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Abstract—Software-Defined Networking (SDN) has trans-
formed network architectures by decoupling the control and
data-planes, enabling fine-grained control over packet processing
and forwarding. P4, a language designed for programming
data-plane devices, allows developers to define custom packet
processing behaviors directly on programmable network devices.
This provides greater control over packet forwarding, inspection,
and modification. However, the increased flexibility provided
by P4 also brings significant security challenges, particularly
in managing sensitive data and preventing information leakage
within the data-plane.

This paper presents a novel security type system for analyzing
information flow in P4 programs that combines security types
with interval analysis. The proposed type system allows the
specification of security policies in terms of input and output
packet bit fields rather than program variables. We formalize
this type system and prove it sound, guaranteeing that well-typed
programs satisfy noninterference. Our prototype implementation,
TAP4S, is evaluated on several use cases, demonstrating its
effectiveness in detecting security violations and information
leakages.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is a software-
driven approach to networking that enables programmatic con-
trol of network configuration and packet processing rules. SDN
achieves this by decoupling the routing process, performed
in the control-plane, from the forwarding process performed
in the data-plane. The control-plane is often implemented by
a logically-centralized SDN controller that is responsible for
network configuration and the setting of forwarding rules.
The data-plane consists of network devices, such as pro-
grammable switches, that process and forward packets based
on instructions received from the control-plane. Before SDN,
hardware providers had complete control over the supported
functionalities of the devices, leading to lengthy development
cycles and delays in deploying new features. SDN has shifted
this paradigm, allowing application developers and network
engineers to implement specific network behaviors, such as
deep packet inspection, load balancing, and VPNs, and execute
them directly on networking devices.

Network Functions Virtualization (NFV) further expands
upon this concept, enabling the deployment of multiple virtual
data-planes over a single physical infrastructure [2]. SDN
and NFV together offer increased agility and optimization,
making them cornerstones of future network architectures.
Complementing this evolution, the Programming Protocol-
independent Packet Processors (P4) [3] domain-specific lan-
guage has emerged as a leading standard for programming
the data-plane’s programmable devices, such as FPGAs and
switches. Additionally, P4 serves as a specification language

to define the behavior of the switches as it provides a suitable
level of abstraction, yet is detailed enough to accurately
capture the behavior of the switch. It maintains a level of
simplicity and formalism that allows for effective automated
analysis [4].

NFVs and SDNs introduce new security challenges that
extend beyond the famous and costly outages caused by
network misconfigurations [5]. Many data-plane applications
process sensitive data, such as cryptographic keys and internal
network topologies. The complexity of these applications, the
separation of ownership of platform and data-plane in virtu-
alized environments, and the integration of third-party code
facilitate undetected information leakages. Misconfiguration
may deliver unencrypted packets to a public network, bugs
may leak sensitive packet metadata or routing configurations
that expose internal network topology, and malicious code may
build covert channels to exfiltrate data via legitimate packet
fields such as TCP sequence numbers and TTL fields [6].

In this domain, the core challenge lies in the data depen-
dency of what is observable, what is secret, and the packet
forwarding behavior. An attacker may be able to access only
packets belonging to a specific subnetwork, only packets
for a specific network protocol may be secret, and switches
may drop packets based on the matching of their fields
with routing configurations. These data dependencies make
information leakage a complex problem to address in SDN-
driven networks.

Existing work in the area of SDN has focused on security
of routing configurations by analyzing network flows that are
characterized by port numbers and endpoints. However, these
works ignore indirect flows that may leak information via
other packet fields. In the programming languages area, current
approaches (including P4BID [7]) substantially ignore data
dependencies and lead to overapproximations unsuitable for
SDN applications. For example, the sensitivity of a field in a
packet might depend on the packet’s destination.

We develop a new approach to analyze information flow
in P4 programs. A key idea is to augment a security type
system (which is a language-based approach to check how
information can flow in a program) with interval analysis,
which in the domain of SDNs can be used to abstract over
the network’s parameters such as subnetwork segments, port
ranges, and non-expired TTLs. Therefore, in our approach, in
addition to a security label, the security type also keeps track
of an interval.

The analysis begins with an input policy, expressed as an
assignment of types to fields of the input packet. For instance,
a packet might be considered sensitive only if its source IP
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belongs to the internal network. The analysis conservatively
propagates labels and intervals throughout the P4 program in
a manner reminiscent of dynamic information flow control [8]
and symbolic execution, cf. [9]. This process is not dependent
on a prior assignment of security labels to internal program
variables, thus eliminating the need for the network engineer
to engage with P4 program internals. The proposed analysis
produces multiple final output packet typings, corresponding
to different execution paths. These types are statically com-
pared with the output security policy, which allows to relate
observability of the output to intervals of fields of the resulting
packets and their metadata.

The integration of security types and intervals is challeng-
ing. On one hand, the analysis should be path-sensitive and
be driven by values in the packet fields to avoid rejecting
secure programs due to overapproximation. On the other hand
the analysis must be sound and not miss indirect information
flows. Another challenge is that the behaviors of P4 programs
depend on tables and external functions, but these components
are not defined in P4. We address this by using user-defined
contracts that overapproximate their behavior.
Summary of contributions.

• We propose a security type system which combines
security labels and abstract domains to provide nonin-
terference guarantees on P4 programs.

• Our approach allows defining data-dependent policies
without the burden of annotating P4 programs.

• We implement the proposed type system in a prototype
tool TAP4S [10] and evaluate the tool on a test suite and
5 use cases.

II. P4 LANGUAGE AND SECURITY CHALLENGES

This section provides a brief introduction to the P4 language
and its key features, while motivating the need for novel
security analysis that strikes a balance between expressiveness
of security policies and automation of the verification process.

P4 manipulates and forwards packets via a pipeline consist-
ing of three stages: parser, match-action, and deparser. The
parser stage dissects incoming packets, converting the byte
stream into structured header formats. In the match-action
stage, these headers are matched against rules to determine
the appropriate actions, such as modifying, dropping, or for-
warding the packet to specific ports. Finally, the deparser stage
reconstructs the processed packet back into a byte stream,
ready for transmission over the network.

We use Program 1 as a running example throughout the
paper. The program implements a switch that manages con-
gestion in the network of Fig. 1. In an IPv4 packet, the Explicit
Congestion Notification (ECN) field provides the status of
congestion experienced by switches while transmitting the
packet along the path from source to destination. ECN value
0 indicates that at least one of the traversed switches does
not support the ECN capability, values 1 and 2 indicate that
all traversed switches support ECN and the packet can be
marked if congestion occurs, and 3 indicates that the packet
has experienced congestion in at least one of the switches.

P4 switch

External Network
Internal Network

192.168.*.*

control-plane

IPv4 lpm

Tables

[1-9] [10-20]

Fig. 1: Congestion notifier network layout

We assume for this example that the switch is the only
ingress and egress point for traffic entering and exiting the
internal network, connecting it to external networks as shown
in Fig. 1. To illustrate our approach, we assume that the
switch is designed to prevent any information leakage about
internal network congestion to the external network. In addi-
tion to standard packet forwarding, the switch sets ECN to
3 if its queue length exceeds a predefined threshold. This
holds only if the packet’s destination is within the internal
network. Conversely, if the packet is destined to the external
network, the switch sets the ECN field to 0. This indicates
that ECN is not supported for outbound traffic and ensures that
congestion signals experienced within the internal network are
not exposed externally.1

P4 structs and headers. Structs are records used to define
the format of P4 packets. Headers are special structs with
an additional implicit boolean indicating the header’s validity,
which is set when the header is extracted. Special function
isValid (line 53) is used to check the validity of a header.

For example, the struct headers on line 3 has two headers
of type ethernet t and ipv4 t, as depicted in Fig. 2. The
fields of the ethernet t specify the source and destination
MAC addresses and the Ethernet type. The header ipv4 t
represents a standard IPv4 header with fields such as ECN,
time-to-live (TTL), and source and destination IP addresses.

Parser. The parser dissects incoming raw packets (packet
on line 12), extracts the raw bits, and groups them into
headers. The parser’s execution begins with the start state
and terminates either in reject state or accept state accepting
the packet and moving to the next stage of the pipeline.

For example, MyParser consists of three states. The pars-
ing begins at the start state (line 17) and transitions to
parse ethernet extracting the Ethernet header from the
input packet (line 22), which automatically sets the header’s
validity boolean to true. Next, depending on the value of
hdr.eth.etherType, which indicates the packet’s protocol,
the parser transitions to either state parse ipv4 or state

1In scenarios with multiple ingress and egress points, where external traffic
may fully traverse the internal network, the identification of outbound packets
cannot rely solely on IP addresses. Instead, classification would need to be
based on the forwarding port to allow the use of the ECN field while the
packet is inside the internal network.



accept. If the value is 0x0800, indicating an IPv4 packet, the
parser transitions to state parse ipv4 and extracts the IPv4
header (line 30). Finally, it transitions to the state accept (line
31), accepts the packet, and moves to the match-action stage.

Match-Action. This stage processes packets as instructed by
control-plane-configured tables. A table consists of key-action
rows and each row determines the action to be performed
based on the key value. Key-action rows are updated by
the control-plane, externally to P4. By applying a table,
the P4 program matches the key value against table entries
and executes the corresponding action. An action is a pro-
grammable function performing operations on a packet, such
as forwarding, modifying headers, or dropping the packet.

The match-action block MyCtrl of Program 1 starts at line
34. If the IPv4 header is not valid (line 53) the packet is
dropped. Otherwise, if the packet’s destination (line 54-56)
is the internal network, the program checks for congestion.
The standard metadata’s enq qdepth field indicates the length
of the queue that stores packets waiting to be processed. A
predefined THRESHOLD is used to determine the congestion
status and store it in the ecn field (line 57 and 59). Finally, the
packet is forwarded by applying the ipv4 lpm table (line 61).
This table, defined at line 46, matches based on longest prefix
(lpm) of the IPv4 destination address (hdr.ipv4.dstAddr),
and has two actions (shown on line 48): ipv4 forward which
forwards the packet and drop which drops the packet. If no
match exists, the default action on line 49 is invoked.

Calling conventions. P4 is a heapless language, implementing
a unique copy-in/copy-out calling convention that allows static
allocation of resources. P4 function parameters are optionally
annotated with a direction (in, inout or out). The direction
indicates how arguments are handled during function invoca-
tion and termination, offering fine-grained control over data
visibility and potential side effects.

For example, inout indicates that the invoked function can
both read from and write to a local copy of the caller’s
argument. Once the function terminates, the caller receives
the updated value of that argument. For instance, assume
hdr.ipv4.ttl value is 10 in line 43. The invocation of
decrease copies-in the value 10 to parameter x, and the as-
signment on line 9 modifies x to value 9. Upon termination, the
function copies-out the value 9 back to the caller’s parameter,
changing the value of hdr.ipv4.ttl to 9 in line 44.

Externs. Externs are functionalities that are implemented
outside the P4 program and their behavior is defined by
the underlying hardware or software platform. Externs are
typically used for operations that are either too complex
or not directly expressible in P4’s standard constructs. This
includes operations like hashing, checksum computations, and
cryptographic functions. Externs can directly affect the global
architectural state that is external to the P4 state, but their
effects to the P4 state are controlled by the copy-in/copy-out
calling convention.

For example, the extern function mark to drop (line 38)
signals to the forwarding pipeline that a packet should be

discarded. Generally, the packet is sent to the port identified
by the standard metadata’s egress spec field, and dropping
a packet is achieved by setting this field to the drop port of
the switch. The drop port’s value depends on the target switch;
we assume the value is 0.

A. Problem statement

The power and flexibility of P4 to programmatically process
and forward packets across different networks provides oppor-
tunities for security vulnerabilities such as information leakage
and covert channels. For instance, in Program 1, additionally
to the ECN, the standard metadata’s enq qdepth field, which
indicates the length of the queue that stores packets waiting
to be processed, indirectly reveals the congestion status of the
current switch.

Programming errors and misconfigurations can cause infor-
mation leakage. Consider the application of the ipv4 lpm
table (line 61) which forwards the packet to a table-specified
port. A bug in the branch condition on line 54, which checks
the least significant bits of the dstAddr (e.g. by mistakenly
checking hdr.ipv4.dstAddr[7:0] == 192 instead), would
result in setting the ecn field on the packets leaving the internal
network, thus causing the packets forwarded to an external
network to leak information about the internal network’s
congestion state. Covert channels can also result from buggy or
malicious programs. For example, by encoding the ecn field
into the ttl field, an adversary can simply inspect ttl to
deduce the congestion status.

To detect these vulnerabilities, we set out to study the
security of P4 programs by means of information flow control
(IFC). IFC tracks the flow of information within a program,
preventing leakage from sensitive sources to public sinks.
Information flow security policies are typically expressed by
assigning security labels to the sources and sinks and the flow
relations between security labels describe the allowed (and
disallowed) information flows. In our setting, the sensitivity
of sources (sinks) depends on predicates on the input (output)
packets and standard metadata. Therefore, we specify the
security labels of sources (i.e. input packet and switch state)
by an input policy, while the security labels of the sinks (i.e.
output packet and switch state) are specified by an output
policy.

The input policy of Program 1, describing the security label
of its sources is defined as:

If the switch’s input packet has the protocol IPv4 (i.e.
hdr.eth.etherType is 0x0800) and its IPv4 source
address hdr.ipv4.srcAddr belongs to the internal
network subnet 192.168.*.*, then the ecn field is
secret, otherwise it is public. All the other fields of
the input packet are always public, while the switch’s
enq qdepth is always secret.

(1)

Program 1 should not leak sensitive information to external
networks. An output policy defines public sinks by the ports
associated with the external network and labels the fields of
the corresponding packets as public.



dstAddr srcAddr etherType

ethernet t fields

. . . ecn . . . ttl . . . srcAddr dstAddr

ipv4 t fields

Fig. 2: Packet header

1 const bit <19> THRESHOLD = 10;
2
3 struct headers {
4 ethernet_t eth;
5 ipv4_t ipv4;
6 }
7
8 void decrease ( inout bit <8> x) {
9 x = x - 1;

10 }
11
12 parser MyParser ( packet_in packet , out headers hdr ,
13 inout metadata meta ,
14 inout standard_metadata_t
15 standard_metadata ) {
16
17 state start {
18 transition parse_ethernet ;
19 }
20
21 state parse_ethernet {
22 packet . extract (hdr.eth );
23 transition select (hdr.eth. etherType ) {
24 0x0800: parse_ipv4 ;
25 default : accept ;
26 }
27 }
28
29 state parse_ipv4 {
30 packet . extract (hdr.ipv4 );
31 transition accept ;
32 }
33 }

34 control MyCtrl (inout headers hdr ,
35 inout metadata meta ,
36 inout standard_metadata_t standard_metadata ) {
37 action drop () {
38 mark_to_drop ( standard_metadata );
39 }
40 action ipv4_forward (bit <48> dstAddr , bit <9> port) {
41 standard_metadata . egress_spec = port;
42 hdr.eth. srcAddr = hdr.eth. dstAddr ;
43 hdr.eth. dstAddr = dstAddr ;
44 decrease (hdr.ipv4.ttl );
45 }
46 table ipv4_lpm {
47 key = { hdr.ipv4. dstAddr : lpm; }
48 actions = { ipv4_forward ; drop; }
49 default_action = drop ();
50 }
51
52 apply {
53 if (hdr.ipv4. isValid ()) {
54 if (hdr.ipv4. dstAddr [31:24] == 192 &&
55 hdr.ipv4. dstAddr [23:16] == 168){
56 if ( standard_metadata . enq_qdepth >= THRESHOLD )
57 hdr.ipv4.ecn = 3;
58 } else {
59 hdr.ipv4.ecn = 0;
60 }
61 ipv4_lpm . apply (); // forward all valid packets
62 } else {
63 drop ();
64 }
65 }
66 }

Program 1: Congestion notifier

Packets leaving the switch through ports 10 to 20 are
forwarded to the external network and are observable
by attackers. Therefore, all fields of such packets
should be public. All the other packets are not
observable by attackers.

(2)

Our goal is to design a static security analysis that strikes
a balance between expressiveness and automation of the
verification process. We identify three main challenges that
a security analysis of P4 programs should address:

1) Security policies are data-dependent. For instance, the
ecn field is sensitive only if the packet is IPv4 and its IP
source address is in the range 192.168.*.*.

2) The analysis should be value- and path-sensitive, reflect-
ing the different values of header fields. For example,
the value of the field etherType determines the packet’s
protocol and its shape. This information influences the
reachability of program paths; for instance if the packet
is IPv4 the program will not go through the parser states
dedicated to processing IPv6 packets.

3) Externs and tables behavior are not defined in P4. Tables
are statically-unknown components and configured at run-
time. For example, a misconfiguration of the ipv4 lpm
table may insecurely forward packets with sensitive fields
to an external network.

Note that P4 lacks many features that could negatively affect
analysis precision, including heap, memory aliasing, recursion,
and loops.

Threat model. Our threat model considers a network attacker
that knows the code of the P4 program and observes data
on public sinks, as specified by a policy. We also assume
that the keys and the actions of the tables are public and
observable, but tables can pass secret data as the arguments
of the actions. Because of the batch-job execution model,
security policies can be specified as data-dependent security
types over the initial and final program states. We aim at
protecting against storage channels pertaining to explicit and
implicit flows, while deferring other side channels, e.g. timing,
to future work.



III. SOLUTION OVERVIEW

We develop a novel combination of security type systems
and interval abstractions to check information flow policies.
We argue that our lightweight analysis of P4 programs pro-
vides a sweet spot balancing expressiveness, precision and
automation.

Data-dependent policies are expressed by security types
augmented with intervals, and the typing rules ensure that the
program has no information flows from secret (H) sources to
public (L) sinks. Specifically, a security type is a pair (I, ℓ)
of an interval I indicating a range of possible values and a
security label ℓ ∈ {L,H}. For simplicity, we use the standard
two-element security lattice {L,H} ordered by ⊑ with lub ⊔.
For example, the type (⟨1, 5⟩,L) of the ttl field of the ipv4
header specifies that the ttl field contains public data ranging
between 1 and 5.

The security types allow to precisely express data-dependent
policies such as (1). The input and output policies in our
approach specify the shape of the input and output packets.
Since packets can have many different shapes (e.g. IPv4 or
IPv6), these policies may result in multiple distinct policy
cases. For example, input policy (1) results in two cases:

In the first input policy case, the packet’s
hdr.eth.etherType is 0x0800, its IPv4 source
address is in the internal network of interval
⟨192.168.0.0, 192.168.255.255⟩, hdr.ipv4.ecn and
standard metadata’s enq qdepth can contain any value
(represented as ⟨∗⟩) but are classified as H, while all other
header fields are (⟨∗⟩,L) (omitted here). We express this
policy using our security types as follows:

hdr.eth.etherType : (⟨0x0800, 0x0800⟩, L)

hdr.ipv4.srcAddr : (⟨192.168.0.0, 192.168.255.255⟩, L)

hdr.ipv4.ecn : (⟨∗⟩,H)

standard metadata.enq qdepth : (⟨∗⟩,H)

The intervals and labels in these security types describe the
values and labels of the initial state of the program under this
specific input policy case.

The second input policy case describes all the packets where
hdr.eth.etherType is not 0x0800 or IPv4 source address
is outside the range ⟨192.168.0.0, 192.168.255.255⟩, all
of the packet header fields are (⟨∗⟩,L), while the standard
metadata’s enq qdepth is still (⟨∗⟩,H).

Similarly, the output policy (2) can be expressed with the
output policy case: “if the standard metadata’s egress spec
is (⟨10, 20⟩,L), then all of the packet’s header fields are
(⟨∗⟩,L).”

It turns out that this specific output policy case is the only
interesting one, even though output policy (2) can result in
two distinct policy cases. In the alternative case, the fact that
the attacker is unable to observe the output packet can be
represented by assigning (⟨∗⟩,H) to all the fields of the packet.
The flow relation among security labels, as determined by the
ordering of the security labels, only characterizes flows from
H sources to L sinks as insecure. This implies that any policy
cases where the source is L or the sink is H cannot result in

insecure flows. Thus, the alternative case is irrelevant and can
be safely ignored.

Driven by the data-dependent types, we develop a new
security type system that uses the intervals to provide a finer-
grained assignment of security labels. Our interval analysis
allows the type system to statically eliminate execution paths
that are irrelevant to the security policy under consideration,
thus addressing the second challenge of precise analysis. For
example, our interval analysis can distinguish between states
where hdr.eth.etherType is 0x0800 and states where it
is not, essentially providing a path-sensitive analysis. This
enables the analysis to avoid paths where hdr.eth.etherType
is not 0x0800 when checking the policy of IPv4 packets. As a
result, we exclude paths visited by non-IPv4 packets when
applying the ipv4 lpm table in line 61. This reduces the
complexity of the analysis as we avoid exploring irrelevant
program paths, and helps reduce false positives in the results.

Finally, to address the challenge of tables and externs, we
rely on user-defined contracts which capture a bounded model
of the component’s behavior. Upon analyzing these compo-
nents, the type system uses the contracts to drive the analysis.
For Program 1, the contract for a correctly-configured table
ipv4 lpm ensures that if the packet’s hdr.ipv4.dstAddr
belongs to the internal network, then the action ipv4 forward
(line 40) forwards the packet to ports and MAC addresses
connected to the internal network.

Even if the ipv4 lpm table is correctly configured and
its contract reflects that, bugs in the program can still cause
unintended information leakage. For example, on line 54,
the branch condition might have been incorrect and instead
of checking the 8 most significant bits (i.e. [31:24]) of the
hdr.ipv4.dstAddr, it checks the least significant bits (i.e.
[7:0]). This bug causes the hdr.ipv4.ecn field in some
packets destined for the external network to include congestion
information, leading to unintended information leaks. Such
errors are often overlooked but can be detected by our type
system.

We ensure that the program does not leak sensitive informa-
tion by checking the final types produced by the type system
against an output policy. If these checks succeed, the program
is deemed secure. The details of this process and the role of the
interval information in the verification process are explained
in Section VI.

IV. SEMANTICS

In this section, we briefly summarize a big-step semantics
of P4. The language’s program statements, denoted by s ,
include standard constructs such as assignments, conditionals,
and sequential composition. Additionally, P4 supports transi-
tion statements, function calls, table invocations, and extern
invocations as shown in Fig. 3.

Values, represented by v , are either big-endian bitvectors b
(raw packets) or structs {f1 = v1, ..., fn = vn} (representing
headers).

P4 states m are mappings from variables x to values v . In
this slightly simplified semantics, variables are either global



v ::= b | {f1 = v1, ..., fn = vn}

e ::= v | x | ⊖e | e⊕ e′ | e.f | e[b : bitv′] | {f1 = e1, ..., fn = en}

lval ::= x | lval.f | lval[b : b′]

s ::= skip | lval := e | s1; s2 | if e then s1 else s2 | apply tbl |

f(e1, ..., en) | transition select e {v1 : st1, ..., vn : stn} st

Fig. 3: Syntax

or local. States can thus be represented as disjoint unions
(mg,ml), where mg (ml) maps global (local) variables only.

While externs in P4 can modify the architectural state, they
cannot change the P4 state itself. To simplify our model, we
integrate the architectural state into P4’s global state, treating
it as a part of the global state. Therefore, in our model the
externs are allowed to modify the global state of P4. To
maintain isolation between the program’s global variables and
the architectural state, we assume that the variable names used
to represent the global state are distinct from those used for
the architectural state.

Expressions e use a standard selection of operators including
binary ⊕, unary ⊖, comparison ⊗, and struct field access, as
well as bitvector slicing e[b : a] extracting the slice from index
a to index b of e, and m(e) is the evaluation of e in state m. An
lvalue lval is an assignable expression, either a variable, a field
of a struct, or a bitvector slice. The semantics of expressions is
standard and consists of operations over bitvectors and record
access.

The semantics of statements uses a mapping E from func-
tion names f to pairs (s, (x, d)), where (x, d) is the signature
of f , a sequence of pairs (xi, di) of function parameters with
their directions di ∈ {in, out, inout}. Additionally, E maps
parser state names st to their bodies. Furthermore, since P4
programs may depend on external components, E also maps
externs f and tables t to their respective implementations.

The semantic rules presented in Fig. 4 rely on judgments of
the form E : m1

s−→ m2 to represent the execution of statement
s under mapping E which starts from state m1 and terminates
in m2.

Many of the rules in Fig. 4 are standard and are therefore not
explained here. Rule S-CALL fetches the invoked function’s
body s and signature, and copies in the arguments into m′

l,
which serves as the local state for the called function and is
used to execute the function’s body. Note that the function’s
body can modify the global state, but cannot change the
caller’s local state due to P4’s calling conventions. After
executing the function’s body, the variables in final local state
m′′

l must be copied-out according to the directions specified
in the function’s signature. Given a direction di, the auxiliary
function isOut returns true if the direction is out or inout.
We rely on this function to copy-out the values from m′′

l back
to the callee only for parameters with out and inout direction.

For example, in Program 1 let ml = {hdr.ipv4.ttl 7→
2} when invoking decrease at line 44. The local state of

S-SKIP

E : m
skip−−→ m

S-ASSIGN

m′ = m[lval 7→ m(e)]

E : m
lval:=e−−−−−→ m′

S-SEQ

E : m
s1−→ m′

E : m′ s2−→ m′′

E : m
s1;s2−−−→ m′′

S-COND-T
m(e) = true

E : m
s1−→ m′

E : m
if e then s1 else s2−−−−−−−−−−−−→ m′

S-COND-F
m(e) = false

E : m
s2−→ m′

E : m
if e then s1 else s2−−−−−−−−−−−−→ m′

S-CALL

(s, (x, d)) = E(f) m′
l = {xi 7→ (mg,ml)(ei)}

E : (mg,m
′
l)

s−→ (m′
g,m

′′
l )

E : (mg,ml)
f(e1,...,en)−−−−−−−→ (m′

g,ml)[ei 7→ m′′
l (xi) | isOut(di)]

S-EXTERN

(semf , (x, d)) = E(f) m′
l = {xi 7→ (mg,ml)(ei)}

(m′
g,m

′′
l ) = semf (mg,m

′
l)

E : m
f(e1,...,en)−−−−−−−→ (m′

g,ml)[ei 7→ m′′
l (xi) | isOut(di)]

S-TRANS

st ′ =

st i if m(e) = vi

st otherwise
E : m

E(st′)−−−−→ m′

E : m
transition select e {v1:st1,...,vn:stn} st−−−−−−−−−−−−−−−−−−−−−−−−→ m′

S-TABLE

(e, semtbl) = E(tbl)

semtbl((mg,ml)(e1), ..., (mg,ml)(en)) = (a, v)

(s, (x1, none), ..., (xn,none)) = E(a)

m′
l = {xi 7→ vi} E : (mg,m

′
l)

s−→ (m′
g,m

′′
l )

E : (mg,ml)
apply tbl−−−−−→ (m′

g,ml)

Fig. 4: Semantic rules

decrease (i.e. the copied-in state) becomes m′
l = {x 7→ 2}.

After executing the function’s body (line 8), the final local
state will be m′′

l = {x 7→ 1} while the global state mg

remains unchanged. Finally, the copying out operation updates
the caller’s state to m′′ = (mg, {ttl 7→ 1}) by updating its
local state.

The S-EXTERN rule is similar to S-CALL. The key dif-
ference is that instead of keeping a body in E, we keep
the extern’s behavior defined through semf . This function
takes a state containing the global mg and copied-in state
m′

l and returns (possibly) modified global and local states,
represented as semf (mg,m

′
l) = (m′

g,m
′′
l ). Finally, the extern

rule preforms a copy-out procedure similar to the function call.
The S-TRANS rule defines how the program transitions

between parser states based on the evaluation of expression
e. It includes a default state name st for unmatched cases.
If in program state m, expression e evaluates to value vi,
the program transitions to state name st i according to the
defined value-state pattern. However, if the evaluation result
does not match any of the vi values, the program instead



transitions to the default state st . For example, assume that
m(hdr.eth.etherType) = 0x0800 on line 23 of Program 1.
The select expression within the transition statement will
transition to the state parse ipv4, and executes its body.

Rule S-TABLE fetches from E the table’s implementation
semtbl and a list of expressions e representing table’s keys. It
then proceeds to evaluate each of these expressions in the cur-
rent state (mg,ml), passing the evaluated values as key values
to semtbl. The table’s implementation semtbl then returns an
action a and its arguments v . We rely on E again to fetch the
body and signature of action a, however, since in P4 action
parameters are directionless we use none in the signature to
indicate there is no direction. Finally, similar to S-CALL we
copy-in the arguments into m′

l, which serves as the local state
for the invoked action and is used to execute the action’s body.
For example, let m(hdr.ipv4.dstAddr) = 192.168.2.2 at line
61, and the semantics of table ipv4 lpm contains:

192.168.2.2 7→ ipv4 forward (4A:5B:6C:7D:8E:9F, 5)

then the table invokes action ipv4 forward with arguments
4A:5B:6C:7D:8E:9F and 5.

V. TYPES AND SECURITY CONDITION

In our approach types are used to represent and track both
bitvector abstractions (i.e. intervals) and security labels, and
we use the same types to represent input and output policies.

In P4, bitvector values represent packet fragments, where
parsing a bitvector involves slicing it into sub-bitvectors (i.e.
slices), each with different semantics such as payload data or
header fields like IP addresses and ports. These header fields
are typically evaluated against various subnetwork segments
or port ranges. Since header fields or their slices are still
bitvectors, they can be conveniently represented as integers,
enabling us to express the range of their possible values as
I = ⟨a, b⟩, the interval of integers between a and b.

We say a bitvector v is typed by type τ , denoted as v : τ ,
if τ induces a slicing of v that associates each slice with a
suitable interval I and security label ℓ ∈ {L,H}. We use the
shorthand Iℓi to represent a slice of length i, with interval I ⊆
⟨0, 2i−1⟩ and security label ℓ. The bitvector type can therefore
be presented as τ = In

ℓn
in
· · ·I1ℓ1i1 , representing a bitvector of

length Σn
j=1ij with n slices, where each slice i has interval Ii

and security label ℓi. Singleton intervals are abbreviated ⟨a⟩,
⟨⟩ is the empty interval, and ⟨∗⟩ is the complete interval, that
is, the range ⟨0, 2i−1⟩ for a slice of length i. Function lbl(τ)
indicates the least upper bound of the labels of slices in τ .

To illustrate this, let τ1 be ⟨∗⟩H
2 ·⟨0, 1⟩L

3 which types a
bitvector of length 5 consisting of two slices. The first slice
has a length of 3, with values drawn from the interval ⟨0, 1⟩
and security label L. The second slice, with a length of 2, has
a security label H, and its values drawn from the complete
interval ⟨0, 3⟩ (indicated by ∗). Accordingly, lbl(τ1) evaluates
to H ⊔ L = H.

Type τ is also used to denote a record type, where record
{f1 = v1, ..., fn = vn} is typed as ⟨f1 : τ1; ...;fn : τn⟩ if each
value vi is typed with type τi.

In this setting, the types are not unique, as it is evident
from the fact that a bitvector can be sliced in many ways and
a single value can be represented by various intervals. For
example, bitvector 1 0 0 can be typed as ⟨4⟩L

3, or ⟨∗⟩L
1·⟨0, 1⟩L

2,
or ⟨2⟩L

2·⟨∗⟩L
1.

State types. A type environment, or state type, γ = (γg, γl)
is a pair of partial functions from variable names x to types
τ . Here, γg and γl represent global and local state types,
respectively, analogous to the global (mg) and local (ml)
states in the semantics. We say that γ can type state m,
written as γ ⊢ m, if for every lval in the domain of m, the
value m(lval) belongs to the interval specified by γ(lval);
formally, ∀ lval ∈ domain(m), m(lval) : γ(lval). Note that
the typing judgment γ ⊢ m is based on the interval inclusion
and it is independent of any security labels. For example, if
m(x) = 257 then 257 is considered well-typed wrt. γ if and
only if γ(x) is an interval that contains 257 (e.g., ⟨0, 257⟩,
⟨257, 257⟩, or ⟨100, 300⟩).

A state type might include a type with an empty interval;
we call this state type empty and denote it as •.

Let lblOf(lval , γ) be the least upper bound of the security
labels of all the slices of lval in state type γ. The states m1 and
m2 are considered low equivalent with respect to γ, denoted
as m1∼

γ
m2, if for all lval such that lblOf(lval , γ) = L, then

m1(lval) = m2(lval) holds.

Example 1. Assume a state type γ = {x 7→ ⟨∗⟩H
1 ·⟨0, 1⟩L

2}
The following states m1 = {x 7→ 0 0 0 } and m2 =
{x 7→ 1 0 0 } are low equivalent wrt. γ. However, states
m1 = {x 7→ 0 0 0 } and m3 = {x 7→ 1 0 1 } are not low
equivalent even though both can be typed by γ.

Contracts. A table consists of key-action rows, and in our
threat model, we assume the keys and actions of the tables
are always public (i.e. L), but the arguments of the actions
can be secret (i.e. H). Given that tables are populated by the
control-plane, the behavior of a table is unknown at the time
of typing. We rely on user-specified contracts to capture a
bounded model of the behavior of the tables. In our model, a
table’s contract has the form (e,Conttbl), where e is a list of
expressions indicating the keys of the table, and Conttbl is a set
of tuples (ϕ, (a, τ)), where ϕ is a boolean expression defined
on e, and a denotes an action to be invoked with argument
types τ when ϕ is satisfied.

For instance, the ipv4 lpm table of Program 1 uses
hdr.ipv4.dstAddr as its key, and can invoke two possible ac-
tions: drop and ipv4 forward. An example of a contract for
this table is depicted in Fig. 5. This contract models a table that
forwards the packets with hdr.ipv4.dstAddr = 192.*.*.*
to ports 1-9, the ones with hdr.ipv4.dstAddr = 10.*.*.*
to ports 10-20, and drops all the other packets. Notice that in
the first case, the first argument resulting from the table look
up is secret.

The table contracts are essentially the security policies of
the tables, where ϕ determines a subset of table rows that
invoke the same action (a) with the same argument types (τ ).



(
[hdr.ipv4.dstAddr],{(
dstAddr[31 : 24] = 192, (ipv4 forward, [⟨∗⟩H

48, ⟨1, 9⟩L
9])

)(
dstAddr[31 : 24] = 10, (ipv4 forward, [⟨∗⟩L

48, ⟨10, 20⟩L
9])

)(
dstAddr[31 : 24] ̸= 192 ∧ dstAddr[31 : 24] ̸= 10, (drop, [])

)})
Fig. 5: The contract of ipv4 lpm table

Using the labels in τ , and given action arguments v1 and v2,
we define v1∼

τ
v2 as |v1| = |v2| = |τ | and for all i, v1i : τi

and v2i : τi, and if lbl(τi) = L then v1i = v2i . Note that
lbl(τi) returns the least upper bound of the labels of all τi’s
slices, hence if there is even one H slice in τi, lbl(τi) would
be H. We use mapping T to associate table names tbl with
their contracts.

We say that two mappings E1 and E2 are considered indis-
tinguishable wrt. T , denoted as E1∼

T
E2, if for all tables tbl

such that (e1, sem1tbl) = E1(tbl), (e2, sem2tbl) = E2(tbl),
(e,Conttbl) = T (tbl) then e1 = e2 = e, and for all
(ϕ, (a, τ)) ∈ Conttbl, and for all arbitrary states m1 and
m2, such that m1(e) = m2(e) = v and m1(ϕ) ⇔ m2(ϕ),
if m1(ϕ) then v1, v2 exist such that sem1tbl(v) = (a, v1),
sem2tbl(v) = (a, v2), and v1 ∼

τ
v2. In other words, T -

indistinguishability of E1 and E2 guarantees that given equal
key values, E1 and E2 return the same actions with τ -
indistinguishable arguments v1 and v2 such that these argu-
ments are in bound wrt. their type τ .

Security condition. As explained in Section III the input
and output policy cases are expressed by assigning types to
program variables. State types, specifying security types of
program variables, are used to formally express input and
output policy cases. Hereafter, we use γi and γo to denote
input and output policy cases, respectively. Using this notation,
the input policy, denoted by Γi, is represented as a set of input
policy cases γi. Similarly, the output policy is expressed as a
set of output policy cases γo and denoted by Γo.

Given this intuition, we say two states m1 and m2 are
indistinguishable wrt. a policy case γ if γ ⊢ m1, γ ⊢ m2,
and m1 ∼

γ
m2. Relying on this, we present our definition of

noninterference as follows:

Definition 1 (Noninterference). A program s is noninterfering
wrt. the input and output policy cases γi and γo, and table
contract mapping T , if for all mappings E1, E2 and states
m1, m2, m′

1 such that:

• E1∼
T
E2,

• γi ⊢ m1, γi ⊢ m2, and m1∼
γi

m2,

• E1 : m1
s−→ m′

1

there exists a state m′
2 such that:

• E2 : m2
s−→ m′

2,
• if γo ⊢ m′

1, then γo ⊢ m′
2 and m′

1∼
γo

m′
2.

The existential quantifier over the state m′
2 does not mean

that the language is non-deterministic, in fact if such state

exists it is going to be unique. This existential quantifier
guarantees that our security condition is termination sensitive,
meaning that it only accepts the cases where the program
terminates for both initial states m1 and m2.

Intuitively, Definition 1 relies on two different equivalence
relations: one induced by the input policy case and one by the
output policy case. The former induces a partial equivalence
relation (PER) [11], Pγi

(m1,m2) = γi ⊢ m1∧γi ⊢ m2∧m1∼
γi

m2, such that the domain contains only states that satisfy the
intervals of γi. Similarly, the latter induces Qγo(m1,m2) =
(γo ⊢ m1 ∧ γo ⊢ m2 ∧ m1 ∼

γi

m2) ∨ (γo ̸⊢ m1 ∧ γo ̸⊢ m2),

which is an equivalence relation (ER). A program is then
noninterfering wrt. γi and γo if every class of the PER Pγi

is
mapped to a class of the ER Qγo .

This condition implies the following intuitive assumptions:
(1) the policy cases are public knowledge, (2) entailment of a
state on the intervals of a policy case is public knowledge, (3)
the states that do not entail the intervals of an input policy (i.e.,
those outside the domain of the PER) are considered entirely
public, and their corresponding execution is unconstrained,
(4) the attacker can observe whether the final state entails
the intervals of the output policy, and (5) the attacker cannot
observe any additional information about states that do not
entail the intervals of the output policy. We use the following
examples to further discuss our security condition.

Example 2. Consider the input and output policy cases:

γi = {a 7→ ⟨0, 256⟩H
9 , b 7→ ⟨∗⟩L

9}
γo = {a 7→ ⟨∗⟩H

9 , b 7→ ⟨1025, ∗⟩L
9}

• The inputs a1 = 257 and a2 = 258 are distinguishable
by the attacker, since they do not fall in the H interval
⟨0, 256⟩ under γi.

• The inputs a1 = 0 and a2 = 256 are indistinguishable,
since they belong to the H interval ⟨0, 256⟩ under γi.

• Under γo, any value b ≥ 1025 is distinguishable by the
attacker, otherwise it is indistinguishable since it falls
outside the L interval ⟨1025, ∗⟩.

We consider pairs of states m1, m2 such that γi ⊢ m1,
γi ⊢ m2, and m1∼

γi

m2. For example,

1) m1(a) = a1 and m2(a) = a2, where a1 , a2 ∈ ⟨0, 256⟩.
2) m1(b) = m2(b) = b0.

We use the above policies and states to discuss the security
condition of the following one-line programs:

• b=a
This program yields m′

1(b) = a1 and m′
2(b) = a2. Since

m′
1(b) ̸∈ ⟨1025, ∗⟩, then γo ̸⊢ m′

1, hence noninterference
is trivially satisfied. Intuitively, despite the variable a
being H, the output on the variable b is not observable
by the attacker.

• if (a<=1024) then b=a else skip
This program yields m′

1(b) = a1 and m′
2(b) = a2. Since

both a1 and a2 are in ⟨0, 256⟩, the program executes b=a



in the true branch. Thus, γo ̸⊢ m′
1 and noninterference is

trivially satisfied.
• b=a+1000

(i) Let a1 = 25 and a2 = 26. Then m′
1(b) = 1025 and

m′
2(b) = 1026 indicating γo ⊢ m′

1 and γo ⊢ m′
2,

however m′
1 ≁
γo

m′
2, hence the program is interfering.

(ii) Let a1 = 25 and a2 = 0. Then m′
1(b) = 1025 and

m′
2(b) = 1000 indicating γo ⊢ m′

1 and γo ̸⊢ m′
2, hence

the program is interfering.

Example 3. Assume program if y==1 then x=1 else x=x+1,
input policy case γi = {x 7→ ⟨∗⟩H

2 , y 7→ ⟨1⟩L
3}, and initial

states m1 = {x 7→ 1 0 , y 7→ 0 0 1 } and m2 = {x 7→
0 1 , y 7→ 0 0 1 }. We can see that γi ⊢ m1, γi ⊢ m2,
and m1 ∼

γi

m2. In a scenario where the only initial states

are m1 and m2, executing this program would result in final
states m′

1 = {x 7→ 0 1 , y 7→ 0 0 1 } and m′
2 = {x 7→

0 1 , y 7→ 0 0 1 }, respectively. Given output policy case
γo = [x 7→ ⟨∗⟩L

2, y 7→ ⟨1⟩L
3], we say that this program

is noninterfering wrt. γo because γo ⊢ m′
1, γo ⊢ m′

2, and
m′

1∼
γo

m′
2.

We extend the definition of noninterference to input policies
Γi and output policies Γo, requiring the program to be non-
interfering for every pair of input and output policy cases. In
our setting, the output policy, which indicates the shape of the
output packets, describes what the attacker observes. As such,
it is typically independent of the shape of the input packet
and the associated input policy. Thus, our approach does not
directly pair input and output policy cases. Instead, it ensures
that the program is noninterfering for all combinations of input
and output policy cases.

VI. SECURITY TYPE SYSTEM

We introduce a security type system that combines security
types and interval abstractions. Our approach begins with an
input policy case and conservatively propagates labels and
intervals of P4 variables. In the following, we assume that
the P4 program is well-typed.

A. Typing of expressions

The typing judgment for expressions is γ ⊢ e : τ . Rules for
values, variables, and records are standard and omitted here.

P4 programs use bitvectors to represent either raw packets
(e.g. packet_in packet of line 12) or finite integers (e.g. x of
line 8). While there is no distinction between these two cases
at the language level, it is not meaningful to add or multiply
two packets, as it is not extracting a specific byte from an
integer representing a time-to-live value. For this reason, we
expect that variables used to marshal records have multiple
slices but are not used in arithmetic operations, while variables
used for integers have one single slice and are not used for
sub-bitvector operations. This allows us to provide a relatively
simple semantics of the slice domain, which is sufficient for
many P4 applications.

T-SINGLESLICEBS

γ ⊢ e1 : ⟨I1⟩ℓ1i γ ⊢ e2 : ⟨I2⟩ℓ2i
γ ⊢ e1 ⊕ e2 : ⟨I1 ⊕ I2⟩ℓ1⊔ℓ2

i

γ ⊢ ⊖e1 : ⟨⊖I1⟩ℓ1i
γ ⊢ e1 ⊗ e2 : ⟨I1 ⊗ I2⟩ℓ1⊔ℓ2

i

T-SINGLESLICEBS rule allows the reuse of standard inter-
val analysis for binary, unary, and comparison operations over
bitvectors that have only one single slice. The resulting label
is the least upper bound of labels associated with the input
types.

T-ALIGNEDSLICE

γ ⊢ e : ⟨In⟩ℓnin · · ·⟨I1⟩
ℓ1
i1

γ ⊢ e[
b∑

j=1

ij :
a∑

j=1

ij ] : ⟨Ib⟩ℓbib · · ·⟨Ia⟩
ℓa
ia

T-NONALIGNEDSLICE

γ ⊢ e : ⟨In⟩ℓnin · · ·⟨I1⟩
ℓ1
i1

γ ⊢ e[b : a] : ⟨∗⟩
⊔

ℓij
b−a

In the slicing rules, sub-bitvector (i.e. e[b : a]) preserves
precision only if the slices of the input are aligned with
sub-bitvector’s indexes, otherwise sub-bitvector results in ⟨∗⟩,
representing all possible values. The following lemmas show
that interval and labeling analysis of expressions is sound:

Lemma 1. Given expression e, state m, and state type γ such
that γ ⊢ m, if the expression is well-typed γ ⊢ e : τ , and
evaluates to a value m(e) = v , then:

• v is well-typed wrt. to the interval of type τ (i.e. v : τ ).
• for every state m′ such that m∼

γ
m′, if lbl(τ) = L, then

m′(e) = v .

B. Typing of statements

To present the typing rules for statements, we rely on some
auxiliary notations and operations to manipulate state types,
which are introduced informally here due to space constraints.
The properties guaranteed by these operations are reported in
Appendix C.
γ[lval 7→ τ ] indicates updating the type of lval , which

can be a part of a variable, in state type γ. γ++γ′ updates
γ such that for every variable in the domain of γ′, the type of
that variable in γ is updated to match γ′. refine(γ, e) returns
an overapproximation of γ that satisfy the abstraction of γ
and the predicate e. join(γ1, γ2) returns an overapproximation
of γ1, whose labels are at least as restrictive as γ1 and γ2.
These operations tend to overapproximate, potentially causing
a loss of precision in either the interval or the security label,
as illustrated in the following example:

Example 4. Let x be mapped to an interval between 2 and
8, or in binary, bitvectors between 0 0 1 0 and 1 0 0 0 ,
in γ. That is, γ = {x 7→ ⟨2, 8⟩L

4}. The following update
γ[x[3 : 3] 7→ ⟨0⟩H

1 ] modifies the slice x[3 : 3] and results
in the state type {x 7→ ⟨0⟩H

1 ·⟨∗⟩L
3}. Here, lvalue x[2 : 0]



loses precision because after updating x[3 : 3], the binary
representation of the interval of lvalue x[2 : 0] would be
between 0 1 0 and 0 0 0 , that is every 3-bit value except
0 0 1 . Such value set cannot be represented by a single
continuous interval, hence we overapproximate to the complete
interval ⟨∗⟩.

Similarly, the operation refine(γ, x[3 : 3] < 1) updates the
interval of lvalue x[3 : 3] which results in {x 7→ ⟨0⟩L

1·⟨∗⟩L
3}

where lvalue x[2 : 0] again loses precision.
On the other hand, an operation such as join(γ, {x 7→

⟨∗⟩H
1 ·⟨∗⟩L

3}) does not modify the intervals of γ, but since the
⟨∗⟩H

1 slice overlaps with a slice of x in γ its label should be
raised, which results in γ′ = {x 7→ ⟨2, 8⟩H

4 }.

The security typing of statement s uses judgments of the
form T, pc, γ ⊢ s : Γ, where pc is the security label of
the current program context, T is a static mapping, and γ
is a state type. We use T to map a parser state name (st)
or function name (f ) to their bodies. For functions, T also
returns their signatures. Moreover, as described in Section V,
we also use T to map externs and tables to their contracts.
The typing judgment concludes with Γ, which is a set of
state types. In our type system, the security typing is not
an on-the-fly check that immediately rejects a program when
encountering an untypeable statement. Instead, we proceed
with typing the program and produce a state type for each
path and accumulate all of those in a final set Γ. This is done
in order to increase precision, by minimizing the need to unify,
and hence overapproximate, intermediate typings during type
derivation. This is indeed one of the key technical innovations
of our type system, as explained in more detail below. Once
the final set Γ is obtained, the state types within Γ are then
verified against the output security policy Γo, ensuring that
they meet all the output policy cases γo in Γ.

In the following rules, we use raise(τ, ℓ) to return a type
where each label ℓ′ within τ has been updated to ℓ′ ⊔ ℓ.

T-ASSIGN

γ ⊢ e : τ τ ′ = raise(τ, pc) γ′ = γ[lval 7→ τ ′]

T, pc, γ ⊢ lval := e : {γ′}

T-ASSIGN rule follows the standard IFC convention. It
updates the type of the left-hand-side of the assignment (i.e.
lval) with the type of expression e while raising its security
label to the current security context pc in order to capture
indirect information flows.

T-SEQ

T, pc, γ ⊢ s1 : Γ1

∀γ1 ∈ Γ1. T, pc, γ1 ⊢ s2 : Γγ1
2 Γ′ =

⋃
γ1∈Γ1

Γγ1
2

T, pc, γ ⊢ s1; s2 : Γ′

T-SEQ types the sequential composition of two statements.
This rule type checks the first statement s1, gathering all
possible resulting state types into an intermediate set Γ1. Then,

for each state type in this intermediate set, the rule type checks
the second statement s2, and accumulates all resulting state
types into the final state type set Γ′.

T-COND

γ ⊢ e : τ ℓ = lbl(τ) pc′ = pc ⊔ ℓ

T, pc′, (refine(γ, e)) ⊢ s1 : Γ1

T, pc′, (refine(γ,¬e)) ⊢ s2 : Γ2

T, pc, γ ⊢ if e then s1 else s2 : joinOnHigh(Γ1 ∪ Γ2, ℓ)

T-COND rule types the two branches using state types refined
with the branch condition and its negation, which results in
the state type sets Γ1 and Γ2, respectively. The final state type
set is a simple union of Γ1 and Γ2.

However, in order to prevent implicit information leaks,
if the branch condition is H, the security labels of Γ1 and
Γ2 should be joined. We do this by the auxiliary function
joinOnHigh, defined as follows:

joinOnHigh(Γ, ℓ) =

{
join(Γ) if ℓ = H
Γ otherwise

where the join operator has been lifted to Γ and defined
as join(Γ) = {join(γ,Γ) | γ ∈ Γ}, join(γ, {γ′} ∪ Γ) =
join(join(γ, γ′),Γ) and join(γ,∅) = γ.

Example 5. Consider the conditional statement on line
56 of Program 1, where initially γ = {enq qdepth 7→
⟨∗⟩H

19, hdr.ipv4.ecn 7→ ⟨∗⟩L
2, . . . }. Since the label of

enq qdepth is H, after the assignment on line 57,
hdr.ipv4.ecn becomes H in Γ1. However, since there is no
else branch, s2 is trivially skip, meaning that hdr.ipv4.ecn
remains L in Γ2. Typically, in IFC, the absence of an update for
hdr.ipv4.ecn in the else branch leaks that the if statement’s
condition does not hold. To prevent this, we join the security
labels of all state types if the branch condition is H. Therefore,
in the final state set Γ′, hdr.ipv4.ecn is labeled H.

Even on joining the security labels, T-COND does not
merge the final state types in order to maintain ab-
straction precision. To illustrate this consider program
if b then x[0:0]=0 else x[0:0]=1, where the pc and
the label of b are both L, and an initial state type γ =
{x 7→ ⟨∗⟩H

3 ; b 7→ ⟨∗⟩L
1}. After typing both branches, the

two typing state sets are Γ1 = {{x 7→ ⟨∗⟩H
2 ·⟨0⟩L

1}} and
Γ2 = {{x 7→ ⟨∗⟩H

2 ·⟨1⟩L
1}}. Performing a union after the

conditional preserves the labeling and abstraction precision
of x[0:0], whereas merging them would result in a loss of
precision.
T-TRANS rule types parser transitions. Similar to T-COND,

it individually types each state’s body and then joins or unions
the final state types based on the label of pc.
T-EMPTYTYPE Refining a state type might lead to an empty

abstraction for some variables. We call these states empty and
denote them by •. An empty state indicates that there is no
state m such that • ⊢ m. The rule states that from an empty
state type, any statement can result in any final state type,



T-TRANS

γ ⊢ e : τ ℓ = lbl(τ) pc′ = pc ⊔ ℓ

γ′
i = refine(γ, e = vi ∧

∧
j<i

e ̸= vj) T, pc′, γ′
i ⊢ T (sti) : Γi

γ′
d = refine(γ,

∧
i

e ̸= vi) T, pc′, γ′
d ⊢ T (st) : Γd

Γ′ = Γd ∪ (
⋃
i

Γi) Γ′′ = joinOnHigh(Γ′, ℓ)

T, pc, γ ⊢ transition select e {v1 : st1, ..., vn : stn} st : Γ′′

T-EMPTYTYPE

T, L, • ⊢ s : Γ

since there is no concrete state that matches the initial state
type. Notice that Γ can simply be empty and allow the analysis
to prune unsatisfiable paths. This rule applies only when pc is
L. For cases where pc is H, simply pruning the empty states
is unsound, as illustrate by the following example:

Example 6. Assume the state type γ = {enq qdepth 7→
⟨5⟩H

19, hdr.ipv4.ecn 7→ ⟨∗⟩L
2, . . .}, upon reaching the condi-

tional statement on line 56 of Program 1. The refinement of the
then branch under the condition enq qdepth ≥ THRESHOLD
(where THRESHOLD is a constant value 10) results in the empty
state • = {enq qdepth 7→ ⟨⟩H

19, . . .}, where ⟨⟩H
19 denotes an

empty interval. If we prune this empty state type, the final
state type set Γ′ contains only the state types obtained from
the else branch (which is skip). This is unsound because a L-
observer would be able see that the value of hdr.ipv4.ecn has
remained unchanged and infer that the H field enq qdepth
was less than 10.

There is a similar problem of implicit flows in dynamic
information flow control, where simply upgrading a L variable
to H in only one of the branches when pc is H might result
in partial information leakage. This is because the variable
contains H data in one execution while it might remain
L on an alternative execution. To overcome this problem,
many dynamic IFC methods employ the so-called no-sensitive-
upgrade (NSU) check [12], which terminates the program’s
execution whenever a L variable is updated in a H context.
Here, to overcome this problem, we type all the statements
in all branches whenever the pc is H, even when the state
type is empty [13], [14]. For instance, in Example 6, we type-
check the then branch under an empty state type, and by rule
T-COND the security labels of the final state types of both
branches are joined, resulting in hdr.ipv4.ecn’s label being
H in all the final state types.

T-CALL

γ ⊢ e⃗ : τ⃗ tCall(T, f, pc, τ⃗ , γ,Γ)

T, pc, γ ⊢ f(e⃗) : Γ

T-CALL rule types function calls. It individually types the
function arguments ei to obtain their types τi, and passes them

to auxiliary function tCall, defined as:

(s, (x, d)) = T (f) γf = {xi 7→ τi} T, pc, (γg, γf ) ⊢ s : Γ′

Γ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ

′
f ) ∈ Γ′}

which retrieves the function’s body s and its signature (x, d)
from the mapping T . Creates a new local state type γf by
assigning each argument to its corresponding type (i.e. copy-
in), and then types the function’s body to obtain the resulting
state type set Γ′. Finally, tCall produces Γ by copying out the
out and inout parameters (identified by the isOut function),
which means updating the passed lvalues (i.e. ei) with the final
types of their corresponding parameters (i.e. γ′

f (xi)).

Example 7. Assume that at line 44 of Program 1, the ttl
in the state type is mapped to ⟨1, 10⟩L

8. Calling decrease
entails creating a new local state type and copying in the
arguments, which yields γdecrease = {x 7→ ⟨1, 10⟩L

8}. Typing
the function’s body (x = x - 1) results in the state type
γ′

decrease = {x 7→ ⟨0, 9⟩L
8}. The final Γ′′ is produced by

copying out arguments back to the initial state type which
would map ttl to ⟨0, 9⟩L

8.

In contrast to standard type systems, we directly type the
body of the function, instead of typing functions separately
and in isolation. The main reason is that the intervals and
labels of the types of actual arguments can be different for
each invocation of the function. Notice that the nested analysis
of the invoked function does not hinder termination of our
analysis since P4 does not support recursion, eliminating the
need to find a fix point for the types [15].

T-TABLE

(e,Conttbl) = T (tbl) γ ⊢ ei : τi

ℓ =
⊔
i

lbl(τi) pc′ = pc ⊔ ℓ ∀(ϕj , (aj , τ j)) ∈ Conttbl.

γj = refine(γ, ϕj) tCall(T, aj , pc
′, τ j , (γg, γl),Γj)

T, pc, γ ⊢ apply tbl : joinOnHigh(∪jΓj , ℓ)

T-TABLE rule is similar to T-COND and T-CALL. It relies
on user-specified contracts to type the tables. A contract, as
introduced in Section V, has the form (e,Conttbl), where
Conttbl consists of a set of triples (ϕ, (a, τ)). Each triple
specifies a condition ϕ, under which an action a is executed
with arguments of specific types τ . A new context pc′ is
produced by the initial pc with the least upper bound of the
labels of the keys.

For each triple (ϕj , (aj , τ j)), T-TABLE relies on tCall to
type the action aj’s body under pc′, similar to T-CALL, and
accumulates the resulting state types into a set (i.e. ∪jΓj).
Finally, T-TABLE uses joinOnHigh(∪jΓj , ℓ) to join their
labels if ℓ was H.

Example 8. Given the table contract depicted in Fig. 5,
assume a state type γ where pc is L and hdr.ipv4.dstAddr
is typed as ⟨192⟩L

8·⟨168⟩L
8·⟨∗⟩L

16. According to T-TABLE, re-
fining γ produces three state types, out of which only one
is not empty: refine(γ, dstAddr[31 : 24] = 192). This



refined state is used to type the action ipv4 forward with
arguments [⟨∗⟩H

48, ⟨1, 9⟩L
9]. The two empty states should be

used to type the actions ipv4 forward (with arguments
[⟨∗⟩L

48, ⟨10, 20⟩L
9]) and drop. However, these states can be

pruned by T-EMPTYTYPE, since pc′ is L.

T-EXTERN

(γg, γl) ⊢ ei : τi (ContE, (x1, d1), ..., (xn, dn)) = T (f)

γf = {xi 7→ τi} ∀(γi, ϕ, γt) ∈ ContE. (γg, γf ) ⊑ γi

Γ′ = {γ′++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE

∧ refine((γg, γf ), ϕ) = γ′ ̸= •}
Γ′′ = {(γ′

g, γl)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ
′
f ) ∈ Γ′}

T, pc, (γg, γl) ⊢ f(e1, ..., en) : Γ
′′

T-EXTERN types the invocation of external functions. It is
similar to T-CALL with the main difference that the semantics
of external functions are not defined in P4, therefore, we
rely on user-specified contracts to approximate their behavior.
An extern contract is a set of tuples (γi, ϕ, γt), where γi
is the input state type, ϕ is a boolean expression defined
on the parameters of the extern, and γt indicates the state
type components updated by the extern function (i.e., its side
effects).
γi denotes a contract-defined state type that must be satisfied

prior to the invocation of the extern, and the rule T-EXTERN
ensure that the initial state (γg, γf ) is at most as restrictive as
γi. This approach is standard in type systems where functions
are type-checked in isolation using predefined pre- and post-
typing environments. For each (γi, ϕ, γt) tuple in the contract,
T-EXTERN refines the initial state type (γg, γl) by ϕ yielding
γ′, and filters out all γ′s that do not satisfy ϕ (i.e., the
refinement refine((γg, γf ), ϕ) is •). This is sound because we
assume for all the variables appeared in ϕ, the least upper
bound of their labels within γi is less restrictive than the lower
bound of γt. We raise the label of all elements in the γt to pc
to capture indirect flows arising from updating the state type
γ′ in a H context, and then use use ++ operation to update γ′

with the types in γt. The final state type set Γ′ is produced
by copying out the out and inout parameters from γ′.

Example 9. In Program 1, let the contract for mark to drop
at line 38 be defined as:

({egress spec 7→ ⟨∗⟩L
9}, true, {egress spec 7→ ⟨0⟩L

9})

which indicates that given an input state type
{egress spec 7→ ⟨∗⟩L

9} the extern always sets the
value of egress spec to zero. Assuming an initial state
type γ = {egress spec 7→ ⟨7⟩L

9}. Since the condition of
the contract is true the refinement in this state type does not
modify γ. This state type will be updated with the contract’s
γt to become {egress spec 7→ ⟨0⟩L

9} if pc is L, otherwise
{egress spec 7→ ⟨0⟩H

9 }.

To guarantee the abstraction soundness of externs, for any
input state m to the externs semantics m′ = semf (m) and the

contracts set (γi, ϕ, γt) must satisfy the following properties:
1) Every input state m must satisfy some condition in the

contract set ϕ, i.e., ∃ϕ .ϕ(m)
2) All modified variables in output state m′ must be in the

domain of γt, and their abstraction types in γt must hold,
i.e. {x. m(x) ̸= m′(x)} ⊆ domain(γt), and for all x ∈
domain(γt) holds m′(x) : γt(x).

Additionally, to guarantee the labeling soundness of externs,
the contracts must satisfy the following properties:

1) Conditions must preserve secrecy with respect
to the output state type. For all variable names
{x1, ..., xn} appearing in the contract’s condition ϕ,
holds lbl(γi(x1)) ⊔ ... ⊔ lbl(γi(xn)) ⊑ lb(γt).

2) Extern semantics must preserve low-equivalence. Given
any states m1 and m2, If ϕ(m1) and m1 ∼

γi

m2, then

m′
1 = semf (m1), m′

2 = semf (m2), then the difference
between the two output states must be also low equivalent
(m′

1 \m1)∼
γt

(m′
2 \m2).

C. Soundness

Given initial state types γ1 and γ2, and initial states m1 and
m2, we write m1

γ2∼
γ1

m2 to indicate that γ1 ⊢ m1, γ2 ⊢ m2,

and m1 ∼
γ1⊔γ2

m2.

The type system guarantees that a well-typed program
terminates, and the final result is well-typed wrt. at least one
of the resulting state types.

Lemma 2 (Soundness of abstraction and labeling). Given
initial state types γ1 and γ2, and initial states m1 and m2,
such that T, pc, γ1 ⊢ s : Γ1 and T, pc, γ2 ⊢ s : Γ2, and
E1 ∼

T
E2, and m1

γ2∼
γ1

m2 then there exists m′
1 and m′

2 such

that E1 : m1
s−→ m′

1, E2 : m2
s−→ m′

2, γ′
1 ∈ Γ1, γ′

2 ∈ Γ2, and

m′
1

γ′
2∼

γ′
1

m′
2.

Lemma 2 states that starting from two indistinguishable
states wrt. γ1 ⊔ γ2, a well-typed program results in two
indistinguishable states wrt. some final state types in Γ1 and
Γ2 that can also type the resulting states m′

1 and m′
2.

We rely on Theorem 1 to establish noninterference, that
is, if every two states m1 and m2 that are indistinguishable
wrt. any two final state types are also indistinguishable by the
output policy, then the program is noninterfering:

Theorem 1 (Noninterference). Given input policy case γi and
output policy Γo, if T, pc, γi ⊢ s : Γ and for every γa, γb ∈ Γ,
such that m1

γb∼
γa

m2 it holds also that m1
γo∼
γo

m2 for all γo ∈ Γo,

then s is noninterfering wrt. the input policy case γi and the
output policy Γo.

Theorem 1 is required to be proved for every possible pair
of states. To make the verification process feasible, we rely
on the following lemma to show that this condition can be
verified by simply verifying a relation between the final state
types (Γ) and the output policy (Γo):



Lemma 3 (Sufficient Condition). Assume for every γ1, γ2 ∈ Γ
and every γo ∈ Γo such that γ1 ∩ γo ̸= • that

(1) γ2 ∩ γo ̸= • implies γ1 ⊔ γ2 ⊑ γo, and
(2) for every lval either γ2(lval) ⊆ γo(lval) or γ1 ⊔

γ2(lval) = L .

Then for every γ1, γ2 ∈ Γ such that m1
γ2∼
γ1

m2, and every

γo ∈ Γo such that γo ⊢ m1 also γo ⊢ m2 and moreover
m1∼

γo

m2.

In the statement of Lemma 3 we use γ2(lval) ⊆ γo(lval)
to indicate that the interval of lval in γ2 is included in the
interval specified in γo.

Intuitively, Lemma 3 formalizes that the least upper bound
of any pair in the set of final state types (Γ) should not be
more restrictive than the output policy (e.g. if H information
has flown to a variable, that variable should also be H in the
output policy cases) and the abstractions specified in the output
policy cases (i.e. the intervals) are either always satisfied or
do not depend on H variables.

D. Revisiting the basic congestion program

We revisit Program 1 to illustrate some key aspects of our
typing rules. Here, we only consider the first policy case of
the input policy (1) of Section II, where the input packet is
IPv4 and it is coming from the internal network.

For the initial state derived from this input policy case,
since (1) the parser’s transitions depend on L variables, (2)
the type system does not merge state types, and (3) the
type system prunes the unreachable transition to accept from
parse_ethernet, then the parser terminates in a single state
type where both hdr.eth and hdr.ipv4 are valid, and their
respective headers include the slices, intervals, and labels
defined by the initial state type.

After the parsing stage is finished, the program’s control
flow reaches the MyCtrl control block. Since hdr.ipv4 is valid
and pc is L, pruning empty states allows us to ignore the
else branch on line 62. Afterwards, the nested if statement
at line 54 entails two possible scenarios. First scenario, when
the destination address is in range 192.168.*.*, as described
in Example 5, the two state types resulting from the if at line
56 have hdr.ipv4.ecn set to H. As in Example 8, these state
types satisfy only the first condition of the table’s contract,
which results in assigning the type ⟨1, 9⟩L

9 to egress spec
and producing the state types γ1

int and γ2
int.

Second scenario, when the destination address on line
54 does not match 192.168.*.*, the state type is re-
fined for the else branch, producing one state type under
condition ipv4.dstAddr ≥ 192.169.0.0 and one under
ipv4.dstAddr < 192.168.0.0. For both of these state types,
hdr.ipv4.ecn is set to ⟨0⟩L

2 by assignment on line 59. Since
in this case all branch conditions were L, there is no H field
left in the headers. The first of these two refined state types
only satisfies the first condition of the table contract, resulting
in one single (after pruning empty states) final state type,
γ3
int, where the packet has been forwarded to the internal

network and egress spec is set to ⟨1, 9⟩L
9. The second refined

state type however satisfies all the conditions of the table
contract, resulting in three final state types γ4

int, γ
1
ext, γ

1
drop

with egress spec being set to ⟨1, 9⟩L
9, ⟨10, 20⟩L

9, and ⟨0⟩L
9,

respectively. Notice that among these states, only γ3
int and

γ4
int contains a H fields (i.e. ipv4.dstAddr) due to the first

argument returned by the table being ⟨∗⟩H
48.

We finally check the sufficient condition for the output
policy (2) and its only output policy case γo, which states
that when egress spec is ⟨10, 20⟩L

9 (i.e. the packet leaves
the internal network) all header fields are L. Only state type
γ1
ext matches the output policy case (i.e. ∩γo ̸= •), and this

state type satisfies γ1
ext⊔γ1

ext ⊑ γo since all header fields and
egress spec are L in γ1

ext. All other state types (i.e. γ1
int,

γ2
int, γ3

int, γ4
int, and γ1

drop) do not match the output policy
condition (i.e. ∩γo = •), since they do not correspond to
packets sent to the external network (i.e. their egress spec
is not in range ⟨10, 20⟩). Therefore, we conclude that for this
specific input policy case, Program 1 is non-interfering wrt.
the output policy case γo.

Our analysis can also detect bugs. Assume a bug on line
54 of Program 1. To illustrate this, assume that the program
is buggy and instead of checking the 8 most significant bits
(i.e. [31:24]) of the hdr.ipv4.dstAddr, it checks the least
significant bits (i.e. [7:0]). This means that IPv4 packets with
destination address is in range *.168.*.192 would satisfy
the condition of the if statement on line 54. Similar to the
non-buggy program, the if at line 56 would produce two
state types with hdr.ipv4.ecn set to H. These state types
satisfy all the conditions of the table contract. For presentation
purposes, let us focus on only one of these state types.
Applying the table on line 61 would produce three final state
types γ1

int, γ
1
ext, γ

1
drop with egress spec being set to ⟨1, 9⟩L

9,
⟨10, 20⟩L

9, and ⟨0⟩L
9, respectively. Note that in all these final

state types, hdr.ipv4.ecn is H. When checking the sufficient
condition, state type γ1

ext matches the output policy case (i.e.
∩γo ̸= •) but it does not satisfy γ1

ext ⊔ γ1
ext ⊑ γo, because

the hdr.ipv4.ecn field H in γ1
ext and L γo. Hence, this

buggy program will be marked as interfering, highlighting
the fact that some of the packets destined for the external
network contain congestion information and unintentionally
leak sensitive information.

The benefit of value- and path-sensitivity of our approach
can also be demonstrated here. For all other input policy cases
that describe non-IPv4 packets, the parse ipv4 state is not
going to be visited. A path-insensitive analysis, which merges
the results of the parser transitions, would lose the information
about the validity of the hdr.ip4 header. This would then
lead to the rejection of the program as insecure because an
execution where the parse ipv4 state has not been visited,
yet the if branch on line 53 has been taken, will be considered
feasible.

Our analysis, on the other hand, identifies that any execution
that has not visited parse ipv4 results in an invalid hdr.ip4
header. Consequently, for all such executions, it produces a
final state type where the packet is dropped, and egress spec



is set to ⟨0⟩L
9. This state type satisfies the sufficient condition,

since egress spec does not intersect γo(egress spec) and
is L.

VII. IMPLEMENTATION AND EVALUATION

To evaluate our approach we developed TAP4S [10], a
prototype tool which implements the security type system of
Section VI. TAP4S is developed in Python and uses the lark
parser library [16] to parse P4 programs.

TAP4S takes as input a P4 program, an input policy, and an
output policy. Initially, it parses the P4 program, generates an
AST, and relies on this AST and the input policy γi to deter-
mine the initial type of input packet fields and the standard
metadata. Because the input policy is data-dependent, the re-
sult of this step can generate multiple state types (γ1, . . . , γm),
one state type for each input interval. TAP4S uses each of these
state types as input for implementing the type inference on
the program. During this process TAP4S occasionally interacts
with a user-defined contract file to retrieve the contracts of the
tables and externs. Finally, TAP4S yields a set of final state
types (γ′

1, . . . , γ
′
n) which are checked against an output policy,

following the condition in Lemma 3. If this check is successful
the program is deemed secure wrt. the output policy, otherwise
the program is rejected as insecure.

Test suite. To validate our implementation we rely on a
functional test suite of 25 programs. These programs are P4
code snippets designed to validate the support for specific
functionalities of our implementation, such as extern calls,
refinement, and table application.

Use cases. We evaluate TAP4S on 5 use cases, representing
different real-world scenarios. The results of this evaluation
are summarized in Table I. Due to space constraints, detailed
descriptions of these use cases are provided in Appendix A.
We also implement and evaluate the use cases from P4BID
[7]. These use cases are described in Appendix B, and their
corresponding evaluation results are included in Table I. They
serve as a baseline for comparing the feasibility of TAP4S
with P4BID. On average, P4BID takes 30 ms to analyze
these programs, whereas TAP4S takes 246 ms. Despite the
increased time, this demonstrates that TAP4S performs the
analysis with an acceptable overhead. On the other hand, due
to the data-dependent nature of our use cases and their reliance
on P4-specific features such as slicing and externs, P4BID
cannot reliably check these scenarios, leading to their outright
rejection in all cases.

VIII. RELATED WORK

IFC for P4. Our work draws inspiration from P4BID [7],
which adapts and implements a security type system [17] for
P4, ensuring that well-typed programs satisfy noninterference.
By contrast, we show that security policies are inherently data-
dependent, thus motivating the need for combining security
types with interval-based abstractions. This is essential enforc-
ing IFC in real-world P4 programs without code modifications,
as demonstrated by our 5 use cases. Moreover, our analysis

TABLE I: Evaluation results

Time (ms)

Total Typing Security
Check

Number of
Final γs

Basic Congestion 5930 966 4794 97
Basic Tunneling 610 157 290 15

Multicast 199 16 23 6

Firewall 4560 1015 3378 44
MRI 7646 523 6957 23

Data-plane Routing 274 109 8 12

In-Network Caching 261 91 14 6

Resource Allocation 256 87 10 9
Network Isolation - Alice 243 27 62 3

Network Isolation - Top 242 23 63 3
Topology 202 40 4 3

handles P4 features such as slicing and externs, while sup-
porting the different stages of the P4 pipeline, beyond a single
control block of the match-action stage.

IFC policy enforcement. Initial attempts at enforcing
data-dependent policies [18]–[22] used dynamic information
flow control. The programmer declaratively specifies data-
dependent policies and delegates the enforcement to a security-
enhanced runtime, thus separating the policy specification
from the code implementation.

Our approach shares similarities with static enforcement of
data-dependent IFC policies such as dependent information
flow types and refinement information flow types. Dependent
information flow types [23] rely on dependent type theory
and propose a dependent security type system, in which the
security level of a type may depend on its runtime value.
Eichholz et al. [24] introduced a dependent type system for the
P4 language, called Π4, which ensures properties such as pre-
venting the forwarding of expired packets and invalid header
accesses. Value-dependent security labels [25] partition the
security levels by indexing their labels with values, resulting
in partitions that classify data at a specific level, depending on
the value. Dependent information flow types provide a natural
way to express data-centric policies where the security level of
a data structure’s field may depend on values stored in other
fields.

Later approaches have focussed on trade-offs between au-
tomation and decidability of the analysis. Liquid types [26],
[27] are an expressive yet decidable refinement type system
[28] to statically express and enforce data-dependent infor-
mation flow polices. LIFTY [29] provides tool support for
specifying data-dependent policies and uses Haskell’s liquid
type-checker [27] to verify and repair the program against
these policies. STORM [30] is a web framework that relies
on liquid types to build MVC web applications that can
statically enforce data-dependent policies on databases using
liquid types.

Our interval-based security types can be seen as instan-
tiations of refinement types and dependent types. Our sim-
ple interval analysis appears to precisely capture the key
ingredients of P4 programs, while avoiding challenges with



more expressive analysis. By contrast, the compositionality
of analysis based on refinement and dependent types can
result in precision loss and is too restrictive for our intended
purposes (as shown in Section VI-D), due to merging types
of different execution paths. We solve this challenges by
proposing a global path-sensitive analysis that avoids merging
abstract state in conditionals. We show that our simple yet
tractable abstraction is sufficient to enforce the data-dependent
policies while precisely modeling P4-specific constructs such
as slicing, extract, and emit.

Other works use abstract interpretation in combination with
IFC. De Francesco and Martini [31] implement information-
flow analysis for stack-based languages like Java. They an-
alyze the instructions an intermediate language by using
abstract interpretation to abstractly execute a program on a do-
main of security levels. Their method is flow-sensitive but not
path-sensitive. Cortesi and Halder [32] study information leak-
age in databases interacting with Hibernate Query Language
(HQL). Their method uses a symbolic domain of positive
propositional formulae that encodes the variable dependencies
of database attributes to check information leaks. Amtoft and
Banerjee formulate termination-insensitive information-flow
analysis by combining abstract interpretation and Hoare logic
[33]. They also show how this logic can be extended to form
a security type system that is used to encode noninterference.
This work was later extended to handle object-oriented lan-
guages in [34].

Analysis and verification of network properties. Existing
works on network analysis and verification do not focus on
information flow properties. Symbolic execution is widely
used for P4 program debugging, enabling tools to explore
execution paths, find bugs, and generate test cases. Vera [35]
uses symbolic execution to explore all possible execution
paths in a P4 program, using symbolic input packets and
table entries. Vera catches bugs such as accesses fields of
invalid headers and checking that the egress spec is zero
for dropped packets. Additionally, it allows users to specify
policies, such as; ensuring that the NAT table translates packets
before reaching the output ports, and the NAT drops all packets
if its entries are empty. Recently, Scaver [36] uses symbolic
execution to verify forwarding properties of P4 programs. To
address the path explosion problem, they propose multiple
pruning strategies to reduce the number of explored paths.
ASSERT-P4 [37] combines symbolic execution with assertion
checking to find bugs in P4 programs, for example, that
the packets with TTL value of zero are not dropped and
catching invalid fields accesses. Tools like P4Testgen [38]
and p4pktgen [39] use symbolic execution to automatically
generate test packets. This approach supports test-driven de-
velopment and guarantees the correct handling of packets by
synthesizing table entries for thorough testing of P4 programs.

Abstract interpretation has also been used to verify func-
tional properties such as packet reachability and isolation.
While these properties ensure that packets reach their intended
destinations, they do not address the flow of information within

the network. Alpernas et al. [40] introduce an abstract interpre-
tation algorithm for networks with stateful middleboxes (such
as firewalls and load balancers). Their method abstracts the
order and cardinality of packet on channels, and the correlation
between middleboxes states, allowing for efficient and sound
analysis. Beckett et al. [41] develop ShapeShifter, which uses
abstract interpretation to abstract routing algebras to verify
reachability in distributed network control-planes, including
objects such as path vectors and IP addresses and methods
such as path lengths, regular expressions, intervals, and ternary
abstractions.

IX. CONCLUSION

This paper introduced a novel type system that combines
security types with interval analysis to ensure noninterference
in P4 programs. Our approach effectively prevents informa-
tion leakages and security violations by statically analyzing
data-dependent flows in the data-plane. The type system is
both expressive and precise, minimizing overapproximation
while simplifying policy specification for developers. Ad-
ditionally, our type system successfully abstracts complex
elements like match-action blocks, tables, and external func-
tions, providing a robust framework for practical security
verification in programmable networks. Our implementation,
TAP4S, demonstrated the applicability of the security type
system on real-world P4 use cases without losing precision
due to overapproximations. Future research includes adding
support for declassification, advanced functionalities such as
cryptographic constructs, and extending the type system to
account for side channels.
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APPENDIX A
USE CASES

A. Basic Tunneling

Our first use case, shown in Program 2, outlines procedures
for handling standard IPv4 packets and encapsulated tunneling
packets. The parser MyParser starts by extracting the Ethernet
header on line 6, and for etherType 0x1212 (tunneled packet),
it transitions to parse myTunnel state (line 14), extracts the
tunnel header, checks the proto id field, and transitions to
parse ipv4 state (line 21) if an IPv4 packet is indicated.
For etherType 0x0800 (IPv4 packet), it directly transitions to
parse ipv4 and extracts the IPv4 header. Once the headers
are parsed, the pipeline proceeds to the MyCtrl control block,
starting from the apply block on line 42 which contains
two if statements: If only the IPv4 header is valid (line
43), the ipv4 lpm table is applied which forward or drop
the packet based on a longest prefix match (lpm) on the
destination IPv4 address. If the tunnel header is valid (line
46), the myTunnel exact table forwards the packet based on
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an exact match of the myTunnel header’s dst id, using the
myTunnel forward action.

Since the header fields of the tunneled packets are not
modified while they are forwarded (Lines 34-36), to keep
the source MAC address of the packets within the internal
networks private, the program should not forward tunneled
packets to an external network. The input policy in this use
case indicates that if the input packet the packet is tunneled
(i.e., its etherType is 0x1212) then the packet’s srcAddr is
H. The output policy relies on the output port the packet is
sent to, and ensures that “if the egress spec is between 10-
511 then the packet has left the internal network, therefore all
field of the packet’s headers should be L.”

The general behavior of table ipv4 lpm is reflected in its
contract as it makes sure the packets with ipv4 destination
address 198.*.*.* are forwarded to the ports connected to
the internal network, while all the other destination addresses
are forwarded to ports connected to the external network.

The contract of table myTunnel exact plays a crucial role
in the security of Program 2. A correct behavior for this
table only forwards the tunneled packets to ports connected
to the internal network. The evaluation reported in Table I is
performed under a contract that reflected this behavior, which
results in TAP4S accepting the program as secure. If this table
is somehow misconfigured and forwards the tunneled packet to
any port connected to the external network, TAP4S can capture
this and flag the program as insecure.

B. Multicast

Our next use case is Program 3 which is capable of multi-
casting packets to a group of ports. Upon receiving a packet,
the switch looks up its destination MAC address dstAddr, if
it is destined to any of the hosts connected to the switch, the
packet is forwarded to its destination (line 11), otherwise the
switch broadcasts the packet on ports belonging to a multicast
group by setting the standard metadata.mcast grp to 1
(line 9). Fig. 6 illustrates the network schema of this scenario.

To implement this functionality, the program utilizes the
table mac lookup which is populated by the control-plane,
and contains the mac addresses and the port information
needed to forward non-multicast packets.

While the broadcast packets are sent to all of the multicast
ports, it is desirable to ensure the packets that are not supposed
to be broadcast are indeed not broadcasted. Our input security
policy in this scenario sets the packets destined to any of
the hosts connected to the switch as H, while labeling the
broadcast packets L. The contract of the table mac lookup’s
needs to capture the essence of this use case, that is, packets
with the dstAddr of any of the hosts need to be forwarded by
invoking the mac forward action (line 11), and all the other
packets need to be broadcast by invoking the multicast action
(line 8). To ensure the program behaves desirably, the output
policy checks that all the packets send to the multicast ports
(which have their mcast grp set to 1 according to line 9) are
L.

As illustrated in Table I, under these policies and contracts,
Program 3 is secure. It results in 6 final state types (γ), and
takes approximately 220 milliseconds to verify the program is
policy compliance.

C. Firewall

This use case models a scenario where the switch is
running the firewall Program 4 which allows it to monitor
the connections between an internal and an external network.
The network schema of this scenario is presented in Fig. 7.

After parsing an input packet, the switch applies the
ipv4 lpm table (line 26), which based on the packet’s IPv4
destination address forwards or drops the packet. Next, it
applies the check ports table, which based on the input
port number (ingress port) identifies whether the packet is
coming from the external or the internal network. As depicted
in Fig. 7 port 4 is connected to the external network and
ports 1− 3 are connected to the hosts of the internal network,
therefor if the standard metadata’s ingress port was 4, the
check ports table sets the direction to 1 which indicates the
packet is coming from the external network.

The policy of the firewall is that the hosts in the internal
network are allowed to communicate with the outside net-
works, but the hosts in the external network are only allowed
to ssh to the internal hosts. To this end, for all the packets
with direction 1, the program will drop all the packets whose
tcp port (hdr.tcp.srcPort) is not 22 (line 31).

To enforce such policy, we rely on integrity labels (instead
of confidentiality) to designate which packets are allowed
(trusted), and which packets are not. The input security
policy in this scenario sets the packets coming the internal
network, identified by their ingress port as trusted (L),
while any packet coming from the external network (with
ingress port 4) is untrusted (H) except when its TCP source
port srcPort is 22.

The contract of the ipv4 lpm captures the behavior of
this table by making sure the packets with ipv4 destination
address 198.*.*.* are forwarded to the ports connected
to the internal network (ports 1 to 3), and all the other
destination addresses are forwarded to port 4. The contract
of table check ports updates the direction by checking the
ingress port of the incoming packet, setting the direction
to 1 if the ingress port was 4.

The output policy checks that all the packets leaving the
switch are trusted and L. Table I depicts the results of TAP4S
for this use case. Under these policies and contracts Program 3
is deemed secure. TAP4S produces 44 final state types, and
takes approximately 6 seconds to verify the security of the
program.

D. Multi-Hop Route Inspection

Program 5 implements a simplified version of In-Band
Network Telemetry, called Multi-Hop Route Inspection (MRI).
The purpose of MRI is to let the users to track the path and
the length of queues that every packet travels through. To do
this, the P4 program adds an ID and queue length to the header



1 struct headers {
2 ethernet_t eth; myTunnel_t myTunnel ; ipv4_t ipv4;
3 }
4 parser MyParser (/* omitted */) {
5 state start { transition parse_ethernet ; }
6 state parse_ethernet {
7 packet . extract (hdr.eth );
8 transition select (hdr.eth. etherType ) {
9 0x1212: parse_myTunnel ;

10 0x0800: parse_ipv4 ;
11 default : accept ;
12 }
13 }
14 state parse_myTunnel {
15 packet . extract (hdr. myTunnel );
16 transition select (hdr. myTunnel . proto_id ) {
17 0x0800: parse_ipv4 ;
18 default : accept ;
19 }
20 }
21 state parse_ipv4 {
22 packet . extract (hdr.ipv4 );
23 transition accept ;
24 }
25 }

26 control MyCtrl (/* omitted */) {
27 action drop ()
28 { /* drops the packet */ }
29 action ipv4_forward (bit <48> dstAddr , bit <9> port)
30 { /* basic forward */ }
31 table ipv4_lpm
32 { /* omitted */}
33
34 action myTunnel_forward (bit <19> port) {
35 standard_metadata . egress_spec = port;
36 }
37 table myTunnel_exact {
38 key = {hdr. myTunnel . dst_id : exact ;}
39 actions = { myTunnel_forward ; drop ;}
40 default_action = drop ();
41 }
42 apply {
43 if (hdr.ipv4. isValid () && !hdr. myTunnel . isValid ()) {
44 ipv4_lpm . apply (); // Process non - tunneled packets
45 }
46 if (hdr. myTunnel . isValid ()) {
47 myTunnel_exact .apply (); // Process tunneled packets
48 }
49 }
50 }

Program 2: Basic tunneling

1 struct headers {
2 ethernet_t ethernet ;
3 }
4 control MyCtrl (/* omitted */) {
5 action drop () {
6 mark_to_drop ( standard_metadata );
7 }
8 action multicast () {
9 standard_metadata . mcast_grp = 1;

10 }
11 action mac_forward (bit <9> port) {
12 standard_metadata . egress_spec = port;
13 }
14 table mac_lookup {
15 key = { hdr. ethernet . dstAddr : exact; }
16 actions = { multicast ; mac_forward ; drop; }
17 }
18 apply {
19 if (hdr. ethernet . isValid ())
20 mac_lookup . apply ();
21 }
22 }

Program 3: Multicast

stack of every packet (line 10). Upon reaching the destination,
the sequence of switch IDs shows the path the packet took,
and each ID is followed by the queue length at that switch.

After parsing the packet, the program applies the ipv4 lpm
table to forward the packet based on its IPv4 destination ad-
dress. Afterwards, in the MyEgress control block, the swtrace
table (line 27), based on the port information specified in the
egress spec, decides whether to add the queue length data
to swtraces header or not.

While it makes sense to add this information for packets
that are traveling within a local network, similar to the basic

1

2

3

4

Fig. 6: Multicast schema

congestion example (Program 1) the id of the switches and
their queue length can give an external adversary information
about the state of the local network. Therefore it is desirable
to protect the local network by making sure that Program 5
only adds this data to the packets being forwarded within the
local network.

The input policy of this scenario labels the input packet as L
and only marks the deq qdepth of the standard metadata as
H. The contract of the ipv4 lpm table forwards the packets
with ipv4 destination address 198.*.*.* to the ports con-
nected to the internal network, while all the other destination
addresses are forwarded to ports connected to the external
network. If the egress spec indicates ports connected to the
internal network, the contract of the swtrace table invokes
the add swtrace action, adding the queue length data to
swtraces header, otherwise NoAction takes place.

The output policy ensures that in all of the packets going to
the external network, identified by their hdr.ipv4.dstAddr
being anything other than 198.*.*.*, have L switch t
header.

Table I depicts the results of type checking this program
with TAP4S. It generates 23 final state types and takes ap-
proximately 4 seconds to verify the security of the program.



1 header tcp_t{
2 bit <16> srcPort ;
3 // omitted
4 }
5 struct headers {
6 ethernet_t ethernet ; ipv4_t ipv4; tcp_t tcp;
7 }
8 control MyCtrl (/* omitted */) {
9 action drop ()

10 { /* drops the packet */ }
11 action ipv4_forward (bit <48> dstAddr , bit <9> port)
12 { /* basic forward */ }
13 table ipv4_lpm
14 { /* omitted */}
15
16 action set_direction (bit <1> dir) {
17 direction = dir;
18 }
19 table check_ports {
20 key = { standard_metadata . ingress_port : exact; }
21 actions = { set_direction ; NoAction ; }
22 }
23
24 apply {
25 if (hdr.ipv4. isValid ()) {
26 ipv4_lpm . apply ();
27 if (hdr.tcp. isValid ()) {
28 check_ports . apply ();
29 if ( direction == 1) {// Packet is from outside
30 // only allow ssh conncetions from outside
31 if (hdr.tcp. srcPort != 22) { drop (); }
32 }
33 }
34 }
35 }
36 }

Program 4: Firewall

External Network

Internal Network

1

2

3

4

Fig. 7: Firewall schema

swtrace table is crucial for the security of this Program and
if it is misconfigured and calls the add swtrace action on
outgoing packets, the program will be rejected by TAP4S.

APPENDIX B
P4BID USE CASES

We implemented the use cases of P4BID [7] in TAP4S to
ensure that it can correctly evaluate all of their use cases and
that its verdict is inline with the results reported in [7]. These
use cases and their corresponding policies are simpler than
our own use cases because P4BID does not support data-
dependent policies and hence only labels program variables

1 header switch_t {
2 switchID_t swid;
3 qdepth_t qdepth ;
4 }
5 struct headers {
6 ethernet_t ethernet ;
7 ipv4_t ipv4;
8 ipv4_option_t ipv4_option ;
9 mri_t mri;

10 switch_t [9] swtraces ;
11 }
12 control MyIngress (/* omitted */) {
13 action drop ()
14 { /* drops the packet */ }
15 action ipv4_forward (bit <48> dstAddr , bit <9> port)
16 { /* basic forward */ }
17 table ipv4_lpm
18 { /* omitted */}
19 apply {
20 if (hdr.ipv4. isValid ()) { ipv4_lpm . apply (); }
21 }
22 }
23 control MyEgress (/* omitted */) {
24 action add_swtrace ( switchID_t swid) {
25 // updates the swtraces header
26 }
27 table swtrace {
28 key = { standard_metadata . egress_spec : exact; }
29 actions = { add_swtrace ; NoAction ;}
30 }
31 apply {
32 if (hdr.mri. isValid ()) {
33 swtrace .apply ();
34 }
35 }
36 }

Program 5: Multi-Hop Route Inspection

without taking the value of the packet header fields into
account. The results of this evaluation is depicted in Table I.

Dataplane Routing Routing is the process of determining
how to send a packet from its source to its destination. In tra-
ditional networks the control-plane is responsible for routing,
but recently, Subramanian et al. [42] proposed an approach to
implement the routing in the data plane. Their approach uses
pre-loaded information about the network topology and link
failures to perform a breadth-first search (BFS) and find a path
to the destination.

In this scenario we do not care about the details of this BFS
search algorithm, but we want to make sure that the sensitive
information about the private network (such as the number
of hops in the network) do not leak to an external network.
Similar to P4BID [7] labeling the number of hops as H will
result in the program being rejected by TAP4S because the
forwarding action uses this information to update the packet’s
priority field, which results in an indirect leakage of sensitive
information.

In-Network Caching In order to enable the fast retrieval of
popular items, switches keep track of the frequently requested
items in a cache and only query the controller when an item
cannot be found in the cache. Similar to any cache system, the



result of a query is the same regardless of where the item is
stored. However, from a security perspective, an observer can
potentially detect variations in item retrieval time. This timing
side-channel can potentially allow an adversary to learn about
the state of the system.

To model the cache in this scenario, we mark the re-
quest query as sensitive, because whether this query is a
hit or a miss leaks information about the internal state of
the switch. The variable marking the state of the result
in the cache (response.hit) is not sensitive because it is
considered observable by the adversary. Similar to P4BID [7]
this labeling will result in the program being rejected by
TAP4S because a sensitive query can indirectly affect the
value of response.hit, resulting in the leakage of sensitive
information.

Resource Allocation This use case models a simple re-
source allocation program, where the switch increases the pri-
ority of the packets belonging to latency-sensitive applications.
The application ID in the packet’s header will indicate which
application the packet belongs to. A table will matches on this
application ID and sets the packet’s priority by modifying the
priority field of the ipv4 header.

The problem is that a malicious client can manipulate the
application ID to increase the priority of their packets. We rely
on integrity labels (instead of confidentiality) to address this
issue, that is, the application ID will be labeled as untrusted
(H) and the ipv4 priority field will be labeled as trusted (L).
Since the program sets the priority field based on the value
of the application ID, the priority field will also be labeled
untrusted by the type system, which results in the rejection of
the program.

Network Isolation This use case models a private network
used by two clients, Alice and Bob. Each client runs its own
P4 program, but the packets sent between these two clients
have a shared header with separate fields for Alice and Bob.
In this scenario we want to make sure that Alice does not
touch Bob’s fields, and vice versa.

The isolation property in this example can be modeled by
a four-point lattice with labels {A,B,⊤,⊥}, where A is the
label of Alice’s data, B is for Bob’s data, ⊤ is the top element
confidential to both Alice and Bob, and ⊥ is public. By IFC,
data from level ℓ can flow to ℓ′ if and only if ℓ ⊑ ℓ′.

In this use case, we consider Alice’s program in which she
updates the fields belonging to herself. Additionally, we use
label ⊤ to label the telemetry data which can be updated by
Alice’s program, but she cannot leak information from ⊤-
labeled data into her own fields.

Since TAP4S only support simple lattice with two levels,
we type check this program twice, with two policies. First
where Alice is H and everything else is L, and a second time
where ⊤ is H and everything else is L. The same process
can be repeated for Bob’s program as well. This program is
accepted by TAP4S, and the results for both cases are reported
in Table I.

Topology This use case is a P4 program which processes
packets as they enters a local network. The incoming packets

refers to a virtual address which needs to be translated to a
physical address as the packet is routed in the local network.

Our security policy dictates that the routing details of this
local network should not leak into fields that are visible when
the packet leaves the network. As such, the program relies on
a separate header to store the local information, and as long
as the packet is inside the local network, the switches do not
modify the ipv4 and Ethernet headers, instead, they parse, use,
and update this local header with the routing information.

As explained in P4BID [7], this program has a bug where it
incorrectly stores the local ttl in the ipv4 header instead of
the local header. Marking the local fields as H, TAP4S flags
this program as insecure and facilitates the process of catching
and fixing these types of errors.

APPENDIX C
STATE TYPE OPERATIONS

A type τ ′ is considered an overapproximation of type τ
(written as τ ≤ τ ′) iff for every value v : τ it holds that v : τ ′

and lbl(τ) ⊑ lbl(τ ′). We denote two non-overlapping lvalues
by lval #lval ′, which means if lval is a record lval ′ is not one
of its fields, and if lval is a bitvector lval ′ is not one of its
sub-slices.

We present the properties that operators over the state types
must guarantee:

• γ[lval 7→ τ ] = γ′ indicates updating the type of lval ,
which can be a part of a variable, in state type γ. This
operator guarantees that γ′ ⊢ lval : τ and for every lvalue
lval ′ #lval such that γ ⊢ lval ′ : τ ′ and γ′ ⊢ lval ′ : τ ′′

then τ ′ ≤ τ ′′.
• γ++γ′ updates γ such that for every variable in the

domain of γ′, the type of that variable in γ is updated to
match γ′.

• refine(γ, e) = γ′ returns an overapproximation of states
that satisfy the abstraction of γ and the predicate e. It
guarantees that if γ ⊢ m and e evaluates to true in m
then γ′ ⊢ m and for every lval , if γ ⊢ lval : τ and
γ′ ⊢ lval : τ ′ then lbl(τ) ⊑ lbl(τ ′)

• join(γ1, γ2) = γ3 returns an overapproximation of γ1,
whose labels are at least as restrictive as γ1 and γ2.
This operator guarantees that if γ1 ⊢ m then γ3 ⊢ m
and for every lval , then lbl(γ1(lval)) ⊔ lbl(γ2(lval)) ⊑
lbl(γ3(lval)).

APPENDIX D
PROOFS AND GUARANTEES

We use T ⊢ E to represent the abstraction and labeling
soundness guarantees for externs and tables, and in the fol-
lowing we assume that this condition holds.

A. Sufficient condition proof

Lemma 3 (Sufficient Condition). Assume for every γ1, γ2 ∈ Γ
and every γo ∈ Γo such that γ1 ∩ γo ̸= • that
(1) γ2 ∩ γo ̸= • implies γ1 ⊔ γ2 ⊑ γo, and
(2) for every lval either γ2(lval) ⊆ γo(lval) or γ1 ⊔

γ2(lval) = L .



Then for every γ1, γ2 ∈ Γ such that m1
γ2∼
γ1

m2, and every

γo ∈ Γo such that γo ⊢ m1 also γo ⊢ m2 and moreover
m1∼

γo

m2.

Proof. First, we prove γo ⊢ m2. By definition, it is sufficient
to prove that for every lval , m2(lval) : γo(lval).
From the definition of m1

γ2∼
γ1

m2 we know that γ1 ⊢ m1 and

γ2 ⊢ m2 hold. Since γo ⊢ m1 and γ1 ⊢ m1, then trivially
γ1∩γo ̸= • holds. From the second hypothesis of the sufficient
condition, two cases are possible.

1) γ2(lval) ⊆ γo(lval). Since γ2 ⊢ m2 hold, then by
definition m2(lval) : γ2(lval) holds, therefore trivially
m2(lval) : γo(lval) holds.

2) γ1 ⊔ γ2(lval) = L. Since m1
γ2∼
γ1

m2 then, indeed

m1(lval) = m2(lval) holds. By definition of γo ⊢ m1,
we know that m1(lval) : γo(lval) also holds. Therefore,
we can trivially show that m2(lval) : γo(lval).

Second, we prove m1 ∼
γo

m2. Previously, we showed that

γo ⊢ m2 holds, and since γ2 ⊢ m2, then trivially γ2 ∩ γo ̸= •
holds. From the first hypothesis of the sufficient condition,
we can show that γ1 ⊔ γ2 ⊑ γo. By definition of m1

γ2∼
γ1

m2,

we know that m1 ∼
γ1⊔γ2

m2 holds. Therefore, trivially m1 ∼
γo

m2.

B. Hypothesis for refine

Hyp 1 (Interval typedness - boolean expressions’ refinement).

γ ⊢ e : τ ∧ γ ⊢ m =⇒(
m(e) = true =⇒

(refine(γ, e)) ⊢ m ∧ m(e) = false =⇒

(refine(γ,¬e)) ⊢ m
)

Hyp 2 (Interval typedness - select expressions’ refinement).

γ ⊢ e : τ ∧ m(e) = v ∧ γ ⊢ m

∧ i = min{i. v = vi ∨ i = n+ 1} =⇒
γ1, ..., γn, γn+1 = (refine(γ, e = vi)) =⇒
γi ⊢ m

Hyp 3 (Interval typedness - externs and tables refinement).

γ ⊢ m ∧ ϕ(m) =⇒ refine(γ, ϕ) ⊢ m

Hyp 4 (Label typedness - boolean expressions’ refinement).

γ ⊢ e : τ1 ∧ γ ⊢ e : τ2

∧ lbl(τ1) = L ∧ lbl(τ2) = L
∧ m1 ∼

γ1⊔γ2

m2 =⇒(
(refine(γ1, e) = γ′

1 ∧ refine(γ2, e) = γ′
2

∧ m1(e) = true ∧ m2(e) = true =⇒ m1 ∼
γ1′⊔γ2′

m2)

∧
(
refine(γ1,¬e) = γ′

1 ∧ refine(γ2,¬e) = γ′
2

∧ m1(¬e) = true ∧ m2(¬e) = true =⇒

m1 ∼
γ1′⊔γ2′

m2

))
Hyp 5 (Label typedness - select expressions’ refinement).

γ ⊢ e : τ ∧ lbl(τ) = L ∧ m1∼
γ
m2 =⇒(

γ1, ..., γn, γn+1 = refine(γ, e = vi) ∧ m1(e) = v =⇒

∀j ≤ n+ 1. m1∼
γj

m2

)
C. Lemmas

Lemma 4 (Expression reduction preserves the type).

γ ⊢ m ∧ γ ⊢ e : τ ∧ m(e) = v =⇒ v : τ

Lemma 5 (lvalue updates preserves the type).

γ ⊢ m ∧ v : τ =⇒ γ[lval 7→ τ ] ⊢ m[lval 7→ v ]

Lemma 6 (Expressions have types same as their values).

γ ⊢ m ∧ γ ⊢ e : τ =⇒ ∃v . m(e) = v ∧ v : τ

Lemma 7 (Join does not modify the intervals).

γ ⊢ m ∧ γ ∈ Γ1 =⇒
∀Γ2...Γn. ∃γ′ ∈ join(Γ1 ∪ Γ2 ∪ ... ∪ Γn).

γ′ ⊢ m ∧ γ ⊑ γ′

Lemma 8 (Expression evaluation of consistent states).

m1 ∼
γ1⊔γ2

m2 ∧ γ1 ⊢ m1 ∧ γ2 ⊢ m2 ∧

γ1 ⊢ e : τ1 ∧ γ2 ⊢ e : τ2 ∧
lbl(τ1) = L ∧ lbl(τ2) = L =⇒

(m1(e) = v ∧ m2(e) = v)

Lemma 9 (State equivalence preservation).

γ′ ⊑ γ ∧ m1∼
γ′
m2 =⇒ m1∼

γ
m2

Lemma 10 (Branch on high - state preservation).

E : m
s−→ m′ ∧ T,H, γ ⊢ s : Γ ∧ γ′ ∈ Γ =⇒

(γ′(lval) = τ ∧ lbl(τ) = L) =⇒
m(lval) = m′(lval)



Lemma 11 (Join’s low label implication).

Γ = join(Γ1 ∪ ... ∪ Γn) ∧ γ ∈ Γ ∧
γ(lval) = τ ∧ lbl(τ) = L =⇒

∀γ′ ∈ Γ1, ...,Γn. γ
′(lval) = τ ′ ∧ lbl(τ ′) = L

Lemma 12 (High program’s final types).

T,H, γ ⊢ s : Γ =⇒ ∀γ′ ∈ Γ. γ ⊑ γ′

Lemma 13 (Branch on high - state lemma).

T,H, γ ⊢ s : Γ ∧ γ′ ∈ Γ ∧
γ′(lval) = τ ′ ∧ lbl(τ ′) = L =⇒

∀γ′′γ′′′. T, pc, γ′′ ⊢ s : Γ′ ∧ γ′′′ ∈ Γ′ =⇒(
γ′′(lval) = τ ′′ ∧ γ′′′(lval) = τ ′′′

=⇒ lbl(τ ′′) ⊑ lbl(τ ′′′)
)

Lemma 14 (Branch on high is never empty).

T,H, γ ⊢ s : Γ =⇒ Γ ̸= ∅

Lemma 15 (Low equivalence distribution).

(m1,m
′
1) ∼

(γa,γ′
a)⊔(γb,γ′

b)
(m2,m

′
2) ⇔

(m1 ∼
γa⊔γb

m2 ∧ m′
1 ∼
γ′
a⊔γ′

b

m′
2)

Lemma 16 (Low equivalence update).

m1 ∼
γa⊔γb

m2 ∧ m3 ∼
γc⊔γd

m4 =⇒

m1[lval 7→ m3(e)] ∼
γa[lval 7→γc(e)]⊔γb[lval 7→γd(e)]

m2[lval 7→ m4(e)]

D. Soundness of abstraction

Theorem 2.

∀ s T mγ pcΓ. T, pc, γ ⊢ s : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒
∃m′.E : m

s−→ m′ ∧ ∃γ′ ∈ Γ. γ′ ⊢ m′

Proof. In this proof we assume that the program is well typed
and does not get stuck according to HOL4P4 type system.
By induction on the typing tree of the program stmt, i.e. s .
Note that, initially γ = (γg, γm) and m = (mg,ml). In the
following proof, we know that γ ⊢ m holds in all subcases.
⋄ Case assignment: Here stmt is lval := e. From assignment
typing rule we know:

1) γ ⊢ e : τ
2) τ ′ = raise(τ, pc)
3) γ′ = γ[lval 7→ τ ′]
4) Γ = {γ′}
We need to prove ∃m′.E : m

lval:=e−−−−→ m′ and ∃γ′′ ∈ Γ.γ′′ ⊢
m′. From the assignment reduction definition, we can rewrite
the goal’s conjunctions to:

1) m(e) = v (from assignment reduction)
2) ∃m′. m′ = m[lval 7→ v ] (from assignment reduction)
3) ∃γ′′ ∈ {γ′}.γ′′ ⊢ m′

Goal 1: we know that the initial variable map is typed using
the state type, i.e. γ ⊢ m from assumptions. Using γ ⊢ m
and 1 from typing rule, then we can use Lemma 6 to directly
infer that the expression’s reduction indeed keeps the type, i.e.
∃v . m(e) = v ∧ v : τ and this resolves goal 1.

Goal 2: trivial, as we can instantiate m′ to be m[lval 7→ v ].
Goal 3: we know that assignment typing rule produces a

singleton set from 4 of typing rule, thus we can instantiate
γ′′ to be γ[lval 7→ τ ′], thus allows us to rewrite the goal to
γ[lval 7→ τ ′] ⊢ m[lval 7→ v ].

Given γ ⊢ m, this entails (by definition) that γ and m they
contain the same variable name in the domain, and also the
values are well-typed, i.e. domain(γ) = domain(m) ∧ ∀x ∈
domain(m). m(x) : γ(x).

Using Lemma 4, we know that the assigned value v can
be typed with τ , i.e. v : τ . The assignment typing rule raises
the labels using the function raise, however by definition we
know that the abstraction is unaffected, so the interval of τ ′

and τ are the same, thus we can infer that v : τ ′.
Using Lemma 5, we can see that the update preserves the

type, thus goal proved.
⋄ Case condition: Here stmt is if e then s1 else s2.
From conditional typing rule we know:

1) γ ⊢ e : τ
2) ℓ = lbl(τ)
3) pc′ = pc ⊔ ℓ
4) T, pc′, (refine(γ, e)) ⊢ s1 : Γ1

5) T, pc′, (refine(γ,¬e)) ⊢ s2 : Γ2

6) Γ′ = Γ1 ∪ Γ2

7) Γ′′ =

{
join(Γ′) if ℓ = H
Γ′ otherwise

We need to prove ∃m′.E : m
if e then s1 else s2−−−−−−−−−−−−−→ m′ and

∃γ′′ ∈ Γ′′.γ′′ ⊢ m′.
In the goal, the boolean guard e evaluates to true or false.

So we will get two goal cases with similar proofs. This only
solves for e, while case ¬e follows the same proof strategy.
We can rewrite the goal to:

1) ∃m′. E : m
s1−→ m′

2) ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′

In this proof, we will get two induction hypotheses for
statement: for s1 call it IH1 and for s2 call it IH2.

IH1 is the following (note that IH2 is the same, but
instantiated for s2):

∀T mγ pcΓ. T, pc, γ ⊢ s1 : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒

∃m′. E : m
s1−→ m′ ∧ ∃γ′ ∈ Γ. γ′ ⊢ m′

We first prove that the set of refined state types using e can
still type the staring concrete memory m. This we can show,
because we know initially γ ⊢ m, and we know that e is typed
as a boolean (assumed to be well-typed), and we know that
e reduces to true from the reduction rule, these allow us to
infer (refine(γ, e)) ⊢ m using Hyp 1.



Now we instantiate the induction hypothesis IH1 using the
following (T,m, refine(γ, e), pc′,Γ1), to show that exists m′

such that E : m
s1−→ m′, i.e. there indeed exists a transition to a

final configuration in the semantics to m′ (which resolves goal
1). Additionally, we can show from IH1 that exists γ′ ∈ Γ1

such that γ′ ⊢ m′.
Now we implement cases on the expression’s label ℓ being

H or L:

case lbl(τ) = H: we need to prove ∃γ′′ ∈ join {Γ1∪Γ2}.γ′′ ⊢
m′. Then it is easy to deduct that the goal holds; because
we showed that there is a state type γ′ ∈ Γ1 such that it
is a sound abstraction of the final state γ′ ⊢ m′, and we
know that join operation does not change the abstraction,
it just modifies the security label. Hence, indeed there
exists a state type γ′′ in join {Γ1 ∪ Γ2} such that it is
also a sound abstraction of final state γ′′ ⊢ m′.

case lbl(τ) = L: we need to prove ∃γ′′ ∈ {Γ1 ∪Γ2}.γ′′ ⊢ m′,
which is trivially true.

For the negation case, use IH2 and follow the same steps.
⋄ Case sequence: Here stmt is s1; s2. From sequence typing
rule we know:

1) T, pc, γ ⊢ s1 : Γ1

2) ∀γ1 ∈ Γ1. T, pc, γ1 ⊢ s2 : Γγ1

2

3) Γ′ =
⋃

γ1∈Γ1
Γγ1

2

In this proof, we will get two induction hypotheses for
statement: for s1 call it IH1 and for s2 call it IH2.
IH1 is (note that IH2 is the same, but instantiated for s2):

∀Tmγ pcΓ. T, pc, γ ⊢ s1 : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒

∃m′.E : m
s1−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

We need to prove ∃m′′. E : m
s1;s2−−−→ m′′ and

∃γ′′ ∈ Γ′. γ′′ ⊢ m′′.

We can rewrite the goal using the definition of sequence
case to:

1) E : m
s1−→ m′

2) ∃m′′.E : m′ s2−→ m′′

3) ∃γ′′ ∈ Γ′.γ′′ ⊢ m′′

Goal 1: We can instantiate the IH1 with (T,m, γ, pc,Γ1)
to infer that exists m′

1 such that E : m
s1−→ m′

1, and also
exists γ′ ∈ Γ1 such that γ′ ⊢ m′

1. Since the semantics are
deterministic, m′

1 and m′ are equivalent, thus it holds E :
m

s1−→ m′ and γ′ ⊢ m′.
Goal 2 and 3 : We showed from IH1 that γ′ ⊢ m′, now we

can instantiate 2 from sequence typing rule with γ′. Now we
can to instantiate IH2 with (T,m′, γ′, pc,Γγ′

2 ), and infer that
exists m′

2 such that E : m′ s2−→ m′
2, and also exists γ′′′ ∈ Γγ′

2

such that γ′′′ ⊢ m′
2. Since the semantics are deterministic,

m′
2 and m′′ are equivalent, thus it holds E : m

s2−→ m′′ and
γ′′′ ⊢ m′.

From 3 in sequence typing rule, we know that Γ′ is the
union of all resulted state type sets, such that it can type s2,

since we know that γ′′′ ∈ Γγ′

2 will be in Γ′, then we prove
the goal ∃γ′′ ∈ Γ′.γ′′ ⊢ m′′.
⋄ Case function call: Here stmt is f(e1, ..., en). From call
typing rule we know (note that here we explicitly write the
global and local state type):

1) (γg, γl) ⊢ ei : τi
2) (s, (x1, d1), ..., (xn, dn)) = (C,F )(f)
3) γf = {xi 7→ τi}
4) (C,F ), pc, (γg, γf ) ⊢ s : Γ′

5) Γ′′ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ

′
f ) ∈ Γ′}

In the following proof, we know that (γg, γl) ⊢ (mg,ml)
and (C,F ) ⊢ (X,F ) hold. Additionally, we get an induction
hypothesis IH for the body of the function s .

∀(C,F ) mγ pcΓ. (C,F ), pc, γ ⊢ s : Γ =⇒
(C,F ) ⊢(X,F ) ∧ γ ⊢ m =⇒

∃m′.(X,F ) : m
s−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

We need to prove ∃m′. (X,F ) : (mg,ml)
f(e1,...,en)−−−−−−−→ m′ ∧

∃γ′ ∈ Γ′′. γ′ ⊢ m′

From call reduction rule we can rewrite the goal to:
1) ∃s (x1, d1), ..., (xn, dn). (s, (x1, d1), ..., (xn, dn)) =

(X,F )(f)
2) ∃mf . mf = {xi 7→ (mg,ml)(ei)}
3) ∃(m′

g,m
′
f ). (X,F ) : (mg,mf )

s−→ (m′
g,m

′
f )

4) ∃m′′.m′′ = (m′
g,ml)[ei 7→ m′

f (xi) | isOut(di)]
5) ∃γ′ ∈ Γ′′.γ′ ⊢ m′′

Goal 1: From (C,F ) ⊢ (X,F ) we know indeed the
function’s body and signature found in the semantics is the
same found in the typing rule.

Goal 2: Trivial, the existence can be instantiated with {xi 7→
(mg,ml)(ei)}.

Goal 3: To prove that there exists a state where the body
of the function reduces to, we need to use the IH. Thus, we
first need to show that the resulted copy-in map is also well-
typed i.e. γf ⊢ mf , more specifically ∀i. {xi 7→ τi} ⊢ {xi 7→
(mg,ml)(ei)}. Given that initially the state type can type the
state (γg, γl) ⊢ (mg,ml) from assumptions and given that the
expressions ei have a type τi from typing rule 1, now we
can use Lemma 4 to infer that ∀vi : τi such that vi is the
evaluation of (mg,ml)(ei). This leads us to trivially infer that
∀i. {xi 7→ τi} ⊢ {xi 7→ vi} holds.

Now we can use the IH by instantiating it to
((C,F ), (mg,mf ), (γg, γf ), pc,Γ

′) in order to infer that exists
(m′

g,m
′
f ) such that (X,F ) : (mg,mf )

s−→ (m′
g,m

′
f ) and

exists (γ′′
g , γ

′′
f ) ∈ Γ′ such that (γ′′

g , γ
′′
f ) ⊢ (m′

g,m
′
f ).

Goal 4: Trivial, we can instantiate the existence by
(m′

g,ml)[ei 7→ m′
f (xi) | isOut(di)].

Goal 5: The goal is to prove copy-out operation to be well-
typed, thus we can rewrite the goal to ∃γ′ ∈ {(γ′

g, γl)[ei 7→
γ′
f (xi) | isOut(di)] | (γ′

g, γ
′
f ) ∈ Γ′} such that γ′ ⊢

(m′
g,ml)[ei 7→ m′

f (xi) | isOut(di)].
We can choose γ′ to be (γ′′

g , γl)[ei 7→ γ′′
f (xi) | isOut(di)].

Since we are able to choose a state type that types the
final state, we can rewrite the goal to prove again to be



(γ′′
g , γl)[ei 7→ γ′′

f (xi) | isOut(di)] ⊢ (m′
g,ml)[ei 7→

m′
f (xi) | isOut(di)].
First, we know that γl ⊢ ml holds from the assumptions.

Also, we showed in (Goal 3) that (γ′′
g , γ

′′
f ) ⊢ (m′

g,m
′
f ), thus

trivially γ′′
g ⊢ m′

g and γ′′
f ⊢ m′

f hold. Thus, we can deduct
that (γ′′

g , γl) ⊢ (m′′
g ,ml), and m′

f (xi) : γ
′′
f (xi), and then we

can use Lemma 5 to deduct that the update preserves the
well-typedness, i.e. (γ′′

g , γl)[ei 7→ γ′′
f (xi)] ⊢ (m′

g,ml)[ei 7→
m′

f (xi)], which proves the goal.
⋄ Case extern: Here stmt is f(e1, ..., en). From extern typing
rule we know (note that here we explicitly write the global and
local state type):

1) (γg, γl) ⊢ ei : τi
2) (ContE, (x1, d1), ..., (xn, dn)) = (C,F )(f)
3) γf = {xi 7→ τi}
4) ∀(γi, ϕ, γt) ∈ ContE. (γg, γl) ⊑ γi
5) Γ′ = {γ′++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧

refine((γg, γf ), ϕ) = γ′ ̸= •}
6) Γ′′ = {(γ′

g, γl)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ
′
f ) ∈ Γ′}

In the following proof, we know that (γg, γl) ⊢ (mg,ml)
and (C,F ) ⊢ (X,F ) hold.

We need to prove ∃m′. (X,F ) : (mg,ml)
f(e1,...,en)−−−−−−−→

m′ ∧ ∃γ′′ ∈ Γ′′. γ′′ ⊢ m′

From extern reduction rule we can rewrite the goal to:

1) ∃(semf , (x1, d1), ..., (xn, dn)). (semf , (x1, d1), ..., (xn, dn)) =
(X,F )(f)

2) ∃mf . mf = {xi 7→ (mg,ml)(ei)}
3) ∃(m′

g,m
′
f ). (m

′
g,m

′
f ) = semf (mg,mf )

4) ∃m′′.m′′ = (m′
g,ml)[ei 7→ m′

f (xi) | isOut(di)]
5) ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′′

Goal 1: From the environment’s well-typedness (C,F ) ⊢
(X,F ), we know domain(C) ∩ domain(F ) = ∅ and
extWT C X holds. This mean that indeed the extern is defined
only in C. Additionally, from well-typedness (C,F ) ⊢ (X,F ),
that if C(f) = (semf , (x, d)) then X(f) = (ContE , (x, d)),
thus indeed exist ContE and signature (x1, d1), ..., (xn, dn).

Goal 2: Trivial, by instantiating mf to be {xi 7→
(mg,ml)(ei)}.

We can here also prove that the resulted copy-in map is
also well-typed i.e. γf ⊢ mf , more specifically ∀i. {xi 7→
τi} ⊢ {xi 7→ (mg,ml)(ei)}. Given that initially the typing
state types the state (γg, γl) ⊢ (mg,ml) from assumptions
and given that the expressions ei have a type τi from typing
rule 1, now we can use Lemma 4 to infer that ∀vi : τi such that
vi is the evaluation of (mg,ml)(ei). This leads us to trivially
infer that ∀i. {xi 7→ τi} ⊢ {xi 7→ vi} holds.

Goal 3: From (C,F ) ⊢ (X,F ), we know that extWT C X
holds, and from its definition, we know that indeed exists
(γi, ϕ, γt) such that ϕ(mg,mf ), this means that indeed there
exists a contract’s predicate satisfied by the values in the initial
concrete input state, i.e. ϕ(mg,mf ). This implies, from the
definition of extWT C X , that indeed exists (m′

g,m
′
f ) such

that (m′
g,m

′
f ) = semf (mg,mf ).

Goal 4: Trivial, by instantiating m′′ to (m′
g,ml)[ei 7→

m′
f (xi) | isOut(di)].
Goal 5: We can rewrite the goal to exists γ′′ ∈

{(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ

′
f ) ∈ Γ′} such

that γ′′ ⊢ (m′
g,ml)[ei 7→ m′

f (xi) | isOut(di)].
We can prove this goal by first find a γA ∈ Γ′ such that

it types the final states of the extern’s semantic (m′
g,m

′
f ).

Second, we find the γ′′ ∈ Γ′′ such that it can type the final
state m′′ after copying out the extern.

We previously established γf ⊢ mf (from goal 2), also
given that γg ⊢ mg from assumptions we can trivially
(γg, γf ) ⊢ (mg,mf ). Since we previously showed that
ϕ(mg,mf ) (from goal 3), now we can use Hyp 3 in or-
der to infer that the refined state refine((γg, γf ), ϕ) can
also type (mg,mf ) also we infer that it is not empty, i.e.
refine((γg, γf ), ϕ) ⊢ (mg,mf ) and refine((γg, γf ), ϕ) ̸= •.

The definition of extWT C X states that γt ⊢ (m′
g,m

′
f )

holds for the set of variables that the extern’s semantics
has changed i.e. {x. (mg,mf )(x) ̸= (m′

g,m
′
f )(x)} ⊆

domain(γt).
Consequently, we can further prove that indeed exists a γA

in Γ′ (from 4 in typing rule of extern) that can type the output
of the extern’s semantics (m′

g,m
′
f ) including the unchanged

variables. Thus, we can make cases on extern’s semantics input
and output as following:

case (mg,mf )(x) = (m′
g,m

′
f )(x): This means that vari-

able x not in the domain of γt, thus it is unchanged,
therefore it is typed by the refined state (m′

g,m
′
f )(x) :

(refine((γg, γf ), ϕ))(x). Trivially, we can also infer that
(m′

g,m
′
f )(x) : (refine((γg, γf ), ϕ)++raise(γt, pc))(x).

case (mg,mf )(x) ̸= (m′
g,m

′
f )(x): This means that variable

x is in the domain of γt, thus it is changed, and the
new type of it is in γt. Therefore, we can trivially
conclude that (mg,mf )(x) : γt(x), Consequently, since
we know that raise does not change the abstraction,
and just change labels, we can therefore conclude that
(m′

g,m
′
f )(x) : (refine((γg, γf ), ϕ)++raise(γt, pc))(x)

These cases show that we can select γA such that γA ∈ Γ′ to
be (refine((γg, γf ), ϕ)++raise(γt, pc)), because it can indeed
type (m′

g,m
′
f ). i.e. (refine((γg, γf ), ϕ)++raise(γt, pc)) ⊢

(m′
g,m

′
f ). For simplicity in the rest of the proof, let us rewrite

γA = (γAg
, γAf

), where γAg
is the global part of the pair

(refine((γg, γf ), ϕ)++raise(γt, pc)) and γAf
is the local part

of the pair. Thus, we can say that γAg ⊢ m′
g and γAf

⊢ m′
f .

Now we need to find γ′′ ∈ Γ′′ such that it types
(m′

g,ml)[ei 7→ m′
f (xi) | isOut(di)] order to prove Goal 5.

Given from assumptions γl ⊢ ml, and we showed that γAg ⊢
m′

g and γAf
⊢ m′

f . In 5 of the typing rules, we pick (γ′
g, γ

′
f )

such that it is in Γ′ to be (γAg
, γAf

), Now we conduct cases
on the direction of the parameter isOut(di) being out or not.
case ¬isOut(di): Then (γAg , γl) are unchanged, similarly in

the semantics (m′
g,ml) are also unchanged. Thus they

can still be typed as (γAg
, γl) ⊢ (m′

g,ml)
case isOut(di): Then (γAg

, γl) are updated with ei 7→ γAf
(x),

similarly the semantics state (m′
g,ml) is updated with



ei 7→ m′
f (x). Previously we showed that γAf

⊢ m′
f ,

this entails by the definition of state typedness m′
f (x) :

γAf
(x). This leads to the point that the modifications

of ei’s type in state type (γAg
, γl) and value in state

(m′
g,ml) keeps them well typed. Therefore, (γAg

, γl) ⊢
(m′

g,ml) holds.
We can finally conclude that goal 5 can be resolved by

picking the γ′′ to be (γAg
, γl), the goal is now proven.

⋄ Case table application: Here stmt is apply tbl. From table
typing rule we know:

1) (e,Conttbl) = (C,F )(tbl)
2) γ ⊢ ei : τi
3) ℓ =

⊔
i lbl(τi)

4) pc′ = pc ⊔ ℓ
5) ∀(ϕj , (aj , τ j)) ∈ Conttbl. (γgj , γlj ) = refine(γ, ϕj) ∧

(sj , (xj1 , none), ..., (xjn , none)) = (C,F )(aj) ∧
γaj = {xji 7→ τji} ∧ T, pc′, (γgj , γaj ) ⊢ sj : Γj

6) Γ′ = ∪j{(γ′
gj , γlj )|(γ

′
gj , γ

′
aj
) ∈ Γj}

7) Γ′′ =

{
join(Γ′) if ℓ = H
Γ′ otherwise

In the following proof, we know that (γg, γl) ⊢ (mg,ml)
and (C,F ) ⊢ (X,F ) hold.

We need to prove ∃m′. E : m
apply tbl−−−−−→ m′ and ∃γ′′ ∈

Γ′′.γ′′ ⊢ m′.
And from table reduction rule we can rewrite the goal to:

1) ∃e semtbl. (e, semtbl) = (X,F )(tbl)
2) ∃(a, v). semtbl((mg,ml)(e1), ..., (mg,ml)(en)) =

(a, v)
3) ∃s (x1, ..., xn). (s, (x1,none), ..., (xn,none)) = E(a)
4) ∃ma. ma = {xi 7→ vi}
5) ∃(mg′ ,ma′). E : (mg,ma)

s−→ (mg′ ,ma′)
6) ∃γ′′ ∈ Γ′′.γ′′ ⊢ (mg′ ,ml)

In this proof, we will get an induction hypothesis for action
call a(v) (formalized as a function call), call it IH.

∀(C,F ) m γ pc Γ. (C,F ), pc, γ ⊢ a(v) : Γ =⇒
(C,F ) ⊢(X,F ) ∧ γ ⊢ m =⇒

∃m′.(X,F ) : m
a(v)−−−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

Goal 1: Trivial, by the well-typedness condition (C,F ) ⊢
(X,F ), we know that if the table has a contract (from 1 in
typing rule), then indeed there is semantics for it semtbl and
a key list e that matches the one in the table typing rule.

Goal 2: From (C,F ) ⊢ (X,F ), we can deduct from
condition tblWT C X that indeed exists an action and value
list pair (a, v) in the contract Conttbl correlated to a ϕj(m)
that holds.

Goal 3: From (C,F ) ⊢ (X,F ) we know indeed the
actions’s a body and signature found in the semantics is the
same found in the typing rule.

Goal 4: Trivial, by setting ma to be {xi 7→ vi}.
Goal 5: To prove this goal, we need to use IH. And in order

to use IH, we must first show that (γgj , γaj
) ⊢ (mg,ma) by

proving γgj ⊢ mg where (γgj , γlj ) = refine(γ, ϕj) and the
copied in is well typed γaj ⊢ ma.

Prove γgj ⊢ mg: Since initially given that γ ⊢ m i.e.
(γg, γl) ⊢ (mg,ml), also we know from tblWT C X that
there is j such that the predicate ϕj is satisfied in (mg,ml)
i.e. ϕj(mg,ml), thus we can use Hyp 3 to deduct that
refine(γ, ϕj) ⊢ (mg,ml), i.e. we can infer that the refined
state type is able to type the initial state. Given 5 in the
typing rule, we know that (γgj , γlj ) = refine(γ, ϕj) thus
(γgj , γlj ) ⊢ (mg,ml), therefore γgj ⊢ mg holds.

Prove γaj
⊢ ma: This goal can be rewritten as {xi 7→ τi} ⊢

{xi 7→ vi}. The proof is trivial by WF definition of tables we
know that vi : τi, thus the variable xi is well typed.

Now, we can instantiate IH to using
((C,F ), (mg,ma), (γgj , γaj

), pc′,Γj), so we can infer
that exists m′ such that (X,F ) : m

s−→ m′ (thus goal 5 is
resolved).

Goal 6: We can also infer from IH that exists γ′ ∈ Γj such
that γ′ ⊢ m′. Let (γ′

gj , γ
′
aj
) = γ′ and (m′

g,m
′
a) = m′, thus

indeed (γ′
gj , γ

′
aj
) ⊢ (m′

g,m
′
a) holds trivially.

Line 6 of the typing rule iterates over each final state type
set and collects the modified global state and the refined local
state, thus (γ′

gj , γlj ) is indeed in Γ′. Since we proved that
γ′
gj ⊢ m′

g holds in the previous step, and also proved γlj ⊢ ml

in goal 5, therefore, (γ′
gj , γlj ) ⊢ (m′

g,ml).
Line 7 of the typing rule changes the labels but not the

abstraction, thus the abstraction of the state type (γ′
gj , γlj ) in

Γ′ indeed exists in Γ′′ with labels changed so goal 6 holds.

E. Soundness of labeling

Theorem 3.

∀s T pc m1 m2 m′
1 m′

2 γ1 γ2 Γ1 Γ2 E1 E2.

T, pc, γ1 ⊢ s : Γ1 ∧ T, pc, γ2 ⊢ s : Γ2 =⇒
T ⊢ E1 ∧ T ⊢ E2 ∧ E1∼

T
E2 ∧

γ1 ⊢ m1 ∧ γ2 ⊢ m2 ∧ m1 ∼
γ1⊔γ2

m2 ∧

E1 : m1
s−→ m′

1 ∧ E2 : m2
s−→ m′

2 =⇒(
∃γ′

1 ∈ Γ1 ∧ γ′
2 ∈ Γ2. γ

′
1 ⊢ m′

1

∧ γ′
2 ⊢ m′

2 ∧ m′
1 ∼
γ′
1⊔γ′

2

m′
2

)
Proof. In this proof we assume that the program is well typed
and does not get stuck according to HOL4P4 type system.
by induction on the typing tree of the program stmt i.e. s .
Note that, initially γ = (γg, γm) and m = (mg,ml). In the
following proof, we know that m1 ∼

γ1⊔γ2

m2, we also know

that γ1 ⊢ m1 and γ2 ⊢ m2.
⋄ Case assignment: Here stmt is lval := e. From assignment
typing rule we know:

1) γ1 ⊢ e : τ1
2) τ ′1 = raise(τ1, pc)
3) γ′

1 = γ1[lval 7→ τ ′1]
4) Γ1 = {γ′

1}
5) γ2 ⊢ e : τ2
6) τ ′2 = raise(τ2, pc)
7) γ′

2 = γ2[lval 7→ τ ′2]



8) Γ2 = {γ′
2}

And from assignment reduction rule we know:
1) m1(e) = v1
2) m′

1 = m1[lval 7→ v1]
3) m2(e) = v2
4) m′

2 = m2[lval 7→ v2]

Prove ∃γ′
1 ∈ Γ1 ∧ γ′

2 ∈ Γ2. γ
′
1 ⊢ m′

1 ∧ γ′
2 ⊢ m′

2 ∧ m′
1 ∼
γ′
1⊔γ′

2

m′
2. Since that assignment typing rule produces one state type

(from 3,4,7,and 8), then from SOUNDNESS OF ABSTRACTION,
we can infer γ′

1 ⊢ m′
1 and γ′

2 ⊢ m′
2, therefore the first two

conjunctions of the goal holds.
Now, the final remaining goal to prove is that m′

1 ∼
γ′
1⊔γ′

2

m′
2.

This entails proving that all lval ′ in both m′
1 and m′

2 are low
equivalent with respect to the least upper bound of the final
state types that types the final states.

Now we do cases on the label of lval ′ being H or L in
γ′
1 ⊔ γ′

2.
case label of lval ′ is H: If the label is H, i.e. γ′

1 ⊔ γ′
2 ⊢

lval ′ : τ ∧ lbl(τ) = H, then the property of labeling
soundness holds after the assignment trivially. That’s
because soundness property checks the equality of the
state type’s low ranges only.

case label of lval ′ is L: If the label is L, i.e., γ′
1 ⊔ γ′

2 ⊢ lval ′ :
τ ∧ lbl(τ) = L, this implies that in each state type γ′

1

and γ′
2 individually, the typing label of lval ′ is L.

In this section, we conduct a case analysis on possible
sub-cases relations between of lval being assigned and
lval ′, thus we will have the following subcases: lval ′ ⫋
lval , lval ⫋ lval ′, lval ′ = lval , lval ′ ⫅ lval , and lval ⫅
lval ′.

case lval ′ ⫋ lval and lval ⫋ lval ′:
Now for all lval ′ that are not equal to the lval we
assign to, or not sub-lval of it: our goal is to show
m′

1(lval
′) = m′

2(lval
′) by demonstrating that initially

m1(lval
′) = m2(lval

′) also holds. We know that the
assignment doesn’t alter those parts of the states. Thus,
the semantic update should keep the values of lval ′

the same, so m1(lval
′) = m′

1(lval
′) and m2(lval

′) =
m′

2(lval
′). Likewise, the typing update should keep the

type of lval ′ unchanged, so γ′
1(lval

′) = γ1(lval
′) and

γ′
2(lval

′) = γ2(lval
′). This indeed mean that the labels

of lval ′ were also L in both γ1 and γ2, and given the
assumption that m1 ∼

γ1⊔γ2

m2, thus indeed m1(lval
′) =

m2(lval
′).

case lval ′ = lval :
For lval ′ = lval , we know that in γ′

1 ⊔ γ′
2 we type

the lval as L, i.e. γ′
1 ⊔ γ′

2(lval) = τ ∧ lbl(τ) = L
thus the same property holds in individual state types
γ′
1(lval) = τ ′ ∧ lbl(τ ′) = L and also γ′

2(lval) = τ ′′ ∧
lbl(τ ′′) = L. We need to prove m′

1(lval) = m′
2(lval).

For lval to be L after the update function in either γ′
1

or γ′
2, it is necessary for the types of the expression

e to be L in both initial state types γ1 in 1 and γ2 in
5 in typing rules, i.e., (lbl(τ1) = L and lbl(τ2) = L).

This condition holds because otherwise, if the typing
labels of e were H, then the goal would be trivially
true (as the update would make lval H in γ′

1 and γ′
2,

contradicting the assumptions). Since the typing label
of e is L in 1 and 5 of typing rule, when reduced to a
value in 1 and 3 of the semantics rule, this indicates that
they reduce to the same value v1 = v2 (using Lemma
8). Since we update lval in m1 and m2 with the same
value such that we produce m′

1 and m′
2 respectively,

it follows that m′
1(lval) = m′

2(lval).
case lval ′ ⫅ lval :

For lval ′ ⫅ lval , we know that lval ′ can be a shorter
variation of the lval . The proof is the same as the
previous case.

case lval ⫅ lval ′:
For lval ⫅ lval ′, we know that lval can be a shorter
variation of the lval ′, thus the update of lval affects
part of lval ′ type while the rest of it stays unchanged.
Therefore, the proof is straightforward by conducing
the same steps of the first two cases.

Given the last four subcases, we can now show that m′
1∼
γ′

m′
2.

⋄ Case condition: Here stmt is if e then s1 else s2.
From conditional typing rule we know:

1) γ ⊢ e : τ1
2) ℓ1 = lbl(τ1)
3) pc1 = pc ⊔ ℓ1
4) T, pc1, (refine(γ1, e)) ⊢ s1 : Γ1

5) T, pc1, (refine(γ1,¬e)) ⊢ s2 : Γ2

6) Γ3 =

{
join(Γ1 ∪ Γ2) if ℓ1 = H
Γ1 ∪ Γ2 otherwise

7) γ ⊢ e : τ2
8) ℓ2 = lbl(τ2)
9) pc2 = pc ⊔ ℓ2

10) T, pc2, (refine(γ2, e)) ⊢ s1 : Γ4

11) T, pc2, (refine(γ2,¬e)) ⊢ s2 : Γ5

12) Γ6 =

{
join(Γ4 ∪ Γ5) if ℓ2 = H
Γ4 ∪ Γ5 otherwise

We also know that both initial states are γ1 ⊢ m1 and γ2 ⊢
m2 and also m1 ∼

γ1⊔γ2

m2. And we know that the conditional

statement is executed with m1 and m2 resulting m′
1 and m′

2

consequently.
In addition to that, we get induction hypothesis for s1 IH1

and s2 IH2 (we only show IH1):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s1 : Γa ∧ T, pc, γb ⊢ s1 : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ

′
a ⊢ m′

a ∧ γ′
b ⊢ m′

b ∧ m′
a ∼
γ′
a⊔γ′

b

m′
b

)



We start by cases on labels ℓ1 and ℓ2 of e.
case ℓ1 = ℓ2 = L: We need to prove that ∃γ′

1 ∈ Γ3 and ∃γ′
2 ∈

Γ6 it holds m′
1 ∼
γ′
1⊔γ′

2

m′
2. We can directly use Lemma 8 to

infer that e is evaluation is indistinguishable in the states,
and since e is assumed to be typed as boolean, thus we get
two subcases where: m1(e) = true and m2(e) = true ,
or m1(e) = false and m2(e) = false.

case m1(e) = true and m2(e) = true: when looking
into the reduction rule of the both if statements in the
assumption, we only reduce the first branch of each.
Hence, we have E1 : m1

s1−→ m′
1 and E2 : m2

s1−→ m′
2.

From Hyp 4, we can show that
m1 ∼

(refine(γ1,e))⊔(refine(γ2,e))
m2. Additionally,

we can infer that (refine(γ1, e)) ⊢ m1 and
(refine(γ2, e)) ⊢ m2 using Hyp 1.
Now we can directly instantiate and apply IH1
using the following (T, pc ⊔ L,m1,m2,m

′
1,m

′
2,

(refine(γ1, e)), (refine(γ2, e)), Γ1,Γ4, E1, E2) to infer
that the states after executing s1 are low equivalent, i.e.
exists γ′′

1 ∈ Γ1 and exists γ′′
2 ∈ Γ4 such that γ′′

1 ⊢ m′
1

and γ′′
2 ⊢ m′

2 and m′
1 ∼
γ′′
1 ⊔γ′′

2

m′
2. Since Γ1 ⊆ Γ3 and

Γ4 ⊆ Γ6, thus the goal holds.
case m1(e) = false and m2(e) = false same proof as the

previous case.
case ℓ2 = H: We initiate the proof by fixing ℓ2 to be H, and

the value of e to be reduced to false, thus it executes s2
(starting from configuration m2, and yields m′

2, note that
if e reduces to true the proof is identical as this case). In
this proof, we refer to these as the second configuration.
Now, consider the following scenario where we start
from m1 in the semantics rule and γ1 in typing rule,
we generalize the proof for any boolean expression ei
such that i ranges over true and false, where etrue is
e, efalse is ¬e, strue is the first branch s1, and sfalse is
the second branch s2. In this sub-case of the proof, ℓ1
denotes the label associated ei’s typing label, and let the
refinement of the initial typing scope γ1 to be represented
as refine(γ1, ei). Suppose the executed branch is si,
yielding a final set of state types denoted as Γi. In this
proof, we refer to these as the first configuration.
Given the previous generalizations, we can rewrite the
assumptions to:

(a) T, ℓ1, (refine(γ1, ei)) ⊢ si : Γi

(b) E1 : m1
si−→ m′

1

(c) T,H, (refine(γ2,¬e)) ⊢ s2 : Γ5

(d) T,H, (refine(γ2, e)) ⊢ s1 : Γ4

(e) E2 : m2
s2−→ m′

2

What we aim to prove is the existence of γ′
1 ∈ Γ3 such

that γ′
1 ⊢ m′

1. Additionally, we need to establish the
existence of γ′

2 ∈ Γ6 where Γ6 = join(Γ4∪Γ5), such that
γ′
2 ⊢ m′

2. Furthermore, we must prove that m′
1 ∼
γ′
1⊔γ′

2

m′
2.

From the SOUNDNESS OF ABSTRACTION, we know that
for the second configuration indeed exists γ′′

2 ∈ Γ5 such
that it types m′

2 (i.e. γ′′
2 ⊢ m′

2).

Given that γ′′
2 ∈ Γ5 and Γ6 = join(Γ4 ∪ Γ5), we can

deduce (by Lemma 7) the existence of γ′′
2 ∈ join(Γ4∪Γ5)

such that it is more restrictive than γ′′
2 , denoted as γ′′

2 ⊑
γ′′
2 . Using the same lemma, we conclude that γ′′

2 ⊢ m′
2.

Now on, we choose γ′′
2 to be used in the proof and resolve

the second conjunction of the goal.
From the SOUNDNESS OF ABSTRACTION, we know that
for the first configuration indeed exists γ′′

i ∈ Γi such that
it types m′

1 (i.e. γ′′
i ⊢ m′

1).
In the first configuration, we generalized the proof ac-
cording to the evaluation of ei. Consequently, the final
state type set Γ3 can be either a union (if ℓ1 = L) or a
join (if ℓ1 = H) of all final state type sets ∀i ≤ 1. Γi

resulting from typing their corresponding si. In either
case (union or join), we can establish the existence of
γ′′
i ∈ Γ3 such that γ′′

i ⊑ γ′′
i and indeed γ′′

i ⊢ m′
1. Note

that if Γ3 resulted from a join, we infer this using Lemma
7; otherwise, if it resulted from a union, it is trivially true.
In fact, we can directly choose γ′′

i = γ′′
i when union the

final state types sets.
Next, we proceed to implement cases based on whether
an lval ’s type label is H or L.

case (γ′′
i ⊔ γ′′

2 (lval) = τ) ∧ lbl(τ) = H: the goal holds
trivially.

case (γ′′
i ⊔ γ′′

2 (lval) = τ) ∧ lbl(τ) = L: this
case entails that each state type individually
holds γ′′

i (lval) = τ ′1 ∧ lbl(τ ′1) = L and also
γ′′
2 (lval) = τ ′′2 ∧ lbl(τ ′′2 ) = L.

Given that the lval ’s type is L in γ′′
2 , and considering

γ′′
2 ∈ join(Γ4∪Γ5), it follows that the lval is also L in

any state type within join(Γ4 ∪Γ5). Consequently, the
lval is L in the state types of both Γ5 and Γ4 (if not
empty) individually before the join operation. Hence,
since γ′′

2 ∈ Γ5, it implies that lval is also L in γ′′
2

expressed as γ′′
2 (lval) = τ ′′′2 ∧ lbl(τ ′′′2 ) = L (using

Lemma 11). We also know that typing a statement in
a H context in (d) entails that the final Γ4 is not empty
(using Lemma 14), thus lval ’s type label is also L in
all the state types in Γ4.
In the second configuration, we type the statement s2
with a H context in (c), and s2 reduces to m′

2 in (e).
Furthermore, from the previous step, we inferred that
the lval ’s type is L in γ′′

2 . Hence, we can use Lemma
10 to infer that the initial and final states remain
unchanged for L lvalues, which means m2(lval) =
m′

2(lval). Then we can use Lemma 12 to infer that
refine(γ2,¬e) ⊑ γ′′

2 , this entails that the lval ’s type
label is indeed L in the refined state refine(γ2,¬e).
It is easy to see that γ2 ⊑ refine(γ2,¬e), thus lval ’s
type is also L in the initial state type γ2, i.e. γ2(lval) =
τ ′2 ∧ lbl(τ ′2) = L.
For the first configuration, in this sub-case, we have
γ′′
i (lval) = τ ′1 ∧ lbl(τ ′1) = L, and γ′′

i ∈ Γ3. We
previously showed γ′′

i ∈ Γi and γ′′
i ⊑ γ′′

i , where Γi

such that is the final state type of typing si according



to the evaluation of ei. Since lval ’s typing label is L
in γ′′

i in Γ3 and we know that the state types in γ′′
i

are more restrictive than the state types in γ′′
i , we can

conclude that γ′′
i ∈ Γi also types lval as L γ′′

i (lval) =
τ ′′1 ∧ lbl(τ ′′1 ) = L.
Previously, we demonstrated that the lval ’s typing label
is L in all final state types in Γ4 and Γ5, and we showed
that Γ4 is not empty. Consequently, neither s1 nor s2
can modify lval . Considering the assumptions (a) and
(b) (related to the first configuration), where si can
be either s1 or s2, we conclude that the lval remains
unchanged there as well. Here, we can apply Lemma
13 to deduce that the lval ’s typing label in γ′′

i ∈ Γi

are more restrictive than the one we find in the refined
state refine(γ1, ei), thus refine(γ1, ei)(lval) = τ ′i ∧
lbl(τ ′i) = L. Now we can apply Lemma 10 for any si
to show that m1(lval) = m′

1(lval).
Finally, since the typing label of lval in refine(γ1, ei) is
L, then trivially we know that the typing label of lval in
γ1 is also L because γ1 ⊑ refine(γ1, ei). We previously
showed that lval ’s typing label is L in γ2, thus we now
can show that γ1⊔γ2(lval) = τ ′ ∧ lbl(τ ′) = L. Now,
we can deduce that m1(lval) = m2(lval) from the
definition of the assumption m1 ∼

γ1⊔γ2

m2. Thus, the

goal holds.
case ℓ1 = H: when fixing the first configuration, we implement

same proof as previous case.
⋄ Case sequence: Here stmt is s1; s2. From sequence typing
rule we know:

1) T, pc, γ1 ⊢ s1 : Γ1

2) ∀γ′
1 ∈ Γ1. T, pc, γ

′
1 ⊢ s2 : Γ

γ′
1

2

3) Γ′ =
⋃

γ′
1∈Γ1

Γ
γ′
1

2

4) T, pc, γ2 ⊢ s1 : Γ3

5) ∀γ′
2 ∈ Γ3. T, pc, γ

′
2 ⊢ s2 : Γ

γ′
2

4

6) Γ′′ =
⋃

γ′
2∈Γ3

Γ
γ′
2

4

And from sequence reduction rule we know:
1) E1 : m1

s1−→ m′
1

2) E1 : m′
1

s2−→ m′′
1

3) E2 : m2
s1−→ m′

2

4) E2 : m′
2

s2−→ m′′
2

We initially know that : γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼
γ1⊔γ2

m2.
In addition to that, we get induction hypothesis for s1 IH1

and s2 IH2 (we only show IH1):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s1 : Γa ∧ T, pc, γb ⊢ s1 : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ

′
a ⊢ m′

a ∧ γ′
b ⊢ m′

b ∧ m′
a ∼
γ′
a⊔γ′

b

m′
b

)

We need to prove there are two state types γ′′
1 ∈ Γ′ and

γ′′
2 ∈ Γ′′ such they type the final states γ′′

1 ⊢ m′′
1 and γ′′

2 ⊢ m′′
2

and indeed m′′
1 ∼
γ′′
1 ⊔γ′′

2

m′′
2 holds.

We start by using IH1, and instantiating it with
(T, pc,m1,m2,m

′
1,m

′
2, γ1, γ2,Γ1,Γ3, E1, E2) to infer that

there exists γ′
1 ∈ Γ1 and γ′

2 ∈ Γ3 such that γ′
1 ⊢ m′

1 ∧ γ′
2 ⊢

m′
2 and also m′

1 ∼
γ′
1⊔γ′

2

m′
2.

Then, in the typing rule, we instantiate 2 with γ′
1 and

5 with γ′
2. Now we can use IH2, and instantiating it with

(T, pc,m′
1,m

′
2,m

′′
1 ,m

′′
2 , γ

′
1, γ

′
2,Γ

γ′
1

2 ,Γ
γ′
2

4 , E1, E2). From that
we can infer that indeed there exists state types γ′′

1 ∈ Γ
γ′
1

2

and γ′′
2 ∈ Γ

γ′
2

4 such that they type the final states γ′′
1 ⊢ m′′

1

and γ′′
2 ⊢ m′′

2 , where they keep the states low equivalent as
m′′

1 ∼
γ′′
1 ⊔γ′′

2

m′′
2 .

We know that the final set of state type of interest is simply
the union of all state types that can type the second statement
in 3 and 6. It is easy to see that since γ′′

1 ∈ Γ
γ′
1

2 then γ′′
1 ∈ Γ′.

Similarly, γ′′
2 ∈ Γ

γ′
2

4 then γ′′
2 ∈ Γ′′. Thus, the goal is proven.

⋄ Case function call: Here stmt is f(e1, ..., en). From call
typing rule we know (note that here we explicitly write the
global and local state type):

1) (γg1, γl1) ⊢ ei : τi1

2) (s, (x1, d1), ..., (xn, dn)) = (C,F )(f)

3) γf1 = {xi 7→ τi1}
4) (C,F ), pc, (γg1, γf1) ⊢ s : Γ′

1

5) Γ′′
1 = {(γ′

g1, γl1)[ei 7→ γ′
f1(xi) | isOut(di)] |

(γ′
g1, γ

′
f1) ∈ Γ′

1}
6) (γg2, γl2) ⊢ ei : τi2

7) γf2 = {xi 7→ τi2}
8) (C,F ), pc, (γg2, γf2) ⊢ s : Γ′

2

9) Γ′′
2 = {(γ′

g2, γl2)[ei 7→ γ′
f2(xi) | isOut(di)] |

(γ′
g2, γ

′
f2) ∈ Γ′

2}

And from call reduction rule we know:

1) (s, (x1, d1), ..., (xn, dn)) = (X1, F )(f)

2) mf1 = {xi 7→ (mg1,ml1)(ei)}
3) (X1, F ) : (mg1,mf1)

s−→ (m′
g1,m

′
f1)

4) m′′
1 = (m′

g1,ml1)[ei 7→ m′
f1(xi) | isOut(di)]

5) (s, (x1, d1), ..., (xn, dn)) = (X2, F )(f)

6) mf2 = {xi 7→ (mg2,ml2)(ei)}
7) (X2, F ) : (mg2,mf2)

s−→ (m′
g2,m

′
f2)

8) m′′
2 = (m′

g2,ml2)[ei 7→ m′
f2(xi) | isOut(di)]

Let m1 = (mg1,ml1), m2 = (mg2,ml2), let γ1 =
(γg1, γl1), and γ1 = (γg2, γl2). We initially know that:
γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2

m2.



In addition to that, we get induction hypothesis for s IH:

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s : Γa ∧ T, pc, γb ⊢ s : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s−→ m′

a ∧ Eb : mb
s−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ

′
a ⊢ m′

a ∧ γ′
b ⊢ m′

b ∧ m′
a ∼
γ′
a⊔γ′

b

m′
b

)
We need to prove there are two state types γ′′

1 ∈ Γ′′
1 and

γ′′
2 ∈ Γ′′

2 such they type the final states γ′′
1 ⊢ m′′

1 and γ′′
2 ⊢ m′′

2

and indeed m′′
1 ∼
γ′′
1 ⊔γ′′

2

m′′
2 holds.

First we need to prove that the resulted copy-in map is also
well-typed i.e. γf1 ⊢ mf1. Note that the same proof applies
to prove γf2 ⊢ mf2:

Given that initially the typing state types the state
(γg1, γl1) ⊢ (mg1,ml1) from assumptions and given that the
expressions ei have a type τi1 from typing rule 1, now we
can use Lemma 4 to infer that for all vi : τi such that vi is
the evaluation of (mg1,ml1)(ei). This leads us to trivially
infer that ∀i. {xi 7→ τi} ⊢ {xi 7→ vi} holds, thus γf1 ⊢ mf1.

Now we want to show that (mg1,mf1) ∼
(γg1,γf1)⊔(γg2,γf2)

(mg2,mf2). This can be broken down and rewritten into two
goals according to Lemma 15:

Goal 1. mg1 ∼
γg1⊔γg2

mg2:

We know that the domains of mg1 and ml1 are distinct
and do not intersect (similarly for mg2 and ml2), and
given that they are initially low equivalent with respect
to (γg1, γl1) ⊔ (γg2, γl2) as (mg1,ml1) ∼

(γg1,γl1)⊔(γg2,γl2)

(mg2,ml2). Then we can use Lemma 15 to show that the
goal holds.

Goal 2. mf1 ∼
γf1⊔γf2

mf2:

First we start by rewriting the goal as following:
{xi 7→ (mg1,ml1)(ei)} ∼

{xi 7→(γg1,γl1)(ei)}⊔{xi 7→(γg2,γl2)(ei)}
{xi 7→ (mg2,ml2)(ei)}. It is easy to see that the empty
map is low equivalent as: {} ∼

{}⊔{}
{}. Now we can use

Lemma 16 to show that the goal holds.
Now we can use IH, and instantiate it with:

((C,F ), pc, (mg1,mf1), (mg2,mf2), (m
′
g1,m

′
f1), (m

′
g2,m

′
f2),

(γg1, γf1), (γg2, γf2),Γ
′
1,Γ

′
2, (X1, F ), (X2, F )), so that we

can deduct that exists γ′
1 ∈ Γ′

1 such that γ′
1 ⊢ (m′

g1,m
′
f1),

also exists γ′
2 ∈ Γ′

2 such that γ′
2 ⊢ (m′

g2,m
′
f2). We can also

infer that (m′
g1,m

′
f1) ∼

γ′
1⊔γ′

2

(m′
g2,m

′
f2).

Let γ′
1 = (γ′

g1, γ
′
f1) and γ′

2 = (γ′
g2, γ

′
f2) then we can also

conclude from the previous:
(a) γ′

g1 ⊢ m′
g1

(b) γ′
g2 ⊢ m′

g2

(c) γ′
f1 ⊢ m′

f1

(d) γ′
f2 ⊢ m′

f2

(e) m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2

(f) m′
f1 ∼

γ′
f1⊔γ′

f2

m′
f2

Since the final goal is to prove there are two state types γ′′
1 ∈

Γ′′
1 and γ′′

2 ∈ Γ′′
2 such they type the final states γ′′

1 ⊢ m′′
1 and

γ′′
2 ⊢ m′′

2 and indeed m′′
1 ∼
γ′′
1 ⊔γ′′

2

m′′
2 holds, then we can select

γ′′
1 to be (γ′

g1, γ
′
f1), i.e. the copied-out map is (γ′

g1, γl1)[ei 7→
γ′
f1(xi) | isOut(di)].
Similarly, we can select γ′′

2 to be (γ′
g2, γ

′
f2), i.e. the

copied-out map is (γ′
g2, γl2)[ei 7→ γ′

f2(xi) | isOut(di)].

Goal 1:

(γ′
g1, γl1)[ei 7→ γ′

f1(xi)] ⊢ (m′
g1,ml1)[ei 7→ m′

f1(xi)]

Since we know γ′
g1 ⊢ m′

g1 ((a) from previous step) and
γl1 ⊢ ml1 from assumptions rewrites, this entails that
(γ′

g1, γl1) ⊢ (m′
g1,ml1). We also proved that γ′

f1 ⊢ m′
f1

((c) from previous step), thus for all x ∈ domain(γ′
f1)

holds m′
f1(x) : γ′

f1(x). Now we can use Lemma 5 to
show that the goal holds.

Goal 2:

(γ′
g2, γl2)[ei 7→ γ′

f2(xi)] ⊢ (m′
g2,ml2)[ei 7→ m′

f2(xi)]

Same proof as the previous sub goal, using (b) and (d)
the previous step, and the initial assumption γl2 ⊢ ml2.

Goal 3:

(m′
g1,ml1)[ei 7→ m′

f1(xi)]

∼
((γ′

g1,γl1)[ei 7→γ′
f1(xi)])⊔((γ′

g2,γl2)[ei 7→γ′
f2(xi)])

(m′
g2,ml2)[ei 7→ m′

f2(xi)]

We know that m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2 (from (e) of previous

step), we also know that m′
l1 ∼

γl1⊔γl2

ml2 (from assump-

tions), now using Lemma 15 we can combine them to
infer an equivalence before copying out or (no copy-out
because there are not out directed parameters), i.e. :
(m′

g1,ml1) ∼
(γ′

g1,γl1)⊔(γ′
g2,γl2)

(m′
g2,ml2).

We previously proved that mf1 ∼
γf1⊔γf2

mf2, now we can

prove this goal directly using Lemma 16.
⋄ Case extern: Here stmt is f(e1, ..., en). From call typing
rule we know (Note that here we explicitly write the global
and local state type):

1) (γg1, γl1) ⊢ ei : τi1
2) (ContE, (x1, d1), ..., (xn, dn)) = (C,F )(f)
3) γf1 = {xi 7→ τi1}
4) ∀(γi, ϕ, γt) ∈ ContE. (γg1, γl1) ⊑ γi
5) Γ′

1 = {γ′
1++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧

refine((γg1, γf1), ϕ) = γ′
1 ̸= •}

6) Γ′′
1 = {(γ′

g, γl1)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ
′
f ) ∈

Γ′
1}



7) (γg2, γl2) ⊢ ei : τi2
8) γf2 = {xi 7→ τi2}
9) ∀(γi, ϕ, γt) ∈ ContE. (γg2, γl2) ⊑ γi

10) Γ′
2 = {γ′

2++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧
refine((γg2, γf2), ϕ) = γ′

2 ̸= •}
11) Γ′′

2 = {(γ′
g, γl2)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ

′
f ) ∈

Γ′
2}

And from extern reduction rule we know:

1) (semf , (x1, d1), ..., (xn, dn)) = (X1, F )(f)
2) mf1 = {xi 7→ (mg1,ml1)(ei)}
3) (m′

g1,m
′
f1) = semf (mg1,mf1)

4) m′′
1 = (m′

g1,ml1)[ei 7→ m′
f1(xi) | isOut(di)]

5) (semf , (x1, d1), ..., (xn, dn)) = (X2, F )(f)
6) mf2 = {xi 7→ (mg2,ml2)(ei)}
7) (m′

g2,m
′
f2) = semf (mg2,mf2)

8) m′′
2 = (m′

g2,ml2)[ei 7→ m′
f2(xi) | isOut(di)]

Let m1 = (mg1,ml1), m2 = (mg2,ml2), let γ1 =
(γg1, γl1), and γ1 = (γg2, γl2). We initially know that :
γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2

m2.

We need to prove there are two state types γ′′
1 ∈ Γ′′

1 and
γ′′
2 ∈ Γ′′

2 such they type the final states γ′′
1 ⊢ m′′

1 and γ′′
2 ⊢ m′′

2

and indeed m′′
1 ∼
γ′′
1 ⊔γ′′

2

m′′
2 holds.

First we need to prove that the resulted copy-in map is also
well-typed i.e. γf1 ⊢ mf1 and γf2 ⊢ mf2: same proof as the
function call case.

Now we want to show that (mg1,mf1) ∼
(γg1,γf1)⊔(γg2,γf2)

(mg2,mf2): same proof as the function call case.
We know from extWT C X1 and extWT C X2 relation in

the well-typedness (X1, F ) ⊢ (C,F ) and (X2, F ) ⊢ (C,F )
that indeed there exists an input state type, condition and
output state type i.e. (γi, ϕ, γt) in the contract of the extern
such that the condition satisfies the input state ϕ(mg1,mf1).

From SOUNDNESS OF ABSTRACTION proof, we know that
(γg1, γf1) ⊢ (mg1,mf1). Using 4 of extern’s typing rule
we know that (γg1, γf1) is no more restrictive than γi, i.e.
(γg1, γf1) ⊑ γi holds. Using the same strategy and 9 of
extern’s typing rule, we can also prove (γg2, γf2) ⊑ γi. We
can also deduct that (mg1,mf1)∼

γi

(mg2,mf2) using Lemma

9.
Let the variables {x1, ..., xn} be the ones used in the

condition ϕ. Using the definition of extern’s well-typedness
again, we know that the least upper bound of typing label of
{x1, ..., xn} in γi is no more restrictive that the lower bound
of the output state type γt. The entails that since ϕ holds on
m1 (i.e. ϕ(m1))then it indeed holds for m2 (i.e. ϕ(m2)).

Now we split the proof into two cases:
A. For the changed variables by extern in the state: given 3

and 7 of the extern reduction rule, and using ϕ(m1) we can
use the definition of extern’s well-typedness again to infer that
the variables that are changed by the semantics are a subset
of the domain of γt and low equivalent with respect to γt:

((m′
g1,m

′
f1) \ (mg1,mf1))∼

γt

((m′
g2,m

′
f2) \ (mg2,mf2))

B. Now for the unchanged variables by extern in the state:
it is easy to see that the refined state refine((γg1, γf1), ϕ) is
more restrictive than (γg1, γf1), thus we can say (γg1, γf1) ⊑
refine((γg1, γf1), ϕ). Now we can use Lemma 9 to show:

(mg1,mf1) ∼
refine((γg1,γf1),ϕ)⊔refine((γg1,γf1),ϕ)

(mg2,mf2)

This property also holds on the variable names x that are
unchanged by the behavior of the extern, i.e.,:

(m′
g1,m

′
f1) ∼

refine((γg1,γf1),ϕ)⊔refine((γg1,γf1),ϕ)
(m′

g2,m
′
f2)

We can rename refine((γg1, γf1), ϕ)++γt to γ3 and
refine((γg2, γf2), ϕ)++γt to γ4, and we can easily infer from
A and B that : (m′

g1,m
′
f1) ∼

γ3⊔γ4

(m′
g2,m

′
f2).

The rest of the proof is the same as the function call case.
⋄ Case table application: Here stmt is apply tbl. From table
rule we know:

1) (e,Conttbl) = (C,F )(tbl)

2) γ1 ⊢ ei : τi1
3) ℓ1 =

⊔
i lbl(τi1)

4) pc′1 = pc ⊔ ℓ1
5) ∀(ϕj , (aj , τ j)) ∈ Conttbl. (γgj , γlj ) = refine(γ1, ϕj) ∧

(sj , (xj1 , none), ..., (xjn , none)) = (C,F )(aj) ∧
γaj

= {xji 7→ τji} ∧ (C,F ), pc′1, (γgj , γaj
) ⊢ sj : Γj

6) Γ′
1 = ∪j{(γ′

gj , γlj )|(γ
′
gj , γ

′
aj
) ∈ Γj}

7) Γ′′
1 =

{
join(Γ′

1) if ℓ1 = H
Γ′
1 otherwise

8) γ2 ⊢ ei : τi2
9) ℓ2 =

⊔
i lbl(τi2)

10) pc′2 = pc ⊔ ℓ2
11) ∀(ϕk, (ak, τk)) ∈ Conttbl. (γgk , γlk) = refine(γ2, ϕk) ∧

(sk, (xk1 , none), ..., (xkn , none)) = (C,F )(ak) ∧
γak

= {xki 7→ τki} ∧ (C,F ), pc′2, (γgk , γak
) ⊢ sk : Γk

12) Γ′
2 = ∪k{(γ′

gk
, γlk)|(γ′

gk
, γ′

ak
) ∈ Γk}

13) Γ′′
2 =

{
join(Γ′

2) if ℓ2 = H
Γ′
2 otherwise

And from table reduction rule we know:

1) (e, semtbl1) = (X1, F )(tbl)

2) semtbl1((mg1,ml1)(e1), ..., (mg1,ml1)(en)) = (a1, v)

3) (s1, (x1,none), ..., (xn,none)) = (X1, F )(a1)

4) ma1 = {xi 7→ vi}
5) (X1, F ) : (mg1,ma1)

s1−→ (m′
g1,m

′
a1)

6) mfinal1 = (m′
g1,ml1)

7) (e′, semtbl2) = (X2, F )(tbl)

8) semtbl2((mg2,ml2)(e
′
1), ..., (mg2,ml2)(e

′
n)) = (a2, v

′)

9) (s2, (x
′
2,none), ..., (x

′
n,none)) = (X2, F )(a2)

10) ma2 = {x′
i 7→ v ′

i}
11) (X2, F ) : (mg2,ma2)

s2−→ (m′
g2,m

′
a2)

12) mfinal2 = (m′
g2,ml2)



In addition to that, we get induction hypothesis for s1 IH1
(similarly for s2 IH2):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s : Γa ∧ T, pc, γb ⊢ s : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ

′
a ⊢ m′

a ∧ γ′
b ⊢ m′

b ∧ m′
a ∼
γ′
a⊔γ′

b

m′
b

)
Let m1 = (mg1,ml1), m2 = (mg2,ml2), let γ1 =

(γg1, γl1), and γ2 = (γg2, γl2). We initially know that :
γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2

m2.

The final goal is to prove there are two state types γ′′
1 ∈ Γ′′

1

and γ′′
2 ∈ Γ′′

2 such they type the final states γ′′
1 ⊢ (m′

g1,ml1)
and γ′′

2 ⊢ (m′
g2,ml2) and indeed (m′

g1,ml1) ∼
γ′′
1 ⊔γ′′

2

(m′
g2,ml2)

holds.
Initially, we prove expression (table keys) found in 1 in

reduction rule, with 1 and 7 of typing rule are the same.
We use (X1, F ) ∼

(C,F )
(X2, F ) to show that 1 and 7 in the

typing rule have the same expression (i.e. e = e′). Then, using
tblWT C X1 and tblWT C X2, we confirm that the expression
in rule 1 of the reduction rule matches those in rules 1 and
7 of the typing rule. Therefore, all relevant expressions are
equivalent.

First, we conduct a case analysis on ℓ1 and ℓ2 being
equivalent:

case ℓ1 = ℓ2 = L: Given that ℓ1 and ℓ2 are L in 3 and 9
of the typing rule, respectively, we can conclude that the
evaluation of the key expressions e in states m1 and m2

are identical. This follows directly from Lemma 8, which
establishes that m1(ei) = m2(ei) for all ei.
By the definition of (X1, F ) ∼

(C,F )
(X2, F ), we know that

for any memory states m1 and m2, if m1(ei) = m2(ei)
for all table’s keys ei, then m1(ϕ) ⇔ m2(ϕ). This implies
that the condition for both tables to match is identical.
Applying this definition again, we deduct that the actions
a1 and a2 in 2 and 8 of the reduction rule are identical
i.e. a1 = a2 = a, therefore their corresponding action
bodies and signatures must also be the same in (X1, F )
and (X2, F ), thus s1 = s2 = s and x = x′. Applying this
definition (X1, F ) ∼

(C,F )
(X2, F ), yet again, we can also

deduct that the action’s values v and v ′ are low equivalent
wrt. τ i.e. v∼

τ
v ′.

Now we can rewrite the table reduction rule to:
a) (e, semtbl1) = (X1, F )(tbl)
b) semtbl1((mg1,ml1)(e1), ..., (mg1,ml1)(en)) = (a, v)
c) (s, (x1,none), ..., (xn,none)) = (X1, F )(a)
d) ma1 = {xi 7→ vi}
e) (X1, F ) : (mg1,ma1)

s−→ (m′
g1,m

′
a1)

f) mfinal1 = (m′
g1,ml1)

g) (e, semtbl2) = (X2, F )(tbl)
h) semtbl2((mg2,ml2)(e1), ..., (mg2,ml2)(en)) = (a, v ′)
i) (s, (x2,none), ..., (xn,none)) = (X2, F )(a)
j) ma2 = {xi 7→ v ′

i}
k) (X2, F ) : (mg2,ma2)

s−→ (m′
g2,m

′
a2)

l) mfinal2 = (m′
g2,ml2)

Given (C,F ) ⊢ (X1, F ) that indeed exists condition ϕj

in Conttbl that satisfies the table input state (mg1,ml1),
and also exists a list of types τ such that it can type that
values of the table’s semantics (in 2 of the typing rule) i.e.
vi : τi. Similarly, from (C,F ) ⊢ (X2, F ), we know that
exists ϕk that satisfies the table input state (mg2,ml2),
and exists τ ′ such that v ′

i : τ
′
i .

We can instantiate 5 from the table rule with (ϕj , (a, τ)),
and instantiate 11 with (ϕk, (a, τ

′)).
We need to prove (mg1,ma1) ∼

(γgj
,γaj

)⊔(γgk
,γak

)

(mg2,ma2) using the following sub-goals:
Goal 1. prove mg1 ∼

γgj
⊔γgk

mg2 and ml1 ∼
γlj

⊔γlk

ml2:

It is easy to see that γ1 ⊑ refine(γ1, ϕj) and γ2 ⊑
refine(γ2, ϕk) trivially hold, and can be rewritten to
γ1 ⊑ (γgj , γlj ) and γ2 ⊑ (γgk , γlk). Since initially we
know that (mg1,ml1) ∼

γ1⊔γ2

(mg2,ml2), therefore using

Lemma 9 (mg1,ml1) ∼
(γgj

,γlj
)⊔(γgk

,γlk
)
(mg2,ml2).

This entails using Lemma 15 that mg1 ∼
γgj

⊔γgk

mg2

and also ml1 ∼
γlj

⊔γlk

ml2 hold.

Additionally, note that Hyp 3 states also that (γgj , γlj )
can still type the state (mg1,ml1), i.e. (γgj , γlj ) ⊢
(mg1,ml1). Similarly, (γgk , γlk) ⊢ (mg2,ml2).

Goal 2. prove ma1 ∼
γaj

⊔γak

ma2: From (X1, F ) ∼
(C,F )

(X2, F )

we know it holds v∼
τ
v ′, note that these are the table’s

semantic output (i.e. will be action’s arguments). Thus,
whenever τi is L, then the values of arguments are
equivalent vi = v ′

i . This entails that constructing states
ma1 = {xi 7→ vi} and ma2 = {xi 7→ v ′

i} must be
low equivalent with respect to γaj

= {xi 7→ τi}, i.e.
ma1 ∼

γaj

ma2. Similarly, from (X1, F ) ∼
(C,F )

(X2, F )

and whenever τ ′i is L, we can also deduct that γak
=

{xi 7→ τ ′i}, i.e. ma1 ∼
γak

ma2. Therefore, this entails

(using Lemma 15) that ma1 ∼
γaj

⊔γak

ma2.

From the last two sub-goals, we can use Lemma 15 to
deduct (mg1,ma1) ∼

(γgj
,γaj

)⊔(γgk
,γak

)
(mg2,ma2).

Now we can use IH and instantiate it with(
(C,F ), pc ⊔ ℓ, (mg1,ma1), (mg2,ma2), (m

′
g1,m

′
a1),

(m′
g2,m

′
a2), (γgj , γaj

), (γgk , γak
),Γj ,Γk, (X1, F ), (X2, F )

)
to deduct that indeed exist γ1 ∈ Γj and γ2 ∈ Γk

such that γ1 ⊢ (m′
g1,m

′
a1) and γ2 ⊢ (m′

g2,m
′
a2)

and indeed (m′
g1,m

′
a1) ∼

γ1⊔γ2

(m′
g2,m

′
a2). In the

following, let γ1 = (γ1g , γ1l) and γ2 = (γ2g , γ2l).



We can rewrite the IH results as following: exist
(γ1g , γ1l) ∈ Γj and (γ2g , γ2l) ∈ Γk such that
(γ1g , γ1l) ⊢ (m′

g1,m
′
a1) and (γ2g , γ2l) ⊢ (m′

g2,m
′
a2)

and indeed (m′
g1,m

′
a1) ∼

(γ1g ,γ1l
)⊔(γ2g ,γ2l

)
(m′

g2,m
′
a2).

Clearly, from 6 in the typing rule, and we know that Γ′
1

is the union of all the changed global state types by the
action’s body, with the refined starting local state type
(γgj , γlj ) = refine(γ1, ϕj). Thus, we know that indeed
(γ1g , γlj ) ∈ Γ′

1. Similarly, from 12 in the typing rule, we
know that (γ2g , γlk) ∈ Γ′

2.
We choose (γ1g , γlj ) and (γ2g , γlk) to finish the proof of
the goal in this subcase.
Since ℓ1 = ℓ2 and is L in this sub-case, then trivially
Γ′′
1 = Γ′

1 in 7 of the typing rule, and Γ′′
2 = Γ′

2 in
13 of the typing rule. Since we proved that γlj ⊢ ml1

and γlk ⊢ ml2, therefore (γ1g , γlj ) ⊢ (m′
g1,ml1) and

(γ2g , γlk) ⊢ (m′
g2,ml2) hold. Additionally, using Lemma

15 (m′
g1,ml1) ∼

(γ1g ,γlj
)⊔(γ2g ,γlk

)
(m′

g2,ml2).

case ℓ1 ̸= ℓ2: This proof is similar to the conditional case.
We initiate the proof by fixing ℓ2 to be H while ℓ1
can be either H or L, thus the evaluation of e in the
states (mg1,ml1) and (mg2,ml2) differs. Consequently,
we (possibly) end up with two different actions and their
corresponding arguments (a1, v) and (a2, v

′).
From (C,F ) ⊢ (X1, F ) we know that indeed exists
condition ϕj in Conttbl that satisfies the table input state
(mg1,ml1), and also exists a list of types τ such that it
can type that values of the table’s semantics (in 2 of the
typing rule) i.e. vi : τi. Similarly, from (C,F ) ⊢ (X2, F ),
we know that exists ϕk that satisfies the table input state
(mg2,ml2), and exists τ ′ such that v ′

i : τ
′
i .

We can instantiate 5 (we refer to these as the first
configuration) from the table rule with (ϕj , (a1, τ)), and
instantiate 11 (we refer to these as the second configura-
tion) with (ϕk, (a2, τ

′)). Since the actions are different,
then we let s1 be the body of action a1, and s2 be the body
of action a2 (we refer to these as the first configuration).
Using the same steps in the previous sub-case, we know
that mg1 ∼

γgj
⊔γgk

mg2 and ml1 ∼
γlj

⊔γlk

ml2.

The final goal is to prove there are two state types
γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2 such they type the final states
γ′′
1 ⊢ (m′

g1,ml1) and γ′′
2 ⊢ (m′

g2,ml2) and indeed
(m′

g1,ml1) ∼
γ′′
1 ⊔γ′′

2

(m′
g2,ml2) holds.

From the SOUNDNESS OF ABSTRACTION, we know that
for the second configuration indeed exists γ′

2 ∈ Γk such
that it types the action’s resulted state (m′

g2,m
′
a2) (i.e.

γ′
2 ⊢ (m′

g2,m
′
a2)). In the following, let (γ′

g2, γ
′
l2) = γ′

2,
thus indeed (γ′

g2, γ
′
l2) ⊢ (m′

g2,m
′
a2). Given that Γ′

2 in
12 of the typing rule is a union of all Γi; thus indeed
it includes Γk that has the resulted global state type
γ′
g2, and the refined caller’s local state type γlk while

removing the callee’s resulted local state type γak
. In

short, we know that indeed for the second configuration
will find (γ′

g2, γlk) ∈ Γ′
2. Note that in the SOUNDNESS

OF ABSTRACTION previously we proved that γlk ⊢ ml2,
therefore (γ′

g2, γlk) ⊢ (m′
g2,ml2). Since ℓ2 is H, then

Γ′′
2 = join(Γ′

2), so we can deduce (by Lemma 7) the
existence of γ′

2 ∈ join(Γ′
2) such that it is more restrictive

than γ′
2, denoted as γ′

2 ⊑ γ′
2. Using the same lemma, we

conclude that γ′
2 ⊢ (m′

g2,ml2). Now on, we choose γ′
2 to

be used in the proof and resolve the second conjunction
of the goal.
From the SOUNDNESS OF ABSTRACTION, we know that
for the first configuration indeed exists γ′

1 ∈ Γj such
that it types action’s resulted state (m′

g1,ma1) (i.e. γ′
1 ⊢

(m′
g1,ma1)). In the first configuration, the final state type

set Γ′′
1 can be either a union (if ℓ1 = L) or a join (if ℓ1 =

H) of all final state type sets and including Γ′
1. In either

case (union or join), we can establish the existence of
γ′
1 ∈ Γ′′

1 such that γ′
1 ⊑ γ′

1 and indeed γ′
1 ⊢ (m′

g1,ml1).
Note that if Γ′′

1 resulted from a join, we follow the same
steps of the (second configuration) in the previous step;
otherwise, if it resulted from a union, it is trivially true.
Thus, the first conjunction of the final goal is proved.
The final goal left to prove is (m′

g1,ml1) ∼
γ′
1⊔γ′

2

(m′
g2,ml2)

holds. In the following, let (γ′
g1, γ

′
l1) = γ′

1 and
(γ′

g2, γ
′
l2) = γ′

2.
Next, we proceed to implement cases based on whether
an lval ’s type label is H or L.

case (γ′
1 ⊔ γ′

2(lval) = τ) ∧ lbl(τ) = H: holds trivially.
case (γ′

1 ⊔ γ′
2(lval) = τ) ∧ lbl(τ) = L: this case entails

that each state type individually holds γ′
1(lval) = τ ′1 ∧

lbl(τ ′1) = L and also γ′
2(lval) = τ ′′2 ∧ lbl(τ ′′2 ) = L.

Given that the lval ’s type is L in γ′
2, and considering

γ′
2 ∈ join(Γ′

2), it follows that the lval is also L in any
state type within (Γ′

2). Consequently, the lval is L in
Γk, thus L in (γ′

g2, γlk).
In the second configuration, we type the action’s body
s2 with a H context, where s2 reduces to (m′

g2,m
′
a2).

And since we previously showed that lval is L in
(γ′

g2, γlk) such that (γ′
g2, γlk) ⊢ (m′

g2,ml2), then lval
is in m′

g2 or ml2, however not in m′
a2.

Since lval ’s type is L in γ′
g2, we can use Lemma 10

to infer that the global initial and final states remain
unchanged for L lvalues, which means mg2(lval) =
m′

g2(lval). Then we can use Lemma 12 to infer that
refine(γ2, ϕk) ⊑ (γ′

g2, γ
′
l2), this entails that the lval ’s

type label is indeed L in the global of refined state
γgk . It is easy to see that γ2 ⊑ refine(γ2, ϕk), thus
(γg2, γl2) ⊑ (γgk , γlk), therefore lval ’s type is also L
in the global initial state type γg2, i.e. γg2(lval) =
τ ′2 ∧ lbl(τ ′2) = L.
For the first configuration, in this sub-case, we have
γ′
1(lval) = τ ′1 ∧ lbl(τ ′1) = L, and γ′

1 ∈ Γ′′
1 . We

previously showed γ′
1 ⊑ γ′

1. Since lval ’s typing label is
L in γ′

1 and we know that the state types in γ′
1 are more

restrictive than the state types in γ′
1, we can conclude

that γ′
1 ∈ Γj also types lval as L.



Now, we will prove that m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2 by conducting

cases on ℓ1:
case If ℓ1 is H:

We can replicate the same exact steps done for
the second configuration to deduct mg1(lval) =
m′

g1(lval) and (γg1, γl1) ⊑ (γgj , γlj ) and the lval ’s
type is L in the global initial state type γg1, i.e.
γg1(lval) = τ ′2 ∧ lbl(τ ′2) = L.

case If ℓ1 is L:
Previously, we demonstrated that the lval ’s typing
label is L in all final state types in all Γi in
Γ2. Consequently, none of the actions’ bodies can
modify lval , this is true because all actions in the
first and second semantics and the contracts are
identical, therefore mg1(lval) = m′

g1(lval). Thus,
we know that indeed s1 is typed under a high pc in
the second configuration, we conclude that the lval
remains unchanged there as well. Consequently,
we can now apply Lemma 13 to deduce that
the lval ’s typing label in the first configuration
γ′
1 ∈ Γj are more restrictive than the one we

find in the refined state refine(γ1, ϕj), and because
(γgj , γlj ) = refine(γ1, ϕj) then (γgj , γlj )(lval) =
τ ′1 ∧ lbl(τ ′1) = L. Therefore, lval ’s type is
also L in the global initial state type γg2, i.e.
γg2(lval) = τ ′2 ∧ lbl(τ ′2) = L

Then, we need to prove ml1 ∼
γ′
l1⊔γ′

l2

ml2. First, we prove

that γ′
l1 = γlj directly from the definition of join as

join(γlj , γlj ) = γlj and we know join(γlj , γlj ) = γ′
l1

thus γ′
l1 = γlj holds. Similarly, we know that γ′

l2 = γlk
holds. Since lval is L in γ′

l2 then it is also L in γlk .
And since lval is L in γ′

l2, then it is also L in γlj . From
the previous subgoal, we proved ml1 ∼

γlj
⊔γlk

ml2. This

is property hold.
Finally, since we proved m′

g1 ∼
γ′
g1⊔γ′

g2

m′
g2 and

ml1 ∼
γ′
l1⊔γ′

l2

ml2 now we can use Lemma 15 to deduct

that (m′
g1,ml1) ∼

γ′
1⊔γ′

2

(m′
g2,ml2) holds.

⋄ Case transition: similar to the conditional statement proof.
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