other attacks across all evaluated defenses (Figure 2),
underscoring its efficacy in binary-constrained domains.

Finally, we apply the σ-binary attack to evaluate the ro-
bustness of the eight defenses on the Malscan dataset IV-C.
The baseline DNN and defenses with adversary detectors,
such as KDE, DLA, DNN+, and ICNN, exhibit significant
vulnerability, with attack success rates exceeding 90% for
fewer than 10 feature modifications and reaching 100% with
a 20-feature perturbation budget. In contrast, adversarially
trained defenses such as AT-rFGSMk and AT-MaxMA show
improved robustness at lower budgets, but remain susceptible
under unrestricted perturbations, with success rates of 99.45%
and 96.62%, respectively. PAD-SMA, considered the most
robust defense, demonstrates strong resilience in prior eval-
uations [23], achieving an accuracy above 83.45% (equivalent
to an attack success rate below 16.55%) against 15 different
gradient-based attacks without perturbation limits. However,
our evaluation reveals vulnerabilities, with σ-binary achieving
36.34% success with fewer than 10 modified features, 89.79%
at a 50-feature budget, and 94.56% under unrestricted pertur-
bations.

Furthermore, we evaluate defenses under both non-attack
conditions and oblivious attacks to provide a comprehen-
sive comparison. Our findings indicate that while PAD-SMA
exhibits marginally greater robustness under high perturba-
tion levels compared to the second most robust defense
(AT-MaxMA), this comes at the cost of significant compu-
tational overhead and reduced accuracy for benign samples.
These findings emphasize the trade-offs among various eval-
uation criteria and underscore the necessity to align defenses
with specific threat models and operational requirements.

The source code for this study is publicly available at https://
github.com/mostafa-ja/sigma-binary to ensure reproducibility
and facilitate further research.

B. Paper outline.
The remainder of the paper is organized as follows: Sec-

tion II provides a review of the preliminaries. Section III
details the proposed methods, including Prioritized Binary
Rounding and σ-binary. Section IV describes the experimental
setup and presents results. Section V reviews related studies
on evasion attacks and defenses. Finally, Section VI presents
the key findings and outlines directions for future research.

II. PRELIMINARIES
In this section, we introduce the notations used throughout

the paper and describe the integrated malware and adversary

https://github.com/mostafa-ja/sigma-binary
https://github.com/mostafa-ja/sigma-binary
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detectors, focusing on the key concepts that form the basis of
our work.

A. Notations

To formalize the concepts and methods discussed in this
paper, we define the following key notations:

• Let Z represent the problem space, where each z ∈ Z
corresponds to an Android application sample.

• A feature extraction function ϕ : Z → X maps samples
from the problem space to a d-dimensional discrete
feature space X ⊂ Rd.

• A malware detector f : Z → Y assigns a label y ∈
Y = {0, 1}, where 0 represents benign and 1 indicates
malicious. The detector is defined as f(z) = φθ(ϕ(z)),
where φθ : X → Y is a ML model with parameters θ.

• An adversary detector g : Z → R identifies ad-
versarial examples. It operates in the feature space as
g(z) = ψϑ(ϕ(z)), where ψϑ is a secondary model with
learnable parameters ϑ. A sample is flagged as adversarial
if g(z) > τ , where τ is a predefined threshold.

• For a sample-label pair (z, y), the feature representation
is x = ϕ(z). An adversarial example is defined as
z′ = z + δz , where δz denotes perturbations in the prob-
lem space. Correspondingly, x′ = ϕ(z′) represents the
perturbed feature-space sample, expressed as x′ = x+δx
where δx denotes feature-space perturbations.

The loss function for the malware detector is denoted
as Lφ(θ, x + δx, y), capturing the discrepancy between the
model’s predictions and true labels.

B. Integrated Malware and Adversary Detectors

To enhance the robustness of malware detection, a sec-
ondary adversary detector g is integrated with the primary
malware detector f . The models are defined as:

f(z) = φθ(ϕ(z)), (1)
g(z) = ψϑ(ϕ(z)), (2)

where θ and ϑ are the parameter sets of the respective models.
The prediction process is as follows:

predict(z) =


f(z), if g(z) ≤ τ,

1, if g(z) > τ and f(z) = 1,

further action, if g(z) > τ and f(z) = 0.

(3)

When g(z) > τ and f(z) = 0, the sample is classified
as suspicious and handled in one of two ways: (i) Deferred,
where the input is excluded from classification and reserved
for further analysis; or (ii) Conservative, where the input is
labeled as malicious to prioritize safety. This integrated ap-
proach ensures robust detection while addressing uncertainties
introduced by adversarial examples.

C. Evasion Attacks

Evasion attacks target both the problem and feature spaces.
In the problem space, an adversarial sample z′ satisfies:

f(z′) = 0, g(z′) ≤ τ. (4)

In the feature space, this translates to perturbations x′ = x+δx
such that:

φθ(x
′) = 0, ψϑ(x

′) ≤ τ, x′ ∈ [u, u], (5)

The interval [u, u] defines the feature space boundaries, where
u and u represent the lower and upper limits, respectively.
These constraints ensure that perturbations remain within the
valid feature range, maintaining the feasibility of adversarial
examples.

To address the disconnect between the feature space and
the problem space, an approximate inverse mapping function,
ϕ̃−1, is utilized [27]. This function maps perturbations from
the feature space back to the problem space, ensuring practical
feasibility.

D. Oblivious vs. Adaptive Attacks

Adversarial attacks targeting malware detection systems can
be broadly classified into oblivious and adaptive attacks, based
on the knowledge the attacker has of the adversary detector g.

Oblivious attacks operate without any knowledge of the
adversary detector g. These attacks aim solely to bypass the
malware detector f by ensuring that adversarial inputs are
misclassified as benign. As such, oblivious attacks overlook
the presence of g, making them less effective when g is
actively present. The adversary detector g can flag such
inputs as adversarial, limiting their ability to evade the overall
detection framework.

Adaptive attacks, on the other hand, explicitly account for
the adversary detector g, represented as g(z′) = ψϑ(ϕ(z

′)).
These attacks require that the adversarial input not only evades
the malware detector f but also satisfies g(z′) ≤ τ . This
dual requirement makes adaptive attacks more complex and
challenging to defend against.

The optimization problem for adaptive attacks is formu-
lated as:

min
x′∈[u,u]

Lφ(θ, x′, 0) s.t. ψϑ(x
′) ≤ τ and x′ ∈ X. (6)

This formulation substitutes the condition φθ(x
′) = 0

with minimizing Lφ(θ, x′, 0), addressing the issue of non-
differentiability.

A critical challenge in this optimization process lies in
the non-linear nature of the constraint ψϑ(x′) ≤ τ , which
precludes the use of standard gradient descent techniques.
Unlike oblivious attacks, the problem cannot be reformulated
by simply swapping the objective and constraint. The non-
linear constraint imposed by g requires a more sophisticated
approach to ensure that adversarial inputs evade both f and g
while adhering to distortion bounds.

To address this difficulty, existing literature adopts a La-
grangian relaxation approach, previously applied to construct-
ing minimum-distortion adversarial examples [28]. The opti-
mization objective is reformulated as:

min
x′∈[u,u]

Lφ(θ, x′, 0) + λψϑ(x
′) (7)

where λ ≥ 0 is a penalty factor that adjusts the relative
importance of evading f versus reducing the response of g.
The optimal value of λ is determined through a binary search,
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ensuring an effective trade-off between these competing ob-
jectives [29].

This penalty-based formulation enables adaptive attacks
to effectively bypass both f and g, while addressing the
inherent complexities of optimizing over a constrained, non-
linear adversarial detection model.

E. Binary Rounding Methods

Binary rounding is essential for generating adversarial ex-
amples that respect the binary feature constraints inherent
in malware detection. During optimization, gradient-based
methods often yield intermediate solutions with continuous
feature values, violating these constraints. To address this,
Previous studies have explored two primary approaches:

• Deterministic Binary Rounding: This method applies
a fixed threshold, typically 0.5, to convert continuous
values into binary features. Values equal to or greater
than 0.5 are rounded to 1, while values below 0.5 are
rounded to 0.

• Randomized Binary Rounding: This probabilistic ap-
proach rounds continuous values based on their magni-
tude. For example, a value of 0.7 is rounded to 1 with a
probability of 70% and to 0 with a probability of 30%.

III. PROPOSED APPROACH

This section presents the proposed methods for crafting
adversarial examples in binary feature spaces. The approach
addresses two key challenges: (i) ensuring perturbations con-
form to binary constraints and (ii) achieving dual objec-
tives—evading malware detection and bypassing adversarial
defense mechanisms.

A. Threat Model and Design Objective

We assume a white-box attack setting, where the attacker
has full knowledge of both the malware detector f and the
adversary detector g, including their architectures, trained
parameters, and feature representations [28], [30]. This as-
sumption allows for worst-case evaluations of the robustness
of ML-based defenses against adversarial attacks.

The attacker’s objective is to generate adversarial examples
that evade f while remaining undetected by g. An approximate
inverse mapping function ϕ̃−1 is employed, as proposed in
prior studies [20], [23], to translate feature-space perturbations
into the problem space, ensuring the adversarial examples
retain their functional validity.

It is worth noting that in oblivious attacks, the attacker is
unaware of the existence of g and, consequently, does not
consider g in the process of generating adversarial examples.

B. Incorporating Distance Metrics

An appropriate distance metric is essential for quantifying
the similarity between original and adversarial samples. In
binary feature spaces, the Hamming distance(dH ) is a natural

choice, capturing the number of differing features between two
binary vectors:

dH(x, x′) =

d∑
i=1

I(xi ̸= x′i). (8)

where I(·) is the indicator function. The Hamming distance
aligns directly with the ℓ0-norm for binary vectors and serves
as a structured and interpretable measure of dissimilarity.

C. Problem Formulation

The adversarial attack is formulated as an optimization
problem in the binary feature space. For a given malware
instance-label pair (x, y), where x = ϕ(z) and y = 1, the
attacker seeks to determine the minimal feature modification
δ⋆, quantified by the Hamming distance dH , such that the
resulting adversarial example x⋆ = x+ δ⋆ satisfies:

δ⋆ ∈ argmin
δ
dH(x, x+ δ), (9)

s.t. φθ(x+ δ) = 0, (10)
ψϑ(x+ δ) ≤ τ, (11)
x+ δ ∈ X , (12)
x+ δ ∈ [u, u], (13)

Due to the intractability of solving this problem directly, we
reformulate it using a smooth surrogate objective:

δ⋆ ∈ argmin
δ
L(θ, ϑ, x+ δ) +

1

d
d̃H(x, x+ δ), (14)

s.t. x+ δ ∈ X , x+ δ ∈ [u, u], (15)

Where d̃H(x, x+ δ) represents a differentiable approximation
of the Hamming distance, normalized by the number of
features d to ensure its value lies within the interval [0, 1]. This
normalization removes the need for hyperparameter tuning to
balance the trade-off between the loss and the perturbation
size, thereby avoiding computationally expensive line searches
for each input sample [31].

The total loss L is defined as:

L(θ, ϑ, x+ δ) = Lφ(θ, x+ δ, 0) + C · Lψ(ϑ, x+ δ). (16)

where:

Lφ(θ, x+ δ, 0) = max(φ1
θ(x+ δ)− φ0

θ(x+ δ),−κ1). (17)

Lψ(ϑ, x+ δ) = max(ψϑ(x+ δ)− τ,−κ2). (18)

In these equations:
• Lφ(θ, x+δ, 0) represents the loss function of the malware

detector f , with a target label of zero.
• Lψ(ϑ, x+δ) represents the loss function of the adversary

detector g.
• φkθ represents the logit output of f for class k ∈ {0, 1}.
• C ≥ 0 is a penalty weight optimized via binary search

to balance the loss contributions of f and g.
• κ1 and κ2 are confidence margins for f and g, ensuring

robust misclassification and detection avoidance.
We define the loss for the malware detector f using the

differences between logits, a method whose rationale is exten-
sively discussed in [28]. Furthermore, independently bounding
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Algorithm 1: σ-binary Attack with Prioritized Binary
Rounding

Input: x ∈ [0, 1]d: input sample;
θ: malware detector f ; ϑ: adversary detector g;
N,Nbinary search: max iterations; η0: initial step size;
σ: smoothing parameter; Cinit: initial penalty factor;
γ0: initial sparsity threshold; t: sparsity adjustment factor;
κ1,init, κ2,init: initial confidence values;
α1, α2: confidence bounds; ϵ: loss convergence threshold.
Output: x⋆: binary adversarial example.
Loss(θ, ϑ, x, δ) = L(θ, ϑ, x+ δ) + 1

d
d̃H(x, x+ δ);

Initialize: δ⋆ ←∞, C ← Cinit, best_dist ←∞; for
OuterStep← 1 to Nbinary search do

Initialize: δ ← 0, γ ← γ0, η ← η0, κ1 ← κ1,init,
κ2 ← κ2,init;

for i← 1 to N do
∇g ← ∇δLoss(θ, ϑ, x, δ);
∇g ← ∇g

∥∇g∥∞
;

η ← cosine annealing(η0, i);
δ ← clip(x+ (δ − η · ∇g))− x;
δ ← Πγ(δ);
if (x+ δ) evades both f and g then

γ ← γ + t · η;

else
γ ← γ − t · η;

δbinary ← Rprioritized binary(x, x+ δ, θ, ϑ);
if dH(δbinary, 0) < best_dist and
(x+ δbinary) evades both f & g then

δ⋆ ← δbinary;
best_dist ← dH(δbinary, 0);

if |Loss− previous_Loss| < ϵ then
if (x+ δ) evades both f & g then

κ1 ← −α1, κ2 ← −α2;

else
κ1 ← α1, κ2 ← α2;

Update C via binary search;

Return: x⋆ ← x+ δ⋆;

the loss functions ensures that minimizing one loss term does
not inherently satisfy the constraints for both detectors, thereby
preserving the distinct objectives of f and g.

1) Hamming Distance Approximation: To enable gradient-
based optimization, the Hamming distance dH is approximated
as:

d̃H(x, x+ δ) =

d∑
i=1

δ2i
δ2i + σ

. (19)

Here, σ > 0 serves as a smoothing parameter to ensure
differentiability. However, this approximation may lead to non-
sparse solutions. To mitigate this, an adaptive projection oper-
ator Πγ enforces sparsity by setting perturbation components
below a threshold γ to zero, promoting both sparsity and
adversarial effectiveness [31].

2) Binary Rounding: To convert continuous solutions into
binary values, we employ Prioritized Binary Rounding (de-
tailed in Subsection III-D), which prioritizes feature modifica-
tions based on their impact on model decisions. This method
ensures compliance with binary constraints while minimizing
perturbations.

3) Dynamic Confidence Adjustment: In adversarial opti-
mization, the solution typically converges to an optimal result
in the continuous-valued space. However, during the binary
rounding process, where continuous values are discretized into
binary form, suboptimality can be introduced. This subopti-
mality arises because the process of forcing discrete values can
disrupt the fine-tuned structure of the continuous solution. To
address this issue, we employ the Dynamic Confidence Adjust-
ment method. After the initial convergence of the optimization
process, the confidence parameter κ is dynamically adjusted
within a bounded range [−α,+α]. This adjustment enables
the optimization process to explore regions near the decision
boundary, facilitating the discovery of a binary solution that
more effectively satisfies the adversarial objectives.

4) Algorithm Details for the σ-binary Attack: The σ-Binary
Attack, outlined in Algorithm 1, generates binary adversarial
examples with minimal perturbations to evade the malware
detector f and, if applicable, the adversary detector g. Key
parameters, such as the penalty factor C, sparsity threshold,
and confidence margins κ1 and κ2, are initialized with κ1 and
κ2 set to small values to prioritize early boundary crossing for
effective evasion.

The algorithm employs two nested loops: an outer binary
search loop to adjust C for balancing loss terms, and an inner
optimization loop to minimize a loss function combining the
evasion objective and a smooth approximation of the Hamming
distance. Perturbations are iteratively updated via a cosine
annealing learning rate, clipped gradient descent, and enforced
sparsity. Non-binary perturbations are converted to binary form
using prioritized binary rounding to maintain functionality and
input constraints.

Once the total loss converges, the thresholds are dynami-
cally adjusted throughout the optimization process based on
evasion success. The algorithm ultimately outputs the best
adversarial example, denoted x⋆ = x + δ⋆, which minimizes
the Hamming distance while successfully bypassing detection.

D. Prioritized Binary Rounding
To efficiently map continuous perturbations to binary feature

vectors, the proposed σ-binary attack framework introduces
a novel technique called Prioritized Binary Rounding. This
method ensures compliance with binary constraints while
minimizing unnecessary feature modifications, balancing ad-
versarial effectiveness and sparsity.

Traditional binary rounding methods often use uniform
deterministic or randomized thresholds, which overlook varia-
tions in feature importance and adversarial impact. In contrast,
Prioritized Binary Rounding selects features for modification
based on two critical factors:

• Perturbation Magnitude: Features exhibiting larger de-
viations from their original values are prioritized for
modification.
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• Feature Importance: Features that significantly influ-
ence the model’s decision boundary are prioritized to
enhance adversarial effectiveness.

Algorithm 2: Prioritized Binary Rounding

Input: xorig ∈ [0, 1]d: original input;
xadv ∈ [0, 1]d: adversarial input;
fθ: target model; τ : perturbation threshold.
Output: x⋆: binary adversarial example.
Initialize: x⋆ ← xorig;
if fθ(x⋆) is benign then

return x⋆;

Compute perturbation magnitude: ∆← |xadv − xorig|;
Generate mask for significant perturbations:
M← 1(∆ > τ);

Sort indices by descending perturbation magnitude:
FeatureOrder← argsort(∆, desc);

for i← 1 to
∑

(M) do
Update feature j ← FeatureOrder[i]:

x⋆[j]←

{
1, if xadv[j] > xorig[j],

0, otherwise.

if fθ(x⋆) is benign then
return x⋆;

return x⋆;

The algorithm operates as follows:
First, the perturbation magnitude for each feature is com-

puted as the absolute difference between the adversarial and
original feature values. Features with perturbations exceeding
a predefined threshold τ are marked as candidates for modi-
fication using a binary mask. Candidate features are sorted in
descending order based on perturbation magnitude and relative
importance, determined by their position in the feature space,
to prioritize the most impactful changes.

Each selected feature is iteratively updated by rounding
it to one if the adversarial feature value is greater than the
original; otherwise, it is set to zero. After each modification,
the adversarial example is evaluated to determine whether
it successfully evades detection by the malware detector. If
the detector classifies the sample as benign, the rounding
process terminates early, and the rounded result is returned.
If early termination does not occur, the algorithm continues
updating all significant features before outputting the final
binary adversarial example.

By leveraging this method, the σ-binary attack achieves
higher success rates with minimal perturbations, making it a
robust and efficient solution for adversarial attacks in malware
detection scenarios.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed methods,
we conducted extensive experiments across various scenarios.
Our analysis addresses two primary categories of research
questions (RQs): (i) comparing the proposed methods with

prior work (RQ1 and RQ2), and (ii) using these methods to
evaluate the performance of existing defenses (RQ3, RQ4, and
RQ5). Specifically, we sought answers to the following:

• RQ1: Effectiveness of Prioritized Binary Rounding.
How effective is the proposed Prioritized Binary Round-
ing technique in comparison to existing binary rounding
methods?

• RQ2: Effectiveness of the σ-binary attack. How does
our proposed σ-binary attack perform relative to other
attack strategies in binary feature spaces?

• RQ3: Baseline performance of defenses. How effective
are defense mechanisms under non-adversarial condi-
tions?

• RQ4: Robustness against oblivious attacks. How re-
silient are defenses against oblivious attacks, where at-
tackers are unaware of the adversary detector g?

• RQ5: Robustness against adaptive attacks. How robust
are the defenses against adaptive attacks? This evaluates
performance under worst-case scenarios.

A. Experimental Framework and Configuration

This section provides a detailed overview of the dataset, fea-
ture extraction process, defense mechanisms, attack methods,
evaluation metrics, and experimental configurations utilized in
our study.

1) Dataset: We utilized the MalScan dataset [26], a widely
recognized collection comprising 23,196 Android applications,
with 11,583 malicious and 11,613 benign samples. The dataset
spans applications from 2011 to 2018. The data was randomly
split into training (60%), validation (20%), and testing (20%)
subsets.

2) Feature Extraction: Feature extraction was performed
using Drebin [4], which analyzes Android application pack-
ages (APKs) to construct a binary feature space. Features were
extracted from the Android manifest and the disassembled
dexcode using the Androguard tool. These features were
organized into eight categories, including hardware compo-
nents, permissions, intents, API calls, and class names. Each
APK is represented as a binary feature vector, where each
dimension indicates the presence (1) or absence (0) of a
specific feature. Consistent with prior work [23], we exclude
easily modifiable features (e.g., package names) and retain the
10,000 most frequent features, ensuring robust representation
for evaluation.

3) Defenses Considered for Comparative Analysis: In this
study, we evaluate a range of defenses drawn from prior
research, categorized into three distinct types: (i) methods that
enhance the resilience of malware detectors through adversar-
ial training, (ii) methods that integrate malware detection with
adversarial example detection mechanisms, and (iii) methods
that combine both adversarial training and adversary detection
mechanisms for comprehensive defense.

Below, we provide a detailed overview of each defense:

• DNN [8]: A baseline deep neural network model for
malware detection. This model does not incorporate spe-
cific countermeasures against evasion attacks and serves
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as a reference for comparing the robustness of advanced
defense mechanisms.

• DNN+ [32]: An extension of the DNN model that incor-
porates a secondary detector. This detector introduces an
additional outlier class to identify adversarial examples.

• KDE [33]: Combines a DNN with a Kernel Density
Estimation (KDE)-based secondary detector. The KDE
mechanism identifies adversarial examples by analyzing
deviations in activations of the DNN’s penultimate layer.

• DLA [34]: Dense Layer Analysis (DLA) incorporates
a secondary detector alongside the DNN. By evaluating
activations across all dense layers, DLA distinguishes be-
tween normal and adversarial examples, adding a robust
layer of defense.

• AT-rFGSMk [9]: A defense mechanism that strengthens
the DNN through adversarial training using the FGSMk

attack. This approach employs randomized rounding pro-
jections to increase the model’s resilience to adversarial
perturbations.

• AT-MaxMA [20]: Enhances DNN robustness by incor-
porating adversarial training with a Mixture of Attacks
(MaxMA) strategy. This method combines multiple at-
tack techniques to construct a more comprehensive and
resilient defense.

• ICNN [23]: Integrates a DNN with an Input Convex Neu-
ral Network (ICNN) as a secondary detector. The ICNN
operates independently of the DNN’s architecture and
analyzes the feature space to detect adversarial examples.

• PAD-SMA [23]: integrates a DNN-based malware detec-
tor with an ICNN-based adversary detector. Both com-
ponents are fortified through adversarial training using
the Stepwise Mixture of Attacks (SMA), making this ap-
proach a representative example of defenses that combine
adversarial training with adversary detection mechanisms.

This comprehensive classification facilitates a thorough
analysis of the robustness of various defenses against the
proposed σ-binary attack.

4) Evasion Attack Methods for Comparative Analysis:
To benchmark our proposed σ-binary attack, we compare it
against four well-established adversarial attack methods: CW,
σ-zero, Mimicry, and PGD. Below, we detail each method:

a) Projected Gradient Descent (PGD) Attacks: PGD [35]
is an iterative optimization method that identifies perturbations
maximizing adversarial loss while adhering to predefined
constraints. The update rule is expressed as:

δ(t+1)
x = Proj[u−x,u−x]

(
δ(t)x + α∇δxF (θ, x+ δ(t)x , 1)

)
,

where α > 0 is the step size, ∇δxF denotes the gradient of
the loss function, and Proj ensures that perturbations remain
within constraint bounds. To address small gradients and
enhance adversarial success, researchers employ normalization
in different norms, such as the ℓ∞-norm, ℓ2-norm, or ℓ1-norm.
Each norm identifies the steepest direction, which is then
utilized to compute effective perturbations [36].

b) CW Attack: The Carlini & Wagner (CW) attack [28]
minimizes the ℓ2-norm of perturbations while ensuring mis-
classification. It achieves this by solving a carefully crafted op-

timization problem through gradient-based methods, resulting
in highly effective evasion with minimal feature modification.

c) σ-zero Attack: The σ-zero attack [31] is designed to
minimize the number of modified features by approximating
the ℓ0-norm and applying adaptive projections. It is effective
in generating highly sparse perturbations, challenging defenses
that assume adversarial examples require extensive feature
modifications.

d) Mimicry Attack: Mimicry [27], [37] is a gradient-free
adversarial attack that perturbs malware samples to resemble
benign samples. By iteratively querying the target model and
adjusting perturbations, it effectively bypasses detection mech-
anisms without requiring knowledge of model parameters.

5) Evaluation Metrics: To rigorously assess the perfor-
mance and robustness of defenses, we utilize a comprehensive
suite of evaluation metrics. These metrics capture both the
classification accuracy and resilience to adversarial attacks,
and are defined as follows:

• False Positive Rate (FPR): The proportion of benign
examples that are incorrectly classified as malicious. This
reflects the model’s tendency to overestimate threats.

• False Negative Rate (FNR): The proportion of malicious
examples that are mistakenly classified as benign, indi-
cating the model’s vulnerability to evasion by malware.

• Accuracy (Acc): The overall ratio of correctly classified
examples to the total number of samples, representing the
model’s general predictive capability.

• F1 Score: The harmonic mean of precision and recall,
offering a robust evaluation for imbalanced datasets by
balancing the trade-off between false positives and false
negatives.

• Attack Success Rate (ASRk): The fraction of adversar-
ial attacks that successfully evade detection, where the
Hamming distance between the original and adversarial
samples satisfies dH(x,x⋆) ≤ k. This metric measures
the model’s resistance to perturbations of varying magni-
tudes.

• Median Perturbation (d̃H,median): The median Hamming
distance of successful adversarial examples, quantifying
the typical modification magnitude required to deceive
the detector.

• Excluded Samples (ExS): For deferred detection models,
this metric represents the fraction of inputs that are
deferred by the adversary detector g.

These metrics collectively provide a robust framework for
evaluating both the predictive accuracy and adversarial robust-
ness of the proposed defenses.

6) Experimental Setup and Configuration: To evaluate the
effectiveness of gradient-based attacks, we generate adver-
sarial examples using all 3,104 malicious samples from the
test dataset. Each attack is executed with 10,000 iterations
of gradient descent, ensuring a thorough exploration of the
attack surface. While convergence often occurs earlier, this
approach allows for a comprehensive evaluation [28]. For
the CW attack, 8 iterations of binary search are conducted
to optimize the penalty weight , maximizing the impact of
adversarial perturbations.
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Figure 1: Robustness comparison of defense models under various binary rounding methods (ASR vs. perturbation budget k).

As gradient-based attacks produce continuous-valued out-
puts, the Prioritized Binary Rounding method is employed to
enforce binary feature constraints. This post-processing step
ensures the generated adversarial examples adhere to the con-
straints of the domain while maintaining their effectiveness.
Hyperparameters for each attack are meticulously tuned for
alignment with the defense models under evaluation, ensuring
fairness and consistency in the experimental results.

For defenses equipped with adversary detectors, the process
is adjusted to use 4 iterations of binary search to identify the
smallest effective penalty factor c. Additionally, thresholds for
identifying suspicious samples are computed by excluding the
top 5% of validation examples with the highest confidence,
as recommended by [23] and [34]. This strategy ensures that
the thresholds are both practical and minimally disruptive to
benign classification performance.

B. RQ1: Effectiveness of Prioritized Binary Rounding

This section evaluates the effectiveness of the proposed
Prioritized Binary Rounding method by comparing it with
two widely used techniques: Deterministic Binary Rounding
and Randomized Binary Rounding. The analysis examines
adversarial examples crafted by two distinct and representative
attacks: the CW attack, which is an optimization-based method
focused on minimizing the ℓ2-norm of perturbations, and the
σ-zero attack, a sparsity-driven approach specifically targeting
the ℓ0-norm to induce minimal feature modifications. Since
the outputs of these attacks are continuous-valued, binary
rounding is essential to satisfy the binary feature constraints
inherent to binary-constrained domains.

Four defense models were evaluated to ensure comprehen-
sive analysis. The DNN serves as a baseline model without

specialized defenses, while AT-rFGSMk, AT-MaxMA, and
PAD-SMA (in conservative mode) represent robust defenses
known for their effectiveness against adversarial attacks. These
models span a spectrum of robustness levels, as further dis-
cussed in IV-F.

To ensure a clear comparison, binary-rounded adversarial
examples were evaluated alongside their original continuous
outputs. The ℓ2-norm perturbation (characterizing the CW
attack) and ℓ0-norm perturbation (representing the σ-zero
attack) were employed to evaluate the effectiveness of various
rounding methods. Figure 1 presents a comparative analysis of
the performance of each rounding technique across the defense
models.

As depicted in Figure 1, Prioritized Binary Rounding sig-
nificantly outperforms Deterministic and Randomized Binary
Rounding in the σ-zero attack scenario. It achieves results
closely aligned with the original continuous outputs, par-
ticularly on the DNN model, where its performance nearly
overlaps with the continuous baseline. This effectiveness stems
from its alignment with the ℓ0-norm, which the σ-zero attack
optimizes, and its ability to preserve the adversarial success
rate by minimizing the number of feature modifications.
Conversely, Randomized Binary Rounding demonstrates the
weakest performance, failing to maintain the effectiveness of
adversarial examples generated by the σ-zero attack.

In the CW attack, a more noticeable gap exists between the
original continuous outputs and all binary rounding methods.
This is attributable to the CW attack’s focus on minimizing
the ℓ2-norm, which often results in numerous small fractional
changes, complicating binary conversion. Despite this chal-
lenge, Prioritized Binary Rounding still surpasses Determinis-
tic and Randomized Binary Rounding, demonstrating superior
robustness across both ℓ0-norm and ℓ2-norm-based attacks.
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Figure 2: Robustness comparison of defense models under various attack methods (ASR vs. perturbation budget k).

To answer RQ1, Prioritized Binary Rounding outperforms
Deterministic and Randomized Binary Rounding by closely
preserving the success rates of adversarial attacks across
different distance metrics. Its versatility allows for the ef-
fective conversion of a broad range of continuous adversarial
examples into binary formats, making it a robust and general-
purpose solution for binary-constrained domains.

C. RQ2: Effectiveness of σ-binary attack

This section evaluates the effectiveness of our proposed
σ-binary attack in comparison with several adversarial at-
tack methods, including the CW attack (ℓ2-norm-based), the
σ-zero attack (ℓ0-norm-based), and the Mimicry attack (a
gradient-free approach). Additionally, we examine the per-
formance of PGD-ℓ1, PGD-ℓ2, and PGD-ℓ∞, which rep-
resent attacks that do not explicitly minimize perturbation.
For simplicity, throughout this subsection, PAD-SMA refers
exclusively to its configuration in conservative mode.

The results in Table I and Figure 2 demonstrate the su-
perior performance of the σ-binary attack across all evalu-
ated defenses. Against the baseline DNN, all attacks—except
Mimicry—, including σ-binary, achieve ASR∞ of 100%,
highlighting the vulnerability of DNNs to adversarial pertur-
bations. However, significant differences arise when robust
defenses such as AT-rFGSMk, AT-MaxMA, and PAD-SMA
are evaluated.

For AT-rFGSMk, σ-binary achieves an impressive ASR∞ of
99.45%, followed by PGD-ℓ2 (89.21%) and σ-zero (85.95 %).
On AT-MaxMA, σ-binary reaches ASR∞ of 96.62%, outper-
forming σ-zero (92.56%) and PGD-ℓ2 (91.75%). Against the
strongest defense, PAD-SMA, σ-binary achieves an ASR∞
of 94.56%, significantly surpassing PGD-ℓ2 (79.90%) and
σ-zero (79.64%). In contrast, PGD-ℓ1 struggles to adapt to
robust defenses, with a low ASR∞ of 32.76% on AT-MaxMA,
indicating limited versatility.

The CW attack’s poor performance after binarization is
noteworthy. Designed to minimize ℓ2-norm perturbations, CW
produces adversarial examples near the decision boundary,
making it particularly vulnerable to binarization, which dis-
rupts its finely tuned perturbations. In contrast, PGD-ℓ2 and
PGD-ℓ∞ avoid this limitation by producing perturbations that
push further beyond the decision boundary, resulting in higher
success rates post-binarization.

Table I: Accuracy (%) of defenses under adaptive attacks.

Attack name ASR∞ (%)

DNN AT-rFGSMk AT-MaxMA PAD-SMA

CW (binarized) 100.00 68.36 65.37 36.82
σ-zero (binarized) 100.00 85.95 92.56 79.64

Mimicry 99.81 83.92 83.09 67.20
PGD-ℓ1 100.00 79.96 32.76 69.14

PGD-ℓ2 (binarized) 100.00 89.21 91.75 79.90
PGD-ℓ∞ (binarized) 100.00 85.47 84.09 75.52

σ-binary 100.00 99.45 96.62 94.56

As shown in Figure 2, σ-binary consistently achieves higher
ASRs at smaller perturbation budgets compared to other
attacks, demonstrating its efficiency in generating effective
adversarial examples with minimal input modifications. Al-
though PGD-ℓ2 and PGD-ℓ∞ improve slightly at larger per-
turbation budgets, they remain less effective than σ-binary,
especially against PAD-SMA. Mimicry, a gradient-free attack,
performs poorly against PAD-SMA due to the robust adver-
sarial detection capabilities of PAD-SMA, particularly against
high-perturbation attacks.

Answer to RQ2: The σ-binary attack is highly effective
across a wide range of defenses, including PAD-SMA. It
consistently achieves higher ASRs with smaller perturbation
budgets, outperforming all other evaluated attacks and es-
tablishing itself as a robust and efficient adversarial attack
method.

D. RQ3: Baseline performance of defenses

This subsection evaluates the performance of defense mod-
els in the absence of adversarial attacks. The defense cat-
egorized into two groups: (1) defenses without adversary
detectors (DNN, AT-rFGSMk, AT-MaxMA) and (2) those with
adversary detectors (DNN+, KDE, DLA, ICNN, PAD-SMA),
operating in either deferred or conservative modes.

As summarized in Table II, models with adversary detectors
in deferred mode consistently outperform their conservative
counterparts. Deferred models exclude a small percentage of
challenging samples, which simplifies classification and boosts
accuracy. Notably, DNN+ (Deferred) achieves the highest
accuracy (98.12%) and F1 score (98.12%), excluding 4.98%
of samples. Similarly, DLA (Deferred) and KDE (Deferred)
achieve competitive results with F1 scores of 97.86% and
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Table II: Effectiveness (%) of detectors in the absence of
attacks.

Defense FNR (%) FPR (%) Acc (%) F1 (%) ExS (%)

DNN 2.13 3.13 97.38 97.42 -
AT-rFGSMk 1.13 6.45 96.24 96.37 -
AT-MaxMA 0.77 9.61 94.86 95.12 -
KDE (Deferred) 2.24 3.17 97.29 97.30 3.71
KDE (Conservative) 2.13 5.53 96.19 96.29 -
DLA (Deferred) 1.53 2.61 97.91 97.86 5.54
DLA (Conservative) 1.39 4.28 97.18 97.25 -
DNN+ (Deferred) 1.54 2.23 98.12 98.12 4.98
DNN+ (Conservative) 1.45 6.22 96.19 96.32 -
ICNN (Deferred) 2.05 3.24 97.37 97.48 5.11
ICNN (Conservative) 2.00 10.63 93.73 94.05 -
PAD-SMA (Deferred) 0.86 7.86 95.62 95.73 4.56
PAD-SMA (Conservative) 0.81 10.43 94.43 94.74 -

97.30%, respectively, while excluding 5.54% and 3.71% of
samples.

Conservative-mode models prioritize strict classification,
treating all suspicious samples flagged by the detector g as
malicious. This approach results in elevated false positive
rates (FPRs), reducing overall performance. For instance,
ICNN (Conservative) has an FPR of 10.63%, compared to
3.24% in its deferred counterpart. Similarly, PAD-SMA (Con-
servative) shows an accuracy of 94.43%, lower than its de-
ferred counterpart (95.62%).

Adversarially hardened models, such as AT-rFGSMk,
AT-MaxMA, and PAD-SMA, exhibit lower false negative
rates (FNRs), highlighting their ability to detect malicious
samples effectively. However, this robustness against adver-
sarial attacks comes at the cost of performance under benign
conditions. For example, AT-rFGSMk achieves an FNR of
1.13% and an FPR of 6.45%, resulting in an accuracy of
96.24%. PAD-SMA (Deferred) achieves an FNR of 0.86%
and an FPR of 7.86%, with an accuracy of 95.62%, lagging
behind other deferred models due to its reliance on adversarial
training, which biases its detector g and increases FPR [23].

Answer to RQ3, In the absence of attacks, deferred-mode
defenses such as DNN+, DLA, and KDE achieve superior
accuracy and F1 scores by excluding challenging samples,
whereas conservative-mode models and adversarially hardened
defenses face trade-offs between robustness and performance,
with higher FPRs and lower accuracy when there are no
adversarial attacks.

E. RQ4: Robustness against oblivious attacks

In this subsection, we assess the robustness of five de-
fenses—KDE, DLA, DNN+, ICNN, and PAD-SMA—against
oblivious attacks using the proposed σ-binary attack. These
defenses integrate an adversary detector g, which is not
explicitly targeted in this evaluation.

Oblivious attacks operate under the assumption that attack-
ers are unaware of the presence or functionality of the detector
g, focusing solely on evading the main classifier. This scenario
provides a baseline for evaluating the intrinsic robustness of
g and the overall defense system.

While non-adaptive attack evaluations are necessary, they
are insufficient to fully gauge robustness. Success against such

Figure 3: Robustness evaluation curves (ASR vs. perturbation
budget k) against oblivious attacks.

Table III: Robustness against Oblivious Attacks

Defense ASR∞ (%) ExS (%) ℓ̃0,median

KDE (Deferred) 100.00 8.25 4.00
KDE 91.75 - 4.00
DLA (Deferred) 100.00 5.83 4.00
DLA 94.17 - 4.00
DNN+ (Deferred) 100.00 38.63 4.00
DNN+ 61.37 - 4.00
ICNN (Deferred) 100.00 2.09 4.00
ICNN 97.91 - 4.00
PAD-SMA (Deferred) 100.00 96.68 2.00
PAD-SMA 3.32 - 2.00

weaker adversaries does not guarantee resilience to adaptive
attacks [18]. However, these evaluations can still highlight
vulnerabilities in defenses under minimal adversarial threats.

The robustness evaluation considers two configurations:
deferred and conservative. In the deferred mode, samples
flagged as suspicious by g are excluded from the ASR cal-
culation, isolating the vulnerabilities of the main classifier.
In contrast, the conservative mode assumes all suspicious
samples flagged by g are malicious, incorporating them into
the ASR calculation. Unless explicitly labeled as Deferred,
results represent the conservative configuration.

Table III summarizes the evaluation results. In the deferred
mode, all defenses exhibit ASR∞ of 100%, underscoring the
inability of the malware detector to resist attacks indepen-
dently. However, the conservative mode reveals substantial
variations in robustness, highlighting the critical role of g in
mitigating adversarial threats.

Among the evaluated defenses, PAD-SMA exhibits excep-
tional robustness, achieving an ASR of just 3.32% in its
conservative configuration. The flat ASR curve shown in
Figure 3 highlights its consistent resilience across varying
perturbation budgets. This superior performance, compared to
ICNN—which shares a similar defense architecture—can be
attributed to PAD-SMA’s incorporation of adversarial training,
which significantly enhances the robustness of the adversary
detector g.

ICNN exhibits a high ASR of 97.91%, with its steep
ASR curve, as depicted in Figure 3, underscoring substan-
tial vulnerability to small perturbations. Similarly, KDE and
DLA perform poorly, with ASRs of 91.75% and 94.17%,
respectively, in the conservative configuration. DNN+ shows



11

moderate improvement, achieving an ASR of 61.37%, yet it
remains significantly less robust than PAD-SMA in resisting
oblivious attacks.

Answer to RQ4: PAD-SMA demonstrates unparalleled
robustness against oblivious attacks, outperforming other de-
fenses by a wide margin. The considerable vulnerability of
ICNN, KDE, and DLA emphasizes the indispensable role of
adversarial training in crafting effective defense mechanisms.

F. RQ5: Robustness Against Adaptive Attacks

This subsection evaluates the robustness of defenses against
adaptive attacks using our proposed σ-binary attack. Unlike
oblivious attacks, adaptive attacks assume full knowledge of
the adversary detector g, enabling attackers to craft perturba-
tions that evade both the primary model and g, presenting a
greater challenge for defenses.

Table IV and Figure 4 present the obustness of each defense
under adaptive attacks. DNN, KDE, DLA, DNN+, and ICNN
exhibit high vulnerability, with median perturbation (ℓ̃0,median)
of 4.00 and ASR10 exceeding 90%, indicating susceptibility
to small perturbations.

In contrast, adversarially trained defenses such as
PAD-SMA, AT-MaxMA, and AT-rFGSMk show significantly
enhanced robustness. AT-MaxMA achieves the strongest resis-
tance at low perturbation budgets, with ASR10 = 23.32%, out-
performing PAD-SMA (36.34%) and AT-rFGSMk (51.35%).
This highlights AT-MaxMA’s capability to mitigate low-budget
attacks effectively.

At moderate perturbation budgets, as indicated by ASR50,
AT-MaxMA maintains its superiority, achieving the low-
est value (65.17%), followed by PAD-SMA (89.79%) and
AT-rFGSMk (92.01%). However, for high perturbation bud-
gets, PAD-SMA demonstrates greater robustness, achiev-
ing the lowest ASR∞ = 94.56%, slightly outperforming
AT-MaxMA (96.62%) and other defenses. PAD-SMA’s perfor-
mance reflects its ability to restrict the success of high-budget
attacks, as evidenced by its flattened ASRk curve for k ≥ 50.

These findings highlight a trade-off between robustness
across different perturbation budgets and practical consider-
ations. AT-MaxMA is well-suited for scenarios where small
perturbations are prevalent, demonstrating superior robustness
at low budgets while maintaining lower false positive rates
(FPR) and higher benign classification accuracy. In contrast,
PAD-SMA excels against high-budget attacks, showcasing
enhanced robustness in such scenarios. However, this comes
at the cost of increased FPR and computational overhead, as
noted in [23]. Furthermore, PAD-SMA demonstrates signifi-
cant resilience when attackers are unaware of the adversary
detector g, as evidenced in Table III.

Answer to RQ5: Adaptive attacks expose varying degrees
of robustness among defenses. DNN, KDE, DLA, DNN+,
and ICNN exhibit high brittleness, with ASR10 exceed-
ing 90%. While AT-rFGSMk outperforms these simpler de-
fenses, it falls short compared to AT-MaxMA and PAD-SMA.
AT-MaxMA demonstrates exceptional robustness at low and
moderate perturbation budgets, achieving ASR10 = 23.32%
and ASR50 = 65.17%. Conversely, PAD-SMA excels against

Figure 4: Robustness evaluation curves (ASR vs. perturbation
budget k) against adaptive attacks.

Table IV: Robustness against Adaptive Attacks

Defense ASR10 (%) ASR50 (%) ASR∞ (%) ℓ̃0,median

DNN 94.75 100.00 100.00 4.00
AT-rFGSMk 51.35 92.01 99.45 10.00
AT-MaxMA 23.32 65.17 96.62 30.00
KDE 93.07 100.00 100.00 4.00
DLA 91.20 100.00 100.00 4.00
DNN+ 97.45 100.00 100.00 4.00
ICNN 94.75 100.00 100.00 4.00
PAD-SMA 36.34 89.79 94.56 13.00

high-budget attacks, achieving the lowest ASR∞ = 94.56%.
These results underscore the trade-offs between robustness
across different perturbation levels, false positive rates, and
computational demands, emphasizing the importance of align-
ing defenses with specific threat models and operational re-
quirements.

V. RELATED WORK

This section reviews two critical aspects of adversarial
research in malware detection: the development of evasion
attack strategies and the design of corresponding defense
mechanisms. To provide a comprehensive overview, the dis-
cussion is divided into Evasion Attacks in Malware Detection
and Defenses Against Evasion Attacks.

A. Evasion Attacks in Malware Detection

Adversarial attacks in Android malware detection can be
broadly categorized into problem-space attacks, which directly
modify applications, and feature-space attacks, which manip-
ulate extracted feature representations. Both strategies exploit
vulnerabilities in machine learning-based malware detectors
while preserving the original functionality of the malware.

Problem-space attacks alter application components such as
the manifest file, Dalvik bytecode, or inject benign artifacts to
bypass detection. Android HIV [16] perturbs Dalvik bytecode
to evade detectors while maintaining functionality. Pierazzi et
al. [15] introduced the injection of benign bytecode ”gadgets”
to fool detection models. Tang et al. [17] expanded this with
DapAdv, leveraging a hierarchical attention mechanism to
optimize code slicing for adversarial repackaging. Advanced
techniques include reinforcement learning-based attacks like
HRAT [38] and hybrid approaches using generative adversarial
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networks (GANs) [39] with co-evolution algorithms [10] have
further improved the effectiveness of problem-space attacks.
Black-box methods such as EvadeDroid [11] demonstrate
success with minimal feature knowledge, relying on random
perturbations in benign code.

Feature-space attacks focus on manipulating extracted
feature vectors without altering the application itself.
Gradient-based methods [8], [9] optimize perturbations to
evade detection. Ensemble-based techniques such as [20]
combine diverse manipulation strategies for enhanced efficacy.
GAN-based approaches, such as E-MalGAN [40] and the
method proposed by Shahpasand et al. [41], craft adversarial
examples that evade both malware detectors and adversarial
detection systems.

B. Defenses Against Evasion Attacks
Developing effective defenses against adversarial attacks has

been a critical area of research, focusing on enhancing model
robustness.

Adversarial training is a well-established defense strategy
that enhances model resilience by incorporating adversarial
examples into the training process. While it proves effective
against the perturbations encountered during training [8], this
approach faces limitations, including vulnerability to novel
attack styles, high computational overhead, and a tendency
to overfit to specific attack methods [18].

Ensemble methods aim to enhance robustness by combining
multiple classifiers or detectors. Smutz and Stavrou [19]
proposed mutual agreement analysis, flagging uncertain pre-
dictions based on classifier disagreement. Ficco [21] intro-
duced a dynamic ensemble system combining generic and
specialized detectors. However, applying ensemble strategies
to deep learning models remains challenging due to difficulties
in coordinating diverse model predictions.

Defenses with auxiliary models utilize separate frameworks
to identify adversarial examples or purify inputs. Li et al. [22]
employed a Variational Autoencoder (VAE) to detect adver-
sarial malware via reconstruction errors, while Li et al. [42]
combined hash transformations with denoising autoencoders
to mitigate perturbations. Despite initial success, these ap-
proaches often struggle against adaptive attacks.

Recently, hybrid approaches have gained prominence, com-
bining multiple defense strategies to address the limitations of
individual methods. For instance, PAD-SMA [23] integrates
a malware detection system with an adversary detector, both
strengthened through adversarial training with a diverse range
of attacks. While this approach enhances robustness and gen-
eralization, it also incurs significant computational overhead
and exhibits lower accuracy on benign samples, limiting its
practicality in real-world scenarios.

The ongoing advancements in both attack and defense
mechanisms underscore the dynamic nature of this field, ne-
cessitating continuous innovation to address emerging threats
effectively.

VI. CONCLUSIONS AND FUTURE WORK

This study introduces a robust adversarial attack framework
in binary space and a comprehensive evaluation methodology

for assessing the robustness of ML-based Android malware
detection against adversarial attacks in feature space. By
proposing the σ-binary attack and Prioritized Binary Round-
ing, we address key limitations in adapting gradient-based
attacks—which typically generate continuous adversarial ex-
amples—to binary feature domains. Our results emphasize
the critical importance of adversarial training in enhancing
robustness. However, they also reveal that even advanced
defenses, such as PAD-SMA, remain susceptible to adaptive
attacks, highlighting vulnerabilities that were previously un-
derestimated.

This work further identifies inherent trade-offs in robust
defenses, including increased false positive rates and com-
putational overhead, underscoring the importance of aligning
defense mechanisms with specific operational needs and threat
scenarios. These insights provide valuable guidance for de-
signing more effective and efficient defense systems.

Future research directions could focus on expanding the
application of the σ-binary attack and Prioritized Binary
Rounding to other binary-constrained domains, such as fraud
detection and network intrusion detection, to demonstrate their
broader applicability. Another critical area is the development
of standardized benchmarks for evaluating adversarial robust-
ness in binary domains, which would enable consistent and fair
comparisons across studies and foster greater transparency in
the field.
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