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Abstract—Sybil attacks pose a significant security threat to
blockchain ecosystems, particularly in token airdrop events.
This paper proposes a novel sybil address identification method
based on subgraph feature extraction lightGBM. The method
first constructs a two-layer deep transaction subgraph for each
address, then extracts key event operation features according
to the lifecycle of sybil addresses, including the time of first
transaction, first gas acquisition, participation in airdrop activ-
ities, and last transaction. These temporal features effectively
capture the consistency of sybil address behavior operations.
Additionally, the method extracts amount and network structure
features, comprehensively describing address behavior patterns
and network topology through feature propagation and fusion.
Experiments conducted on a dataset containing 193,701 addresses
(including 23,240 sybil addresses) show that this method out-
performs existing approaches in terms of precision, recall, F1
score, and AUC, with all metrics exceeding 0.9. The methods and
results of this study can be further applied to broader blockchain
security areas such as transaction manipulation identification and
token liquidity risk assessment, contributing to the construction
of a more secure and fair blockchain ecosystem.

Index Terms—sybil attack, blockchain security, machine learn-
ing, graph analysis

I. INTRODUCTION

Sybil attacks are a security threat in decentralized networks
where attackers create multiple identities or nodes to influence
system decision-making processes or consensus mechanisms.
In computer networks and blockchain technology, the pur-
pose of sybil attacks is typically to gain disproportionate
influence or control, such as in voting systems, reputation
systems, or airdrop events. In the cryptocurrency domain, sybil
addresses refer to multiple addresses controlled by a single
entity, used to masquerade as multiple independent participants
to manipulate markets, abuse airdrop events, or influence
decisions in decentralized autonomous organizations (DAOs).
The existence of sybil addresses undermines the principle of

decentralization in blockchain technology and compromises
the fairness and trustworthiness of the system. Airdrops are
a common cryptocurrency marketing strategy where projects
distribute tokens to a wide range of users to increase their
project’s visibility and user base. However, airdrop events
are also susceptible to sybil attacks, where attackers create
multiple addresses to collect more airdrop tokens, unfairly
increasing their gains. This behavior not only infringes on the
rights of other users but also potentially damages the project’s
reputation and market value.

Sybil addresses have garnered increasing attention in var-
ious blockchain projects (e.g., Starknet, zkSync, LayerZero),
leading to the accumulation of labeled sybil address datasets.
Machine learning models and graph neural networks [7], [21]
have demonstrated exceptional efficacy in identifying entity
addresses and fraudulent addresses in blockchain systems.
However, academic literature specifically addressing sybil ad-
dress identification remains relatively scarce, with only two
directly relevant works employing unsupervised methods for
this purpose. Airdrop events can be categorized into short-term
and long-term distributions:

(1) Short-term airdrops: These involve one-time token dis-
tributions by project teams on a specific dataset.

(2) Long-term airdrops: These encompass prolonged token
distributions on a specific dataset, exemplified by Soulbound
Token (SBT) airdrops or projects conducting multiple-phase
airdrops or extended marketing campaigns. These distinct cat-
egories necessitate different analytical approaches. For short-
term airdrops, unsupervised methods are more appropriate,
facilitating the exploration and identification of sybil address
behavioral patterns. Conversely, long-term airdrops are better
suited to supervised methods, as the extended distribution
period allows for the accumulation of a substantial corpus
of labeled sybil addresses, enabling more precise supervised
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model training and subsequent identification.
As we amass diverse sybil address datasets across various

platforms, we gain insights into a wide spectrum of sybil
behavioral patterns. To achieve optimal identification efficacy,
supervised methodologies emerge as the most promising ap-
proach. This strategy leverages the rich, labeled data accu-
mulated over time, allowing for more nuanced and accurate
detection of sybil addresses across different contexts and
blockchain ecosystems. Inspired by Chen et al. [1], this paper
proposes a supervised subgraph-based feature extraction algo-
rithm, subgraph-based lightGBM, to identify sybil addresses
by extracting time series of critical operations and network
structural features. The contributions of this study are as
follows:

(1) This research presents the first application of a super-
vised machine learning method to sybil address identification.
The proposed Subgraph-based lightGBM algorithm captures
structural features of airdrop address subgraphs and extracts
composite temporal features based on the sybil address lifecy-
cle (first transaction, first gas recharge, participation in airdrop
events, and last transaction time).

(2) We conduct network feature analysis on the transaction
subgraphs of sybil addresses and analyze the importance and
contribution of these features to reveal how they capture the
transaction patterns of sybil addresses.

(3) We validate the proposed model’s effectiveness in de-
scribing sybil address transaction patterns using a dataset con-
taining 193,701 addresses (including 23,240 sybil addresses).
Our results demonstrate that our model outperforms the exist-
ing Trusta model.

The structure of this paper is organized as follows: Sec-
tion II presents a comprehensive literature review, encompass-
ing relevant works on entity identification and sybil address
detection in blockchain systems. Section III introduces our
proposed Subgraph-based lightGBM algorithm, detailing its
methodology and implementation. Section IV discusses our
experimental results, including feature analysis and feature
interpretability, demonstrating the efficacy of our approach.
Section V addresses the limitations of our study, providing
a critical evaluation of our methodology and results. Finally,
Section VI concludes the paper with a summary of our findings
and offers perspectives on future research directions in this
domain.

II. RELATED WORKS

A. Entity Identification

Entity identification, which associates multiple account ad-
dresses belonging to the same entity, has become a crucial
step in revealing the real identities behind blockchain accounts
and provides an important technical basis for sybil address
detection. Existing entity identification methods are mainly
divided into three categories: transaction-based, behavior-
based, and off-chain information-based, each with its own
characteristics, aiming to parse blockchain data from different
angles to reveal entity relationships behind complex transac-
tion networks. Wu et al. [2] and Xu et al. [3] used graph

neural networks and graph attention networks, respectively,
to improve identification accuracy. Cross-chain analysis has
also made progress, with Victor and Lüders [4] proposing
a cross-chain entity association method based on address
reuse patterns, and Zhang et al. [5] developing a multi-modal
learning framework. Jourdan et al. [6] studied the use of
machine learning techniques to track cross-chain transactions.
The privacy-preserving entity identification framework based
on federated learning proposed by Li et al. [7], and the privacy-
preserving anti-money laundering analysis method discussed
by Biryukov and Tikhomirov [8], both demonstrate the balance
between privacy and security. The research by Tzanetakis et al.
[9] showcases the potential application of entity identification
in regulating illegal markets.

Overall, blockchain entity identification research has de-
veloped to a stage capable of handling complex network
structures, conducting cross-chain analysis, and considering
privacy protection. However, sybil address identification has its
own specificity, focusing more on identifying malicious actors,
requiring stricter judgment criteria and higher identification
accuracy. Sybil addresses typically exhibit more consistent or
coordinated behavior patterns and may appear concentrated
within specific time periods. Therefore, when applied to sybil
address identification, special attention needs to be paid to
these characteristics and the constantly changing strategies of
attackers.

B. Sybil Address Detection

In blockchain security research, while sybil attacks are
a widely discussed topic, studies specifically targeting sybil
address identification at the transaction level, particularly in
airdrop scenarios, remain relatively scarce. Existing relevant
research primarily focuses on address clustering, anomalous
transaction detection, and network structure analysis. Although
these methods are not directly aimed at sybil address iden-
tification, they provide potential technical foundations for
addressing this issue.

The Ethereum address clustering method proposed by Victor
[10], while primarily intended to identify addresses belonging
to the same entity, could potentially be applied to identify
multiple sybil addresses controlled by the same attacker.
Payette et al.’s [11] feature analysis of the Ethereum address
space provides a basis for understanding normal and abnormal
address behaviors, which may aid in distinguishing between
regular users and sybil addresses. In terms of anomalous
transaction detection, although the studies by Hu et al. [12]
and Farrugia et al. [13] focus on Bitcoin money laundering
activities and illegal Ethereum accounts respectively, their
proposed methods could potentially be adapted to identify
abnormal participation behaviors in airdrops. Network analysis
methods, such as those in the research of Wu et al. [14] and
Lin et al. [16], while mainly concerned with fraud detection
and general transaction pattern analysis, could potentially
apply their network embedding and complex network analysis
techniques to identify collaborating groups of sybil addresses.
The entity characterization method proposed by Jourdan et



al. [15], although conducted on the Bitcoin network, could
potentially be extended to identify anomalous entities in air-
drops. Toyoda et al.’s [18] analysis of transaction patterns in
high-yield investment programs, despite the different context,
might offer insights into identifying abnormal participation
patterns in airdrops. Chauhan et al. [17] discussed blockchain
scalability issues which, while not directly related to sybil
address identification, provide valuable reference for handling
large-scale transaction data and constructing efficient identi-
fication systems. Baumann et al. [19] explored the Bitcoin
network relatively early, laying the groundwork for subsequent
network analysis and anomaly detection research. Although
these studies do not directly target sybil address identification
in airdrop scenarios, they provide methods and techniques that
could potentially be applied or improved to address this issue.

As shown in Fig. 1, Trusta and Liu et al. [20] first use graph
mining algorithms to identify sybil addresses, then employ
user analysis to filter outliers and improve precision. This
approach requires case analysis for each airdrop event, while
the method has broad applicability, it demands substantial hu-
man effort to identify transaction patterns and adjust clustering
parameters.

Fig. 1. Community detection on asset transfer graphs (ATGs), via GitHub
(https://github.com/TrustaLabs/Airdrop-Sybil-Identification).

III. METHODOLOGY

Current sybil address identification methods primarily focus
on unsupervised approaches, extracting sybil addresses by
analyzing transaction graphs constructed from address fund
sources, destinations, transaction networks, and frequencies.
The advantage of this approach is that it doesn’t require labeled
sybil datasets and offers a universal methodology applicable
to almost all scenarios. However, it demands significant hu-
man effort. The challenges currently faced in sybil address
identification are as follows:

(1) Sybil addresses typically exhibit similar behavioral
patterns and may appear concentrated within specific time pe-
riods. Moreover, attackers’ strategies are constantly evolving.

(2) Constructing transaction graphs requires tracing multiple
layers of transaction relationships. During this process, some
addresses like hot wallets or contracts generate many trans-
actions, resulting in enormous transaction graphs that require
substantial computational resources. Additionally, some entity
addresses may interfere with the results.

(3) Current mainstream unsupervised sybil address iden-
tification methods, after identifying sybil transaction pattern
graphs, still need to use clustering to exclude addresses
with significantly different behavioral patterns. The clustering
process involves selecting clustering thresholds. Threshold
confirmation is challenging, often based on vague empirical
choices, and the results cannot be verified.

To address challenge 1, in Section III-A, we extract key
event time-series features according to the sybil address lifecy-
cle (first transaction, first gas recharge, participation in airdrop
events, last transaction time). These features can describe the
consistency of sybil address behavioral operations. To address
challenges 2 and 3, in Section III-B, we propose a supervised
Subgraph-based lightGBM algorithm. This method constructs
transaction subgraphs of sybil addresses, reducing graph scale
and computational load by avoiding full graph data expansion.
It also extracts structural features of sybil address transaction
subgraphs to describe their subgraph morphology.

A. Features Extraction

The only data available for our analysis is the trans-
action data of addresses, which includes transaction hash,
input address (sender address), output address (recipient ad-
dress), network, coin (transaction currency), amount (native
token amount), amount usdt (USDT value of the transacted
token), gas fee, and transaction time. Sybil addresses tend to
exhibit temporal clustering, for instance, one address distribut-
ing similar amounts of tokens to many of its other addresses to
participate in certain activities. This observation underscores
the importance of time and amount features. We have extracted
three categories of features: time features, amount features,
and transaction network structure features. These features are
described in detail as follows:

• Time Features
– Time of first gas fee receipt: This is the timestamp

of the first transaction where the address received
native tokens as a recipient (native tokens refer to,
for example, ETH on the Ethereum network). Every
time an address initiates a transaction (as a sender),
it needs to pay a gas fee.

– Time of first transaction: The timestamp of the
address’s first transaction. This may coincide with
the time of first gas fee receipt.

– Time of first activity participation: To receive token
airdrops, addresses need to participate in certain
interactive activities set by the project.

• Amount Features: Amount features include the address
balance and transaction amounts. Transaction amounts
can be further categorized into amounts sent and amounts
received by the address.

• Transaction Network Structure Features
– Address degree: in-degree and out-degree.
– Neighbor information: number of inflow/outflow ad-

dresses in the first/second layer of transactions orig-
inating from the address.



– Network/coin information: number of coin types
and networks (blockchain networks) the address has
transacted on.

These features are specifically designed to capture the
characteristic behaviors of sybil addresses. Time features re-
veal suspicious patterns where sybil addresses often display
abnormally tight temporal clustering—they are typically cre-
ated shortly before airdrops, with minimal intervals between
receiving gas, conducting first transactions, and participating
in qualifying activities. This ”just-in-time” pattern differs
significantly from legitimate users who create addresses for
long-term use, resulting in natural, irregular intervals between
these events.

Transaction network structure features are particularly ef-
fective at identifying star topology patterns, which strongly
correlate with sybil activity in blockchains. In a star topology,
a central controlling address (hub) distributes assets to multiple
controlled addresses (spokes), manifesting as abnormally high
out-degree for the hub and limited transaction history beyond
hub interactions for the spokes. This topology represents a
cost-efficient strategy for attackers to maintain multiple ad-
dresses while minimizing transaction fees, and our extraction
methodology effectively captures these coordinated operations.

These features can be combined in various ways. For time
features, we can extract: the interval between the first transac-
tion time and the first gas fee receipt time, the interval between
the first activity participation time and the first transaction
time, the interval between the first activity participation time
and the first gas fee receipt time, and the address’s active
time (interval between the last and first transaction times).
For amount features, we can extract the minimum, maximum,
average, median, and variance of the amounts.

B. Subgraph-based Feature Extraction, Fusion, and Transfer
Method

Graph-based features have been proven effective by Rama-
lingam et al. [22]. As shown in Fig. 1, transaction subgraphs
of sybil addresses often exhibit star-shaped, chain-shaped, and
tree-shaped patterns, highlighting the importance of network
features in transaction graphs. Inspired by Chen et al. [22], we
use cascading features based on transaction graphs to extract
structural features. Let TG = (V,E) be a transaction graph
where V represents addresses and E = {(vi, vj)|vi, vj ∈ V }
represents transactions. For a target address A ∈ V at level 0,
we define: Fn(A) = set of n-order friends of A. The cascade
feature extraction process consists of three steps:

(1) Layer Extraction: As shown in Fig. 2, for a sample ad-
dress A, we extract two layers of transactions above and below
it through transaction relationships. For example, address A
at Level 0 transfers to addresses B and C at Level 1, while
address G at Level -1 transfers to address A.

L(A) = F−2(A) ∪ F−1(A) ∪ {A} ∪ F1(A) ∪ F2(A)
(2) Feature Computation: We extract time features, amount

features, and transaction network structure features for ad-
dresses at each level, as described in Section III-A. For A’s
inflow layers (Level -2 and -1), we extract inflow features for

each address. For A’s outflow layers (Level 1 and 2), we extract
outflow features for each address. For each level l:
Tl = {t1, t2, ..., t7} (time features)
Al = {a1, a2, ..., a60} (amount features)
Nl = {n1, n2, ..., n8} (network features)
(3) Feature Propagation and Fusion: We propagate and fuse

features from each layer towards address A at Level 0. For
example, features from addresses D and E at Level 2 are
propagated to address B at Level 1, then features from B,
D, and E are propagated to A. Using the amount feature as
an example, we merge the outflow transaction amount arrays
for addresses A, B, D, and E, then calculate statistics like
minimum, maximum, average, and variance. Different types
of features undergo different operations; for instance, degree
features are summed. Time features are calculated directly
from A’s transactions without propagation.

For amount features:
ΦA({aji}kj=1) = {min,max, avg, var}({aji}kj=1)
For degree features:
ΦD({dji}kj=1) =

∑k
j=1 d

j
i

The final feature set:
F(A) = T0 ∪ Φ(

⋃2
l=−2 Al) ∪ Φ(

⋃2
l=−2 Nl)

In total, we extract 75 features: 7 (time features)+2× 6×
5 (amount features) + 8 (network features). In summary, for
each sample address A, we first extract its transaction subgraph
encompassing two layers above and below, then obtain features
for address A through feature propagation and fusion. These
features of address A represent the characteristics of A’s
transaction subgraph and can be considered as the subgraph’s
feature representation.

IV. EXPERIMENTS

A. Data Collection and Preparation

The labeled sybil address data was collected through a
rigorous data quality validation process from the BAB (Bi-
nance Account Bound) airdrop event. BAB is Binance’s first
Soul Bound Token launched in 2022, designed as a non-
transferable token on BNB Smart Chain to verify users who
completed Binance’s KYC process, linking on-chain activities
with real identities. We initially identified suspected sybil
addresses through comprehensive manual analysis and clus-
tering methods. After identifying these suspicious addresses,
we reclaimed rewards from them and established a manual
appeal review process. Only addresses that did not appeal or
had their appeals rejected after thorough manual review were
classified as confirmed sybil addresses.

For data preparation, we performed meticulous cleaning
on the transaction records. We queried address labels for all
involved addresses using Arkham Intelligence’s API interface.
We selected Arkham Intelligence (https://intel.arkm.com/) for
our research because it is a leading blockchain analytics
platform offering comprehensive address labeling and trans-
action tracking services across multiple blockchains, with ex-
tensive capabilities for identifying institutional wallets, smart
contracts, and related address clusters. The cleaning process
involved: 1) Excluding institutional addresses, including hot



Fig. 2. Example of 2 levels features fusion.

wallet addresses and contract addresses, as these are unlikely
to be sybil addresses. 2) Retaining transactions distributed by
contracts, as this represents a common sybil address pattern
where funds are sent to multiple addresses in a single trans-
action through contract distribution protocols. 3) Filtering out
addresses with lifecycles exceeding one year (accounting for
2.6% of the dataset). Since creating addresses on-chain has
minimal cost, sybil attackers typically exhibit high address
abandonment rates to evade detection.

Unlike Chen et al. [1], we did not filter based on amount or
transaction frequency. This decision was made considering that
addresses with small amounts might be used for gas distribu-
tion [23], addresses with high transaction frequencies are more
likely to be sybil addresses, and those with low transaction
frequencies might serve as connecting addresses between sybil
groups. After this filtering process, our dataset comprises
193,701 addresses (including 23,240 sybil addresses). The data
spans from January 2023 to May 2024. By extracting two
layers of transaction data above and below these addresses,
we encompassed a total of 58,397,048 transactions.

TABLE I
THE PERFORMANCE COMPARISON

Method Precision Recall F1 AUC
SVM 0.6203 0.0329 0.0624 0.5599
DT 0.7289 0.7572 0.7428 0.7373

lightGBM 0.7821 0.7150 0.7470 0.8484
Clustering-based Trusta 0.7962 0.8159 0.8059 0.8642

Subgraph-based lightGBM 0.9428 0.9182 0.9303 0.9806

B. Base Model

To demonstrate the effectiveness of our proposed Subgraph-
based lightGBM model, we compared it with classical ma-
chine learning models: lightGBM, Support Vector Machine
(SVM), and Decision Tree (DT). We also compared it with

the Clustering-based sybil address identification model from
Trusta, a leading company in this field. LightGBM is par-
ticularly important for our approach as it efficiently handles
complex feature interactions and captures non-linear rela-
tionships between on-chain activities - crucial for detecting
subtle sybil behavior patterns. Its histogram-based approach
and Gradient-based One-Side Sampling (GOSS) allow us to
effectively identify and utilize the most informative features
while minimizing computational overhead, making it ideal for
processing large-scale blockchain transaction data.

Brief descriptions of these models are as follows: 1) Support
Vector Machine (SVM): A supervised learning algorithm
for classification and regression, which finds the hyperplane
maximizing the margin between classes. 2) Decision Tree
(DT): A simple, interpretable supervised learning algorithm
that models decisions as a tree structure. 3) LightGBM: A gra-
dient boosting framework designed for speed and efficiency,
using a histogram-based algorithm to reduce data points. 4)
Clustering-based Trusta: A two-stage AI and machine learning
framework for sybil address identification. It first uses com-
munity detection algorithms to analyze asset transfer graphs
(ATG) and identify suspicious densely connected groups.
Then, it refines these groups using K-means clustering based
on user profiles and activities. For SVM, DT, and LightGBM,
we used first-order features mentioned by Farrugia et al. [24]
for model training. For Clustering-based Trusta, time features
were prioritized during clustering.

C. Experiment Result and Analysis

To validate the effectiveness of our proposed model, we
compared SVM, DT, lightGBM, Clustering-based Trusta, and
our Subgraph-based lightGBM model. As shown in Table I,
our model demonstrates superior performance across all eval-
uation metrics. The Precision of traditional models is too
low for practical requirements, leading to numerous False
Positives that can damage project reputation. In terms of



Recall, SVM performs poorly at 0.0329, while other mod-
els show moderate values between 0.7150 and 0.8159. Our
Subgraph-based lightGBM achieves a recall of 0.9182, iden-
tifying nearly all sybil addresses. The F1 score confirms
our model’s balanced performance with 0.9303, compared to
SVM’s low 0.0624 and traditional models’ moderate scores
between 0.7428 and 0.8059. For AUC, our model achieves
0.9806, significantly outperforming others, with Clustering-
based Trusta next at 0.8642. Notably, our proposed model
achieves scores exceeding 0.9 across all metrics, fully meeting
real-world application requirements where both precision and
comprehensive detection are critical.

Our comparative analysis of transaction patterns in Fig. 1
demonstrates our model’s enhanced efficacy in sybil address
detection. For ’Star’ shaped patterns, where Trusta classifies
addresses as High, Medium, or Low Risk, our model identifies
problematic instances with probabilities of 99%, 95%, and
65% respectively. In ’Chain’ shaped patterns, classified by
Trusta as High or Medium Risk, our model detects issues with
100% and 95% probability respectively. Similarly, for ’Tree’
shaped patterns, also categorized as High or Medium Risk by
Trusta, our model identifies problematic addresses with 97%
and 95% probability respectively. The high concordance with
Trusta’s high-risk classifications, coupled with our model’s
ability to refine medium and low-risk categorizations, demon-
strates both improved precision and recall in sybil address
detection.

Fig. 3 illustrates the top 10 most important features extracted
using our subgraph-based method. Key findings from our
analysis include:

• participate activity date/first tx date/get gas date:
These three features represent the time of first
participation in an airdrop activity, first transaction,
and first gas fund receipt, respectively. For sybil
addresses, there is a notable temporal clustering in
their operational behaviors. This demonstrates that our
extracted key operational time features can effectively
describe the behavioral consistency of sybil addresses,
addressing challenge 1 from Section III.

• total balance/send sum usdt: Typically, sybil addresses
maintain a balance slightly above the minimum require-
ment for participating in airdrop activities. This strategy
aims to minimize capital costs, allowing the creation of
more sybil addresses. After receiving the airdrop, funds
are usually transferred out and the address is abandoned.

V. LIMITATION AND DISCUSSION

Despite the promising results achieved by the Subgraph-
based lightGBM model in sybil address identification, there re-
mains room for improvement: 1) Model Generalizability: The
current model relies on features specific to certain datasets,
which limits its direct applicability to new datasets. However,
the critical event sequence features and structural features
we extract possess inherent universality and generalization
capacity. Unsupervised methods can be employed for prelim-
inary labeling of new datasets before applying the supervised

Fig. 3. The top 10 important features.

model. Our proposed methodology is particularly suited for
the long-term airdrop events discussed in the introduction.
2) Model Applicability: While the model demonstrates ro-
bust performance on account-based blockchains and can be
relatively easily extended to other EVM-compatible chains, it
is not applicable to UTXO-based blockchains. This constraint
limits the model’s widespread application. However, it’s worth
noting that due to high gas fees, airdrop events are generally
not conducted on UTXO-model blockchains, mitigating this
limitation in practice.

VI. CONCLUSION AND FUTURE WORK

In cryptocurrency airdrops, sybil addresses pose a signifi-
cant challenge, with some notable events containing over 30%
sybil addresses. These addresses misuse project resources and
prevent fair token distribution to genuine participants. There-
fore, identifying sybil addresses is crucial for maintaining
fairness in decentralized systems.

This paper introduces a Subgraph-based lightGBM algo-
rithm that captures structural features of airdrop address sub-
graphs and extracts key event sequence features based on the
sybil address lifecycle. Our approach focuses on universal
behavioral patterns rather than project-specific features, mak-
ing it adaptable to various airdrop scenarios. We validated
our method using the BAB (Binance Account Bound) airdrop
dataset with a comprehensive data quality validation process.

While we compared our method with basic models and
the existing Trusta sybil address identification model, we
acknowledge the need for broader comparisons in future work,
including advanced graph-based models like GCN, GAT, and
TGNN. Our subgraph feature extraction approach provides
better interpretability and lower computational overhead com-
pared to traditional methods.

Future work will extend this research to more networks
and airdrop events, establishing a comprehensive sybil address
database with an iterative improvement cycle for model up-
dates. Sybil address identification is foundational for various
on-chain research areas beyond airdrop distribution, such as
identifying transaction manipulation and token liquidity risks.
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