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Abstract
Federated learning (FL) enables multiple clients to collaboratively
train a global machine learning model without sharing their raw
data. However, the decentralized nature of FL introduces vulnera-
bilities, particularly to poisoning attacks, where malicious clients
manipulate their local models to disrupt the training process. While
Byzantine-robust aggregation rules have been developed tomitigate
such attacks, they remain inadequate against more advanced threats.
In response, recent advancements have focused on FL detection
techniques to identify potentially malicious participants. Unfortu-
nately, these methods often misclassify numerous benign clients
as threats or rely on unrealistic assumptions about the server’s
capabilities. In this paper, we propose a novel algorithm, SafeFL,
specifically designed to accurately identify malicious clients in FL.
The SafeFL approach involves the server collecting a series of global
models to generate a synthetic dataset, which is then used to distin-
guish betweenmalicious and benignmodels based on their behavior.
Extensive testing demonstrates that SafeFL outperforms existing
methods, offering superior efficiency and accuracy in detecting
malicious clients.
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1 Introduction
Federated learning (FL) [48] is a distributed machine learning ap-
proach that trains models on multiple decentralized clients, each
holding its own local data, without sharing that data. This method
primarily mitigates privacy concerns associated with centralized
training methods. In FL, a central server collects models from each
participating client, maintaining data confidentiality while collec-
tively enhancing the model. The process unfolds in three main
steps: first, the server distributes the current global model to clients
or a selected group. Then, these clients adjust their local models
using their specific local training data. Finally, they send their local
models back to the server, where these models are combined ac-
cording to a predefined aggregation rule to refine the global model.
FL has been adopted in various real-world applications, including
credit risk evaluation [2], speech recognition [56], and next-word
prediction [1].

In recent years, much research [10, 18, 36, 44–46, 49, 63, 78]
has focused on enhancing the efficiency of FL. However, a sig-
nificant obstacle to its widespread adoption lies in FL’s inher-
ent vulnerability to poisoning attacks carried out by malicious
clients [5, 6, 8, 15, 24, 62, 67, 71, 74], due to its decentralized struc-
ture. In these attacks, adversaries can undermine the integrity of the
global model by tampering with their local training data or altering
the models they send to the server, thereby contaminating the ag-
gregated global model. These malicious actions typically manifest
in two primary forms. The first, untargeted attacks [15, 24], seeks
to degrade the global model’s performance on a wide range of test
cases, aiming for a general reduction in accuracy across various sce-
narios. The second type, targeted attacks [5, 6, 8, 67], involves more
strategic manipulation, where the attacker’s goal is to influence
the global model in such a way that it produces specific, desired
outputs for selected test cases, often with malicious intent. These
attacks pose significant challenges to the robustness, reliability, and
security of FL systems, making it imperative to develop effective
defense mechanisms that can detect and neutralize such threats.

To mitigate poisoning attacks, several defensive mechanisms
have been proposed in the literature [9, 23, 26, 35, 39, 41, 43, 50–52,
55, 58, 59, 65, 68, 70]. These defenses can generally be categorized
into detection-based and prevention-based approaches. Detection-
based defenses focus on identifying malicious clients in the FL sys-
tem and subsequently removing them. For instance, in FLTrust [14],
the server possesses a small validation dataset that resembles the
clients’ training data. Using this validation data, the server gen-
erates a reference model, and a client is classified as benign if its
local model aligns positively with this reference model. Similarly,
FLDetector [73] predicts a client’s model based on historical models,
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flagging clients as malicious if their actual and predicted models
significantly diverge over multiple rounds. In contrast, prevention-
based defenses aim to reduce the impact of malicious clients without
removing them from the system. The Median [70] method, for in-
stance, computes the coordinate-wise median of local models to
derive the global model. However, current defenses against poison-
ing attacks to FL face notable limitations. Existing detection-based
methods struggle to accurately identify malicious clients in com-
plex scenarios, often misclassifying benign clients as malicious,
especially when both targeted and untargeted attacks are present.
Furthermore, somemethods like FLTrust rely on unrealistic assump-
tions, such as the server possessing a validation dataset that reflects
the overall distribution of client data. On the other hand, prevention-
based defenses cannot fully mitigate the effects of malicious clients,
as these malicious clients remain within the FL system.

Our work: In this study, we aim to fill this critical gap by pre-
senting a novel detection-based defense mechanism, referred to
as SafeFL, specifically designed to identify and mitigate the im-
pact of malicious clients in FL systems. Our proposed SafeFL relies
on the server maintaining its own unique dataset, enabling it to
evaluate the integrity of local models submitted by participating
clients. Given the inherent challenges associated with the server’s
ability to have complete knowledge of the data distribution across
the diverse and heterogeneous devices of clients, we propose an
innovative solution. Instead of relying on a dataset that mirrors the
clients’ data, the server generates a synthetic dataset derived from
the trajectory of global models trained over multiple rounds. While
this synthetic dataset does not replicate the actual distribution of
client data, it is crafted to effectively distinguish between mali-
cious and benign behaviors in models. By leveraging this dynamic
dataset generation strategy, SafeFL ensures robust detection and
defense against malicious activities, enhancing the overall security
and reliability of FL systems.

After creating the synthetic dataset, the server leverages it to
identify potential malicious clients by analyzing the distinct behav-
ioral differences between malicious and benign local models when
evaluated on this dataset. This approach operates under the assump-
tion that malicious models, crafted with adversarial intent, will
demonstrate significantly different performance compared to be-
nign models. To implement this detection mechanism, we introduce
two variations of our defense strategy, referred to as SafeFL-ML
and SafeFL-CL, each utilizing a unique methodology for identifying
malicious clients. The foundation of SafeFL-ML lies in the observa-
tion that malicious local models tend to incur a higher loss on the
synthetic dataset compared to benign models. Guided by this prin-
ciple, the server evaluates the loss of each local model submitted
by clients and calculates the median loss across all models. A client
is classified as benign if the loss of its corresponding model falls
below this median value; otherwise, it is flagged as potentially ma-
licious. On the other hand, SafeFL-CL employs a different strategy
while still relying on the loss evaluation of local models against
the synthetic dataset. Instead of utilizing a median-based threshold,
the server applies a clustering algorithm to group models based on
their loss values. This approach is grounded in the premise that
the loss values of benign models are more likely to cluster closely
together, reflecting their consistent and non-adversarial behavior.

By categorizing models into clusters, SafeFL-CL identifies outliers,
which are indicative of malicious clients, with greater precision.

We conduct an extensive evaluation of our proposed SafeFL us-
ing five diverse datasets, including large-scale benchmarks such
as CIFAR-10 [38], STL-10 [20], and Tiny-ImageNet [21], as well
as the FEMNIST [12] dataset, which is inherently heterogeneous.
These datasets span multiple domains to ensure a comprehensive
assessment of our approach. Our evaluation also encompasses
eleven poisoning attack scenarios and ten state-of-the-art FL de-
fenses. Among these defenses are seven detection-based meth-
ods—FLAME [54], FLDetector [73], FLTrust [14], DeepSight [59],
BackdoorIndicator [42], FreqFed [30], FedREDefense [69]—as well
as three prevention-based strategies, namely Median [70], Trimmed
mean [70], and Krum [9]. Beyond these benchmarks, we explore
a variety of practical settings in FL that reflect real-world chal-
lenges. These include scenarios where clients operate with highly
non-independent and identically distributed training data, such as
datasets limited to three classes per client. We also consider cases
where clients utilize complex deep learning models, such as ResNet-
20 [33], for local training. On the server side, we investigate the
impact of employing different aggregation rules to combine the
local models submitted by clients. This comprehensive evaluation
highlights the robustness and adaptability of our method under
diverse and challenging conditions.

The contributions of our work can be outlined as follows:

• We propose a novel detection framework, SafeFL, designed to
identify malicious clients in FL.

• We evaluate our proposed detection method on five datasets
and against eleven distinct poisoning attacks, including the
strong adaptive attack, and compare its performance with ten
state-of-the-art FL defense baselines.

• Extensive experiments show that our proposed SafeFL not only
excels at identifying malicious clients in FL but also outper-
forms existing detection approaches.

2 Background and Related Work
2.1 Background on federated learning (FL)
A typical federated learning (FL) system consists of a central server
and 𝑛 distributed clients. Each client 𝑖 has its own distinct database,
referred to as the local training dataset 𝐷𝑖 , where 𝑖 = 1, 2, . . . , 𝑛.
The combined training dataset across all clients is represented as 𝐷 ,
where 𝐷 =

⋃𝑛
𝑖=1 𝐷𝑖 . In an FL framework, these 𝑛 clients collaborate

under the coordination of the central server to train a shared global
machine learning model. The primary goal of FL is to derive the op-
timal global model w∗, which is obtained by solving the following
optimization problem w∗ = argminw∈R𝑑

∑𝑛
𝑖=1 L(𝐷𝑖 ,w), where

L(𝐷𝑖 ,w) represents the loss corresponding to the local training
data of client 𝑖 , based on the model parameter w; 𝑑 is the dimen-
sion of w. FL tackles the above optimization problem through a
decentralized methodology. The training procedure in round 𝑡 is
carried out in three sequential steps:

• Step I (Global model synchronization): The server transmits
the current global model w𝑡 to all clients or a portion of clients.
• Step II (Local models updating): Upon receiving the global

model w𝑡 from the server, clients refine their local models using



Toward Malicious Clients Detection in Federated Learning ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

stochastic gradient descent (SGD). Specifically, client 𝑖 selects a
mini-batch of training samples from its dataset 𝐷𝑖 , computes a
gradient g𝑡

𝑖
based on w𝑡 and the sampled data, and then updates

its local model as w𝑡
𝑖
= w𝑡 − 𝜇 · g𝑡

𝑖
, where 𝜇 is the learning rate.

Finally, client 𝑖 sends its updated model w𝑡
𝑖
to the server.

• Step III (Local models aggregation): After receiving the local
models from the clients, the server applies a specified aggrega-
tion rule, denoted as AR, to combine themodels. This is expressed
as w𝑡+1 = AR{w𝑡

1,w
𝑡
2, ...,w

𝑡
𝑛}.

FL iteratively performs the outlined three steps until it meets the
convergence criteria. When all participating clients are reliable and
act without malicious intent, the server can adopt the straightfor-
ward FedAvg [48] algorithm to aggregate the local model updates.
This approach updates the global model by averaging the local
models received from the clients, calculated as w𝑡+1 = 1

𝑛

∑𝑛
𝑖=1w

𝑡
𝑖
.

2.2 Poisoning Attacks to FL
FL is inherently susceptible to poisoning attacks due to its decentral-
ized structure. These attacks can be classified into two categories
based on the attacker’s objectives: untargeted attacks [15, 24, 60, 61,
66] and targeted attacks [5, 6, 8, 67]. Untargeted poisoning attacks
aim to degrade the overall performance of the global model across
arbitrary test inputs. For instance, in the label-flipping attack [62],
malicious clients alter the labels in their local training data to mis-
lead the model. Fang et al. [24] proposed a framework for untar-
geted FL attacks by formulating the problem as an optimization task.
Their approach focuses on crafting malicious client updates that
maximize the discrepancy between the aggregated global model
updates before and after the attack. Conversely, targeted poisoning
attacks, such as backdoor attacks, are designed to manipulate the
global model to predict an attacker-specified label when provided
with test inputs containing a specific, pre-determined trigger.

2.3 Defenses against Poisoning Attacks to FL
Various defenses [9, 25, 27–29, 35, 39, 52, 59, 70] have been pro-
posed to counter poisoning attacks in FL. Some methods focus on
identifying and excluding malicious clients from the FL system. For
example, FLAME [54] leverages the HDBSCAN [13] clustering algo-
rithm to detect potentially malicious clients, while FLDetector [73]
evaluates the consistency of a client’s local model to flag suspicious
behavior. Other defense mechanisms aim to mitigate the impact of
malicious clients without directly identifying them. For instance,
Trimmed-mean [70] and Median [70] are coordinate-wise aggrega-
tion techniques that process each dimension of the local models
independently. In Trimmed-mean, the values for each coordinate
across clients’ models are sorted, and the 𝑘 largest and 𝑘 smallest
values are excluded. The average of the remaining 𝑛 − 2𝑘 values is
then calculated for each coordinate.
Limitations of existing defenses: Despite their advancements,
existing FL defense mechanisms exhibit notable limitations. First,
many defenses either result in the misclassification of a significant
number of benign clients as malicious or fail to adequately reduce
the influence of malicious clients, as their presence persists within
the system. Second, some methods are based on unrealistic assump-
tions, such as the server requiring access to a clean dataset that
accurately reflects the distribution of clients’ training data.

3 PROBLEM STATEMENT

Threat model: The threat model we employ follows the approach
outlined in prior studies [5, 6, 24, 60, 61, 67]. To elaborate, the
attacker controls a set of malicious clients, which may either be fake
clients injected by the attacker or benign clients compromised by
the attacker. These malicious clients have the capability to transmit
arbitrary local models to the server. The extent of the attacker’s
knowledge of the targeted FL system may vary. In cases of partial
knowledge, the attacker possesses information solely about the local
models and local training data on the malicious clients. In contrast,
with full knowledge, the attacker possesses information about the
local models on all clients and the aggregation rule employed by
the server. This full knowledge attack represents the most severe
scenario, and in this paper, we employ it to assess the efficacy of
our proposed approach.
Defender’s knowledge and goal: Our goal is to develop a reliable
FL detection method that identifies malicious clients based solely on
their local model updates, without access to training data or prior
knowledge of data distributions or attack strategies. The detection
mechanism should ensure robust learning integrity by preserving
benign clients in non-adversarial settings and avoiding their unin-
tended removal. At the same time, it must achieve effective threat
mitigation by detecting both targeted and non-targeted attacks dur-
ing training, while maintaining high classification accuracy and
minimizing the impact of malicious updates on the global model.

4 Our SafeFL
4.1 Overview
In our proposed SafeFL, the server begins by collecting a trajectory
of the global model and uses this information to generate a synthetic
dataset. This synthetic dataset serves as a tool to identify potentially
malicious clients by analyzing their behavior. Specifically, malicious
local models often generate loss patterns that differ noticeably from
those of benign models, facilitating their identification.

4.2 Global Model Trajectory Collection
In our proposed method, the server possesses its own distinct
dataset. Upon receiving local models from clients, the server distin-
guishes between malicious and benign models by comparing their
performance on this separate dataset. Ideally, we might assume
the server having a small, clean training dataset, as posited in [14],
where it is assumed that both the server’s dataset and the overall
training dataset used by clients are drawn from the same distribu-
tion. However, in FL, this assumption does not hold in practice since
clients’ training data remain on their devices, making it challenging,
if not impossible, for the server to have perfect knowledge of the
distribution of clients’ training data.

To address this challenge, our approach involves the server first
gathering a trajectory of the global model and subsequently gen-
erating a synthetic dataset based on this collected trajectory. It is
important to note that the generated synthetic dataset does not
have to replicate the distribution of clients’ training data. Instead,
it merely needs to be a basis on which malicious and benign local
models exhibit different performance. Let {w1,w2, ...,w𝜖 } repre-
sent the trajectory gathered by the server, where 𝜖 is the length
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of trajectory, and w𝑡 denotes the global model at the 𝑡-th training
round, 𝑡 = 1, 2, ..., 𝜖 . Note that we assume that the server gathers
the first 𝜖 global models. The primary challenge here is determining
how to calculate each global model in the trajectory. The straight-
forward solution involves computing w𝑡 by directly aggregating
the 𝑛 received local models, that is, w𝑡+1 = AR{w𝑡

1,w
𝑡
2, ...,w

𝑡
𝑛} for

𝑡 = 1, 2, ..., 𝜖 . However, since some clients may act maliciously and
send arbitrary local models to the server, the global model may be
corrupted if potential malicious local models are not removed be-
fore aggregation. The server addresses this by excluding potentially
malicious local models during the initial 𝜖 training rounds before
constructing the global model trajectory.

Our primary insight is that, during poisoning attacks on FL, mali-
cious clients typically alter either the directions and/or magnitudes
of their local models. By leveraging this understanding, the server
categorizes the received clients’ local models into several clusters.
The local models within the largest clusters are considered benign,
underpinning the belief that the majority of clients in FL are benign.
Moreover, local models from benign clients tend to cluster together.
Let Cluster() represent the clustering technique employed by the
server, such as K-means algorithm. LetH𝑡 denote the largest clus-
ter formed when the server categorizes the 𝑛 local models received
into several clusters at training round 𝑡 , where 𝑡 = 1, 2, ..., 𝜖 . Thus,
we can express this as:

H𝑡 = Cluster(w𝑡
1,w

𝑡
2, ...,w

𝑡
𝑛). (1)

After that, the server computes w𝑡 by aggregating the local
models within clusterH𝑡 as w𝑡+1 = AR{w𝑡

𝑖
, 𝑖 ∈ H𝑡 }. This process

enables the server to gather the trajectory {w1,w2, ...,w𝜖 } over the
initial 𝜖 training rounds.

4.3 Synthetic Data Generation
With the collection of the global model trajectory {w1,w2, ...,w𝜖 },
the server can now leverage this information to generate a syn-
thetic dataset, drawing on insights from recent studies in dataset
condensation [16, 37, 47, 57, 64, 76, 77]. This trajectory represents
the sequence of global models generated over the first 𝜖 rounds
of training. By analyzing this sequence, the server can effectively
create synthetic data that mimics the underlying patterns learned
by the model over time. To better understand how this process
works, let’s consider a network denoted by 𝑓 , which represents
the model architecture used to generate the synthetic dataset. The
primary goal here is to generate a synthetic dataset, represented
as 𝐷syn = {X,Y}. In this dataset, X represents the input features
and Y corresponds to the labels. The objective is to ensure that
when we train the network 𝑓 on this synthetic data, the results
are comparable to those obtained when the network is trained on
the full, real dataset 𝐷 , which contains data from all participating
clients in the FL process. Essentially, we want the synthetic data to
be a good approximation of the real data in terms of its ability to
train the network effectively.

To generate this synthetic data, consider two global models: w𝛼

and w𝛼+Δ. Here, w𝛼 represents a global model from the collected
trajectory {w1,w2, ...,w𝜖 }, andw𝛼+Δ is another global model in the
same trajectory, whereΔ is a step parameter that defines the number
of rounds between the two models. By training the network 𝑓 for Δ

Algorithm 1 SynGen.

Input: Global model trajectory {w1,w2, ...,w𝜖 }; training iterations Ψ; net-
work 𝑓 ; learning rate 𝛾 ; parameter Δ.

Output: 𝐷syn.
1: Initialize X1 and Y1.
2: for 𝜅 = 1, 2, · · · ,Ψ do
3: Randomly and uniformly select the 𝛼 from the sequence
{1, 2, . . . , 𝜖 − Δ}.

4: Retrievew𝛼 andw𝛼+Δ from the model trajectory {w1,w2, . . . ,w𝜖 }.
5: Train the network 𝑓 on the current synthetic dataset for Δ iterations

to obtain the updated model ŵ.
6: Evaluate the squared Euclidean distance ∥ŵ −w𝛼+Δ ∥22 , then derive

the gradients ∇X𝜅 ∥ŵ − w𝛼+Δ ∥22 and ∇Y𝜅 ∥ŵ − w𝛼+Δ ∥22 .
7: Update the features and labels by applying gradient descent:X𝜅+1 =

X𝜅 − 𝛾∇X𝜅 ∥ŵ − w𝛼+Δ ∥22 , Y𝜅+1 = Y𝜅 − 𝛾∇Y𝜅 ∥ŵ − w𝛼+Δ ∥22 .
8: end for

steps starting from the model w𝛼 using the synthetic dataset 𝐷syn,
we aim to obtain a model that closely resembles w𝛼+Δ. The idea
is that the synthetic data should enable the network to transition
from w𝛼 to w𝛼+Δ, just as it would if trained on real data 𝐷 . This
synthetic data generation can be formulated as an optimization
problem, where the goal is to minimize the difference between the
model obtained by training on the synthetic data and the target
model w𝛼+Δ. Formally, the problem is expressed as follows:

min
X,Y
∥ŵ −w𝛼+Δ∥22 ,

s.t. ŵ = 𝑓 (X,Y,w𝛼 ,Δ),
(2)

where 𝑓 (X,Y,w𝛼 ,Δ) represents training the network 𝑓 on the
synthetic dataset 𝐷syn = {X,Y} for Δ steps, starting from the
model w𝛼 . The objective is to find the synthetic data X and Y that
minimize the squared Euclidean distance ∥ŵ −w𝛼+Δ∥22, ensuring
the resulting model ŵ closely aligns with the global model w𝛼+Δ.

We can apply the gradient descent method to iteratively solve
Problem (2). The synthetic dataset generation algorithm (SynGen)
is outlined in Algorithm 1. Specifically, in each iteration, we be-
gin by randomly and uniformly selecting 𝛼 from the sequence
{1, 2, . . . , 𝜖 − Δ}. Then, we retrieve w𝛼 and w𝛼+Δ from the trajec-
tory {w1,w2, . . . ,w𝜖 }. Note that the sequence {1, 2, . . . , 𝜖−Δ} starts
at 1 and ends at 𝜖 − Δ to ensure that both w𝛼 and w𝛼+Δ are within
the trajectory. Following this, the server obtains ŵ by training the
network for Δ steps (Line 5 in Algorithm 1). The server then cal-
culates the gradient of ∥ŵ −w𝛼+Δ∥22 with respect to X and Y, and
proceeds to update the features and labels of the synthetic dataset
using gradient descent (Lines 6-7). At the conclusion of Algorithm 1,
we obtain the synthetic dataset 𝐷syn. Note that in Algorithm 1, X𝜅

and Y𝜅 represent the features and labels of the synthetic dataset at
iteration 𝜅, respectively.

4.4 Malicious Clients Detection Using 𝐷syn
Once we have acquired the synthetic dataset 𝐷syn, we can utilize it
to detect potential malicious clients. In the following, we detail two
variants of our defense strategy, named SafeFL-ML and SafeFL-CL,
each employing a distinct approach to detect malicious clients.
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Algorithm 2 SafeFL.
Input: The 𝑛 clients, each with local training datasets 𝐷𝑖 for 𝑖 =

1, 2, . . . , 𝑛; the total number of global training rounds𝑇 ; learning
rate 𝜇; aggregation rule AR; clustering algorithm Cluster();
network 𝑓 ; and parameters 𝜖 , Ψ, 𝛾 , and Δ.

Output: Global model w𝑇 .
1: Initialize w1.
2: S ← ∅.
3: S ← S ∪ {w1}.
4: for 𝑡 = 1, 2, · · · ,𝑇 do
5: // Step I (Global model synchronization).
6: Server distributes the current global model w𝑡 to all clients.
7: // Step II (Local models updating).
8: for each client 𝑖 = 1, 2, · · · , 𝑛 in parallel do
9: Client 𝑖 updates its local model w𝑡

𝑖
using w𝑡 and 𝐷𝑖 .

10: Send w𝑡
𝑖
to the server.

11: end for
12: // Step III (Aggregation and global model updating).
13: // Global model trajectory collection.
14: if 𝑡 < 𝜖 then
15: H𝑡 = Cluster(w𝑡

1,w
𝑡
2, ...,w

𝑡
𝑛).

16: w𝑡+1 = AR{w𝑡
𝑖
, 𝑖 ∈ H𝑡 }.

17: S ← S ∪ {w𝑡+1}.
18: end if
19: // Synthetic data generation.
20: if 𝑡 = 𝜖 then
21: 𝐷syn = SynGen(S,Ψ, 𝑓 , 𝛾,Δ).
22: end if
23: // Malicious clients detection using 𝐷syn.
24: if 𝑡 ≥ 𝜖 then
25: The server computes the loss 𝑙𝑡

𝑖
by applying client 𝑖’s

local model w𝑡
𝑖
on the synthetic dataset 𝐷syn, for 𝑖 = 1, 2, . . . , 𝑛.

26: if SafeFL-ML is used then
27: Calculate 𝑟𝑡

𝑖
for each client using Eq. (4).

28: w𝑡+1 =
∑𝑛
𝑖=1 𝑟

𝑡
𝑖
w𝑡
𝑖
.

29: else if SafeFL-CL is used then
30: Q𝑡 = Cluster(𝑙𝑡1, 𝑙

𝑡
2, . . . , 𝑙

𝑡
𝑛).

31: w𝑡+1 = AR{w𝑡
𝑖
: 𝑖 ∈ Q𝑡 }.

32: end if
33: end if
34: end for

SafeFL-ML: In this section, we introduce the SafeFL-MedianLoss
(SafeFL-ML), which is the first variant of our approach. In FL, ma-
licious clients often aim to maximize their attack impact by ma-
nipulating the directions and/or magnitudes of their local models.
The fundamental idea behind SafeFL-ML is that malicious local
models typically result in a larger loss when evaluated on the syn-
thetic dataset 𝐷syn compared to the loss observed with benign local
models. Using this observation, the server calculates the loss for
every received local model, and then computes the median of these
𝑛 losses, where 𝑛 is the total number of clients. In particular, at the
training round 𝑡 , one has that:

𝑙𝑡Med = Median{𝑙𝑡1, 𝑙
𝑡
2, ..., 𝑙

𝑡
𝑛}, (3)

where 𝑙𝑡
𝑖
represents the loss when the server employs client 𝑖’s local

model w𝑡
𝑖
to compute the loss on the synthetic dataset 𝐷syn during

training round 𝑡 .
In SafeFL-ML, client 𝑖 is identified as benign if its loss 𝑙𝑡

𝑖
is smaller

than 𝑙𝑡Med, where 𝑖 = 1, 2, . . . , 𝑛. Furthermore, concerning clients
identified as benign, higher losses suggest poorer alignment with
the training data distribution, while lower losses reflect better fitting
performance. Clients with lower losses are considered more reliable.
Thus, at training round 𝑡 , we can derive the weight of client 𝑖 using
the following formula:

𝑟𝑡𝑖 =


(𝑙𝑡
𝑖
)−1∑𝑛

𝑗=1 (𝑙𝑡𝑗 )−1
, if 𝑙𝑡

𝑖
≤ 𝑙𝑡Med,

0, otherwise,
(4)

Then, the server can aggregate the localmodels using theweighted
average approach as w𝑡+1 =

∑𝑛
𝑖=1 𝑟

𝑡
𝑖
w𝑡
𝑖
.

SafeFL-CL: Our median loss selection method, SafeFL-ML, iden-
tifies half of the clients as suspicious in each round, regardless of
whether their losses closely match or significantly deviate from the
median. While this approach ensures consistency in detecting a
fixed proportion of suspicious clients, it risks misclassifying benign
clients with losses slightly above the median as malicious. Such
misclassification can lead to the exclusion of valuable local training
data, as a substantial number of benign local models are left out
during aggregation, potentially degrading model performance. To
address these shortcomings, we propose integrating a clustering-
based approach for identifying potential malicious clients based on
their computed loss values.

In our SafeFL-ClusterLoss (SafeFL-CL) method, the server also
evaluates the loss of each received local model on the synthetic
dataset 𝐷syn. However, instead of relying on the median loss for
classification, the server employs a clustering algorithm to group
the loss values. This approach is motivated by the observation
that losses derived from benign local models are more likely to
form a coherent cluster. Let Q𝑡 denote the largest cluster obtained
when the server partitions the 𝑛 losses into multiple clusters during
training round 𝑡 . Formally, one has that:

Q𝑡 = Cluster(𝑙𝑡1, 𝑙
𝑡
2, . . . , 𝑙

𝑡
𝑛). (5)

Using this cluster, the server computes the global model w𝑡+1 as
w𝑡+1 = AR{w𝑡

𝑖
: 𝑖 ∈ Q𝑡 }, where AR denotes the aggregation rule

applied to the local models within the largest cluster. This clustering-
based method ensures that aggregation focuses on benign clients,
thereby improving the robustness and effectiveness of the model.

Algorithm 2 provides an overview of the complete process for
our proposed method, SafeFL. Lines 5-11 outline the first two steps
of standard FL. In Lines 12-33, SafeFL identifies potential malicious
clients and updates the global model using contributions from the
remaining clients. Our SafeFL consists of three main components:
“global model trajectory collection”, “synthetic data generation”,
and “malicious clients detection using𝐷syn”. Specifically, during the
first 𝜖 training rounds, the server collects global model trajectories,
forming a set denoted as S. At training round 𝜖 , the server utilizes
these collected trajectories to generate a synthetic dataset 𝐷syn. It
is important to note that 𝐷syn is constructed only once at round 𝜖 ,
as detailed in Lines 19-22 of Algorithm 2. Once the synthetic dataset
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𝐷syn is generated, the server uses it to detect malicious clients, as
described in Lines 23-33.

5 Experiments
5.1 Experimental Setup
5.1.1 Datasets. In our experiments, we incorporate the follow-
ing five datasets: CIFAR-10 [38], MNIST [40], FEMNIST [12], STL-
10 [20], and Tiny-ImageNet [21]. The details of these datasets are
shown in Appendix A.1.

5.1.2 Poisoning attacks to FL. We consider four single-method
poisoning attacks (Trim attack [24], Scaling attack [5], Distributed
Backdoor Attack (DBA) [67], and Adaptive attack [60]), along with
two hybrid poisoning strategies (Trim+DBA, and Scaling+DBA
attacks) to evaluate the effectiveness of our proposed detection
method. In the case of single-method attacks, every malicious client
uses the same strategy to craft their local models. For instance, in a
Trim attack scenario, all involved malicious clients adopt the Trim
attack technique to formulate the models they submit to the server.
Conversely, in hybrid attacks, different malicious clients might
utilize varying attack strategies. See Appendix A.2 for a detailed
description of these attacks. Note that we also consider five more
advanced attacks is Section 6.

5.1.3 Defenses against Poisoning Attacks to FL. In this paper, we
compare our SafeFL against seven detection-based approaches
(FLAME [54], FLDetector [73], FLTrust [14], DeepSight [59], Back-
doorIndicator [42], FreqFed [30], FedREDefense [69]) and three
prevention-based methods (such as Median [70], Trimmed mean
(TrMean) [70], and Krum [9]). Refer to Appendix A.3 for compre-
hensive details of these defenses.

5.1.4 Non-IID setting. FL is characterized by the non-independent
and identically distributed (Non-IID) nature of training data across
clients. To simulate this, we follow the approach from [24]. In a
dataset with 𝑀 classes, clients are divided into 𝑀 groups. Each
training sample with label 𝑔 is assigned to group 𝑔 with probability
𝑞 and to other groups with a probability of 1−𝑞

𝑀−1 . The parameter 𝑞
determines the degree of Non-IID distribution; when 𝑞 = 1

𝑀
, the

data is IID, otherwise, it is Non-IID. For CIFAR-10, MNIST, STL-
10, and Tiny-ImageNet, we set 𝑞 = 0.5, while FEMNIST remains
unchanged due to its inherently Non-IID distribution.

5.1.5 Evaluation metrics. We evaluate using five metrics: three for
detection—detection accuracy (DACC), false positive rate (FPR), and
false negative rate (FNR)—and two for the final globalmodel—testing
accuracy (TACC) and attack success rate (ASR). For detection-based
methods, we assess both detection performance and final model
accuracy, while for prevention-based methods, we focus solely on
final model accuracy. Detection methods, including baselines and
our SafeFL, identify malicious clients during each training round,
with results averaged over all rounds. It is important to note that
we detect malicious clients in every round. When clients are iden-
tified as malicious, the server ignores their local models for that
particular round, rather than permanently removing them from
the system. This approach is taken because malicious clients may
choose to attack in certain rounds and refrain from attacking in

others. Permanently removing clients upon detection could result
in the exclusion of some benign clients.

a) Detection accuracy (DACC): DACC measures the percentage
of clients correctly classified, ensuring benign clients are identified
as benign and malicious clients are recognized as malicious.

b) False positive rate (FPR): FPR represents the ratio of benign
clients incorrectly predicted as malicious.

c) False negative rate (FNR): FNR denotes the proportion of
malicious clients erroneously classified as benign.

d) Testing accuracy (TACC): TACC represents the proportion of
test samples accurately predicted by the final global model.

e) Attack success rate (ASR): ASR represents the proportion
of targeted test samples that are classified into the specific label
designated by the attacker.

Higher DACC indicates stronger detection performance, while
lower FPR and FNR indicate better detection capabilities. For all
defenses, higher TACC and lower ASR reflect a more robust model.

5.1.6 Parameter settings. By default, our experiments involve 100
clients for CIFAR-10, MNIST, and STL-10 datasets, 300 clients for
FEMNIST, and 400 clients for Tiny-ImageNet. In the default setup,
30% of clients are considered malicious. For the MNIST and FEM-
NIST datasets, we have employed a four-layer Convolutional neural
network (CNN), as detailed in Table 8 in Appendix, as the model
architecture. In the case of CIFAR-10, STL-10 and Tiny-ImageNet
datasets, we have adopted the widely recognized ResNet-20 ar-
chitecture [33] as the architecture. The batch size is set as 64 for
CIFAR-10, MNIST, FEMNIST, and Tiny-ImageNet datasets, and 32
for the STL-10 dataset. The total training rounds are set at 1500
for CIFAR-10, 1000 for STL-10, MNIST, and FEMNIST datasets, and
2000 for Tiny-ImageNet. In CIFAR-10 and Tiny-ImageNet, the initial
learning rate is 0.15 for the first 1000 training rounds, subsequently
reduced by a factor of 0.5 every 250 rounds thereafter. For STL-10,
MNIST, and FEMNIST, the learning rate is initially set to 0.10 for
the first 500 rounds and then reduced by a factor of 0.5 every 250
rounds after that. By default, we assume that all clients participate
in each training round (i.e., a selection rate of 100%). We consider
the worst-case setting where the attacker performs attacks in every
training round.

For our SafeFL, we use K-means clustering algorithm [32] when
generating the synthetic data, and we use the Mean-shift clustering
algorithm [19] to group the losses in SafeFL-CL. The global model
trajectory length (𝜖) for the synthetic dataset is set to 25 for MNIST,
CIFAR-10, and FEMNIST, and 30 for STL-10 and Tiny-ImageNet.
The parameter 𝛾 is consistently set to 0.1 across all datasets during
the synthetic dataset generation. The value of Ψ is configured as
5000 for CIFAR-10, STL-10, and MNIST, 8500 for FEMNIST, and
10,000 for Tiny-ImageNet. Following [57], the server uses the same
network 𝑓 to generate the synthetic dataset as the clients use for
local training. Furthermore, the Δ is fixed at 15 for all datasets. For
each dataset, the synthetic dataset size is set to 100. In our SafeFL,
once the server identifies the malicious clients, it aggregates the
remaining local models using the FedAvg method, meaning the
aggregation rule AR in SafeFL is configured as FedAvg.
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Table 1: Detection performance of various detection-based methods is assessed using DACC (↑), FPR (↓), and FNR (↓) metrics.
Here, ↑ denotes better detection performance with higher values, and ↓ denotes better performance with lower values.

Attack Defense CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNet
DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR

No attack

FLAME 0.57 NA NA 0.57 NA NA 0.61 NA NA 0.65 NA NA 0.56 NA NA
FLDetector 0.65 NA NA 0.52 NA NA 0.63 NA NA 0.59 NA NA 0.68 NA NA
FLTrust 0.82 NA NA 0.77 NA NA 0.89 NA NA 0.75 NA NA 0.83 NA NA

DeepSight 1.00 NA NA 0.97 NA NA 0.93 NA NA 0.92 NA NA 0.98 NA NA
BackdoorIndicator 0.95 NA NA 0.93 NA NA 0.97 NA NA 0.92 NA NA 0.86 NA NA

FreqFed 0.81 NA NA 0.84 NA NA 0.88 NA NA 0.82 NA NA 0.89 NA NA
FedREDefense 0.78 NA NA 0.93 NA NA 0.91 NA NA 0.76 NA NA 0.74 NA NA
SafeFL-ML 0.94 NA NA 0.96 NA NA 0.92 NA NA 0.99 NA NA 0.95 NA NA
SafeFL-CL 1.00 NA NA 1.00 NA NA 1.00 NA NA 0.99 NA NA 0.98 NA NA

Trim attack

FLAME 0.78 0.09 0.28 0.79 0.09 0.26 0.77 0.16 0.26 0.78 0.09 0.28 0.77 0.20 0.24
FLDetector 0.96 0.02 0.05 0.99 0.00 0.01 0.93 0.03 0.09 0.79 0.09 0.26 0.83 0.07 0.21
FLTrust 0.85 0.16 0.15 0.85 0.06 0.19 0.81 0.03 0.26 0.84 0.20 0.14 0.87 0.29 0.06

DeepSight 0.88 0.12 0.12 0.87 0.04 0.17 0.80 0.12 0.23 0.88 0.05 0.15 0.81 0.19 0.19
BackdoorIndicator 0.73 0.35 0.24 0.71 0.25 0.31 0.74 0.36 0.22 0.73 0.41 0.21 0.67 0.51 0.25

FreqFed 0.89 0.04 0.14 0.84 0.06 0.20 0.88 0.05 0.15 0.89 0.04 0.14 0.82 0.07 0.23
FedREDefense 0.85 0.27 0.10 0.92 0.07 0.08 0.94 0.02 0.08 0.98 0.00 0.03 0.99 0.00 0.01
SafeFL-ML 0.90 0.03 0.13 0.89 0.12 0.11 0.94 0.02 0.08 0.92 0.03 0.10 0.94 0.04 0.07
SafeFL-CL 1.00 0.00 0.00 1.00 0.00 0.00 0.96 0.01 0.05 0.97 0.00 0.04 0.98 0.01 0.02

Scaling attack

FLAME 0.84 0.07 0.20 0.87 0.05 0.16 0.79 0.03 0.29 0.80 0.00 0.29 0.86 0.11 0.15
FLDetector 1.00 0.00 0.00 0.94 0.10 0.04 0.90 0.15 0.08 0.79 0.20 0.21 0.84 0.21 0.14
FLTrust 0.75 0.41 0.18 0.82 0.38 0.09 0.82 0.60 0.00 0.89 0.25 0.05 0.78 0.13 0.26

DeepSight 0.88 0.12 0.12 0.87 0.04 0.17 0.80 0.12 0.23 0.88 0.05 0.15 0.81 0.19 0.19
BackdoorIndicator 0.94 0.00 0.09 0.95 0.03 0.06 1.00 0.00 0.00 0.75 0.16 0.29 0.81 0.15 0.21

FreqFed 0.84 0.17 0.16 0.63 0.50 0.31 0.70 0.24 0.33 0.80 0.11 0.24 0.69 0.62 0.18
FedREDefense 0.87 0.12 0.13 0.87 0.07 0.16 0.94 0.00 0.09 0.79 0.14 0.24 0.74 0.33 0.23
SafeFL-ML 0.91 0.03 0.12 0.97 0.00 0.04 1.00 0.00 0.00 0.97 0.00 0.04 0.93 0.12 0.05
SafeFL-CL 1.00 0.00 0.00 0.94 0.07 0.06 0.98 0.00 0.03 1.00 0.00 0.00 0.94 0.10 0.04

DBA attack

FLAME 0.82 0.07 0.23 0.87 0.03 0.17 0.84 0.07 0.20 0.90 0.15 0.08 0.87 0.01 0.18
FLDetector 0.89 0.15 0.09 0.90 0.10 0.10 0.91 0.04 0.11 0.79 0.12 0.25 0.87 0.11 0.14
FLTrust 0.80 0.21 0.20 0.79 0.19 0.22 0.78 0.22 0.22 0.81 0.30 0.14 0.79 0.25 0.19

DeepSight 0.88 0.00 0.17 0.90 0.03 0.13 0.94 0.03 0.07 0.86 0.15 0.14 0.87 0.12 0.13
BackdoorIndicator 1.00 0.00 0.00 0.97 0.04 0.03 0.96 0.04 0.04 0.89 0.07 0.13 0.88 0.16 0.10

FreqFed 0.89 0.04 0.14 0.78 0.17 0.24 0.91 0.00 0.13 1.00 0.00 0.00 0.85 0.10 0.17
FedREDefense 0.75 0.23 0.26 0.95 0.07 0.04 0.94 0.11 0.04 0.76 0.31 0.21 0.84 0.15 0.16
SafeFL-ML 0.94 0.11 0.04 0.99 0.00 0.01 0.96 0.03 0.04 1.00 0.00 0.00 0.98 0.00 0.03
SafeFL-CL 1.00 0.00 0.00 0.98 0.03 0.02 0.99 0.00 0.01 1.00 0.00 0.00 1.00 0.00 0.00

Trim+DBA attack

FLAME 0.81 0.04 0.25 0.84 0.10 0.19 0.79 0.07 0.27 0.90 0.10 0.10 0.86 0.04 0.18
FLDetector 0.87 0.33 0.04 0.91 0.13 0.07 0.89 0.15 0.09 0.70 1.00 0.00 0.84 0.05 0.21
FLTrust 0.88 0.15 0.11 0.80 0.13 0.23 0.76 0.39 0.18 0.71 0.22 0.32 0.89 0.25 0.05

DeepSight 0.75 0.45 0.16 0.80 0.15 0.22 0.74 0.29 0.25 0.82 0.08 0.22 0.86 0.23 0.10
BackdoorIndicator 0.78 0.39 0.15 0.81 0.04 0.25 0.77 0.19 0.25 0.80 0.20 0.20 0.85 0.15 0.15

FreqFed 0.80 0.15 0.22 0.73 0.14 0.33 0.81 0.11 0.22 0.79 0.29 0.18 0.77 0.18 0.25
FedREDefense 0.76 0.27 0.23 0.85 0.13 0.16 0.96 0.00 0.06 0.77 0.28 0.21 0.84 0.12 0.18
SafeFL-ML 0.91 0.07 0.10 0.95 0.00 0.07 1.00 0.00 0.00 0.94 0.07 0.06 1.00 0.00 0.00
SafeFL-CL 0.96 0.00 0.06 1.00 0.00 0.00 0.98 0.00 0.03 1.00 0.00 0.00 0.99 0.00 0.01

Scaling+DBA attack

FLAME 0.89 0.00 0.16 0.84 0.07 0.20 0.85 0.04 0.20 0.86 0.04 0.18 0.89 0.10 0.11
FLDetector 0.69 0.34 0.30 0.70 0.19 0.35 0.88 0.26 0.06 0.75 0.51 0.14 0.83 0.04 0.23
FLTrust 0.76 0.29 0.22 0.81 0.35 0.12 0.75 0.22 0.26 0.92 0.09 0.08 0.79 0.15 0.24

DeepSight 0.86 0.07 0.17 0.89 0.10 0.11 0.90 0.16 0.07 0.90 0.00 0.14 0.91 0.15 0.06
BackdoorIndicator 0.94 0.07 0.06 0.99 0.00 0.01 0.96 0.03 0.04 0.85 0.12 0.16 0.79 0.17 0.23

FreqFed 0.84 0.13 0.17 0.87 0.22 0.09 0.79 0.05 0.28 0.86 0.15 0.14 0.91 0.18 0.05
FedREDefense 0.85 0.14 0.15 0.97 0.00 0.04 0.95 0.00 0.07 0.94 0.06 0.06 0.79 0.25 0.19
SafeFL-ML 0.95 0.04 0.05 0.97 0.00 0.04 0.99 0.00 0.01 0.92 0.00 0.11 0.87 0.15 0.12
SafeFL-CL 0.98 0.00 0.03 1.00 0.00 0.00 1.00 0.00 0.00 0.96 0.03 0.04 0.99 0.00 0.01

Adaptive attack

FLAME 0.77 0.34 0.18 0.75 0.18 0.28 0.70 0.23 0.33 0.80 0.19 0.20 0.77 0.28 0.21
FLDetector 0.85 0.20 0.13 0.78 0.26 0.20 0.83 0.16 0.17 0.82 0.16 0.19 0.75 0.33 0.22
FLTrust 0.70 0.37 0.27 0.70 0.40 0.26 0.75 0.47 0.16 0.79 0.25 0.19 0.71 0.27 0.30

DeepSight 0.77 0.29 0.20 0.75 0.27 0.24 0.72 0.28 0.28 0.75 0.29 0.23 0.81 0.19 0.19
BackdoorIndicator 0.71 0.45 0.22 0.89 0.14 0.10 0.80 0.23 0.19 0.67 0.57 0.23 0.75 0.29 0.23

FreqFed 0.82 0.27 0.14 0.87 0.25 0.08 0.73 0.10 0.34 0.80 0.25 0.18 0.77 0.30 0.20
FedREDefense 0.85 0.10 0.17 0.95 0.00 0.07 0.79 0.30 0.17 0.75 0.20 0.27 0.70 0.23 0.33
SafeFL-ML 0.89 0.20 0.07 0.94 0.07 0.06 0.98 0.03 0.02 0.92 0.10 0.07 0.93 0.13 0.04
SafeFL-CL 0.95 0.03 0.06 0.97 0.00 0.04 0.94 0.00 0.09 0.96 0.03 0.04 0.95 0.00 0.07

5.2 Experimental results

SafeFL is effective: In Table 1, we present the detection perfor-
mance of our SafeFL and other detection-based approaches. “No
attack” means all clients are benign (there are no malicious clients

in the system). “NA” means not applicable. We observe that our pro-
posed SafeFL method demonstrates remarkable detection efficacy.
First, when all clients are benign, our proposed SafeFL ensures max-
imum preservation of benign clients and prevents their unintended
exclusion. This demonstrates that SafeFL achieves the objective of
“Robust learning integrity”. For instance, on the CIFAR-10 dataset,



ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhihao Dou, Jiaqi Wang, Wei Sun, Zhuqing Liu, and Minghong Fang

Table 2: Performance of final global models obtained through various detection-based methods, where TACC (↑) and ASR (↓)
metrics are considered. ↑ denotes better performance with higher values, and ↓ denotes better performance with lower values.

Attack Defense CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNet
TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack

FLAME 0.72 NA 0.91 NA 0.60 NA 0.47 NA 0.46 NA
FLDetector 0.77 NA 0.96 NA 0.63 NA 0.45 NA 0.41 NA
FLTrust 0.81 NA 0.97 NA 0.67 NA 0.50 NA 0.47 NA

DeepSight 0.75 NA 0.98 NA 0.67 NA 0.50 NA 0.51 NA
BackdoorIndicator 0.81 NA 0.98 NA 0.66 NA 0.49 NA 0.50 NA

FreqFed 0.79 NA 0.98 NA 0.64 NA 0.51 NA 0.47 NA
FedREDefense 0.81 NA 0.97 NA 0.65 NA 0.50 NA 0.47 NA
SafeFL-ML 0.82 NA 0.98 NA 0.67 NA 0.53 NA 0.51 NA
SafeFL-CL 0.84 NA 0.98 NA 0.68 NA 0.54 NA 0.54 NA

Trim attack

FLAME 0.77 NA 0.95 NA 0.59 NA 0.46 NA 0.39 NA
FLDetector 0.79 NA 0.98 NA 0.65 NA 0.46 NA 0.49 NA
FLTrust 0.74 NA 0.96 NA 0.66 NA 0.49 NA 0.46 NA

DeepSight 0.74 NA 0.91 NA 0.62 NA 0.44 NA 0.37 NA
BackdoorIndicator 0.62 NA 0.80 NA 0.54 NA 0.37 NA 0.32 NA

FreqFed 0.75 NA 0.90 NA 0.62 NA 0.46 NA 0.46 NA
FedREDefense 0.69 NA 0.94 NA 0.65 NA 0.38 NA 0.42 NA
SafeFL-ML 0.80 NA 0.97 NA 0.67 NA 0.50 NA 0.50 NA
SafeFL-CL 0.81 NA 0.97 NA 0.67 NA 0.52 NA 0.51 NA

Scaling attack

FLAME 0.79 0.03 0.97 0.02 0.63 0.14 0.46 0.05 0.48 0.29
FLDetector 0.79 0.02 0.98 0.07 0.65 0.07 0.47 0.03 0.50 0.01
FLTrust 0.62 0.45 0.94 0.03 0.65 0.04 0.42 0.45 0.48 0.65

DeepSight 0.76 0.17 0.95 0.09 0.65 0.04 0.46 0.19 0.47 0.15
BackdoorIndicator 0.80 0.03 0.98 0.02 0.66 0.06 0.49 0.26 0.49 0.38

FreqFed 0.69 0.20 0.93 0.08 0.66 0.04 0.47 0.06 0.48 0.10
FedREDefense 0.77 0.14 0.95 0.12 0.67 0.02 0.46 0.25 0.48 0.67
SafeFL-ML 0.81 0.03 0.96 0.04 0.66 0.07 0.50 0.04 0.49 0.05
SafeFL-CL 0.79 0.03 0.98 0.02 0.67 0.06 0.52 0.03 0.52 0.04

DBA attack

FLAME 0.78 0.06 0.95 0.04 0.64 0.07 0.49 0.17 0.50 0.11
FLDetector 0.77 0.16 0.93 0.10 0.67 0.06 0.48 0.28 0.47 0.45
FLTrust 0.78 0.35 0.91 0.15 0.60 0.33 0.49 0.70 0.48 0.27

DeepSight 0.80 0.15 0.96 0.07 0.65 0.02 0.46 0.21 0.49 0.09
BackdoorIndicator 0.80 0.03 0.97 0.11 0.65 0.06 0.48 0.15 0.47 0.33

FreqFed 0.78 0.05 0.97 0.15 0.68 0.03 0.50 0.04 0.47 0.63
FedREDefense 0.70 0.49 0.94 0.08 0.62 0.15 0.48 0.29 0.49 0.17
SafeFL-ML 0.78 0.20 0.98 0.02 0.66 0.04 0.51 0.05 0.50 0.04
SafeFL-CL 0.82 0.05 0.97 0.03 0.67 0.05 0.52 0.04 0.52 0.02

Trim+DBA attack

FLAME 0.79 0.03 0.92 0.05 0.62 0.04 0.46 0.05 0.48 0.05
FLDetector 0.65 0.19 0.89 0.07 0.49 0.19 0.50 0.06 0.52 0.13
FLTrust 0.77 0.20 0.85 0.21 0.49 0.13 0.29 0.39 0.48 0.29

DeepSight 0.49 0.22 0.85 0.19 0.54 0.07 0.48 0.04 0.40 0.15
BackdoorIndicator 0.60 0.07 0.83 0.09 0.50 0.04 0.34 0.21 0.45 0.07

FreqFed 0.76 0.14 0.91 0.06 0.63 0.07 0.39 0.11 0.47 0.57
FedREDefense 0.59 0.27 0.93 0.08 0.67 0.03 0.49 0.12 0.46 0.20
SafeFL-ML 0.79 0.02 0.98 0.07 0.67 0.04 0.47 0.11 0.50 0.05
SafeFL-CL 0.83 0.03 0.98 0.02 0.66 0.01 0.52 0.05 0.53 0.03

Scaling+DBA attack

FLAME 0.80 0.03 0.84 0.04 0.64 0.20 0.49 0.18 0.49 0.03
FLDetector 0.54 0.19 0.70 0.13 0.63 0.06 0.27 0.61 0.47 0.13
FLTrust 0.49 0.20 0.81 0.72 0.49 0.68 0.47 0.18 0.48 0.24

DeepSight 0.80 0.22 0.89 0.04 0.62 0.31 0.50 0.03 0.45 0.22
BackdoorIndicator 0.80 0.07 0.99 0.13 0.62 0.04 0.48 0.16 0.46 0.20

FreqFed 0.78 0.14 0.87 0.39 0.75 0.28 0.42 0.20 0.49 0.28
FedREDefense 0.72 0.27 0.97 0.12 0.67 0.04 0.49 0.12 0.49 0.27
SafeFL-ML 0.80 0.02 0.97 0.17 0.67 0.04 0.51 0.03 0.47 0.23
SafeFL-CL 0.83 0.03 0.98 0.04 0.68 0.02 0.52 0.04 0.52 0.02

Adaptive attack

FLAME 0.59 NA 0.75 NA 0.44 NA 0.32 NA 0.29 NA
FLDetector 0.65 NA 0.80 NA 0.57 NA 0.48 NA 0.29 NA
FLTrust 0.62 NA 0.74 NA 0.37 NA 0.44 NA 0.41 NA

DeepSight 0.62 NA 0.84 NA 0.52 NA 0.39 NA 0.43 NA
BackdoorIndicator 0.48 NA 0.90 NA 0.58 NA 0.38 NA 0.44 NA

FreqFed 0.79 NA 0.93 NA 0.62 NA 0.47 NA 0.42 NA
FedREDefense 0.78 NA 0.90 NA 0.59 NA 0.45 NA 0.42 NA
SafeFL-ML 0.78 NA 0.94 NA 0.62 NA 0.48 NA 0.49 NA
SafeFL-CL 0.80 NA 0.97 NA 0.63 NA 0.50 NA 0.51 NA

under no attack, SafeFL-CL achieves a perfect DACC of 1.00, indi-
cating its capability to maintain high detection accuracy without
attack. SafeFL-ML also can recognize the most benign clients. How-
ever, other detection-based approaches like FLAME and FLDetector
can recognize only half of the benign clients.

Second, in the presence of malicious clients, our proposed SafeFL
effectively detects the majority of them while minimizing false de-
tections of benign clients. For instance, under the hybrid attack
strategy, the Trim+DBA attack poses a significant challenge, yet
SafeFL-CL achieves a robust DACC of 0.96 on CIFAR-10, showcas-
ing its resilience. In contrast, other baselines struggle significantly
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Table 3: The performance of the final global model ob-
tained through various prevention-based methods and our
approach, where TACC (↑) and ASR (↓) metrics are considered.
Here, ↑ denotes better performance with higher values, and
↓ denotes better performance with lower values.

Attack Defense CIFAR-10 MNIST FEMNIST STL-10 Tiny-
ImageNet

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No
attack

Median 0.71 NA 0.96 NA 0.63 NA 0.47 NA 0.45 NA
TrMean 0.70 NA 0.94 NA 0.62 NA 0.49 NA 0.44 NA
Krum 0.65 NA 0.84 NA 0.59 NA 0.44 NA 0.39 NA

SafeFL-ML 0.82 NA 0.98 NA 0.67 NA 0.53 NA 0.51 NA
SafeFL-CL 0.84 NA 0.98 NA 0.68 NA 0.54 NA 0.54 NA

Trim
attack

Median 0.27 NA 0.52 NA 0.35 NA 0.19 NA 0.09 NA
TrMean 0.23 NA 0.44 NA 0.29 NA 0.15 NA 0.15 NA
Krum 0.18 NA 0.60 NA 0.39 NA 0.11 NA 0.17 NA

SafeFL-ML 0.80 NA 0.97 NA 0.67 NA 0.50 NA 0.50 NA
SafeFL-CL 0.81 NA 0.97 NA 0.67 NA 0.52 NA 0.51 NA

Scaling
attack

Median 0.67 0.75 0.91 0.82 0.61 0.52 0.44 0.72 0.44 0.49
TrMean 0.65 0.81 0.90 0.75 0.61 0.68 0.42 0.58 0.41 0.65
Krum 0.67 0.08 0.79 0.07 0.62 0.09 0.45 0.16 0.37 0.16

SafeFL-ML 0.81 0.03 0.96 0.04 0.66 0.07 0.50 0.04 0.49 0.05
SafeFL-CL 0.79 0.03 0.98 0.02 0.67 0.06 0.52 0.03 0.52 0.04

DBA
attack

Median 0.64 0.24 0.94 0.29 0.64 0.32 0.41 0.29 0.45 0.23
TrMean 0.66 0.24 0.93 0.34 0.58 0.27 0.45 0.15 0.41 0.24
Krum 0.66 0.16 0.90 0.11 0.64 0.05 0.46 0.07 0.44 0.26

SafeFL-ML 0.78 0.20 0.98 0.02 0.66 0.04 0.51 0.05 0.50 0.03
SafeFL-CL 0.82 0.05 0.97 0.03 0.67 0.05 0.52 0.04 0.52 0.00

Trim+DBA
attack

Median 0.22 0.14 0.65 0.27 0.25 0.17 0.22 0.14 0.19 0.07
TrMean 0.16 0.18 0.62 0.18 0.21 0.19 0.19 0.15 0.21 0.11
Krum 0.09 0.03 0.67 0.06 0.16 0.05 0.19 0.06 0.11 0.06

SafeFL-ML 0.79 0.02 0.98 0.07 0.67 0.04 0.47 0.11 0.50 0.05
SafeFL-CL 0.83 0.03 0.98 0.02 0.66 0.01 0.52 0.05 0.53 0.00

Scaling+DBA
attack

Median 0.64 0.57 0.90 0.77 0.64 0.38 0.46 0.52 0.45 0.43
TrMean 0.65 0.67 0.93 0.77 0.65 0.58 0.48 0.48 0.45 0.55
Krum 0.66 0.09 0.82 0.04 0.66 0.07 0.41 0.09 0.42 0.03

SafeFL-ML 0.80 0.02 0.97 0.17 0.67 0.04 0.51 0.03 0.47 0.23
SafeFL-CL 0.83 0.03 0.98 0.04 0.68 0.02 0.52 0.04 0.52 0.02

Adaptive
attack

Median 0.21 NA 0.51 NA 0.23 NA 0.25 NA 0.25 NA
TrMean 0.14 NA 0.49 NA 0.27 NA 0.29 NA 0.28 NA
Krum 0.11 NA 0.42 NA 0.13 NA 0.07 NA 0.06 NA

SafeFL-ML 0.78 NA 0.94 NA 0.62 NA 0.48 NA 0.49 NA
SafeFL-CL 0.80 NA 0.97 NA 0.63 NA 0.50 NA 0.51 NA

under this attack. On CIFAR-10, their DACC scores are limited
to 0.75, 0.78, and 0.76, with corresponding FPR of 0.45, 0.39, and
0.27 for DeepSight, BackdoorIndicator, and FedREDefense, respec-
tively, indicating a tendency to misclassify many benign clients as
malicious. Similarly, the Scaling+DBA attack continues to mislead
FLDetector, FLTrust, and FreqFed, resulting in DACC values no
larger than 0.87 on both CIFAR-10 and MNIST datasets. In contrast,
SafeFL-ML demonstrates robust performance, achieving DACC val-
ues of 0.95 and 0.97 on CIFAR-10 and MNIST, respectively, closely
approaching the DACC values of 0.98 and 1.00 achieved by SafeFL-
CL. In addition, other baseline methods fail to detect malicious
clients effectively when the FL training process is applied to STL-10
and Tiny-ImageNet under the Scaling+DBA attack.

Table 2 presents the TACC and ASR of the final global model ob-
tained using various detection methods. It is important to note that
the ASR metric is relevant only for targeted attacks, including the
Scaling attack, DBA attack, Trim+DBA attack, and Scaling+DBA
attack. From the table, we observe that SafeFL-CL effectively de-
fends against diverse attack types, achieving high DACC while
maintaining elevated TACC and low ASR across multiple datasets.
In contrast, other prevention-based methods fail to sustain high
task accuracy. For example, on the MNIST dataset, the TACC of
DeepSight under no attack is 0.98 but drops significantly to 0.84

under the Adaptive attack. This indicates that the global model
trained using DeepSight lacks accuracy. Conversely, global models
trained with SafeFL under different attack scenarios remain almost
as accurate as those trained in the absence of attacks. For example,
on the CIFAR-10 dataset, the TACC of SafeFL-ML remains consis-
tently at 0.82 under no attack, and it can be maintained at 0.80 under
the strong Trim attack. Table 3 highlights the TACC and ASR of the
final global models produced by various prevention-based defense
mechanisms. These defenses are generally ineffective in mitigat-
ing the impact of malicious clients. For instance, with the TrMean
method on CIFAR-10, the TACC drops from 0.70 in the absence
of attacks to 0.23 under the Trim attack, rendering the resulting
global model highly inaccurate. In summary, compared to other
detection-based and prevention-based methods, the final global
model trained using our SafeFL demonstrates superior accuracy,
thereby achieving the “Effective Threat Mitigation” objective.

Figures 3–7 in Appendix show the loss values of local models
for benign and malicious clients, evaluated on the synthetic dataset
using SafeFL-ML, under six attacks across five datasets at the 750th
training round. Similarly, Figures 8–12 in Appendix present the
corresponding results for SafeFL-CL under the same settings. Note
that, by default, our experimental setup assumes that the first 30% of
clients are malicious. As shown in Figures 3–12, the loss values of
malicious local models are significantly higher than those of benign
models. This observation reinforces the motivation behind our
method: malicious local models often exhibit distinct loss patterns
compared to benign ones, making their detection feasible.

Impact of the fraction of malicious clients: Table 4a presents
the DACC of various detection-based methods as the fraction of
malicious clients ranges from 0% to 40%, considering the Trim
attack, Scaling attack, DBA attack, and the CIFAR-10 dataset. The
results for Trim+DBA attack, Scaling+DBA attack, and Adaptive
attack are shown in Table 10a in Appendix. Note that for all the
ablation study experiments, unless otherwise specified, only the
DACC values are reported. As illustrated in Table 4a and Table 10a,
FLAME exhibits substantial variations in response to changes in the
fraction of malicious clients. On the other hand, as the proportion of
malicious clients increases from 0% to 40%, the DACC of SafeFL-ML
remains consistently at least 0.90 under both Trim and Trim+DBA.
Similarly, SafeFL-CL consistently achieves a DACC of at least 0.95
across all attack scenarios, demonstrating superior stability and
performance compared to the other methods.

Impact of the total number of clients: Table 4b shows the
DACC under Trim attack, Scaling attack, DBA attack for differ-
ent detection-based methods with different total numbers of clients.
The results of the Trim+DBA attack, Scaling+DBA attack, and Adap-
tive attack are presented in Table 10b in the Appendix. The fraction
of malicious clients is still set to 30% by default. As the number of
total clients increases, all method performance generally remains
stable. For our SafeFL-CL under Trim attack, which achieves its
highest DACC at 60 and 100 total clients. Additionally, SafeFL-CL
maintains a significant advantage, with almost all of its DACC val-
ues outperforming those of the other methods. However, FLAME
and FLTrust consistently exhibit a DACC no larger than 0.86 under
the Trim attack, regardless of the total number of clients.
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Table 4: The impact of the malicious client ratio, total client number, and Non-IID degree is analyzed using the CIFAR-10 dataset.
DACC values are reported for the Trim attack, Scaling attack, and DBA attack. The results of Trim+DBA attack, Scaling+DBA
attack, and Adaptive attack are shown in Table 10 in Appendix. “BDIndicator” refers to the “BackdoorIndicator” method.
(a) Impact of fraction of malicious clients.

Attack Defense Malicious client ratio
0% 10% 20% 30% 40%

Trim
attack

FLAME 0.57 0.62 0.73 0.78 0.81
FLDetector 0.65 0.96 0.95 0.96 0.94
FLTrust 0.80 0.90 0.91 0.85 0.87

DeepSight 1.00 0.89 0.88 0.88 0.87
BDIndicator 0.95 0.73 0.75 0.73 0.76
FreqFed 0.81 0.84 0.86 0.89 0.87

FedREDefense 0.78 0.85 0.89 0.85 0.83
SafeFL-ML 0.94 0.94 0.94 0.90 0.97
SafeFL-CL 1.00 0.99 1.00 1.00 0.97

Scaling
attack

FLAME 0.57 0.69 0.78 0.84 0.89
FLDetector 0.65 0.96 0.98 1.00 0.75
FLTrust 0.80 0.72 0.70 0.75 0.82

DeepSight 1.00 0.82 0.85 0.88 0.92
BDIndicator 0.95 0.95 0.97 0.94 0.93
FreqFed 0.81 0.84 0.86 0.84 0.87

FedREDefense 0.78 0.84 0.87 0.87 0.86
SafeFL-ML 0.94 0.97 0.94 0.91 0.99
SafeFL-CL 1.00 0.99 1.00 1.00 1.00

DBA
attack

FLAME 0.57 0.70 0.74 0.82 0.84
FLDetector 0.65 0.91 0.88 0.89 0.92
FLTrust 0.80 0.84 0.87 0.80 0.82

DeepSight 1.00 0.85 0.87 0.88 0.90
BDIndicator 0.95 0.95 0.94 1.00 0.97
FreqFed 0.81 0.87 0.89 0.89 0.89

FedREDefense 0.78 0.72 0.77 0.75 0.75
SafeFL-ML 0.94 0.93 0.97 0.94 0.95
SafeFL-CL 1.00 0.97 0.97 1.00 1.00

(b) Impact of total number of clients.

Attack Defense Total client number
60 80 100 120 150

Trim
attack

FLAME 0.74 0.79 0.78 0.82 0.83
FLDetector 0.90 0.95 0.96 0.97 0.94
FLTrust 0.79 0.84 0.85 0.85 0.86

DeepSight 0.85 0.87 0.88 0.87 0.85
BDIndicator 0.71 0.76 0.73 0.74 0.73
FreqFed 0.85 0.85 0.89 0.87 0.89

FedREDefense 0.88 0.88 0.85 0.86 0.87
SafeFL-ML 0.94 0.96 0.90 0.94 0.92
SafeFL-CL 1.00 0.97 1.00 0.95 0.99

Scaling
attack

FLAME 0.83 0.82 0.84 0.80 0.84
FLDetector 0.90 0.93 1.00 0.95 0.92
FLTrust 0.74 0.75 0.75 0.77 0.74

DeepSight 0.87 0.85 0.88 0.86 0.83
BDIndicator 0.95 0.92 0.94 0.97 0.90
FreqFed 0.85 0.86 0.84 0.84 0.85

FedREDefense 0.84 0.85 0.87 0.87 0.83
SafeFL-ML 0.94 0.97 0.94 0.91 0.99
SafeFL-CL 1.00 0.99 1.00 1.00 1.00

DBA
attack

FLAME 0.83 0.85 0.82 0.81 0.84
FLDetector 0.87 0.85 0.89 0.88 0.88
FLTrust 0.80 0.81 0.80 0.82 0.76

DeepSight 0.83 0.84 0.88 0.87 0.84
BDIndicator 0.97 0.92 1.00 0.94 0.95
FreqFed 0.85 0.86 0.89 0.89 0.84

FedREDefense 0.75 0.77 0.75 0.77 0.76
SafeFL-ML 0.95 0.94 0.94 0.97 0.94
SafeFL-CL 1.00 0.97 1.00 0.99 0.98

(c) Impact of degree of Non-IID.

Attack Defense Non-IID degree
0.1 0.3 0.5 0.7 0.9

Trim
attack

FLAME 0.71 0.76 0.78 0.79 0.77
FLDetector 0.89 0.87 0.96 0.98 1.00
FLTrust 0.81 0.85 0.85 0.82 0.89

DeepSight 0.82 0.84 0.88 0.87 0.94
BDIndicator 0.71 0.69 0.73 0.77 0.79
FreqFed 0.80 0.82 0.89 0.89 0.89

FedREDefense 0.89 0.83 0.85 0.78 0.86
SafeFL-ML 0.93 0.91 0.90 0.93 0.95
SafeFL-CL 0.95 0.99 1.00 0.97 0.97

Scaling
attack

FLAME 0.82 0.84 0.84 0.81 0.90
FLDetector 0.86 0.95 1.00 0.97 0.92
FLTrust 0.77 0.76 0.75 0.75 0.78

DeepSight 0.72 0.75 0.88 0.82 0.84
BDIndicator 0.88 0.92 0.94 0.96 0.86
FreqFed 0.80 0.85 0.87 0.89 0.89

FedREDefense 0.89 0.83 0.91 0.78 0.86
SafeFL-ML 0.91 0.93 0.90 0.95 0.95
SafeFL-CL 0.93 0.94 1.00 1.00 1.00

DBA
attack

FLAME 0.75 0.79 0.82 0.84 0.83
FLDetector 0.82 0.85 0.89 0.90 0.92
FLTrust 0.82 0.83 0.80 0.81 0.82

DeepSight 0.84 0.85 0.88 0.87 0.94
BDIndicator 0.95 0.97 1.00 0.97 0.98
FreqFed 0.86 0.88 0.89 0.89 0.91

FedREDefense 0.72 0.77 0.75 0.76 0.79
SafeFL-ML 0.91 0.91 0.94 0.97 0.99
SafeFL-CL 0.93 0.95 1.00 1.00 0.98

Impact of degree of Non-IID: Table 4c presents the DACC results
for different detection-based defense methods across Non-IID levels
ranging from 0.1 to 0.9, consider the Trim attack, Scaling attack,
DBA attack. Table 10c in the Appendix presents the results for
the Trim+DBA attack, Scaling+DBA attack, and Adaptive attack.
According to Table 4c and Table 10c, FLDetector is significantly
affected by the degree of Non-IID. The reason is that when the
clients’ training data are highly heterogeneous, the server in FLDe-
tector faces difficulty in predicting clients’ local models using their
historical information. Regardless of the degree of Non-IID, SafeFL-
CL consistently maintains the highest DACC among all methods.
Under the Trim attack, when the Non-IID value is 0.1, SafeFL-CL
outperforms FLAME by 0.24.

Impact of the selection rate: Under our default configuration, all
clients are assumed to participate in every training round. In this
section, we explore a more practical scenario in which the server
randomly selects only a fraction of clients to engage in each round.
In this setting, a malicious client can carry out an attack only if it is
selected. Table 11 in Appendix presents the detection performance
of various methods on the CIFAR-10 dataset under different client
selection rates. As shown, our proposed detection method remains
effective at identifying malicious clients even when only a subset
of clients participate in each round.

Impact of trajectory length: Figure 1 illustrates the impact of tra-
jectory length, defined as the number of global models used to gen-
erate synthetic data or the value of 𝜖 , on the detection of malicious
clients in SafeFL. Figure 1 reveals a positive correlation between
trajectory length and DACC for both SafeFL-ML and SafeFL-CL. A
longer trajectory length consistently enhances performance and

improves DACC for SafeFL. However, when the trajectory length
reaches 25, the improvement in DACC begins to plateau.

Impact of number of synthetic data: Figure 2 depicts the effect
of the number of synthetic data on SafeFL’s detection performance.
The number of synthetic data refers to the total number of examples
in the synthetic dataset. Similar to the effect of trajectory length,
there is a positive correlation between the amount of synthetic
data and DACC. Notably, a larger volume of synthetic data more
significantly enhances SafeFL-CL’s DACC. For instance, under the
Trim+DBA attack, increasing the synthetic data from 10 to 150
raises SafeFL-CL’s DACC from 0.72 to 0.98, whereas SafeFL-ML’s
DACC increases from 0.63 to 0.92.

Different variants of SafeFL-CL: SafeFL-CL performs clustering
twice, as indicated in Line 15 and Line 30 of Algorithm 2. We refer
to these two clustering instances as A & B, where A corresponds
to the clustering algorithm used in Line 15, and B pertains to the
clustering algorithm applied to the losses (see Line 30). Table 5
examines the performance of various variants of our SafeFL-CL. In
the different variants, we apply various clustering algorithms, such
as K-means [32], Mean-shift [19] or DBSCAN [11], to both A and B.
As shown in Table 5, the “Mean-shift & Mean-shift” variant exhibits
poor detection performance against the Trim attack, whereas the
“Kmeans &Mean-shift” variant (which corresponds to our proposed
SafeFL-CL) achieves the best detection results.

6 Discussion and Limitations

More extreme Non-IID distribution: This section examines a
more extreme Non-IID scenario, as detailed in [48]. The training
data distribution among clients is purely label-based, with each
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Figure 1: Impact of length of trajectory, where CIFAR-10 dataset is considered.
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Figure 2: Impact of the number of synthetic data, where CIFAR-10 dataset is considered.

Table 5: Different variants of SafeFL-CL on CIFAR-10, with DACC values reported.
K-means & K-means Mean-shift & Mean-shift K-means & DBSCAN K-means & Mean-shift (SafeFL-CL)

Trim attack 0.98 0.79 0.70 1.00
Scaling attack 0.79 0.83 0.87 1.00
DBA attack 0.94 0.72 0.75 1.00

Trim+DBA attack 0.92 0.75 0.72 0.96
Scaling+DBA attack 0.83 0.75 0.80 0.98
Adaptive attack 0.92 0.79 0.72 0.95

Table 6: Detection results on CIFAR-10, with each client having three classes of training data and DACC values reported.
Attack FLAME FLDetector FLTrust DeepSight BackdoorIndicator FreqFed FedREDefense SafeFL-ML SafeFL-CL

Trim attack 0.75 0.92 0.85 0.78 0.65 0.84 0.82 0.90 0.97
Scaling attack 0.80 0.84 0.82 0.87 0.89 0.87 0.78 0.88 0.96
DBA attack 0.81 0.72 0.79 0.85 0.74 0.72 0.84 0.93 0.99

Trim+DBA attack 0.79 0.85 0.73 0.79 0.72 0.79 0.81 0.87 0.96
Scaling+DBA attack 0.80 0.78 0.72 0.82 0.79 0.80 0.81 0.91 0.99
Adaptive attack 0.67 0.74 0.70 0.77 0.72 0.77 0.80 0.89 0.92

Table 7: DACC of SafeFL with different aggregation rules on
CIFAR-10.

Attack Defense Median TrMean Krum

Trim attack SafeFL-ML 0.95 0.96 0.93
SafeFL-CL 1.00 0.99 0.98

Scaling attack SafeFL-ML 0.97 0.93 0.88
SafeFL-CL 1.00 0.99 0.98

DBA attack SafeFL-ML 0.92 0.92 0.95
SafeFL-CL 0.94 1.00 1.00

Trim+DBA attack SafeFL-ML 0.87 0.91 0.91
SafeFL-CL 1.00 0.98 0.98

Scaling+DBA attack SafeFL-ML 0.92 0.94 0.92
SafeFL-CL 0.98 0.96 0.98

Adaptive attack SafeFL-ML 0.88 0.87 0.85
SafeFL-CL 0.91 0.90 0.94

client receiving data from only three specific classes. For exam-
ple, Client A’s training dataset consists solely of labels from 0 to
2, whereas Client B’s dataset is restricted to labels from 3 to 5. Un-
der such condition, detection accuracy results of various methods
are shown in Table 6. Our method still significantly outperforms
existing approaches, demonstrating the effectiveness of our SafeFL
under extreme Non-IID setting.
More untargeted attacks: In this section, we use extra sophisti-
cated untargeted attacks to further examine our method’s detection
ability.We implement the experiments on CIFAR-10. Table 12 shows
the detection results of different methods for the Label flipping at-
tack [62], and “A little is enough” (LIE) attack [6]. Note that in
the Label Flipping attack, the attacker alters the labels of train-
ing examples on malicious clients. In the LIE attack, the attacker
strategically introduces small perturbations to the local models of
malicious clients to avoid detection. Table 12 in Appendix shows

that our SafeFL, particularly SafeFL-CL, achieves a perfect DACC of
1.00 against both advanced attacks. In contrast, BackdoorIndicator
performs poorly under the Label flipping attack.

More backdoor attacks: To further assess the robustness of our
proposed detection methods, we evaluate them against three ad-
vanced backdoor attacks: Neurotoxin attack [75], Irreversible back-
door attack [53], and Clean-label backdoor attack [72]. Table 13
in Appendix reports the detection performance of our methods
alongside all baseline detection approaches across five datasets,
while Table 14 in Appendix presents the performance of the final
global models trained using each detection method. As shown in
both tables, baseline methods struggle to effectively identify and
mitigate these sophisticated attacks. For example, FLTrust yields
a high false positive rate (FPR) of 0.49 under the Irreversible back-
door attack on CIFAR-10 dataset. In contrast, our methods maintain
strong detection capabilities and remain robust even in the presence
of these advanced threats.

More evaluation metrics: To provide a more comprehensive as-
sessment of global model performance, we also incorporate three
additional metrics: precision, recall, and F1-score. For these metrics,
higher values indicate better detection effectiveness. Table 15 in
Appendix presents the precision, recall, and F1-score of various
detection methods under six standard attacks (Trim, Scaling, DBA,
Trim+DBA, Scaling+DBA, and Adaptive attacks), while Table 16 in
Appendix shows the corresponding results for three advanced back-
door attacks (Neurotoxin, Irreversible backdoor, and Clean-label
backdoor attacks). As shown in both tables, our proposed detection
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methods consistently achieve high precision, recall, and F1-scores
across different attacks and datasets.
Computational overhead and storage usage of differentmeth-
ods: In our methods, the server constructs a synthetic dataset based
on the trajectory of global models accumulated over multiple train-
ing rounds. While this step enhances detection capabilities, it may
introduce additional computational and storage overhead. Figure 13
in Appendix presents the total running time across all datasets un-
der the Trim attack, with similar patterns observed for other attack
types. For our methods, the reported runtime includes the time
required for synthetic data generation, clustering, and loss-based
filtering. As shown, our methods incur only a modest increase in
computational cost compared to FedAvg, whereas FedREDefense
exhibits the highest computational overhead among all methods.
Table 17 in Appendix summarizes the additional server-side stor-
age requirements for FLDetector, FedREDefense, SafeFL-ML, and
SafeFL-CL. Note that FedAvg and other baseline detection methods
do not require any extra server storage. As shown in Table 17, our
methods require no more than 22.40 GB of additional storage, which
is considered reasonable for high-capacity servers such as those
commonly deployed in modern data centers.
SafeFL uses different aggregation rules: By default, our pro-
posed SafeFL utilizes the FedAvg rule to aggregate the detected
benign local models. As observed in the experimental results in
Section 5.2, using the FedAvg rule is sufficient, as SafeFL effectively
detects the majority of malicious clients. In this section, we exam-
ine the scenario where SafeFL employs prevention-based methods
such as Median, TrMean, or Krum to aggregate the detected benign
local models. The results, presented in Table 7, indicate that SafeFL
maintains strong detection performance even when prevention-
based methods are used. For example, when SafeFL-CL applies the
Median method for aggregation and Trim attack is considered, it
achieves a DACC of 1.00.
Discussion on the threat model for the ratio of malicious
clients: Table 4a and Table 10a demonstrate that our proposed
SafeFL framework effectively detects malicious clients even when
40% of the clients are compromised. Fractions higher than 40%, such
as 45% or 50%, were not included in our experiments, as such sce-
narios are considered impractical. As highlighted in [61], achieving
such a high proportion of malicious clients is unlikely in real-world
FL environments. The decentralized nature of FL systems makes
it difficult or even impossible for the attacker to control such a
significant fraction of participating clients for malicious activities.
Discussion of biases introduced by the synthetic dataset: In
this section, we examine whether the synthetic dataset generated by
our methods introduces bias into the global model. Ideally, the final
model should perform equitably across groups defined by sensitive
attributes, such as sex. To evaluate fairness, we use two standard
metrics: Equalized odds [31], which measures bias conditioned on
the true label, and Demographic parity [22], which requires pre-
dictions to be independent of the sensitive attribute. Our analysis
is conducted on the CIFAR-10 dataset under two highly Non-IID
scenarios. In Setting I, each client has access to samples from only
three specific classes (note that further reducing this to one or two
classes prevents convergence evenwithout attacks). In Setting II, we
simulate extreme data heterogeneity by setting the Non-IID degree

to 0.1, as suggested in [24]. Since CIFAR-10 lacks predefined sensi-
tive attributes, we define a proxy sensitive attribute by grouping
labels based on parity (odd vs. even). Table 18 in Appendix presents
the Equalized odds and Demographic parity scores of our methods
under various attack conditions on CIFAR-10, with lower values
indicating greater fairness. Detection performance under Setting I
is reported in Table 6, while results under Setting II are provided
in Table 4c and Table 10c. Table 18 reveals two key findings: (1)
Highly Non-IID data induces bias in the global model even without
attacks, consistent with prior work [4, 17] (e.g., FedAvg scores 0.79
in Equalized Odds under Setting I). (2) Our methods maintain simi-
lar fairness to FedAvg in the no-attack case, introducing no extra
bias.
Potential challenges introduced by SafeFL: In our proposed
method, the server collects and stores multiple global models, which
are then utilized to generate the synthetic dataset. This approach
enhances the framework’s ability to identify malicious clients ef-
fectively. However, it also introduces potential privacy concerns, as
the storage and usage of multiple global models may inadvertently
expose sensitive information about the clients’ data. Although ad-
dressing privacy is not the primary focus of this paper, these con-
cerns can be effectively alleviated by leveraging well-established
privacy-preserving techniques. As an example, incorporating dif-
ferential privacy [3] allows for the protection of individual client
data while still supporting the generation of synthetic datasets for
detection purposes. In particular, each client applies differential
privacy by adding noise to its local model before transmitting it to
the server. In our experiments, the noise is sampled from a Gaussian
distribution 𝑁 (0, 𝜚 ), where 𝜚 denotes the noise level. Table 19 in
the Appendix reports the impact of varying noise levels on the
CIFAR-10 dataset, with results measured by DACC and TACC. As
shown in the table, under a non-adversarial setting, excessive noise
can negatively affect the global model’s testing accuracy (TACC),
even when using the FedAvg aggregation rule. For instance, when
the noise level is set to 2, the TACC of FedAvg drops to 0.70, com-
pared to 0.85 in the absence of noise. This highlights a trade-off:
while differential privacy strengthens client data protection, it can
also compromise model performance. Despite the presence of noise,
our detection methods preserve high global model accuracy. In
particular, the TACC values achieved by our methods remain close
to those of the noise-free FedAvg baseline, suggesting that our
methods effectively balances privacy protection and model utility.

7 Conclusion and Future Work
FL is vulnerable to poisoning attacks due to its decentralized na-
ture. Existing detection methods often perform poorly. To address
this, we propose SafeFL, a detection method where the server uses
a synthetic dataset, generated from global model trajectories, to
distinguish between benign and malicious clients. Experiments
confirm its effectiveness. A limitation of SafeFL is potential pri-
vacy concerns from the server’s actions. Future work will focus
on privacy-preserving detection. We also plan to extend SafeFL to
decentralized FL [7, 34], where no trusted central server exists.
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Table 8: The CNN architecture.
Layer Size
Input 28 × 28 × 1

Convolution + ReLU 3 × 3 × 30
Max Pooling 2 × 2

Convolution + ReLU 3 × 3 × 5
Max Pooling 2 × 2

Fully Connected + ReLU 100
Soft 10 (62 for FEMNIST)

A Details of Datasets, Poisoning Attacks,
Compared Defenses

A.1 Details of Datasets
a) CIFAR-10 [38]: The CIFAR-10 dataset is a color image classifica-
tion dataset containing 50,000 training examples and 10,000 testing
examples, each categorized into one of ten classes.

b) MNIST [40]: MNIST dataset contains 10 different classes and
includes 60,000 examples for training and 10,000 for testing.
c) FEMNIST [12]: The FEMNIST dataset, derived from the ex-
tended MNIST dataset, is specifically designed for FL purposes. It
contains a meticulously selected collection of handwritten charac-
ter images, encompassing a diverse range of characters and digits,
totaling 62 distinct classes. This dataset is inherently heterogeneous.
d) STL-10 [20]: The STL-10 dataset comprises 13,000 labeled im-
ages distributed among 10 object classes such as birds, cats, and
trucks. Among these, 5,000 images are allocated for training, while
the remaining 8,000 are reserved for testing.
e) Tiny-ImageNet [21]:Tiny-ImageNet is a subset of the ImageNet
dataset, comprising 100,000 images distributed across 200 classes,
with 500 images per class.

A.2 Details of Poisoning Attacks
a) Trim attack [24]: The Trim attack is an untargeted local model
poisoning attack specifically designed to manipulate the Trimmed-
mean andMedian aggregation rules.We adopt the default parameter
settings outlined in [24] to execute the Trim attack.
b) Scaling attack [5]: For this targeted attack, the attacker dupli-
cates local training instances on malicious clients, adds a trigger,
and assigns a chosen label. Local models are then computed using
the augmented training data. Malicious clients amplify these local
models before sending them to the server.
c) Distributed backdoor (DBA) attack [67]: DBA attack involves
dividing the trigger pattern into four segments. These segments
are then incorporated into the training data of four separate groups
of malicious clients. Each client calculates its own local model and
adjusts it using a scaling factor.
d) Trim+DBA attack: This strategy involves a hybrid attack strat-
egy where various malicious clients employ different methods to
craft their local models. In our experiments, half of the malicious
clients utilized the Trim attack to shape their local models, whereas
the other half implemented the DBA strategy.
e) Scaling+DBA attack: In this hybrid attack, half of the malicious
clients used the Scaling attack to craft their local models, while the
other half employed the DBA attack.
e) Adaptive attack [60]: In the worst-case scenario, the attacker
has complete information about the FL system, including the local
models of all clients and the server’s aggregation method, such as
the SafeFL described in our work. Leveraging this knowledge, the
attacker designs an adaptive attack to disrupt and deceive the FL
process. In our experiments, we implement the Adaptive attack
following the methodology outlined in [60].

A.3 Details of Compared Defenses
a) FLAME [54]: FLAME is a defense strategy against targeted
attacks, including backdoor attacks. It uses clustering to remove
suspected malicious local models, truncates the remaining models
to limit their influence, and adds random noise to the aggregated
model to eliminate backdoors.
b) FLDetector [73]: FLDetector identifies malicious clients by
analyzing the consistency of their local models. It leverages the
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Figure 3: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-ML
with the CIFAR-10 dataset.
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Figure 4: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-ML
with the MNIST dataset.

observation that benign clients follow the FL algorithm and their
local data, while malicious clients deviate by crafting inconsistent
models across training rounds.
c) FLTrust [14]: FLTrust assumes the server has a clean validation
dataset from the same distribution as the clients’ training data.
The server trains a server model on this dataset, and a client’s local
model is deemed benign if it aligns positively with the server model.
d) DeepSight [59]: DeepSight analyzes model updates, examining
output parameters and data homogeneity to detect backdoor attacks.
Using classifiers and clustering, it distinguishes malicious updates
from benign ones, even with diverse data distributions.
e) BackdoorIndicator [42]: This proactive FL backdoor detection
method uses out-of-distribution (OOD) data to identify malicious
updates. The server injects an OOD indicator task into the global
model, and after client training, evaluates its accuracy, adjusting
for batch normalization shifts. Updates exceeding a set accuracy
threshold are flagged as suspicious and excluded from aggregation.

f) FreqFed [30]: FreqFed mitigates targeted and untargeted poison-
ing attacks by analyzing model weights in the frequency domain,
detecting and removing malicious updates while maintaining global
model performance.
g) FedREDefense [69]: FedREDefense detects malicious models
by measuring the reconstruction error of each client’s model. Using
distilled local knowledge, it reconstructs models and compares the
error to a threshold. Updates with errors exceeding the threshold
are flagged as malicious.
h) Median [70]: For every dimension, the server calculates the
median value for each coordinate from all clients’ local models.
i) Trimmed mean (TrMean) [70]: Like the Median method, the
server removes the largest and smallest 𝑘 values for each dimension,
then averages the remaining 𝑛 values, where 𝑘 is the number of
malicious clients, and 𝑛 is the total number of clients.
j) Krum [9]: Upon receiving local models from clients, the server
outputs a single local model that minimizes the sum of distances to
its neighboring subset.
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Table 10: The impact of the malicious client ratio, total client number, and Non-IID degree is analyzed using the CIFAR-10
dataset. DACC values are reported for the Trim+DBA attack, Scaling+DBA attack, and Adaptive attack. “BDIndicator” refers to
the “BackdoorIndicator” method.

(a) Impact of fraction of malicious clients.

Attack Defense Malicious client ratio
0% 10% 20% 30% 40%

Trim+DBA
attack

FLAME 0.57 0.74 0.77 0.81 0.87
FLDetector 0.65 0.82 0.89 0.87 0.84
FLTrust 0.80 0.83 0.91 0.88 0.85

DeepSight 1.00 0.72 0.79 0.75 0.83
BDIndicator 0.95 0.75 0.72 0.78 0.80
FreqFed 0.81 0.83 0.72 0.80 0.76

FedREDefense 0.78 0.79 0.75 0.76 0.80
SafeFL-ML 0.94 0.93 0.95 0.91 0.95
SafeFL-CL 1.00 0.99 0.95 0.96 0.97

Scaling+DBA
attack

FLAME 0.57 0.75 0.82 0.89 0.93
FLDetector 0.65 0.69 0.62 0.69 0.74
FLTrust 0.80 0.85 0.74 0.76 0.72

DeepSight 1.00 0.78 0.80 0.86 0.82
BDIndicator 0.95 0.89 0.97 0.94 0.95
FreqFed 0.81 0.86 0.83 0.84 0.87

FedREDefense 0.78 0.89 0.84 0.85 0.87
SafeFL-ML 0.94 0.97 0.92 0.95 0.96
SafeFL-CL 1.00 0.99 0.97 0.98 1.00

Adaptive
attack

FLAME 0.57 0.68 0.74 0.77 0.82
FLDetector 0.65 0.72 0.79 0.85 0.84
FLTrust 0.80 0.76 0.74 0.70 0.62

DeepSight 1.00 0.82 0.75 0.77 0.71
BDIndicator 0.95 0.75 0.76 0.71 0.70
FreqFed 0.81 0.84 0.80 0.82 0.82

FedREDefense 0.78 0.80 0.86 0.85 0.88
SafeFL-ML 0.94 0.84 0.89 0.89 0.93
SafeFL-CL 1.00 0.93 0.94 0.95 0.91

(b) Impact of total number of clients.

Attack Defense Total client number
60 80 100 120 150

Trim+DBA
attack

FLAME 0.82 0.85 0.81 0.83 0.84
FLDetector 0.84 0.86 0.87 0.85 0.82
FLTrust 0.84 0.85 0.88 0.81 0.84

DeepSight 0.77 0.74 0.75 0.79 0.83
BDIndicator 0.72 0.76 0.78 0.76 0.75
FreqFed 0.81 0.84 0.80 0.80 0.77

FedREDefense 0.75 0.76 0.76 0.75 0.75
SafeFL-ML 0.95 0.90 0.91 0.94 0.95
SafeFL-CL 0.96 0.99 0.96 1.00 0.99

Scaling+DBA
attack

FLAME 0.82 0.85 0.81 0.83 0.84
FLDetector 0.84 0.86 0.87 0.85 0.82
FLTrust 0.84 0.85 0.88 0.81 0.84

DeepSight 0.77 0.74 0.75 0.79 0.83
BDIndicator 0.72 0.76 0.78 0.76 0.75
FreqFed 0.81 0.84 0.80 0.80 0.77

FedREDefense 0.75 0.76 0.77 0.75 0.75
SafeFL-ML 0.95 0.90 0.91 0.94 0.95
SafeFL-CL 0.96 0.99 0.96 1.00 0.99

Adaptive
attack

FLAME 0.80 0.74 0.77 0.75 0.78
FLDetector 0.76 0.83 0.85 0.82 0.84
FLTrust 0.74 0.72 0.70 0.73 0.75

DeepSight 0.76 0.78 0.77 0.74 0.73
BDIndicator 0.73 0.72 0.71 0.74 0.71
FreqFed 0.77 0.81 0.82 0.84 0.80

FedREDefense 0.82 0.83 0.85 0.83 0.82
SafeFL-ML 0.84 0.87 0.89 0.87 0.86
SafeFL-CL 0.94 0.95 0.95 0.97 0.95

(c) Impact of degree of Non-IID.

Attack Defense Non-IID degree
0.1 0.3 0.5 0.7 0.9

Trim+DBA
attack

FLAME 0.74 0.77 0.81 0.83 0.83
FLDetector 0.82 0.77 0.87 0.91 0.93
FLTrust 0.84 0.86 0.88 0.85 0.85

DeepSight 0.70 0.72 0.75 0.75 0.77
BDIndicator 0.79 0.80 0.78 0.82 0.83
FreqFed 0.67 0.74 0.80 0.81 0.82

FedREDefense 0.69 0.63 0.76 0.78 0.80
SafeFL-ML 0.95 0.90 0.91 0.95 0.97
SafeFL-CL 0.95 0.95 0.96 0.96 0.99

Scaling+DBA
attack

FLAME 0.87 0.85 0.89 0.90 0.90
FLDetector 0.71 0.68 0.69 0.73 0.74
FLTrust 0.75 0.76 0.76 0.78 0.79

DeepSight 0.85 0.85 0.86 0.89 0.90
BDIndicator 0.89 0.95 0.94 0.95 0.95
FreqFed 0.83 0.84 0.84 0.87 0.90

FedREDefense 0.86 0.86 0.85 0.88 0.89
SafeFL-ML 0.96 0.95 0.95 0.98 1.00
SafeFL-CL 0.97 0.97 0.98 0.99 1.00

Adaptive attack

FLAME 0.75 0.78 0.77 0.79 0.77
FLDetector 0.67 0.75 0.85 0.84 0.81
FLTrust 0.74 0.72 0.70 0.73 0.82

DeepSight 0.70 0.79 0.77 0.82 0.83
BDIndicator 0.64 0.68 0.71 0.76 0.79
FreqFed 0.75 0.79 0.82 0.81 0.83

FedREDefense 0.80 0.82 0.85 0.87 0.86
SafeFL-ML 0.82 0.87 0.89 0.90 0.89
SafeFL-CL 0.93 0.94 0.95 0.92 0.94

Table 11: The impact of the selection rate is analyzed using the CIFAR-10 dataset, where DACC values are reported.
(a) Results under Trim, Scaling, and DBA attacks.

Attack Defense Selection rate
20% 30% 50% 80% 100%

FLAME 0.75 0.76 0.77 0.76 0.78
FLDetector 0.75 0.77 0.76 0.75 0.96
FLTrust 0.93 0.96 0.95 0.94 0.85

DeepSight 0.84 0.87 0.86 0.86 0.88
BackdoorIndicator 0.85 0.87 0.89 0.87 0.73

FreqFed 0.77 0.82 0.80 0.74 0.89
FedREDefense 0.85 0.87 0.89 0.90 0.85
SafeFL-ML 0.87 0.82 0.87 0.85 0.90

Trim attack

SafeFL-CL 0.92 0.94 0.91 0.96 1.00
FLAME 0.80 0.82 0.81 0.83 0.84

FLDetector 0.79 0.92 0.84 0.99 1.00
FLTrust 0.78 0.83 0.72 0.77 0.75

DeepSight 0.85 0.87 0.84 0.86 0.88
BackdoorIndicator 0.93 0.91 0.89 0.92 0.94

FreqFed 0.85 0.83 0.86 0.86 0.84
FedREDefense 0.85 0.83 0.84 0.88 0.87
SafeFL-ML 0.92 0.90 0.93 0.94 0.91

Scaling attack

SafeFL-CL 1.00 0.97 0.95 0.96 1.00
FLAME 0.85 0.83 0.84 0.84 0.82

FLDetector 0.84 0.87 0.87 0.82 0.89
FLTrust 0.84 0.76 0.78 0.77 0.80

DeepSight 0.92 0.90 0.89 0.87 0.88
BackdoorIndicator 1.00 1.00 0.97 0.93 1.00

FreqFed 0.84 0.87 0.88 0.86 0.89
FedREDefense 0.80 0.77 0.78 0.78 0.75
SafeFL-ML 0.95 0.96 0.94 0.97 0.94

DBA attack

SafeFL-CL 1.00 1.00 0.97 0.98 1.00

(b) Results under Trim+DBA, Scaling+DBA, and Adaptive attacks.

Attack Defense Selection rate
20% 30% 50% 80% 100%

FLAME 0.84 0.87 0.83 0.85 0.81
FLDetector 0.84 0.86 0.85 0.86 0.87
FLTrust 0.90 0.87 0.91 0.85 0.88

DeepSight 0.79 0.74 0.78 0.81 0.75
BackdoorIndicator 0.82 0.78 0.79 0.81 0.78

FreqFed 0.78 0.83 0.80 0.82 0.80
FedREDefense 0.79 0.72 0.74 0.77 0.76
SafeFL-ML 0.90 0.94 0.92 0.93 0.91

Trim+DBA attack

SafeFL-CL 0.95 0.93 0.94 0.94 0.96
FLAME 0.86 0.92 0.89 0.91 0.89

FLDetector 0.74 0.66 0.62 0.73 0.69
FLTrust 0.77 0.75 0.72 0.74 0.76

DeepSight 0.83 0.87 0.85 0.86 0.86
BackdoorIndicator 0.92 0.89 0.94 0.96 0.94

FreqFed 0.84 0.83 0.85 0.83 0.84
FedREDefense 0.81 0.86 0.83 0.87 0.85
SafeFL-ML 0.93 0.94 0.97 0.97 0.95

Scaling+DBA attack

SafeFL-CL 0.96 0.95 0.97 0.98 0.98
FLAME 0.74 0.77 0.78 0.76 0.77

FLDetector 0.82 0.84 0.83 0.86 0.85
FLTrust 0.73 0.71 0.72 0.74 0.70

DeepSight 0.74 0.76 0.67 0.77 0.77
BackdoorIndicator 0.74 0.76 0.73 0.73 0.71

FreqFed 0.80 0.81 0.83 0.82 0.82
FedREDefense 0.83 0.85 0.85 0.84 0.85
SafeFL-ML 0.89 0.88 0.87 0.90 0.89

Adaptive attack

SafeFL-CL 0.94 0.97 0.96 0.94 0.95

Table 12: Detection results of various methods under advanced untargeted attacks on CIFAR-10, with DACC values reported.
Attack FLAME FLDetector FLTrust DeepSight BackdoorIndicator FreqFed FedREDefense SafeFL-ML SafeFL-CL

Label flipping attack 0.89 0.91 0.82 1.00 0.76 0.79 0.85 0.96 1.00
LIE attack 0.87 0.73 0.79 0.94 0.91 0.85 0.78 0.95 1.00
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Table 13: Detection performance of various detection-based methods under Neurotoxin, Irreversible backdoor, and Clean-label
backdoor attacks, evaluated using DACC (↑), FPR (↓), and FNR (↓) metrics. Here, ↑ denotes better detection performance with
higher values, and ↓ denotes better performance with lower values.

CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNetAttack Defense DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR

Neurotoxin
attack

FLAME 0.84 0.27 0.11 0.88 0.25 0.06 0.86 0.17 0.13 0.88 0.20 0.09 0.86 0.15 0.14
FLDetector 0.83 0.30 0.11 0.78 0.45 0.12 0.88 0.25 0.06 0.91 0.18 0.05 0.79 0.22 0.21
FLTrust 0.72 0.41 0.22 0.74 0.35 0.22 0.77 0.29 0.20 0.82 0.23 0.16 0.86 0.19 0.12

DeepSight 0.88 0.29 0.05 0.86 0.19 0.12 0.84 0.25 0.12 0.90 0.07 0.11 0.85 0.22 0.12
BackdoorIndicator 0.76 0.39 0.18 0.89 0.16 0.09 0.93 0.09 0.06 0.77 0.15 0.26 0.86 0.13 0.14

FreqFed 0.84 0.22 0.13 0.88 0.15 0.11 0.85 0.14 0.15 0.84 0.23 0.13 0.90 0.23 0.04
FedREDefense 0.87 0.20 0.10 0.80 0.17 0.21 0.94 0.09 0.05 0.80 0.15 0.22 0.82 0.22 0.16
SafeFL-ML 0.92 0.15 0.05 0.91 0.09 0.09 0.92 0.07 0.08 0.93 0.11 0.05 0.94 0.03 0.07
SafeFL-CL 0.96 0.04 0.04 0.98 0.00 0.03 0.97 0.00 0.04 0.98 0.03 0.02 0.95 0.13 0.02

Irreversible
backdoor
attack

FLAME 0.75 0.23 0.26 0.80 0.33 0.14 0.82 0.28 0.14 0.72 0.24 0.30 0.77 0.29 0.20
FLDetector 0.68 0.23 0.36 0.77 0.20 0.24 0.74 0.23 0.27 0.81 0.37 0.11 0.76 0.27 0.23
FLTrust 0.70 0.49 0.22 0.74 0.37 0.21 0.74 0.48 0.17 0.80 0.27 0.17 0.84 0.39 0.06

DeepSight 0.84 0.13 0.17 0.81 0.09 0.23 0.84 0.23 0.13 0.80 0.17 0.21 0.74 0.15 0.31
BackdoorIndicator 0.80 0.15 0.22 0.87 0.13 0.13 0.87 0.15 0.12 0.89 0.14 0.10 0.78 0.23 0.22

FreqFed 0.75 0.11 0.31 0.83 0.28 0.12 0.87 0.15 0.12 0.89 0.17 0.08 0.84 0.20 0.14
FedREDefense 0.83 0.29 0.12 0.82 0.18 0.18 0.81 0.32 0.13 0.78 0.16 0.25 0.87 0.23 0.09
SafeFL-ML 0.90 0.04 0.13 0.97 0.09 0.00 0.97 0.10 0.00 1.00 0.00 0.00 0.97 0.03 0.03
SafeFL-CL 0.98 0.07 0.00 0.96 0.03 0.04 0.94 0.00 0.09 0.98 0.06 0.00 0.99 0.00 0.01

Clean-label
backdoor
attack

FLAME 0.84 0.13 0.17 0.87 0.22 0.09 0.81 0.15 0.21 0.77 0.17 0.26 0.80 0.14 0.23
FLDetector 0.80 0.23 0.19 0.83 0.13 0.19 0.87 0.17 0.11 0.84 0.23 0.10 0.82 0.17 0.19
FLTrust 0.76 0.24 0.24 0.79 0.37 0.14 0.84 0.17 0.16 0.82 0.31 0.12 0.85 0.19 0.13

DeepSight 0.82 0.24 0.15 0.83 0.17 0.17 0.91 0.15 0.06 0.88 0.29 0.05 0.83 0.24 0.14
BackdoorIndicator 0.90 0.07 0.11 0.84 0.21 0.14 0.88 0.25 0.06 0.80 0.34 0.14 0.87 0.18 0.11

FreqFed 0.80 0.21 0.20 0.83 0.17 0.17 0.89 0.14 0.10 0.85 0.17 0.14 0.86 0.15 0.14
FedREDefense 0.87 0.15 0.12 0.89 0.25 0.05 0.92 0.13 0.06 0.88 0.25 0.06 0.89 0.31 0.02
SafeFL-ML 0.94 0.05 0.06 0.97 0.00 0.04 1.00 0.00 0.00 0.94 0.06 0.06 0.97 0.00 0.04
SafeFL-CL 1.00 0.00 0.00 1.00 0.00 0.00 0.97 0.03 0.03 0.96 0.10 0.01 1.00 0.00 0.00

Table 14: Performance of final global models obtained through various detection-based methods under Neurotoxin, Irreversible
backdoor, and Clean-label backdoor attacks, where TACC (↑) and ASR (↓) metrics are considered. ↑ denotes better performance
with higher values, and ↓ denotes better performance with lower values.

CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNetAttack Defense TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR
FLAME 0.77 0.35 0.93 0.27 0.63 0.32 0.49 0.34 0.48 0.27

FLDetector 0.74 0.34 0.95 0.48 0.65 0.44 0.50 0.20 0.50 0.35
FLTrust 0.78 0.57 0.94 0.50 0.67 0.50 0.52 0.23 0.47 0.19

DeepSight 0.73 0.35 0.94 0.29 0.64 0.54 0.52 0.17 0.51 0.26
BackdoorIndicator 0.80 0.34 0.98 0.23 0.64 0.12 0.47 0.15 0.50 0.17

FreqFed 0.79 0.60 0.92 0.39 0.66 0.17 0.51 0.35 0.46 0.07
FedreDefense 0.80 0.27 0.95 0.17 0.63 0.29 0.51 0.22 0.47 0.38
SafeFL-ML 0.82 0.04 0.98 0.08 0.67 0.07 0.54 0.06 0.50 0.10

Neurotoxin
attack

SafeFL-CL 0.83 0.06 0.97 0.03 0.68 0.11 0.53 0.04 0.53 0.05
FLAME 0.77 0.25 0.95 0.19 0.62 0.40 0.49 0.29 0.48 0.41

FLDetector 0.80 0.45 0.93 0.14 0.64 0.27 0.51 0.64 0.49 0.50
FLTrust 0.79 0.28 0.94 0.52 0.59 0.71 0.47 0.39 0.49 0.80

DeepSight 0.77 0.37 0.96 0.18 0.63 0.30 0.50 0.30 0.51 0.27
BackdoorIndicator 0.80 0.09 0.97 0.29 0.66 0.18 0.48 0.14 0.51 0.36

FreqFed 0.78 0.17 0.97 0.27 0.62 0.17 0.48 0.23 0.52 0.29
FedreDefense 0.79 0.23 0.98 0.27 0.63 0.43 0.50 0.17 0.52 0.37
SafeFL-ML 0.83 0.07 0.98 0.04 0.65 0.09 0.52 0.06 0.53 0.11

Irreversible
backdoor
attack

SafeFL-CL 0.83 0.04 0.97 0.05 0.66 0.06 0.54 0.06 0.54 0.09
FLAME 0.80 0.19 0.94 0.28 0.64 0.29 0.45 0.29 0.48 0.09

FLDetector 0.78 0.45 0.95 0.16 0.65 0.37 0.49 0.53 0.46 0.24
FLTrust 0.74 0.48 0.96 0.64 0.66 0.22 0.49 0.67 0.49 0.22

DeepSight 0.80 0.29 0.97 0.27 0.64 0.18 0.50 0.47 0.50 0.32
BackdoorIndicator 0.81 0.20 0.96 0.35 0.66 0.28 0.52 0.43 0.49 0.27

FreqFed 0.78 0.33 0.93 0.29 0.65 0.14 0.49 0.34 0.50 0.23
FedreDefense 0.79 0.28 0.95 0.32 0.66 0.13 0.50 0.40 0.50 0.19
SafeFL-ML 0.81 0.07 0.97 0.02 0.67 0.07 0.50 0.13 0.51 0.07

Clean-label
backdoor
attack

SafeFL-CL 0.83 0.03 0.98 0.05 0.67 0.09 0.52 0.09 0.50 0.07
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Table 15: Detection performance of various detection-based methods is assessed using Precision (↑), Recall (↑), and F1-score (↑).
Attack Detection CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNet

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

No attack

FLAME NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
FLDetector NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
FLTrust NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

DeepSight NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
BackdoorIndicator NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

FreqFed NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
FedREDefense NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
SafeFL-ML NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
SafeFL-CL NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Trim attack

FLAME 0.95 0.72 0.82 0.95 0.74 0.83 0.92 0.74 0.82 0.95 0.72 0.82 0.90 0.76 0.82
FLDetector 0.99 0.95 0.97 1.00 0.99 0.99 0.99 0.91 0.95 0.95 0.74 0.83 0.96 0.79 0.87
FLTrust 0.93 0.85 0.89 0.97 0.81 0.88 0.98 0.74 0.84 0.91 0.86 0.88 0.88 0.94 0.91

DeepSight 0.94 0.88 0.91 0.98 0.83 0.90 0.94 0.77 0.85 0.98 0.85 0.91 0.91 0.81 0.86
BackdoorIndicator 0.84 0.76 0.80 0.87 0.69 0.77 0.83 0.78 0.81 0.82 0.79 0.80 0.77 0.75 0.76

FreqFed 0.98 0.86 0.92 0.97 0.80 0.88 0.98 0.85 0.91 0.98 0.86 0.92 0.96 0.77 0.86
FedREDefense 0.89 0.90 0.89 0.97 0.92 0.94 0.99 0.92 0.95 1.00 0.97 0.98 1.00 0.99 0.99
SafeFL-ML 0.99 0.87 0.92 0.95 0.89 0.92 0.99 0.92 0.95 0.99 0.90 0.94 0.98 0.93 0.96
SafeFL-CL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 1.00 0.96 0.98 1.00 0.98 0.99

Scaling attack

FLAME 0.96 0.80 0.87 0.98 0.84 0.90 0.98 0.71 0.82 1.00 0.71 0.83 0.95 0.85 0.90
FLDetector 1.00 1.00 1.00 0.96 0.96 0.96 0.93 0.92 0.93 0.90 0.79 0.84 0.91 0.86 0.88
FLTrust 0.82 0.82 0.82 0.85 0.91 0.88 0.80 1.00 0.89 0.90 0.95 0.92 0.93 0.74 0.82

DeepSight 0.94 0.88 0.91 0.98 0.83 0.90 0.94 0.77 0.85 0.98 0.85 0.91 0.91 0.81 0.86
BackdoorIndicator 1.00 0.91 0.95 0.99 0.94 0.96 1.00 1.00 1.00 0.91 0.71 0.80 0.92 0.79 0.85

FreqFed 0.92 0.84 0.88 0.76 0.69 0.72 0.87 0.67 0.76 0.94 0.76 0.84 0.76 0.82 0.79
FedREDefense 0.94 0.87 0.91 0.97 0.84 0.90 1.00 0.91 0.95 0.93 0.76 0.84 0.84 0.77 0.81
SafeFL-ML 0.99 0.88 0.93 1.00 0.96 0.98 1.00 1.00 1.00 1.00 0.96 0.98 0.95 0.95 0.95
SafeFL-CL 1.00 1.00 1.00 0.97 0.94 0.95 1.00 0.97 0.98 1.00 1.00 1.00 0.96 0.96 0.96

DBA attack

FLAME 0.96 0.77 0.86 0.98 0.83 0.90 0.96 0.80 0.87 0.93 0.92 0.93 0.99 0.82 0.90
FLDetector 0.93 0.91 0.92 0.95 0.90 0.93 0.98 0.89 0.93 0.94 0.75 0.83 0.95 0.86 0.90
FLTrust 0.90 0.80 0.85 0.91 0.78 0.84 0.89 0.78 0.83 0.87 0.86 0.86 0.88 0.81 0.85

DeepSight 1.00 0.83 0.91 0.99 0.87 0.92 0.99 0.93 0.96 0.93 0.86 0.89 0.94 0.87 0.91
BackdoorIndicator 1.00 1.00 1.00 0.98 0.97 0.98 0.98 0.96 0.97 0.97 0.87 0.92 0.93 0.90 0.91

FreqFed 0.98 0.86 0.92 0.91 0.76 0.83 1.00 0.87 0.93 1.00 1.00 1.00 0.95 0.83 0.89
FedREDefense 0.88 0.74 0.80 0.97 0.96 0.96 0.95 0.96 0.96 0.86 0.79 0.82 0.93 0.84 0.88
SafeFL-ML 0.95 0.96 0.96 1.00 0.99 0.99 0.99 0.96 0.97 1.00 1.00 1.00 1.00 0.97 0.98
SafeFL-CL 1.00 1.00 1.00 0.99 0.98 0.98 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Trim+DBA attack

FLAME 0.98 0.75 0.85 0.95 0.81 0.87 0.96 0.73 0.83 0.95 0.90 0.93 0.98 0.82 0.89
FLDetector 0.87 0.96 0.91 0.94 0.93 0.94 0.93 0.91 0.92 0.70 1.00 0.82 0.97 0.79 0.87
FLTrust 0.93 0.89 0.91 0.93 0.77 0.84 0.83 0.82 0.83 0.88 0.68 0.77 0.90 0.95 0.92

DeepSight 0.81 0.84 0.83 0.92 0.78 0.85 0.86 0.75 0.80 0.96 0.78 0.86 0.90 0.90 0.90
BackdoorIndicator 0.84 0.85 0.84 0.98 0.75 0.85 0.90 0.75 0.82 0.90 0.80 0.85 0.93 0.85 0.89

FreqFed 0.92 0.78 0.85 0.92 0.67 0.77 0.94 0.78 0.85 0.87 0.82 0.84 0.91 0.75 0.82
FedREDefense 0.87 0.77 0.82 0.94 0.84 0.89 1.00 0.94 0.97 0.87 0.79 0.83 0.94 0.82 0.88
SafeFL-ML 0.97 0.90 0.93 1.00 0.93 0.96 1.00 1.00 1.00 0.97 0.94 0.95 1.00 1.00 1.00
SafeFL-CL 1.00 0.94 0.97 1.00 1.00 1.00 1.00 0.97 0.98 1.00 1.00 1.00 1.00 0.99 0.99

Scaling+DBA attack

FLAME 1.00 0.84 0.91 0.96 0.80 0.87 0.98 0.80 0.88 0.98 0.82 0.89 0.95 0.89 0.92
FLDetector 0.83 0.70 0.76 0.89 0.65 0.75 0.89 0.94 0.92 0.80 0.86 0.83 0.98 0.77 0.86
FLTrust 0.86 0.78 0.82 0.85 0.88 0.87 0.89 0.74 0.81 0.96 0.92 0.94 0.92 0.76 0.83

DeepSight 0.97 0.83 0.89 0.95 0.89 0.92 0.93 0.93 0.93 1.00 0.86 0.92 0.94 0.94 0.94
BackdoorIndicator 0.97 0.94 0.95 1.00 0.99 0.99 0.99 0.96 0.97 0.94 0.84 0.89 0.91 0.77 0.84

FreqFed 0.94 0.83 0.88 0.91 0.91 0.91 0.97 0.72 0.83 0.93 0.86 0.89 0.92 0.95 0.94
FedREDefense 0.93 0.85 0.89 1.00 0.96 0.98 1.00 0.93 0.96 0.97 0.94 0.96 0.88 0.81 0.85
SafeFL-ML 0.98 0.95 0.97 1.00 0.96 0.98 1.00 0.99 0.99 1.00 0.89 0.94 0.93 0.88 0.91
SafeFL-CL 1.00 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.97 1.00 0.99 0.99

Adaptive attack

FLAME 0.85 0.82 0.83 0.90 0.72 0.80 0.87 0.67 0.76 0.91 0.80 0.85 0.87 0.79 0.83
FLDetector 0.91 0.87 0.89 0.88 0.80 0.84 0.92 0.83 0.87 0.92 0.81 0.86 0.85 0.78 0.81
FLTrust 0.82 0.73 0.77 0.81 0.74 0.77 0.81 0.84 0.82 0.88 0.81 0.85 0.86 0.70 0.77

DeepSight 0.87 0.80 0.83 0.87 0.76 0.81 0.86 0.72 0.78 0.86 0.77 0.81 0.91 0.81 0.86
BackdoorIndicator 0.80 0.78 0.79 0.94 0.90 0.92 0.89 0.81 0.85 0.76 0.77 0.76 0.86 0.77 0.81

FreqFed 0.88 0.86 0.87 0.90 0.92 0.91 0.94 0.66 0.78 0.88 0.82 0.85 0.86 0.80 0.83
FedREDefense 0.95 0.83 0.89 1.00 0.93 0.96 0.87 0.83 0.85 0.89 0.73 0.80 0.87 0.67 0.76
SafeFL-ML 0.92 0.93 0.92 0.97 0.94 0.95 0.99 0.98 0.98 0.96 0.93 0.94 0.95 0.96 0.95
SafeFL-CL 0.99 0.94 0.96 1.00 0.96 0.98 1.00 0.91 0.95 0.99 0.96 0.97 1.00 0.93 0.96
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Table 16: Detection performance of various detection-based methods is assessed using Precision (↑), Recall (↑), and F1-score (↑),
under three advanced backdoor attacks.

CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNetAttack Defense Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Neurotoxin
attack

FLAME 0.86 0.89 0.87 0.89 0.94 0.91 0.90 0.87 0.88 0.91 0.91 0.91 0.92 0.86 0.89
FLDetector 0.84 0.89 0.86 0.79 0.88 0.83 0.86 0.94 0.90 0.93 0.95 0.94 0.85 0.79 0.82
FLTrust 0.76 0.78 0.77 0.78 0.78 0.78 0.81 0.80 0.80 0.85 0.84 0.85 0.92 0.88 0.90

DeepSight 0.88 0.95 0.91 0.90 0.88 0.89 0.87 0.88 0.88 0.94 0.89 0.91 0.89 0.88 0.89
BackdoorIndicator 0.81 0.82 0.82 0.92 0.91 0.91 0.96 0.94 0.95 0.83 0.74 0.78 0.92 0.86 0.89

FreqFed 0.88 0.87 0.87 0.91 0.89 0.90 0.89 0.85 0.87 0.86 0.87 0.87 0.93 0.90 0.91
FedREDefense 0.90 0.90 0.90 0.85 0.80 0.82 0.96 0.95 0.96 0.85 0.78 0.81 0.87 0.84 0.86
SafeFL-ML 0.95 0.95 0.95 0.96 0.91 0.93 0.97 0.92 0.94 0.96 0.95 0.96 0.98 0.94 0.96
SafeFL-CL 0.99 0.96 0.98 1.00 0.98 0.99 1.00 0.97 0.98 0.98 0.98 0.98 0.95 0.95 0.95

Irreversible
backdoor
attack

FLAME 0.83 0.74 0.78 0.85 0.86 0.85 0.87 0.86 0.86 0.79 0.70 0.74 0.83 0.80 0.81
FLDetector 0.80 0.64 0.71 0.84 0.76 0.80 0.82 0.73 0.77 0.84 0.89 0.86 0.83 0.77 0.80
FLTrust 0.74 0.78 0.76 0.78 0.79 0.78 0.78 0.83 0.80 0.84 0.83 0.83 0.88 0.94 0.91

DeepSight 0.91 0.83 0.87 0.92 0.77 0.84 0.87 0.87 0.87 0.88 0.79 0.83 0.83 0.69 0.75
BackdoorIndicator 0.90 0.78 0.83 0.93 0.87 0.90 0.93 0.88 0.90 0.94 0.90 0.92 0.86 0.78 0.82

FreqFed 0.89 0.69 0.78 0.88 0.88 0.88 0.93 0.87 0.90 0.93 0.92 0.93 0.90 0.86 0.88
FedREDefense 0.87 0.88 0.88 0.89 0.82 0.85 0.85 0.87 0.86 0.86 0.75 0.80 0.91 0.91 0.91
SafeFL-ML 0.97 0.90 0.93 0.97 1.00 0.98 0.97 1.00 0.98 1.00 1.00 1.00 0.98 0.97 0.98
SafeFL-CL 0.98 1.00 0.99 0.99 0.96 0.97 1.00 0.94 0.97 0.98 1.00 0.99 1.00 0.99 0.99

Clean-label
backdoor
attack

FLAME 0.91 0.83 0.87 0.90 0.91 0.90 0.88 0.79 0.83 0.85 0.74 0.79 0.88 0.77 0.82
FLDetector 0.87 0.81 0.84 0.91 0.81 0.86 0.91 0.89 0.90 0.88 0.90 0.89 0.90 0.83 0.86
FLTrust 0.85 0.76 0.80 0.83 0.86 0.84 0.90 0.84 0.87 0.86 0.88 0.87 0.91 0.87 0.89

DeepSight 0.87 0.85 0.86 0.89 0.83 0.86 0.94 0.94 0.94 0.90 0.95 0.92 0.88 0.86 0.87
BackdoorIndicator 0.96 0.90 0.93 0.89 0.86 0.87 0.88 0.94 0.91 0.83 0.86 0.84 0.93 0.89 0.91

FreqFed 0.88 0.80 0.84 0.89 0.83 0.86 0.93 0.89 0.91 0.91 0.86 0.88 0.92 0.86 0.89
FedREDefense 0.93 0.88 0.90 0.91 0.95 0.93 0.95 0.94 0.95 0.91 0.94 0.93 0.90 0.98 0.94
SafeFL-ML 0.98 0.94 0.96 1.00 0.97 0.98 1.00 1.00 1.00 0.96 0.94 0.95 1.00 0.97 0.98
SafeFL-CL 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.98 0.96 0.99 0.98 1.00 1.00 1.00

Table 17: Storage costs of different methods.
Defense CIFAR-10 MNIST FEMNIST STL-10 Tiny-ImageNet
FLDetector 21.73 GB 15.76 GB 22.95 GB 38.46 GB 31.28 GB

FedREDefense 19.53 GB 10.72 GB 20.15 GB 28.83 GB 27.46 GB
SafeFL-ML 13.66 GB 7.96 GB 13.57 GB 22.40 GB 19.93 GB
SafeFL-CL 13.66 GB 7.96 GB 13.57 GB 22.40 GB 19.93 GB

Table 18: Equalized odds and Demographic parity scores of our methods under different attacks, where the CIFAR-10 dataset is
considered.

Attack Defense Setting I Setting II
Equalized odds Demographic parity Equalized odds Demographic parity

FedAvg 0.79 0.57 0.69 0.48
SafeFL-ML 0.77 0.59 0.66 0.47No attack
SafeFL-CL 0.78 0.56 0.71 0.52
SafeFL-ML 0.81 0.58 0.71 0.49Trim attack SafeFL-CL 0.77 0.57 0.70 0.49
SafeFL-ML 0.77 0.56 0.70 0.50Scaling attack SafeFL-CL 0.79 0.56 0.69 0.48
SafeFL-ML 0.78 0.57 0.70 0.48DBA attack SafeFL-CL 0.76 0.55 0.64 0.45
SafeFL-ML 0.82 0.58 0.70 0.49Trim+DBA attack SafeFL-CL 0.77 0.55 0.69 0.51
SafeFL-ML 0.80 0.59 0.72 0.50Scaling + DBA attack SafeFL-CL 0.77 0.55 0.68 0.49
SafeFL-ML 0.78 0.55 0.66 0.47Adaptive attack SafeFL-CL 0.80 0.61 0.68 0.50
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Figure 5: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-ML
with the FEMNIST dataset.
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Table 19: The impact of the noise level is analyzed using the CIFAR-10 dataset, where DACC and TACC values are reported.

Attack Defense
Noise level

0 0.5 1 1.5 2
DACC TACC DACC TACC DACC TACC DACC TACC DACC TACC

FedAvg NA 0.85 NA 0.81 NA 0.80 NA 0.76 NA 0.70
FLAME 0.57 0.72 0.55 0.71 0.56 0.70 0.52 0.66 0.58 0.62

FLDetector 0.65 0.77 0.66 0.74 0.64 0.73 0.62 0.66 0.59 0.63
FLTrust 0.82 0.81 0.77 0.74 0.75 0.72 0.70 0.67 0.70 0.65

DeepSight 1.00 0.75 0.94 0.74 0.86 0.70 0.83 0.67 0.81 0.66
BackdoorIndicator 0.95 0.81 0.93 0.81 0.83 0.75 0.77 0.74 0.73 0.67

FreqFed 0.81 0.79 0.83 0.77 0.77 0.72 0.69 0.70 0.69 0.64
FedREDefense 0.78 0.81 0.74 0.80 0.72 0.77 0.70 0.67 0.70 0.65
SafeFL-ML 0.94 0.82 0.92 0.80 0.92 0.78 0.90 0.73 0.88 0.67

No attack

SafeFL-CL 1.00 0.84 0.98 0.83 0.95 0.79 0.94 0.75 0.89 0.69
FLAME 0.78 0.77 0.75 0.76 0.70 0.72 0.67 0.66 0.61 0.58

FLDetector 0.96 0.79 0.92 0.77 0.89 0.71 0.84 0.67 0.75 0.55
FLTrust 0.85 0.74 0.82 0.74 0.81 0.70 0.74 0.64 0.70 0.57

DeepSight 0.88 0.74 0.86 0.77 0.85 0.73 0.81 0.62 0.77 0.49
BackdoorIndicator 0.73 0.62 0.70 0.57 0.67 0.53 0.66 0.47 0.64 0.47

FreqFed 0.89 0.79 0.83 0.79 0.80 0.67 0.75 0.60 0.70 0.55
FedREDefense 0.85 0.81 0.83 0.78 0.81 0.62 0.74 0.59 0.69 0.51
SafeFL-ML 0.90 0.82 0.87 0.80 0.87 0.79 0.86 0.72 0.84 0.68

Trim attack

SafeFL-CL 1.00 0.84 0.93 0.79 0.93 0.77 0.89 0.74 0.86 0.67
FLAME 0.84 0.79 0.83 0.79 0.83 0.77 0.78 0.74 0.72 0.67

FLDetector 1.00 0.79 0.94 0.78 0.92 0.75 0.90 0.74 0.88 0.69
FLTrust 0.75 0.62 0.72 0.61 0.70 0.64 0.64 0.63 0.63 0.62

DeepSight 0.88 0.76 0.87 0.76 0.85 0.72 0.82 0.70 0.82 0.69
BackdoorIndicator 0.94 0.80 0.94 0.78 0.92 0.74 0.88 0.72 0.86 0.67

FreqFed 0.84 0.69 0.82 0.69 0.81 0.69 0.77 0.67 0.74 0.64
FedREDefense 0.87 0.77 0.86 0.75 0.83 0.72 0.82 0.70 0.79 0.66
SafeFL-ML 0.91 0.81 0.89 0.80 0.88 0.78 0.87 0.75 0.85 0.69

Scaling attack

SafeFL-CL 1.00 0.79 0.97 0.78 0.94 0.77 0.93 0.76 0.91 0.70
FLAME 0.82 0.78 0.80 0.77 0.77 0.74 0.77 0.72 0.71 0.67

FLDetector 0.89 0.77 0.85 0.77 0.83 0.72 0.79 0.69 0.72 0.65
FLTrust 0.80 0.78 0.77 0.76 0.76 0.73 0.74 0.70 0.72 0.64

DeepSight 0.88 0.80 0.84 0.78 0.82 0.74 0.77 0.73 0.71 0.67
BackdoorIndicator 1.00 0.80 0.93 0.77 0.88 0.75 0.82 0.70 0.75 0.65

FreqFed 0.89 0.78 0.83 0.74 0.80 0.74 0.75 0.70 0.71 0.68
FedREDefense 0.75 0.70 0.72 0.69 0.70 0.69 0.69 0.62 0.64 0.60
SafeFL-ML 0.94 0.78 0.89 0.78 0.88 0.77 0.85 0.75 0.81 0.70

DBA attack

SafeFL-CL 1.00 0.82 0.94 0.81 0.88 0.77 0.87 0.75 0.87 0.71
FLAME 0.81 0.79 0.79 0.76 0.77 0.67 0.76 0.62 0.69 0.53

FLDetector 0.87 0.65 0.83 0.63 0.79 0.63 0.74 0.57 0.73 0.56
FLTrust 0.88 0.77 0.87 0.76 0.80 0.75 0.77 0.67 0.74 0.61

DeepSight 0.75 0.49 0.74 0.47 0.72 0.46 0.67 0.47 0.63 0.44
BackdoorIndicator 0.78 0.60 0.75 0.62 0.74 0.57 0.70 0.55 0.67 0.55

FreqFed 0.80 0.76 0.78 0.75 0.74 0.72 0.70 0.66 0.68 0.58
FedREDefense 0.76 0.59 0.74 0.58 0.70 0.52 0.65 0.52 0.62 0.49
SafeFL-ML 0.91 0.79 0.88 0.78 0.88 0.72 0.87 0.74 0.86 0.69

Trim+DBA attack

SafeFL-CL 0.96 0.83 0.92 0.80 0.89 0.77 0.87 0.74 0.81 0.71
FLAME 0.89 0.80 0.87 0.79 0.82 0.77 0.77 0.72 0.69 0.70

FLDetector 0.69 0.54 0.69 0.53 0.67 0.50 0.65 0.49 0.63 0.48
FLTrust 0.76 0.49 0.75 0.47 0.73 0.47 0.70 0.44 0.69 0.44

DeepSight 0.86 0.80 0.82 0.78 0.78 0.67 0.75 0.64 0.71 0.59
BackdoorIndicator 0.94 0.80 0.90 0.77 0.88 0.70 0.78 0.67 0.74 0.62

FreqFed 0.84 0.78 0.83 0.75 0.74 0.71 0.70 0.65 0.69 0.62
FedREDefense 0.85 0.72 0.83 0.71 0.79 0.69 0.77 0.67 0.72 0.60
SafeFL-ML 0.95 0.80 0.93 0.77 0.92 0.76 0.89 0.74 0.84 0.69

Scaling+DBA attack

SafeFL-CL 0.98 0.83 0.95 0.80 0.90 0.80 0.88 0.76 0.84 0.70
FLAME 0.77 0.59 0.74 0.58 0.70 0.52 0.69 0.47 0.67 0.35

FLDetector 0.85 0.65 0.82 0.60 0.82 0.60 0.78 0.54 0.78 0.51
FLTrust 0.70 0.62 0.69 0.59 0.67 0.52 0.64 0.52 0.61 0.43

DeepSight 0.77 0.62 0.76 0.60 0.72 0.54 0.67 0.50 0.63 0.44
BackdoorIndicator 0.71 0.48 0.69 0.48 0.65 0.44 0.65 0.42 0.62 0.38

FreqFed 0.82 0.79 0.80 0.72 0.77 0.68 0.76 0.62 0.72 0.60
FedREDefense 0.85 0.78 0.83 0.77 0.80 0.77 0.77 0.71 0.73 0.64
SafeFL-ML 0.89 0.78 0.87 0.77 0.86 0.76 0.85 0.74 0.83 0.69

Adaptive attack

SafeFL-CL 0.95 0.80 0.92 0.79 0.89 0.78 0.88 0.75 0.84 0.69
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Figure 6: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-ML
with the STL-10 dataset.
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Figure 7: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-ML
with the Tiny-ImageNet dataset.
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Figure 8: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-CL
with the CIFAR-10 dataset.
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Figure 9: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-CL
with the MNIST dataset.
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Figure 10: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-CL
with the FEMNIST dataset.
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Figure 11: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-CL
with the STL-10 dataset.
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Figure 12: The loss values of benign and malicious clients’ local models computed on the synthetic dataset, using SafeFL-CL
with the Tiny-ImageNet dataset.
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Figure 13: Computation costs of different methods.
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