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Abstract. Runtime verification offers scalable solutions to improve the
safety and reliability of systems. However, systems that require verifica-
tion or monitoring by a third party to ensure compliance with a specifica-
tion might contain sensitive information, causing privacy concerns when
usual runtime verification approaches are used. Privacy is compromised
if protected information about the system, or sensitive data that is pro-
cessed by the system, is revealed. In addition, revealing the specification
being monitored may undermine the essence of third-party verification.
In this work, we propose two novel protocols for the privacy-preserving
runtime verification of systems against formal sequential specifications.
In our first protocol, the monitor verifies whether the system satisfies
the specification without learning anything else, though both parties are
aware of the specification. Our second protocol ensures that the system
remains oblivious to the monitored specification, while the monitor learns
only whether the system satisfies the specification and nothing more. Our
protocols adapt and improve existing techniques used in cryptography,
and more specifically, multi-party computation.
The sequential specification defines the observation step of the monitor,
whose granularity depends on the situation (e.g., banks may be moni-
tored on a daily basis). Our protocols exchange a single message per ob-
servation step, after an initialisation phase. This design minimises com-
munication overhead, enabling relatively lightweight privacy-preserving
monitoring. We implement our approach for monitoring specifications
described by register automata and evaluate it experimentally.

Keywords: Privacy-preserving verification · Runtime verification · Mon-
itoring

1 Introduction

Recent advances have demonstrated that verification can be performed in a
privacy-preserving manner spanning a variety of domains, including SAT solv-
ing [LJA+22], verifying resolution proofs [LAH+22], matching strings against
regular expressions [LWS+24], and also model-checking specifications described
by CTL formulas [JLAP20]. However, privacy-preserving verification often in-
troduces significant computational overhead. This poses scalability challenges,
particularly in real-world applications where the underlying systems involve an
enormous number of states. In contrast, runtime verification [LS09,BFFR18]
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focuses not on verifying the entire system but rather on monitoring specific
outputs produced by the system during execution. This approach inherently in-
volves smaller-scale data exchanges, making it a suitable candidate for privacy-
preserving methods.

Privacy and monitoring seem at odds. Monitoring typically involves veri-
fying whether the execution trace of a system satisfies a given specification,
which seemingly requires access to the system trace. Privacy, on the other hand,
demands that protected information about the system remain undisclosed. Bal-
ancing these conflicting objectives presents a significant challenge, particularly
in contexts where monitoring is essential but the underlying data is sensitive.
This challenge arises in many real-world scenarios; a bank undergoing an audit
may need to share data to demonstrate compliance, a hospital may need to re-
port statistics to ensure adherence to healthcare standards, a self-driving car or
metro system may be monitored for its operational safety. In each case, sharing
protected IP or client data with a third-party monitor raises concerns about
privacy. One possible solution is to allow the system to self-monitor by embed-
ding the specification into the system and generating its own verification results.
However, this approach lacks credibility in settings where third-party validation
is crucial. For instance, if hospitals were entirely self-certified, the certificates
would lack the impartiality needed to inspire public confidence. This necessi-
tates a solution that allows third-party monitors to continuously and repeatedly
verify whether a system complies with a given specification, all while obscuring
the internals of the system and its data.

Hiding the system and its data is just a first step, but our need for privacy
might not stop there. Sometimes, one might even need to hide the specification
that a system is being monitored against. For motivation, we can again consider
the domain of healthcare, where the runtime verification of traces satisfying
specifications expressed in temporal logic has already been studied [JLK+16].
For instance, in the National Health Services (NHS) in England, hospital fund-
ing is tied to performance metrics, optimisation of which led many hospitals to
restructure their operations [Cra17,Mea14]. Unfortunately, such restructurings
resulted in extreme cases like the events at Mid-Staffordshire NHS Foundation
Trust, where financial targets led to patient neglect [IF13]. This exemplifies
Goodhart’s Law: “When a measure becomes a target, it ceases to be a good mea-
sure,” or, as an ex-NHS manager put it, “hitting the target but missing the point.”
Indeed any measure has a potential to become a target when gamifications are
employed to achieve that target. To avoid such distortions, it is crucial to also de-
velop protocols for monitoring that keep both the system/data and specification
private, ensuring accurate and unbiased evaluation.

Cryptography. We use tools developed in cryptography to accomplish our privacy-
preserving algorithms in the settings described above. Our privacy-preserving
monitoring algorithms rely on techniques from multi-party computation (MPC),
studied since the 1980s [Yao82]. MPC allows two or more parties, who do not
trust each other, to collaboratively compute a function on their private inputs
without revealing these inputs to each other. Typically, MPC focuses on a “one-
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shot” setting, where the parties compute one or more outputs based on their
inputs, but do so exactly once. We use a specific variant of MPC called private
function evaluation (PFE), where one party owns a private function (a “secret
circuit”) along with a part of the input, while the other party holds the rest
of the input to that function. The goal is to design a protocol that allows the
function to be evaluated using the inputs of both parties securely: one or both
parties can learn the result of the function on the input, but nothing else is
revealed. Essentially, PFE enables computation as if the function owner shared
their circuit and the other shared their input, without actually doing so.

Runtime verification, however, requires not a one-shot but a repeated eval-
uation process, whose granularity—called (observation) round—depends on the
application. The performance of banks may be observed daily, hospitals monthly,
autopilots and metro systems every second. Although most existing PFE pro-
tocols are designed for single-use computations, a few have been modified for
efficient repeated use [MS13,BBKL19,LWY22]; however, these usually do not
account for situations where the computation needs to be repeated many times,
nor for maintaining internal states that are kept secret from all parties. Such re-
active functionalities are important for monitoring systems, where internal states
of the system (e.g., accumulated data or ongoing logs) and the monitor (for se-
quential specifications) need to remain hidden even across repeated interactions.
Protocols that can be adapted to reactive functionalities using standard crypto-
graphic techniques like secret sharing require at least as many message exchanges
per round as Oblivious Transfer (cryptographic protocols in which a receiver is
to obtain one of many messages from a sender without revealing their choice),
which exchanges three messages [CSW20] and causes significant computational
overhead.

Our contribution. We provide protocols that would aid a monitoring setup as
show in Fig. 1. Implementing our protocols on the system’s side, and monitor’s
side enables monitoring where only one message is sent per observation round,
the specification is kept secret, and the observable outputs of the system are kept
secret. Instead of using secret sharing to construct PFE protocols for reactive
functionalities, we propose novel protocols designed specifically for monitoring
safety properties. Our protocols send a single message per round from the sys-
tem to the monitor, reducing computational cost while still ensuring privacy.
The specification is given as a state machine with a next-state function that,
in each round, updates the specification state based on an observation of the
system. Additionally, the specification maintains a boolean output called flag.
Our protocols ensure that the monitor learns about the monitored system only a
single bit per round—the flag—which indicates whether or not the specification
is satisfied for the prefix of the trace observed so far. In this way, the monitor
can be convinced of the trace’s correctness without knowing the input, output,
nor internal state of the monitored system in any round, nor even the internal
state of the specification itself.

We consider two security settings for which we provide privacy-preserving
protocols for safety monitoring:
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(a) [Open specification] The specification is not a secret and known to both
parties.

(b) [Hidden specification] The specification is a secret and known only to the
monitor.

Note that in setting (a), the monitored system knows which of its parts (which
system inputs, which system outputs, and which internal system states) are
being looked at by the specification, while in setting (b) it does not. Hence
setting (b) is particularly interesting for large systems being monitored against
small specifications.

Our privacy-preserving protocols are obtained by first converting the specifi-
cation into a boolean circuit that computes a next-state function along with the
flag function. For setting (a), where the specification is not a secret, we produce
a protocol that is a modification of the classic MPC protocol known as Yao’s
garbled circuits [Yao86,GMW87]. The intuition behind garbled circuits is that
the monitored system encrypts each gate of the specification circuit and sends
this encrypted value to the monitor. We modify the classical protocol to enable
repeated computation while maintaining the secrecy of the specification state.
For setting (b), where only the monitor knows the specification, inspired by
recent advances in PFE, we provide novel protocols that compute reactive func-
tionalities with low computational overhead. We build upon the seminal work of
Katz and Malka [KM11] and the recent work of Liu, Wang, and Yu [LWY22],
which has built on other PFE-related works [MS13,BBKL19]. Our protocols are
designed so that the system sends only one message per round to the monitor.
Although there is an initial setup phase that may involve multiple message ex-
changes, this is a one-time cost and does not affect the ongoing performance of
the protocol during runtime. This is also helpful in monitoring situations where
the hardware for bidirectional communication is unavailable.

We implemented our protocols to analyse the influence of several parameters
involved in building such protocols. We use specifications described as register
automata [GDPT13], which we convert to boolean circuits. Our experiments
show the feasibility of our protocols when the circuit sizes are on the order of
105 for acceptable security parameters. Additionally, in our second protocol de-
signed for hidden specifications, the time per round is influenced more by the
size of the specification than by the size of the monitored system. This allows
scalability to large system sizes as long as the specification remains small. In-
deed, our protocol is significantly more scalable than those in recent related
works [BMM+22,WMS+24] which, although similar in motivation, address fun-
damentally different problems in distinct settings.

Related works. Recent work on privacy-preserving verification has largely focused
on static settings. A wide range of verification paradigms have also been shown
to be amenable to cryptographic techniques: for example, verifying resolution
proofs in zero knowledge [LAH+22], solving SAT formulas [LJA+22], matching
strings against regular expressions [LWS+24], checking string and regular expres-
sion equivalence [KAAP25], and model-checking CTL specifications [JLAP20]. In
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contrast, our work targets runtime verification, where the system’s data evolves
dynamically and must be processed incrementally at each step.

With a similar motivation of monitoring specifications in a privacy preserv-
ing manner, Banno et al. [BMM+22], and later Waga et al. [WMS+24] provided
algorithms for oblivious online monitoring for Linear Temporal Logic (LTL) spec-
ifications [Pnu77] and Signal Temporal Logic (STL) [MN04] specifications, re-
spectively using Fully Homomorphic Encryption (FHE). Although at first glance
Banno et al. and Waga et al. may appear to solve the same problem, the set-
tings for ours and their problems are different. Their main objective is to ensure
monitoring of specifications where the computation can be outsourced to a sec-
ond party, or an external server. Further, in their setting, this server knows
the specification, however learns neither the system’s observable outputs, nor if
the specification is satisfied. Only the system itself learns if the specification is
satisfied.

Due to our focus on enabling privacy-preserving third-party monitoring, in
our setting, it is imperative that the party that knows the specification (mon-
itor) can also learn if this specification is being satisfied, but not the system’s
observable outputs. Their protocol would therefore not be an appropriate solu-
tion in our setting, since it cannot be modified to make the second party that
knows the specification learn whether the specification is satisfied, without also
learning the system’s observable outputs. On the other hand, both the related
works deal with malicious Systems—a setting our protocol does not extend to,
and hence our protocols would not be a appropriate solution in their setting
either.

In terms of specifications, their work handles specifications represented using
temporal logic that is later converted into finite state automata. We highlight
that we consider circuits to described our specifications, and this representation
is general enough that it handles all sequential specifications, including LTL,
STL, or finite state automata, much more succinctly.

Since our work and their work deal with different settings, it is not ideal
to compare either work with each other directly. However, since certain specifi-
cations considered by them can be of interest to us and vice-versa, we run our
protocols on their specifications and extrapolate the time taken by theirs on ours
in Section 4, where we show that our protocol handles all specs in the work of
Bano et al. [BMM+22] within a few hundred milliseconds.

Our protocols for privacy-preserving runtime verification draw inspiration
from several works on two-party computation [GMW87,Yao82], and more specif-
ically private function evaluation [KM11,MS13,BBKL19,LWY22]. Our Hidden
Specification Protocol draws specifically on the recent work of Liu, Wang, and
Yu [LWY22]. In their work they provide a way to repeatedly compute the same
function several times under standard IND-CPA and DDH assumptions against
covert adversaries, a more adversarial setting than ours. However, Liu et al’s
protocol does not allow for hiding an internal monitor state (reactive function-
alities).
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Fig. 1: The architecture of a system and a safety monitor with a privacy-
preserving protocol: (πSys, πMon)

2 Privacy-preserving monitoring

We describe our setting under which we perform privacy-preserving monitoring.
We assume that there are two parties: the System (S) and the Monitor (M).
We assume the two parties are semi-honest, that is, they follow the protocol,
but might examine the transcripts to learn more information, as opposed to
malicious parties that deviate from the protocol to obtain information.

System’s observables. We assume that the System holds data that is represented
as a string that is s-bits long. The System’s observable sequence is temporal, and
therefore, at each round r, the data output by the System is represented by σ[r],
and we use σ to represent the ℓ-length sequence σ[1], . . . , σ[ℓ] of data.

Monitor’s input. The monitor has a monitorable specification Φ ⊆ ({0, 1}s)
ω
.

Although other monitoring specifications can be considered [BFFR18], we con-
sider the most important ones: safety specifications [KKL+02]. We assume that
the specification Φ is represented as a state machine, that is, it starts at a
state represented by µ[1], and at every round r where the observable output of
the System is σ[r], the Monitor’s state is updated by a deterministic function
µ[r + 1] = nextstate(σ[r], µ[r]). The Monitor has a function flag(σ[r], µ[r]) that
is 1 if a prefix is not in the specification, and 0 otherwise. We assume that such
specifications are described as a circuit C that encodes both functions nextstate

and flag. We call an initialised circuit as the pair of circuit and initial monitor
state (C, µ[1]).

Ideal settings. We describe the ideal settings with a trusted third party that
our protocols must emulate. We describe two settings: one where the Moni-
tor’s specification (and therefore the circuit C representing it) is not private,
and another where C is also kept private. If the specification is known to both
parties, the Monitor hands over µ[1] to the trusted third party in the first
round. If the specification is secret from the System, the Monitor also hands
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over C = (nextstate, flag). At every round r, the System hands over observ-
able system output σ[r] to this trusted third party. The trusted third party
computes and returns τ [r] = flag(µ[r], σ[r]) and internally stores the value
µ[r + 1] = nextstate(µ[r], σ[r]). These two settings are described pictorially in
Figs. 2 and 3.

A monitoring protocol. A monitoring protocol is a pair of instructions π =
(πSys, πMon), one for the System and one for the Monitor, such that at each
round r, the Monitor and the System send messages to each other as dictated
by the protocol. A protocol has a round 0, which we refer to as the setup phase.
Furthermore, in a fixed round, the only messages sent according to the protocol
are from the System to the Monitor. The Monitor (optionally) responds with
“proceed” or “terminate”. We add the additional restriction of only one message
per round of the monitoring protocol, since the process of monitoring needs to
be relatively lightweight and not involve several exchanges within each round.

We first define the correctness of a monitoring protocol π = (πSys, πMon).

Definition 1 (Correctness of monitoring protocols with semi-honest
parties). A protocol π = (πSys, πMon) is a correct monitoring protocol if for any
specification described by an initialised circuit (C, µ[1]), System sequence σ, and
security parameter n, the output of the Monitor computed in an execution of the
protocol π is equal to the output of the Monitor in the ideal setting on the same
inputs with high probability, that is, probability >

(

1− 1
nd

)

for any fixed d ∈ N.

Secure monitoring protocol. We define security of a monitoring protocol
based on a comparison between the real and the ideal setting defined below.

Real view The view of the Monitor on protocol π, written as viewπMon(xM , σ, 1
n)

for an execution of a protocol π on inputs xM of the Monitor and System observ-
able output sequence σ is defined as a tuple consisting of the Monitor’s input,
the internal random bits that were used, and the messages m1, . . . ,mℓ received
by the Monitor, during the protocol execution, where mj is the jth message.

Ideal view. The simulated or ideal view of the monitor on protocol π, written as
SIdeal

Mon,π(xM , σ, 1
n), is a transcript generated by a simulator SMon (a probabilistic

polynomial-time machine) that has access only to the inputs and outputs re-
ceived by the Monitor in the ideal setting. We drop π from the subscript, if the
protocol is clear from context. The view viewπSys(xM , σ, 1

n) and the ideal view

SIdeal

Sys of the System are defined in a similar way.

Definition 2 (Secure monitoring with semi-honest parties). A protocol
π = (πSys, πMon) is a secure monitoring protocol without specification hiding
for a specification represented by a circuit C if there are simulators (probabilistic
polynomial time machines) SMon and SSys such that for any initial monitor states
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µ[1], System’s observable sequences and security parameters n ∈ N, we have
{

SIdeal

Mon (µ[1], σ, 1n)
}

µ[1],σ

c

≡ {viewπMon(µ[1], σ, 1
n)}µ[1],σ

{

SIdeal

Sys (µ[1], σ, 1n)
}

µ[1],σ

c

≡
{

view
π
Sys(µ[1], σ, 1

n)
}

µ[1],σ
.

A protocol π = (πSys, πMon) is a secure monitoring protocol with specification
hiding if there are simulators (probabilistic polynomial time machines) SMon and
SSys such that for all initialised circuits (C, µ[1]), System observable sequence σ,
and security parameters n ∈ N, we have

{

SIdeal

Mon ((C, µ[1]), σ, 1n)
}

(C,µ[1]),σ

c

≡

{viewπMon((C, µ[1]), σ, 1
n)}(C,µ[1]),σ

{

SIdeal

Sys ((C, µ[1]), σ, 1n)
}

(C,µ[1]),σ

c

≡
{

view
π
Sys((C, µ[1]), σ, 1

n)
}

(C,µ[1]),σ
.

Not that we use the symbol
c

≡ to denote the standard definition of computational
indistinguishability [BM82]. We draw a pictorial representation of the ideal set-
ting of a monitoring protocol. The simulator for each party resides in this is ideal
setting, where each party has only the information it receives from the trusted
third-party.

µ[1]

σ[1]

σ[2]

σ[3]

σ[4]

σ[5]

...

C(σ[1], µ[1]) = (µ[2], τ [1])

C(σ[2], µ[2]) = (µ[3], τ [2])

C(σ[3], µ[3]) = (µ[4], τ [3])

C(σ[4], µ[4]) = (µ[5], τ [4])

C(σ[5], µ[5]) = (µ[6], τ [5])

τ [1]

τ [2]

τ [3]

τ [4]

τ [5]

...
...

Trusted third partySystem Monitor

Fig. 2: Ideal setting with a trusted third party for monitoring where the specifi-
cation is not a secret and circuit C is known to all.

3 Protocols for privacy-preserving monitoring

Warm up–Yao’s garbling with one gate. The most fundamental tool used
in secure two-party computation is attributed to Yao and was dubbed Yao’s
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µ[1]

C

σ[1]

σ[2]

σ[3]

σ[4]

σ[5]

...

C(σ[1], µ[1]) = (µ[2], τ [1])

C(σ[2], µ[2]) = (µ[3], τ [2])

C(σ[3], µ[3]) = (µ[4], τ [3])

C(σ[4], µ[4]) = (µ[5], τ [4])

C(σ[5], µ[5]) = (µ[6], τ [5])

τ [1]

τ [2]

τ [3]

τ [4]

τ [5]

...
...

Trusted third partySystem Monitor

Fig. 3: Ideal setting with a trusted third party for monitoring where the specifi-
cation is a secret.

garbling by Goldreich, Micali, and Wigderson [GMW87]. We first describe a
toy-version of the problem posed by Yao. Consider two parties A and B. Can
we have a secure protocol where party A has two bits, and B wants to know
the output of gate G computing a Boolean function over two bits, where gate G
is known to both parties? Yao’s garbling produces a simple solution to this as
follows.

Party A starts by randomly generating strings of a fixed length L0, L1, R0,
R1, S0 and S1. The strings L0, L1 correspond intuitively to each value 0 and
1 taken by the left input wire of the gate, respectively. Similarly R0 and R1

correspond to the values taken by the right input wire, and S0 and S1 to the
output wire of the gate taking values 0 and 1, respectively. After the labelling
step, Party A encrypts the label of the output of G using keys that correspond
to the input. So, if party B had keys that corresponds to input (0, 1), then it
can only open the output that would represent G(0, 1). More formally, party A
calls a subroutine encYaoG that generates the garbled gate which consists of
four cipher-texts as follows

encYaoG

(

[L0, L1], [R0, R1], [S0, S1]
)

:=
{

EncLα,Rβ

(

SG(α,β)
)}

α,β∈{0,1}
($)

and sends it to party B, but the encrypted messages are sent in random order.
That is, if gate G was an AND gate, then the garbled gate would be a random or-
der of the elements {EncL0,R0(S0),EncL1,R0(S0), EncL0,R1(S0),EncL1,R1(S1)}.
Party A also sends

〈

S0, 0
〉

and
〈

S1, 1
〉

to indicate to B that S0 corresponds
to bit 0 and S1 to bit 1. If party A’s input for the left and the right gate are
ℓ, r ∈ {0, 1}, then she also sends the random labels Lℓ and Rr.
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Party B then uses Lℓ and Rr as keys to open the four ciphertexts; with very
high probability, only one of the four will open, which corresponds to exactly
SG(ℓ,r). If SG(ℓ,r) = S0, he concludes G(ℓ, r) = 0, and 1 if SG(ℓ,r) = S1.

Now, consider the same situation with a gate G over two bits, however, one
bit of input is known to party A and the other bit is known to party B. Can
we modify the above protocol to ensure that party B learns G(α, β) without
learning α, where α is party A’s input and β is party B’s input?

Oblivious Transfer. The oblivious transfer functionality ensures that for two
parties where one party, say party A, has two strings x0, x1 ∈ {0, 1}

n and the
other party, that is party B has one bit β ∈ {0, 1}, OT transfers the bit xβ to
party B, without revealing to A the bit β, or the bit x1−β to party B. The func-
tionality OT is defined as a functionality from {0, 1}2n× {0, 1} 7→ {0, 1}n, where
OT((x0, x1), β) = xβ . Secure protocols for OT have been known since the 1980s,
with the earliest forms proposed by Rabin [Rab81], and later improvements and
alternative protocols by Killian [Kil88], and also by Bellare and Micali [BM89]
and several others.

Using a protocol for the functionality Oblivious transfer (OT) as a sub-
protocol, we can now modify the previously described protocol for garbling cir-
cuits when party B holds bit β. The garbling protocol proceeds as follows. Party
A similarly finds labels L0, L1, R0, R1, S0, and S1 corresponding to 0 or 1 for the
wires, and prepares the garbled gates as described in the previous step. After
this, party A and party B run a protocol for Oblivious transfer where A has the
labels for the input wire corresponding to B’s input β, say R0 and R1, and B
has the input bit. At the end of the OT protocol, B would receive Rβ . Later,
party A also sends Lα. This way, out of the four ciphertexts with the keys Lα

and Rβ, party B can only open the one ciphertext that contains the key SG(α,β).
He matches this string obtained with S0 or S1, both received from A.

Yao’s garbling with a circuit. Consider the same problem, however, instead
of just a simple gate G, it is a circuit C that party B wants to use to evaluate on
party A’s input. Then for each wire W in the circuit, party A similarly prepares
random keys to represent the value W 0 and W 1. Whenever an output wire feeds
into an input for a gate, party A uses the same random keys for the output and
input wire. For each gate G in the circuit C, party A computes encYaoG using
the corresponding gate’s inputs and outputs wire labels. Party A further sends
the labellings generated for the output wire along with whether they correspond
to 0 or 1 to B and the input labels of the wires which correspond to her input.

Party B can use the keys corresponding to the input of party A and unlock
the gates to learn the keys to the next gates in a bottom-up manner and work
through the circuit until he obtains the keys corresponding to the output wires.
Then party B can match the keys with the corresponding values sent by A.
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Conventions and notations for protocols. We describe our protocol for
monitoring, which is a reactive functionality. Any description of a specification
is converted into the circuit described below.

– Circuit size. Both the System and the Monitor agree that there are c many
gates in the circuit C describing the specification. The circuit has s+m many
inputs where the first m of the inputs correspond to the Monitor’s state and
the rest s to the System’s input, which are the observable output. There are
m+ 1 output wires.

– Circuit structure. We assume that every gate is a NAND gate with exactly
two wires that feed in and one that feeds out. We often use the terms left
and right feed-in wire to differentiate between such wires for a fixed gate.
We assume that any wire that is an output of a gate that is also an output
wire of the circuit C does not connect back to any feed-in wires.

Wires. As discussed, there are two kinds of wires: feed-out and feed-in wires.
The idea is that feed-in wires feed into a gate and feed-out wires feed out of a
gate. Every feed-out wire can be connected to zero or more feed-in wires, but
every feed-in wire is connected to exactly one feed-out wire; for this matter, we
also take every input wire to circuit C to be a feed-out wire.

Naming the wires. There are I = 2c feed-in wires (two feeding into each gate)
and c+ s+m feed-out wires (one feed-out wire for each gate, and s+m input
wires of the circuit). We use ι1, ι2, . . . , ιI , to represent the feed-in wires and use
ω1, ω2, . . . , ωc+s+m to represent the feed-out wires. Among these feed-out wires,
m+ 1 wires are circuit output wires and the other O = c+ s− 1 feed-out wires
are not circuit-output wires. The first m+ s of the feed-out wires ω1, . . . , ωm+s,
represent the input wires to the circuit. The first m corresponds to the Monitor’s
input and the next s, the System’s input to the protocol.

Gates. We call the c gates G1, G2, . . . , Gc. The gate Gj has ι2j−1 as its left feed-
in wire and ι2j as its right feed-in wire. For each j ∈ {1, . . . , c}, the wire ωm+s+j

denotes the feed-out wire of gate Gj . The feed-out wires ωm+s, . . . , ωO+m+1 de-
note the output wires of the circuit. Therefore, the last m + 1 feed-out wires
of gates Gc−m−1, . . . , Gc correspond exactly to the last m + 1 output wires
ωO+1, . . . , ωO+m+1, respectively. The output wires of the monitor state that are
used for feed-back into the next round, are represented by ωO+1, ωO+2, . . . , ωO+m

and the output wire corresponding to flag is represented by ωO+m+1. See the
black text in Fig. 4 for a pictorial representation of the names of the wires.

3.1 First protocol - Monitoring without specification hiding

We first provide a conceptually simpler protocol for when the specification and
the circuit C representing it are known to both parties. The internal state com-
puted by the circuit is still kept secret. The protocol is similar to Yao’s garbling
with a circuit described earlier. The main modification here is to reuse the labels
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for the output wires from one round for the Monitor’s state for the input com-
ponent of the Monitor’s state in the next round. This operation is described in
line 2 of the protocol. To obtain the output, the Monitor uses the keys to unlock
the circuits from bottom-up, similar to Yao’s protocol.

Open Specification Protocol Secure monitoring without specification hiding

Require: Both parties the Monitor and the System have circuit C as described and
agree on a security parameter n. Additionally, the Monitor holds an m bit-string
µ[1] = µ1[1] · µ2[1] · · · · µm[1] that correspond to the valuation of the initial state,
and at each round r, the System holds a s-bit string σ[r] = σ1[r] · σ2[r] . . . σs[r]
that corresponds to the current System state.

Ensure: At round r, the Monitor learns only the last output bit of the circuit C on
the string (σ[r], µ[r]), and neither party learns the value of µ[r] for r > 1.

1: S : For all out-going wires ωi other than the wires corresponding to the input of
the Monitor, i.e., i ∈ {m + 1, . . . , c + s + m}, the System generates two random
strings w0

i [r] and w1
i [r] corresponding to it.

2: S : For the out-going wire ωi that also correspond to the m input wires (for all
i ∈ {1, . . .m}), the System acts depending on round r:

– for r = 1, the system chooses two string w0
i [1] and w1

i [1] uniformly at random,
and

– for r > 1, it reuses the labels of the feedback wires from the previous round
i.e, w0

i [r]← w0
O+i[r − 1] and w1

i [r]← w1
O+i[r − 1].

3: S: For each in-going wire ιi (for all i ∈ {1, . . . , 2c}), the System assigns the labels
from the output wire ωj that is connected to it, i.e., u0

i [r] = w0
j [r] and u1

i [r] = w1
j [r]

if the output wire ωj is connected to the feed-in wire ιi.
4: S: The System computes for each gate Gj , encGGj [r] and sends the list

encGGj [r], the labels of the feed-in wires to open the gates for the values cor-
responding to each bit in σ[r], that is, wb1

1 [r], . . . , wbs
s [r] where bi = σi[r], and both

the labels of the output flag bit w0
O+m+1 and w1

O+m+1, and encGGj [r] is

encGGj [r] = encYaoGj





[

u0
2j−1[r], u

1
2j−1[r]

]

,
[

u0
2j [r], u

1
2j [r]

]

,
[

w0
m+s+j [r], w

1
m+s+j [r]

]





5: S,M : For r = 1, the System also uses oblivious transfer to send the labels
w

c1
1 [1], . . . , wcm

m [1] where ci is the ith bit of µ[1] representing the Monitor input.
6: S : the Monitor ungarbles the circuit using previously obtained Monitor-state out-

put labels and System’s new labels to compute the Monitor-state and flag labels.

The following theorem shows that Open Specification Protocol is correct and
secure, assuming that the encryption is secure under the chosen plaintext attack
(CPA) (Assumption 2 [Bir11], in Appendix A).

Theorem 1. Assuming the chosen encryption Enc is secure under the CPA
model and the oblivious transfer protocol is secure in the presence of semi-honest
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adversaries, Open Specification Protocol is a correct and secure monitoring pro-
tocol without specification hiding, when both parties are semi-honest, and the
number of rounds is a fixed polynomial in the security parameter.

3.2 Second protocol - Monitoring with specification hiding

Gi

ωm+s+i

ι2i−1 ι2i

gm+s+i

t2i−1 t2i

ω1 ω2 ωm ωm+1 ωm+s. . . . . .

g1 g2 gm gm+1 gm+s. . . . . .

ωO+1ωO+2 ωO+m ωO+m+1. . .

. . .gO+1 gO+2 gO+m gO+m+1

Fig. 4: Base labels: feed-out wires.

The challenge with designing a protocol where the circuit must also be hidden
is that the System cannot come up with the labels for the gates in the circuit,
since this requires that the System know the topology of the circuit. As a first
step, since the topology of the circuit must be kept secret, we assume that the
circuit contains only NAND gates. We provide a protocol, which is a modification
of the protocol of Liu et al. [LWY22]. In our protocol, the Monitor helps the
System to come up with the labellings for each gate and also obfuscates the
topology of the circuit in this process. The Monitor does so by using a cyclic
group G of prime order q where the Decisional Diffie-Hellman (DDH) assumption
holds. In a cyclic group, for any non-unitary element g, and for two values in
a, b ∈ Zq, it holds that (ga)

b
=

(

gb
)a

.
The Monitor assigns base labels to the feed-out wire of each gate G using

a randomly chosen element, say gG, from the group G. If the feed-out wire of
the gate G connects to some feed-in wire, then the monitor randomly chooses
exponent t ∈ Zq for that feed-in wire and labels this wire using (gG)

t.
More specifically, the Monitor selects the base labels using randomly gener-

ated group element gi (represented in red in Fig. 4) for each feed-out wire ωi.
Then, for each feed-in wire ιj , the Monitor also chooses an exponent tj (rep-
resented in blue in Fig. 4). Finally, the Monitor computes and sends the base
labels for each feed-in wire, as follows. For a gate Gi with feed-in wires ι2i−1
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Gi

Gℓ Gr

ω1 ω2 ωm ωm+1 ωm+s. . . . . .

g1 g2 gm gm+1 gm+s. . . . . .

ωO+1ωO+2 ωO+m ωO+m+1. . .

. . .gO+1 gO+2 gO+m gO+m+1

ωm+s+ℓ ωm+s+rgm+s+ℓ gm+s+r

t2i−1 t2iι2i−1 ι2i

g
t2i−1

m+s+ℓ
g
t2i
m+s+r

Fig. 5: Base labels: feed-in wires

and ι2i that are connected to feed-out wires from gates Gℓ and Gr (as show in

Fig. 5), the monitor uses as labels g
t2i−1

m+s+ℓ and gt2im+s+r as the base labels. Note
that gm+s+ℓ and gm+s+r are the base-labels of the corresponding feed-out wires
of gates Gℓ and Gr.

The monitor sends three base labels for each gate: two for the feed-in wires
and one for the feed-out. Roughly, the DDH assures that “random exponents of
group elements” cannot be distinguished from “random group elements”. Since
DDH assumption holds, we can also show that given n group elements g1, g2, . . . , gn
as well as some labels gt1x1

, gt2x2
, . . . , gtnxn

, the System cannot tell which of the gtixi
s

is obtained by exponentiating which of the gi, thus successfully obfuscating the
circuit topology.

Finally, the System uses these base labels to prepare the labels of the wires
that correspond to 0 and 1. This is done by choosing one exponent to correspond
to the value 0 and one exponent to correspond to 1, say α0 and α1. For the base
label g, the System would then label each (g)

α0 and (g)
α1 corresponding to bits

0 and 1, respectively. Feed-in wire labels are of the form (gt)
αi , which is equal

to (gαi)
t
. So, by knowing the label gαi (obtained by opening a garbled gate, or

from the message of the System), the Monitor can compute (gαi)
t
= (gt)

αi .

Therefore, the Monitor obtains the key to open future gates by simply ex-
ponentiating the label obtained from the ungarbling process of a preceding gate
and exponentiating with an appropriate exponent t. The System, under the Deci-
sional Diffie-Hellman (DDH) assumption stated below, cannot learn the topology
only given such exponentiated group elements.

We show that our protocol is correct and secure under the DDH assumption
over groups of prime order. Both message sizes and the time taken of our protocol
is linear, that is, O(c+ s+m), assuming the security parameter is a constant.
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Hidden Specification Protocol Secure monitoring with specification hiding

Require: Similar to Open Specification Protocol, however, only the Monitor knows
the specification circuit C, but both parties agree on the number of gates c of the
circuit, a security parameter n, and a group G of order q ∈ Θ(2n).

Ensure: At round r, the Monitor learns only the last output bit of the circuit C at
round r, and neither party learns the value of µ[r] for r > 1, and the System does
not learn C.

1: Setup. Base labels of feed-out wires: (See Fig. 4)

a. The Monitor picks random group elements gi ∈ G for each feed-out wire ωi for
i ∈ {1, . . . , O} and sends the list [g1, g2, . . . , gO].

b. Further, the output wires, which correspond to the m feed-out wires
ωO+1, . . . , ωO+m are also given the (same) group elements g1, g2, . . . , gm, re-
spectively. The final output wire computing flag is represented by ωO+m+1 and
is not assigned a group element during setup phase.

Base labels of feed-in wires: (See Figs. 4 and 5)

c. The Monitor further picks different exponents ti
$
←− Zq for each feed-in wire

i ∈ {1, . . . , I}, and finds the map π : {1, . . . , I} 7→ {1 . . . , O} (chosen uniformly
at random) such that π(i) = j iff the feed-out wire ωj connects to the feed-in
wire ιi.

d. The Monitor then computes ℓi = g
ti
π(i)

for every i ∈ {1, . . . , I} and creates

list L = [ℓ1, ℓ2, . . . , ℓI ] and sends this list to the System. This assigns group
element gti

π(i) to the feed-in wire.

2: Labelling wires at round r > 1

e. For the first round, r = 1, the System picks random, distinct values

α0[r], α1[r]
$
←− Zq. For subsequent rounds, α0[r] ← β0[r − 1] and α1[r] ←

β1[r − 1].
f. The System assigns values w0

j [r] and w1
j [r], which corresponds to the feed-

out wire ωj having value 0 and 1, respectively, to the feed-out wires for all

j ∈ {1, . . . , O}, w0
j [r]← g

α0[r]
j and w1

j [r]← g
α1[r]
j .

For all rounds r, the System also selects random values β0[r], β1[r]
$
←− Zq and

it computes the label of the feed-out wires for j ∈ {O + 1, . . . , O + m} as

w0
j [r] = g

β0[r]
j−O and w1

j [r] = g
β1[r]
j−O .

For the feed-out wire ωO+m+1 representing the output of flag, it assigns

w0
O+m+1[r]

$
←− G and w1

O+m+1[r]
$
←− G.

The System labels the feed-in wires, for each i ∈ {1, . . . , I}, u0
i [r] =

ℓi
α0[r] and u1

i [r] = ℓi
α1[r].

g. Proceed as in Steps 4., 5., and 6., in Open Specification Protocol, where the
System garbles the gates and sends the desired keys, and Monitor ungarbles.
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Assumption 1 (Decisional Diffie–Hellman assumption [Bon98,CV11])
In a cyclic group G = 〈g〉 of prime order q ∈ Θ(2k) for n ∈ poly(k), where g
is a generator for G, the following probability distributions are computationally
indistinguishable: (ga, gb, gab), where a and b are uniformly and independently
at random chosen from Zq, and (ga, gb, gc), where a, b and c are uniformly and
independently at random chosen from Zq.

Theorem 2. Assuming that the chosen encryption Enc is secure under the
CPA model, the DDH assumption on group G holds, and the oblivious transfer
protocol is secure in the presence of semi-honest adversaries, Hidden Specification
Protocol is a correct and secure monitoring protocol with specification hiding
when both parties are semi-honest, and the number of rounds is a fixed polynomial
in the security parameter.

The proof of correctness of our theorem is a simulation based proof that con-
structs intermediate indistinguishable transcripts by substituting elements of the
transcript with random group elements. A key result required to prove indistin-
guishability is a corollary of a lemma from the work of Naor and Reingold [NR04]
that is an equivalent representation of the DDH assumption in our proofs, we
prove the theorem. A similar lemma is also used in the work of Liu, Wang, and
Yu [LWY22, Lemma 3].

Lemma 1 ([NR04, Lemma 4.4]). Assuming that the DDH assumption holds
in a cyclic group G = 〈g〉 of prime order q ∈ Θ(2k) for n ∈ poly(κ), given n

randomly chosen elements from the group g1, g2, . . . , gn
$
←− G and n + 1 ran-

domly chosen exponents a, a1, a2, . . . , an
$
←− Zq, we have that (ga1 , g

a
2 , . . . , g

a
n) is

computationally indistinguishable from an n-tuple (ga1
1 , ga2

2 , . . . , gan
n ).

4 Experimental Evaluation

To test the feasibility of our protocols for monitoring, we developed an exper-
imental C++ prototype1 and performed experiments to evaluate the following
key questions.

1. How do the measured requirements of both protocols change under varying
security parameters (n > 1024 would be industrial standard),

(a) in terms of time taken per round? (see Figs. 8 and 9)
(b) in terms of message sizes per round? (see Figs. 6 and 7)

2. When the specification size (c) is fixed, but the size of System observables
data (s) is large, how much do these measurements change for Hidden Spec-
ification Protocol? (see Figs. 11 and 12)

To answer these questions, we consider the following experiment scenarios:

1 This prototype is accessible online at https://github.com/mahykari/ppm.

https://github.com/mahykari/ppm
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1. An access control system (ACS) for an office building, where two types of
employees, namely types A and B, enter or exit the building through a set
of external doors. The ACS tracks the numbers of entries and exits for each
type of employee and for each door. The Monitor keeps two variables cntA
and cntB, where cnte denotes count of type-e employees currently in the
building. At round r, for door i of the building, the Monitor receives input
from the ACS, structured as follows: enterediA[r], exited

i
A[r], entered

i
B[r],

exitediB[r]. There are N doors, hence N such quadruples. Each enteredie
denotes the number of type-e employees who have entered through door i of
the building since the last round; exited values have a similar definition.
Specification. Our specification for this system requires that the number
of type A employees currently in the building is never less than type B
employees; concretely, the flag function of the register machine activates if
and only if cntA < cntB. Value of cnte updates with the following rule:
cnte ← cnte +

∑

i

(

enteredie[r]
)

−
∑

i

(

exitedie[r]
)

. Each number is an
unsigned integer of fixed bit-width W . The monitor only keeps track of
employee count per type and needs 2W bits for Monitor state, whereas the
input of the ACS to each round takes 4NW bits.
To answer Question 2, we create another case where the ACS keeps track of
the internal doors in the building as well (e.g., individual offices). We use N ′

to denote the number of internal doors. In this case, each ACS update takes
4(N+N ′)W bits, but the specification is still expressed over only 4NW bits.

2. The locks of a parallel program, where every lock has at most one ‘user’
at any given time. Each lock provides a lock() and unlock() interface,
and all the locks are initially ‘unlocked’. The Monitor keeps track of all
lock states lock1, . . . , lockN , where N denotes the total number of locks
in the system. Each locki can have value LOCK or UNLOCK. The Moni-
tor, at round t, receives input from the lock system, structured as follows:
request1[t], . . . , requestN [t], where N denotes the number of locks, and
each request can have value LOCK, UNLOCK, or SKIP.
Specification. The specification for this scenario requires that lock() or
unlock() is never called twice in a row for any of the locks in the sys-
tem. Concretely, at round r, we have: flag ⇐⇒

∨

i (requesti[r] = locki).
To update locki, we simply replace its value with requesti[r]. As the Mon-
itor keeps track of all locks, it needs N bits for its state. Each request takes
2 bits to represent, and hence each update to the Monitor needs 2N bits.

Experiment results summary. To answer Question 1a, we plot the breakdown of
execution times for Open Specification Protocol in Fig. 8 (scenario ACS), and
Figs. 9 and 10 (scenarios ACS and locks) for Hidden Specification Protocol. For
these cases, ACS only updates on external doors (i.e., N ′ = 0), and we select
values for N among {10, 30} and W among {16, 32} to give us 4 different in-
stances. For the Locks scenario, we consider the values {100, 300, 500, 1000} for
the parameter N . Open Specification Protocol relies only on random string gen-
eration instead of group operations and has symmetric garbling and ungarbling
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Fig. 9: Timings for the ACS scenario: Hidden Specification Protocol.
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Fig. 11: Timings for the ACS scenario, Hidden Specification Protocol; fixed spec-
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phases and the round times are lower and more uniformly distributed between
System and Monitor. In the Hidden Specification Protocol, time is mostly spent
on the System side, since System performs more group operations than Monitor
in the garbling process; as the security parameter increases, this difference be-
comes more visible. The superlinear growth of round times also conforms with
the complexity of group operations.

Benchmark
Banno et al.

DFA Size Time

MOD (m = 500) 500 ∼0.002 s

BGM (ψ2), REVERSE 2885376 ∼24 s

BGM (ψ2), BLOCK 11126 0.182 s

BGM (ψ4), REVERSE N/A time-out

BGM (ψ4), BLOCK 7026 0.049 s

ACS (Fig. 9a) > 232 10 hours (estimated)

LOCKS (Fig. 10a) > 2300 106 years (estimated)

Table 1: Monitoring latency of a single event in the protocol of Banno et
al. [BMM+22]

Benchmark
Hidden Specification Protocol

Circuit Size Time for n = 1024

MOD (m = 500) 146 0.30 s

BGM (ψ2) 118 0.24 s

BGM (ψ4) 89 0.23 s

ACS (Fig. 9a) 7127 18.94 s

LOCKS (Fig. 10a) 5700 19.96 s

Table 2: Monitoring latency of a single event in Hidden Specification Protocol

For Question 1b, we plot the breakdown of execution times for Open Speci-
fication Protocol in Fig. 6 and for Hidden Specification Protocol in Fig. 7. For
the Locks scenario, we consider the values {100, 300, 500, 1000} again for the
parameter N that represents the number of locks. As expected, we only observe
a linear correlation between message sizes and gate counts in both protocols.

Finally, for Question 2, we plot Figs. 11 and 12, which shows how round
time increases with increasing sizes of System’s observable data, while keeping
“relevant” System input size fixed and again consider parameters of N and W
from {10, 30} and {16, 32}, respectively. However, to inflate System input size, we
use increasing values for the parameter N ′ (no. of internal doors). Observe that
the circuit size remains the same even while the specification considers increasing
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number of external doors. With the parameters we have used in our experiments,
as System input increases, the time taken per round increases only marginally,
as a result of the garbling phase’s dominance in execution time (Fig. 11). The
increase in message size is more observable, as one key is sent per each bit of
the input (Fig. 12). However, even this growth is less steep than the growth
of the message size when both circuit size and System observables are scaled
proportionally as seen in Fig. 7.

We remark that all the monitoring latencies reported are for a single event
rather than a trace.

As discussed in the related work section, the setting considered by Banno et
al. [BMM+22] (and therefore also Waga et al [WMS+24]) is orthogonal to ours—
each protocol is tailored to its specific context and not directly applicable to the
other. However, some of their specifications they describe might be relevant to
our setting, and vice versa. Therefore, we evaluated our protocol on several of
their specifications and, conversely, estimated the performance of their protocol
on the ACS and locks scenarios from our work.

Banno et al. consider two scenarios: DFA that counts number of 1s in its
input modulus m (MOD) and Blood Glucose Monitoring (BGM). They also
have two protocols REVERSE and BLOCK. We implemented the specifications
for each scenario with the highest reported monitoring latencies in their work
for either REVERSE or BLOCK, with the same security parameter as Banno et
al. (n = 1024). For these values, our protocols take time that is in the order of
magnitude of 100 milliseconds. We remark that their experiments were run on
Intel Xeon Silver (32 cores and 64 threads), a superior hardware to ours. These
times are summarised in Table 1.

To test our specifications against their protocol, we also estimated the time
taken by their protocol on the ACS and Locks scenarios we designed. However,
our scenarios cannot be directly specified as LTL expressions over the observable
output alone to be used directly as an input into their protocol, since our descrip-
tion language is more expressive than LTL specification. Since their protocols
converts LTL specifications into DFAs, we considered the size of the smallest
possible DFAs accepting the ACS and Locks scenarios to estimate the running
time. We then extrapolated the monitoring latency on ACS and the locks sce-
nario from the fact that their protocol is linear in the size of the DFA, and
scale from the other DFA instances provided in their work. These times are
summarised in Table 2.

For both Tables 1 and 2, we use the same notation as their paper to refer
to the LTL specifications (ψ2 and ψ4) in their work, obtained originally from
related work on runtime verification for artificial pancreas [CFMS15].

The sizes of the formula considered in the experiments conducted by Waga
et al. [WMS+24] are similar in terms of DFA sizes to those considered by Banno
et al., and we therefore only restrict our comparison to Banno et al’s work. It is
reasonable to expect that the monitoring latency of both Waga et al’s protocols
on these specifications would also be in the same order of magnitude.
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Execution pipeline. We write each specification as a synthesisable Verilog mod-
ule, which describes the nextstate and flag functions of our intended register
machine. We then synthesise the equivalent circuit, which is what we will use
throughout the protocol execution.

We spawn Monitor and System as separate processes that interact via mes-
sage passing. Internally, we have modelled and implemented each party as a
communicating transition system, with access to asynchronous communication
channels. Each state of the transition system can perform read or write opera-
tions on a dedicated memory fragment. This design allows us to invoke a protocol
within a protocol, as every state can internally keep track of the execution of
another transition system, and proceed once the internal protocol is done. An
example of this use case is our OT step in the initialisation phase of the Hidden
Specification Protocol.

We use the GNU Multiple Precision Arithmetic (GMP) library for big-integer
arithmetic, OpenSSL for hash functions, and ZeroMQ for asynchronous message
passing. We also use the Yosys open synthesis suite for synthesising Boolean
circuits from specifications. We pass a Verilog specification module to Yosys,
with ABC [BM10] as synthesis back-end, to obtain a Boolean circuit equiva-
lent, represented in the Berkeley logic interchange format (BLIF). Note that all
optimisations on circuit size are also done by Yosys and ABC.

Cryptographic primitives. The DDH assumption holds in the quadratic residue
group QRq if q is a safe prime [Bon98]. We use groups QRq in our proto-
cols, with values of q defined in RFC 2409, 3526 [CH98,KK03]. The security
parameter specifies the binary representation size of q. Similar to Huang et
al. [HEKM11], we construct the symmetric encryption scheme for EncYao (see
Eq. ($)) using a hash function; precisely, for keys L and R and secret S, we
have: EncL,R(S) = SHAKE-256 (L ‖ R)⊕

(

S ‖ 1100
)

, where · ‖ · denotes string
concatenation, and SHAKE-256 is an extendable-output hash function from the
SHA-3 family; since group elements (hence, their representation) can be arbi-
trarily large, we needed a hash function with arbitrarily large output. Note that,
contrary to the parametrised security level for the groups we use, SHAKE-256
has a fixed security level of 256 bits; however, this does not impose any prac-
tical vulnerabilities and, therefore, is practically secure. The 100-bit constant
padding at the end of the secret is necessary for the decryption phase (gate
un-garbling), to detect the correctly decrypted value. We use the simple OT
protocol introduced by Bellare and Micali [BM89] in both protocols.

All experiments were run on a personal computer with an Intel Core i5-1235U
processor, 16 GB of memory, running Linux Mint 21.3. Both System and Monitor
processes were spawned in parallel, and bound to localhost for communication.
We use a timeout of one hour per protocol round, excluding initialisations that
take place only in the first round. As a source of true randomness, we periodically
read from the file /dev/urandom; we buffer a fixed number of such values in
program memory, in order to perform fewer file I/O operations.
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Remark. Unlike Hidden Specification Protocol, which requires circuits with a
single type of binary gate, Open Specification Protocol supports multiple gate
types, enabling the use of optimised garbling techniques [ZRE15,App16]. Fur-
ther, even Hidden Specification Protocolcan be made more efficient if the number
of gates of each type is known to all, while still ensuring the circuit topology
is not known. This opens potential avenues for optimisation. Additionally, our
experiments showed a 50% average reduction in circuit size when ABC utilised
all basic gates instead of only NAND gates, which could contribute to further
speed-up.

5 Outlook

We took a first step toward privacy-preserving monitoring by proposing protocols
that are correct and secure. Our experiments demonstrate an increase in both
the message length and the protocol’s overhead with respect to the security
parameter, demonstrating a trade-off between privacy and efficiency.

While the levels of privacy provided by our protocols are sufficient for many
real-world applications, they fall short of the requirements in highly privacy-
sensitive settings. First of all, we only focus on cryptographic privacy in our
work, and further, we only assume semi-honest parties in our current work. Ex-
tending these protocols to protect against actively malicious parties—those who
intentionally deviate from the protocol—may be computationally expensive. A
potential compromise is to consider covert systems, as proposed by Aumann
and Lindell [AL10], where adversaries that deviate from the protocol are caught
with a positive probability. For monitoring applications, repeated interactions
increase the likelihood of catching cheating agents across multiple rounds, ulti-
mately approaching probabilities close to 1.

Even for the setting of semi-honest parties, we believe that our protocol could
be enhanced by optimising the number of gates that represent the specification
(see Fig. 11). Heuristics can be employed to reduce circuit size, but an alter-
native approach is to relax the specifications—either in terms of soundness or
completeness—depending on the specific requirements, to enable encoding with
smaller circuits. Another direction to improve the performance of our protocols is
to parallelise the protocols. The process of garbling gates is inherently parallelis-
able for both parties, particularly for the system. Similarly, the monitor’s task of
ungarbling can also be parallelised, with the primary bottleneck being the depth
of the circuit. Consequently, finding circuits with lower depth, even if it means
increasing the number of gates, could enable faster parallelised algorithms.

Our protocol works for specs described by register automata, or using Yosys.
It would be future work to integrate it with state-of-the-art monitoring tools
such as BeepBeep [BKH18], DejaVu [HPU18], or MonPoly [BKZ17]. Lastly,
our current protocols assume that the monitor and the monitored system are
single entities, and that the monitor relies on a linear order of observations. De-
veloping privacy-preserving monitoring protocols for scenarios where the system
and monitor are distributed is an interesting research challenge.
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A Proof of correctness and security of Open Specification

Protocol

Theorem 1. Assuming the chosen encryption Enc is secure under the CPA
model and the oblivious transfer protocol is secure in the presence of semi-honest
adversaries, Open Specification Protocol is a correct and secure monitoring pro-
tocol without specification hiding, when both parties are semi-honest, and the
number of rounds is a fixed polynomial in the security parameter.

The proof that follows is similar to the detailed and comprehensive proof
of Yao’s protocol [LP09] and we modify it for our case. Further, we can use
sequential composition theorems for semi-honest models [Gol04, Theorem 7.3.3]
to simplify our proofs, however to make this self-contained, we instead use the
fact that there are secure oblivious transfer protocols, which yield a simulator
that can produce an indistinguishable transcript for both parties. We formally
state the CPA assumption here.

Assumption 2 (Security under chosen plaintext attack (CPA) [Bir11])
A
private-key encryption scheme Enc = (G,E,D) is secure under CPA if it has
indistinguishable encryptions in the presence of nonuniform adversaries in which
the adversary has the ability to choose plaintexts and view their corresponding
encryptions.

Simulating the view of the Monitor

We always assume that we use a sequential secure implementation of the oblivi-
ous transfer protocol, which means that there are simulators SOT

Monitor and SOT
System,

that can simulate the view of the oblivious transfer protocol that are indistin-
guishable from a real simulation of the System or the Monitor respectively.

Some intuition. Our simulator picks only one random string per wire instead
of the two random strings corresponding to 0 and 1 as in the protocol. During
the garbling process, this one random string is encrypted using the labels of the
feed-in wires, along with two other fake labels generated for the feed-in wire. For
example, if the labels were L0, L1, for the left feed-in wires R0, R1, for the right
feed-in wires and S0, S1 for the feed-out wires, and the gate being garbled was
an AND gate, then the garbled gates would be a random ordering of the four
elements

{EncL0,R0(S0),EncL1,R0(S0),EncL0,R1(S0),EncL1,R1(S1)}.

However, the simulator first creates only labels L, R, S for a gate. Later, for
each gate it also creates some random labels L′ and R′ to produce the set of four
cipher texts

{EncL,R(S),EncL′,R(S),EncL,R′(S),EncL′,R′(S)}
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(irrespective of the gate is AND, OR, or NAND) used. This is the crux of the
simulator. We describe formally a simulator of the view of the Monitor and prove
indistinguishability below.

Definition of the simulator SM . The simulator, at round r > 1, computes
the following messages as the messages sent by the System during the protocol.

1. For each feed-out wire ωi that does not correspond to Monitor input wires,
that is, for i ∈ {m+1, . . . , c+ s+m}, the simulator picks one random string
wi[r].

2. For feed-out wires ωi, when that correspond to the input wires, that is,
i ∈ {1, . . . ,m}
(a) for round r = 1, the simulator also picks randomly wi for feed-out wires

that correspond to the Monitor-input.
(b) for subsequent rounds, where r > 1, and for the output wires, the

simulator instead selects labels from previously selected values, that is,
wi[r]← wO+i[r − 1].

3. For feed-in wire ιi, that is, i ∈ {1, . . . , 2c}, the simulator assigns ui[r] = wj [r],
where output wire ωj is connected to input wire ιi. Further, the simulator
also generates u′i[r], a random string, for each feed-in wire ιi.

4. Finally, the simulator computes the garbled gates for each gate j ∈ {1, . . . , c},
that is,

encGGj = encYao





[

u2j−1[r], u
′
2j−1[r]

]

,
[

u2j [r], u
′
2j [r]

]

,
[wm+s+j [r], wm+s+j [r]]





and uses encGGj for all j ∈ {1, . . . , c} as the message from the System
to the Monitor. The simulator sends at each step the keys w1, . . . , ws as
the keys corresponding to the input wires. The simulator also sends the
values wO+m+1[r] and a value w′

O+m+1[r] randomly generated value such
that wO+m+1[r] corresponds to the output wire. That is, if it was asked to
terminate in the ideal setting, then wO+m+1[r] is sent in the place of the
label corresponding 0, and otherwise wO+m+1[r] is sent in the place of the
label corresponding to bit 1.

5. For r = 1, and for each i ∈ {1, . . . ,m}, the simulator runs as a subroutine a
simulator SOT

Monitor(w
bi
s+i[1], bi) for a secure OT-functionality protocol where

bi corresponds to the ith bit in the Monitor state µ[1].

Indistinguishability of Simulator and view of Monitor. We first write a
short hand to represent the real as well as the simulated views of the Monitor.
Simulated view of Monitor.

– We will write GarbleC [r] to refer to the garbled gates generated by the
simulated as generated in Step 4 of the simulator.

– We refer to using M̄ OT
i , the view of the Monitor of the oblivious transfer

protocol using simulator SOT
Monitor(u

bi
j [1], bi) where bi is the ith bit in the

Monitor state µ[1].
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– We write Keys[r] to represent

(

w̄1[r], . . . , w̄s[r], w̄
0
O+m+1[r], w̄

1
O+m+1[r]

)

which are the list of labels for the input wires and the two labels for the
distinguished output wire for round r, where the input wires described by the
simulator are w̄i[r] for each i ∈ {1, . . . , s} and the two distinguished output
wires using generated by the simulator as w̄0

O+m+1[r] and w̄1
O+m+1[r]. The

overline is added to enable distinction from the real view.

Therefore, the simulated view is written as (µ[1], r̄M , J [1], J [2], . . . , J [ℓ]) where
r̄M is the random seed and for round r = 1,

J [1] =
(

GarbleC [1],Keys[r], M̄ OT
1 . . . , M̄ OT

m

)

which consists also of messages for the messages received during the oblivious
transfer protocol, and later rounds only consists of the garbled circuit and the
labels for the feed-out wires where for round r > 2, we have

J [r] =
(

GarbleC [k],Keys[r]
)

Real view of Monitor. Recall that the distribution of the real protocol
would consist of the input of the Monitor µ[1], the input of the random tape
rM and the messages mi received during the protocol, the messages K[i], the
messages sent during round i.
Therefore, the view of the Monitor is (µ[1], rM ,K[1],K[2], . . . ,K[ℓ]) if there are
ℓ rounds.

We refer to by GarbleC [r], the set of garbled gates of circuit C as generated
during an real execution of the protocol. Similarly, we write Keys[r] to represent

(

w
σ1 [1]
1 [1], . . . , wσs[1]

s [1], w0
O+m+1[1], w

1
O+m+1[1]

)

,

where σ[r] is the input of the system on the round r and σi[1] corresponds to
the ith bit of this input. This corresponds to the list of keys corresponding to
the labels of the input wires of the System as well as the two output labels for
the distinguished output wire.

For round r = 1,

K[1] =
(

GarbleC [1],Keys[1],M OT
1 . . . ,M OT

m

)

.

Notice that the first round consists also of messages for the messages received
during the oblivious transfer protocol, and later rounds only consists of the
garbled circuit and the labels for the feed-out wires. Therefore, for round r > 2,
we have

K[r] = (GarbleC [k],Keys[r])

where encGGi[r] is the encrypted message consisting of four cipher texts gen-
erated by garbling the labels for the feed-in and feed-out wires of gate Gi.
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We wish to show

(µ[1], r̄M , J [1], J [2], . . . , J [ℓ])
c

≡ (µ[1], rM ,K[1],K[2], . . . ,K[ℓ]) .

We proceed in steps, where we can show GarbleC [i]
c

≡ GarbleC [i] for all i, and
later combined with the indistinguishability of the views in the oblivious transfer
protocol, we get our desired result.

Indistinguishability of garbled circuit and simulated garbled circuit. We first show
that garbled circuit and the one generated by the simulator are indistinguishable.
This is a standard argument of Yao’s protocol, and therefore, we only give an
overview.

Since each garbled gate j consists of an encryption of the same key wm+s+j

for any pair of keys for all four combinations of the input keys
[

u2j−1[r], u
′
2j−1[r]

]

,

and
[

u2j[r], u
′
2j [r]

]

associated with the input wires. We fix an round r and there-

fore only refer to the strings as GarbleC and GarbleC without reference to the
round.

Consider an alternate construction of GarbleC that has the same distribution
as the original construction of GarbleC(G) generated by the simulator, but is
however obtained from an actual instance of GarbleC . Each gate in C has a
garbled gate in GarbleC which consists of 4 ciphertexts. Based on the input
of both the System and the Monitor, we compute which wire is going to be
evaluated using the input keys, and call such wires active. Note that labelling
such wires active already requires knowing more than just the input of the System
as well as the Monitor, but we remark that nevertheless the final garbled circuit
we obtain at the end results in the same distribution as the only that is not
given input.

With the knowledge of the input of all parties in the circuit, and by traversing
the circuit from the input wires to the output wires, in the topological order,
we modify the garbled gates one by one. More rigorously, if for a gate g, the
left feed-in labels are L0, L1 and the right labels are R0, R1 and the output
labels are S0, S1, the garbled gate exactly is (a permutation of) the encryption
of

{

EncLα,Rβ

(

SG(α,β)
)}

α,β∈{0,1}
For a gate g, let γ correspond exactly to the

output value of the gate. This can be computed from knowing the input and
computing the value of the circuit in a bottom-up manner. Therefore, Sγ would
be the label that would be obtained on decrypting the garbled gate with the label
that was marked “active”. We replace all 4 encryptions with just one encryption,

{

EncLα,Rβ

(

SG(α,β)
)}

α,β∈{0,1}
→

{

EncLα,Rβ (Sγ)
}

α,β∈{0,1}

Observe that in the GarbleC provided by the simulator, as well as the one
obtained above, each gate contains only one label that is encrypted using four
different keys obtained from labels of input wires. Further, this encrypted plain
text is a string that is chosen uniformly at random. Therefore, this alternate con-
struction should have an identical distribution to the garbled gates constructed
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by our simulator, and therefore, we can refer to GarbleC as the one obtained
from the garbled gate above.

We now prove that GarbleC
c

≡ GarbleC under Assumption 2 by providing
a series of intermediate garbled gates, which we denote by Garblei

C for i ∈
[c], where in GarbleiC , the first i garbled gates are replaced with the “fake”
garbled obtained as in GarbleC . Note that since all gates are replaced, GarblecC
corresponds exactly to GarbleC , whereas, we refer to Garble0

C to also mean
GarbleC .

If it was not true that GarbleC
c

≡GarbleC , then we know that there is some
i such that it is also not true that GarbleiC

c

≡ Garblei+1
C . This means if there

is a distinguisher D for GarbleC and GarbleC , then

|Pr[D(GarbleC) = 1]− Pr[D(GarbleC)] = 1| > 1/poly(n)

therefore, the same D such that for that i, we have

|Pr[D(Garblei
C) = 1]− Pr[D(Garblei+1

C )] = 1| > 1/c · poly(n).

Using standard arguments, we can obtain a probabilistic polynomial time dis-
tinguisher using D above that distinguishes GarbleC and GarbleC , to build a
distinguisher that can distinguish the double encrypted texts. Further, the fol-
lowing lemma says that if Enc was secure under CPA, using Assumption 2, then
Enc must also be secure under chosen double encryptions.

Lemma 2 ([LP09, Lemma 4]). Let (G,E,D) be a private-key encryption
scheme that has indistinguishable encryptions under chosen plaintext attacks.
Then (G,E,D) is secure under chosen double encryption.

Therefore, if there is a distinguisher for the GarbleiC and Garblei+1
C , this con-

tradicts the CPA security in Assumption 2.

Indistinguishability with and without using simulators for oblivious transfer.
Consider the messages

K[1] =
(

GarbleC [1],Keys[1],M OT
1 , . . . ,M

OT
m

)

.

If each M OT
i in the above was replaced with the messages sent by a simulator for

the same oblivious transfer protocol, written as M̄ OT
i , we argue that

(

GarbleC [1],Keys[1],M OT
1 . . . ,M OT

m

)

c

≡
(

GarbleC [1],Keys[1], M̄ OT
1 . . . , M̄ OT

m

)

This is because of the indistinguishability of each M OT
i from M̄i

OT
. Further, we

know that GarbleC [1]
c

≡ GarbleC [1]. Therefore, we have

(

GarbleC [1],Keys[C], M̄ OT
1 . . . , M̄ OT

m

)

c

≡
(

GarbleC [1],Keys[1], M̄ OT
1 . . . , M̄ OT

m

)
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Since each Keys[1] corresponds to randomly chosen strings in both the protocol
as well as the simulator, these parts are indistinguishable in both the real view
and the simulated view, thus showing K[1]

c

≡ J [1].
We only remark that our argument for one fixed round routinely extends to

multiple rounds.

Simulating the view of the System

Since there are no messages sent from the Monitor to the System, this simulation
is only of the oblivious transfer protocols. We formally define the simulated view.

1. Using its internal random tape, similar to the protocol, the simulator gener-
ates the strings w0

i [r] and w1
i [r] for i ∈ {1, . . . , c+m+ s} and assigns values

for u0j [r] and u1j for j ∈ {1, . . . , 2c}.
2. However, since the only messages sent in the protocol from the Monitor

to the System are during Oblivious transfer. Since we assume Oblivious-

Transfer protocol is secure under semi-honest adversaries, the simulator
for our protocol runs as subroutine the simulator SOT

System(u
0
j [1], u

1
j [1]) for the

System, where the inputs of the System are u0j [1], u
1
j [1].

3. After this step, the System in the protocol receives no messages from the
System other than proceed or terminate at the end of each round.

Indistinguishability of Simulator and view of System. The indistin-
guishability of the transcripts follows from the indistinguishability of the obliv-
ious transfer protocol, since the only messages received from the Monitor are
during the oblivious transfer protocol.

B Proof of correctness and security of Hidden

Specification Protocol

Theorem 2. Assuming that the chosen encryption Enc is secure under the
CPA model, the DDH assumption on group G holds, and the oblivious transfer
protocol is secure in the presence of semi-honest adversaries, Hidden Specification
Protocol is a correct and secure monitoring protocol with specification hiding
when both parties are semi-honest, and the number of rounds is a fixed polynomial
in the security parameter.

To show that our protocol is secure, we construct two simulators in the ideal
model that have distributions that are computationally indistinguishable from
the real model.

Some intuition. To prove the above, for garbling, we use the same idea of building
“fake” garbled gates where all four cipher texts in the garbled gates are obtained
by encrypting the same key. However, to ensure the labels are still indistinguish-
able, we require the simulators generate labels that are indistinguishable. For
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generating “fake” labels, we argue that selecting exponents uniformly at random
for each gate to create labels during each round from the group is sufficient.
To prove this, we use a technical lemma (Lemma 1) which allows us to prove
indistinguishability.

A technical lemma. We first recall the direct corollary of a lemma from the work
of Naor and Reingold that we use as an equivalent representation of the DDH
assumption in our proofs. A similar corollary was used in the work of Liu, Wang,
and Yu [LWY22] to prove the correctness of their protocols.

Lemma 1 ([NR04, Lemma 4.4]). Assuming that the DDH assumption holds
in a cyclic group G = 〈g〉 of prime order q ∈ Θ(2k) for n ∈ poly(κ), given n

randomly chosen elements from the group g1, g2, . . . , gn
$
←− G and n + 1 ran-

domly chosen exponents a, a1, a2, . . . , an
$
←− Zq, we have that (ga1 , g

a
2 , . . . , g

a
n) is

computationally indistinguishable from an n-tuple (ga1
1 , ga2

2 , . . . , gan
n ).

To prove correctness is straightforward from the protocol. The only time the
protocol fails is when a garbled gate is decrypted with the pair of keys and
this opens more than one pair of keys. But clearly, this happens with negligible
probability.

Simulating the view of the Monitor

To prove that the protocol is secure, we show that there is a simulator S that
produces the Monitor’s view of the transcript that is indistinguishable from a
real execution of the protocol, assuming the DDH.

Recall that formally, we need to show

{

SIdeal

M ((C, µ[1]), σ, 1n)
}

(C,µ[1]),σ

c

≡

{viewπM ((C, µ[1]), σ, 1n)}(C,µ[1]),σ

Consider the following simulator. The messages sent by the protocol during
the set-up phase are only by the Monitor, and later, the messages sent are only by
the System. Thus the simulated view of the Monitor only includes the messages
sent after the set-up phase. Instead of selecting two exponents per round of the
protocol which exponentiates each wire, the simulator instead picks an exponent
per gate, per round, and uses it to generate one label per gate. The simulator
for garbling after proceeds similarly.

0. The Simulator chooses a uniform random tape for the Monitor; this defines
the values g1, g2 . . . , gO ∈ G along with ti ∈ Zq, which also gives values
L = [ℓ1, ℓ2, . . . , ℓI ] where ℓi = gti

π(i), and π(i) is obtained from the circuit C

that the Monitor holds as input.

The simulator computes at round r > 1 the following messages as the messages
sent by the System during the protocol.
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1. For first round, r = 1, the simulator picks at random distinct values αi[r]
$
←−

Zq for each i ∈ {1, . . . , O}.
For subsequent rounds, where r > 1, and for the output wires, the simula-
tor instead selects exponents from previously selected values where αi[r] ←
βi[r − 1] for i ∈ {1, . . . ,m}.

2. For each round, the simulator further selects random values βi[r]
$
←− Zq for

i ∈ {1, . . . ,m}.

3. The simulator defines values wj [r] = g
αj[r]
j for all j ∈ {1, . . . , O}. For j ∈

{O + 1, . . . , O +m}, the simulator defines wj [r] = g
βj−O[r]
j−O .

For the flag feed-out wire ωO+m+1, the simulator assigns a group element

at random wO+m+1[r]
$
←− G. It also generates a random group element

w′
O+m+1[r] corresponds to the output bit b[r].

The simulator then labels the feed-in wires ui[r] = gπ(i)
ti·απ(i)[r], for each

i ∈ {1, . . . , I}, and also assigns values to u′i[r] uniformly at random from the
group G for each i ∈ {1, . . . , I}.

4. Finally, the simulator computes the garbled gates for each gate j ∈ {1, . . . , c},
i.e,

encGGj = encYao





[

u2j−1[r], u
′
2j−1[r]

]

,
[

u2j [r], u
′
2j [r]

]

,
[wm+s+j [r], wm+s+j [r]]





and uses encGGj for all j ∈ {1, . . . , c} as the message from the System. The
simulator sends the keys for the s input wires as u1[1], . . . , us[1] as the keys
corresponding to the input. The simulator also sends the values wO+m+1[r]
and w′

O+m+1[r] randomly generated value such that wO+m+1[r] corresponds
to the output bit b[r].

5. For round r = 1, Since we assume ObliviousTransfer protocol is secure
under semi-honest adversaries, there exists a simulator SOTMon(u

bi
j [1], bi) for the

protocol that uses only the strings ubij [1] and bit bi, where bi corresponds to

the ith bit in the Monitor state µ[1]. The simulator uses this as a subroutine
for each i in a sequential manner.

We proceed similarly to the earlier protocol and write notation for the view
of the Monitor and the protocol.
Simulated view of the Monitor. The simulated view is

(C, µ[1], r̄M , J [1], . . . , J [ℓ]) ,

where C, µ[1] denote the input of the Monitor, r̄M is a random tape of the
Monitor, and finally, J [r] is the messages simulated for round r. We let

J [1] =
(

GarbleC [1],Keys[1], M̄ OT
1 . . . , M̄ OT

m

)

and for round r > 2, we have

J [r] =
(

GarbleC [k],Keys
)

,

where the terms are described below.
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– In round r, we denote by GarbleC [r], the garbled circuit generated by the
simulator as in Step 4 above.

– For round r = 1, let M̄ OT
i represent the view obtained by using the simulator

of the oblivious transfer protocol for the ith oblivious transfer instance.
– We use Keys[r] to refer to the labels of the input wires corresponding to the

System’s input along with the unique output wire in round r, that is,

Keys[r] =
(

w̄1[r], . . . , w̄s[r], w̄
0
O+m+1[r], w̄

1
O+m+1[r]

)

.

We end by recalling that simulated view is (C, µ[1], r̄M , J [1], . . . , J [ℓ]).
Real view of the Monitor. We say that view of the Monitor based on a correct
execution of the protocol is (C, µ[1], rM ,K[1], . . . ,K[ℓ]), where C and µ[1] are the
inputs, rM the random tape K[i] denote the messages simulated for round i and
therefore

K[1] =
(

GarbleC [1],Keys[1],M OT
1 . . . ,M OT

m

)

where σi[r] is the input of the system at round r and for round r > 2, we have

K[r] = (GarbleC [r],Keys[r])

where we denote using GarbleC [r], the garbled gates generated by the protocol
in round r, andM OT

i denotes the messages sent in a real execution of the oblivious
transfer protocol, and Keys[r] to represent the labels of the keys

(

w
σ1[r]
1 [r], . . . , wσs[r]

s [r], w0
O+m+1[r], w

1
O+m+1[r]

)

sent.

Indistinguishability of Simulator and view of Monitor. We show that
the above simulated view is indistinguishable from the real view if the number
of rounds is r = 1. Then we show that as along as r is a polynomial in the
security parameter, and if the simulated view is indistinguishable for r rounds,
then it is also indistinguishable for r + 1 rounds.

To show that the views are indistinguishable, we first need the following
lemma which is an extension from the work of Liu, Wang, and Yu [LWY22,
Lemma 3] which we extend to suit our case.

Lemma 3. For a group G of order q ∈ Θ(2n), and values f, k ∈ poly(n),
for k elements g1, . . . , gk chosen uniformly at random from G, and exponents
e1, . . . , ekf and exponents d1, . . . , df chosen independently and uniformly at ran-
dom from [q − 1], the following are computationally indistinguishable under the
DDH assumption (Assumption 1):

(i)

(

{gi}i∈{1,...,k} ,
{

gd1

i

}

i∈{1,...,k}
, . . . ,

{

g
df

i

}

i∈{1,...,k}

)

(ii)
(

{gi}i∈{1,...,k} , {g
ei
i }i∈{1,...,kf}

)

.
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Proof. The distribution above is generated by selecting a block of k elements
{gi}i∈{1,...,k} from G followed f many blocks where each block is created by either
a single exponent per block or different exponents for each group element gi.

We create hybrid distributions, where for some j 6 f , we resultant distri-
bution is obtained by choosing the first j blocks as in distribution (ii) and the
later blocks as in distribution (i). More formally, consider distributions Hj for
each j ∈ {1, . . . , f} defined as follows, where the first j groups of the initially
chosen {gi}k are exponentiated with randomly chosen exponents, whereas the
other elements all have one exponent per block, that is, an exponent dt is chosen
the tth block for t ∈ {j + 1, . . . , f} to get the tuple

(

{gi}i∈{1,...,k} , {g
ei
i }i∈{1,...,jk} ,

{

g
dj+1

i

}

i∈{1,...,k}
,

. . . ,
{

g
df

i

}

i∈{1,...,k}

)

We recall that Lemma 1 states that the following are computationally indis-
tinguishable

(a) ((g1 . . . , gk) , (g
a
1 , g

a
2 , . . . , g

a
k)), where gis are drawn uniformly at random from

G and a is drawn uniformly at random from Zq

(b) ((g1 . . . , gk) , (g
a1
1 , ga2

2 , . . . , gak

k )), where gis are drawn uniformly at random
from G and ais is drawn uniformly at random from Zq

We show that if distributionHj andHj+1 are distinguishable, then we can obtain
a distinguisher for the two distributions (a) and (b) in the restated version of
Lemma 1.

Suppose there is a distinguisher between Hj and Hj+1. Given a set of k ele-
ments ((g1 . . . , gk) , (h1, h2, . . . , hk)) we can distinguish weather this is obtained
as an instance of (a) or (b) described above (contradicting Lemma 1) by se-
lecting random exponents ei for all i ∈ {1, . . . , jk} and then selecting dt for all
t ∈ {j + 1, . . . , f} and then sending the following as input to the distinguisher
of Hj and Hj+1:

(

{gi}i∈{1,...,k} , {g
ei
i }i∈{1,(j−1)k} , {h

ei
i }i∈{(j−1)k+1,...,jk} ,
{

g
dj+1

i

}

i∈{1,...,k}
, . . . ,

{

g
df

i

}

i∈{1,...,k}

)

Observe that the obtained distribution is identical to distribution Hj if the
elements {hi}i∈{1,...,k} is from (a) and is identical to distribution Hi+1 if the

elements were from (b).

Notice that labels for GarbleC are obtained from the list G or L for feed-
out and feed-in wires respectively by exponentiating with two randomly chosen
exponents. Whereas, only one label is required for creating the “fake” garbled
gate GarbleC and is obtained by selecting an exponent uniformly at random for
each gate. The exponents chosen for each round is selected uniformly at random.
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Observe that therefore, if there are r rounds, where r is a polynomial, then
the distributions of the keys that can be decrypted for each gate is exactly of
the form in Lemma 3 where f = r. Recall that we call a label active if that
label of the wire corresponds to the output evaluated from that gate. Therefore,
from Lemma 3, the distribution of the active labels from a real view are com-
putationally indistinguishable from the simulated labels, since the distribution
of active gates. This is because, the sequence of labels of the feed-out wires at

round r:
{

w
bj
j [r]

}

j∈{1,...,O}
, where bit bj corresponds to the evaluation of the

feed-out wire, across all rounds is identically distributed to (i), whereas the labels
produced by the simulator across rounds is identically distributed to (ii).

The final output wires w0
O+m+1[1], w

1
O+m+1[1] are also chosen uniformly at

random by the protocol as well as the simulator and hence indistinguishable
from their counterparts generated by the simulator.

With the above Lemma 3, this indistinguishability argument extends to the
set of all labels across all polynomially many rounds. The proof of the indis-
tinguishability of the garbled gates follow similarly from the earlier proof of
indistinguishability of the garbled gates for Protocol 1 as well as Yao’s protocol,
combined with the fact that the set of active lables is identically distributed to
the labels generated by the simulator.

Using this identical distribution of labels as well as a series of intermedi-
ate “hybrid” garbled gates are created by replacing the garbled gates from the
Garble with Garble, we can prove indistinguishability in a routine manner. The
indistinguishability of the intermediate steps follow due to the encryption scheme
Enc being secure under Assumption 2 along with Lemma 3. Which therefore en-
sures that transcripts created are also indistinguishable subject to Assumptions 1
and 2 (CPA, DDH).

Simulating the view of the System

We now show a simulator that can generate the System’s view of transcripts
that is computationally indistinguishable (under the DDH assumption) from an
execution of the protocol. Observe that the only view of the System is the initial
set-up phase after which it receives no more messages from the Monitor, other
than the oblivious transfer protocol for round r = 1.

Consider the following simulator that generates the view for the System.

1. The simulator picks random group elements gi for each feed-out wire ωi ∈ O
and sends the list [g1, g2, . . . , gI ] and also sends a list L of labels by selecting
elements uniformly at random from the group G to create L = [ℓ1, ℓ2, . . . , ℓI ],

where ℓi
$
←− G.

2. Since we assume ObliviousTransfer protocol is secure under semi-honest
adversaries, and in the hybrid model, the simulator runs as subroutine the
simulator SOTSystem(u

0
j [1], u

1
j [1]) for the System, where the inputs of the System

are u0j [1], u
1
j [1] for the oblivious transfer protocol (for each j ∈ {1, . . . ,m}).
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3. After this step, the simulator receives no messages from the System other
than proceed or terminate.

Since the simulator’s only view consists of the messages sent during the setup
phase followed by the oblivious transfer protocol in round 1, it is enough to show
that the transcript until round 1 is indistinguishable. Further, since there are no
messages sent by the Monitor after the set-up phase, we do not write the input
of the program as a part of the view of the program.
Simulated view of the System

– Let the messages sent during the setup-phase be denoted by ĀSetup =
(

Ḡ, L̄
)

,
where Ḡ is O many randomly generated elements from the group, and L̄ is
also 2c-many randomly generated elements from the group.

– Let P̄ OT
i denote the simulation of an execution of the oblivious transfer pro-

tocol of the System where the two strings used as by the Monitor for the jth

input in the protocol OT are u0j [1] and u1j [1].

Therefore, the view output by the simulation is

(

r̄P , Ā
Setup, P̄ OT

1 , . . . , P̄ OT
m

)

.

Real view of the program

– Let the messages sent during the setup-phase be denoted by ASetup = (G,L),
where G = [g1, . . . , gO] is O many randomly generated elements from the
group, and L = [ℓ1, . . . , ℓ2c] where ℓi = gti

π(i) and ti is a random value in Zq.

– Let P OT
i denote the messages sent by the Monitor to the System during a

real execution of the oblivious transfer protocol where the two strings used
as by the Monitor for the jth input in the protocol OT are u0j [1] and u1j [1].

The real view obtained from an execution of a protocol is

(

rP , A
Setup, P OT

1 , . . . , P OT
m

)

.

Indistinguishability of Simulator and view of System. Observe that both
in the real execution and the simulated execution, the elements of G are just
random O elements, and therefore, both G and Ḡ are indistinguishable. For
convenience we will use gi to denote the ith element of both G and Ḡ. First, we
show that L̄, which consists of 2I random elements is indistinguishable from L
which consists of elements ℓis such that ℓi = gti

π(i), where ti is chosen uniformly

at random, and so is the permutation π.

Lemma 4. The distribution of I random group elements is indistinguishable
from the list L = [ℓ1, ℓ2, . . . ℓI ] where ℓi = gti

π(i), where π : {1, . . . , I} → {1, . . . , O},

and g1, g2, . . . , gO are chosen uniformly at random from Gq.

Proof. Consider the following O intermediate distributions to generate a list of
length I, which results in lists L1, L2, . . . , LO. Let L0 = L obtained as described
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in the statement of the lemma. We say list Li is obtained from list Li−1 by
replacing all instances of elements that are obtained as an exponent of gi, that is
i = π(j) and ℓj = (gi)

tj , then ℓj is replaced with an element selected uniformly
at random from the group.

By definition L is identically distributed to L0 and we know that LO is
identically distributed to L̄. We will show that for any i, Li

c

≡ Li+1, to complete
our proof of the above.

Suppose O(j) = i for j = j1, j2, . . . , jk. Since we obtain Li+1 by replacing
since we are only replacing elements of the form (gi)

tj1 , (gi)
tj2 , . . . , (gi)

tjk with k
group elements chosen uniformly and independently at random ga1 , ga2 , . . . , gak

where g is a generator of the group. Since gi = gc for some value c chosen
uniformly at random, we have that the sequence (gi)

tj1 , (gi)
tj2 , . . . , (gi)

tjk =
(gtj1 )

c
, (gtj2 )

c
, . . . ,

(

gtjk
)c

. Therefore, it follows from Lemma 1 that under the
DDH assumption (1) that these values are indistinguishable.

It is an easy extension of the above proof that the joint distribution (Ḡ, L̄
is indistinguishable from (G,L) Since ĀSetup = (Ḡ, L̄), and ASetup = (G,L) we

have shown that ĀSetup
c

≡ ASetup

Since both the simulation of n oblivious transfers, and the distribution of
the transcript of real executions of n OT protocols are indistinguishable, we
can also further conclude that this joint distribution

(

ĀSetup, P̄ OT
1 , . . . , P̄ OT

m

) c

≡
(ASetup, P OT

1 , . . . , P OT
m ). This shows that the view of System is indistinguishable

from the simulated view.
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