
ar
X

iv
:2

50
5.

09
03

8v
1

 [
cs

.C
R

]
 1

4
M

ay
 2

02
5

Unencrypted Flying Objects:
Security Lessons from University Small Satellite Developers and Their Code

Rachel McAmis
University of Washington

Gregor Haas
University of Washington

Mattea Sim
Indiana University

David Kohlbrenner
University of Washington

Tadayoshi Kohno
University of Washington

Abstract
Satellites face a multitude of security risks that set them apart
from hardware on Earth. Small satellites may face additional
challenges, as they are often developed on a budget and by
amateur organizations or universities that do not consider se-
curity. We explore the security practices and preferences of
small satellite teams, particularly university satellite teams, to
understand what barriers exist to building satellites securely.
We interviewed 8 university satellite club leaders across 4
clubs in the U.S. and perform a code audit of 3 of these clubs’
code repositories. We find that security practices vary widely
across teams, but all teams studied had vulnerabilities avail-
able to an unprivileged, ground-based attacker. Participants
foresee many risks of unsecured small satellites and indicate
security shortcomings in industry and government. Lastly, we
identify a set of considerations for how to build future small
satellites securely, in amateur organizations and beyond.

1 Introduction

Satellites have increased in popularity and magnitude in the
past decade [1]. Satellites face a multitude of security chal-
lenges that differ from hardware on the ground today, such as
the impossibility of physical access post-launch and limited
contact periods as they orbit the earth. The decreasing cost
of launching satellites [2] has enabled more small players
to launch, including amateurs and university teams. These
amateur university teams typically operate smaller satellites,
called “smallsats.” Academic smallsat use cases include test-
ing university researchers’ scientific payloads and giving stu-
dents hands-on learning experiences. Despite being small
projects and not-for-profit, university smallsats still face risks
in space. One oft-cited risk is the Kessler Syndrome [3, 4],
where debris caused by satellites colliding with other objects
could grow exponentially after reaching a particular threshold
and thereby make future space exploration hazardous. Unse-
cured amateur satellites could harm the ability for emergency
response given that amateur satellites can aide in this pro-
cess [5]. Or smallsats might be used as “kinetic weapons”, as

discussed by interview participants and by Kurzrok et al. [6].
Smallsats could even incite international incidents or cause
physical harm to humans, as we elaborate on in our results.
Therefore, for the space ecosystem to be safe overall, we argue
that amateur smallsats must also be secure.

Research Questions To gain insights into computer secu-
rity practices with smallsats, and with our focus on university
satellite clubs as a window into the broader space, our first
research question is:

• RQ1: What are the security goals and practices of uni-
versity satellite teams?

To understand whether and how to improve smallsat team
security, we first need to understand existing goals and secu-
rity practices. We analyzed this first through interviews with
the leaders of 4 satellite clubs 1 (8 interviews in total, an av-
erage of 2 leader interviews per club) since club leaderships’
perspectives on security affects the entire club’s priorities.
The aim was to surface concerns and practices across differ-
ent teams rather than to make claims about generalizability.
Thus, we chose qualitative methods and consistent analytical
choices designed to summarize and describe our data. In other
words, our research intends to uncover a richer and more nu-
anced understanding of the practices within this particular
sample, rather than to make inferences about generalizability
to other samples [7].

Secondly, we performed an audit over dozens of reposi-
tories from 3 of the teams we interviewed, parsing through
code, design diagrams, and documentation. We focused on
understanding the high-level security designs and choices of
each club and club member, and comparing the designs in
the code to their stated threat models in the interview; this
type of design-level reconstruction and analysis on bespoke
systems is not possible with automated tooling, therefore our
analysis was manual. We detail our approach in Section 6.
To foreshadow our findings, security practices varied widely
across teams, with none of the code we analyzed meeting all

15 clubs met our search criteria; 1 club did not respond to inquiries for
research, resulting in interviewing 4 clubs overall

1

https://arxiv.org/abs/2505.09038v1

security measures needed to prevent malicious actors from
sending commands up to the satellite while it is in orbit.

• RQ2: What barriers to building satellites securely do
smallsat teams face?

We identify a variety of barriers to building satellites securely.
Club members weigh tradeoffs between other goals (e.g.,
launching on time) and security. We also identify gaps in se-
curity knowledge, threat modeling, and implementation that
serve as barriers to secure satellite implementations. For ex-
ample, we find that security goals/non-goals vary greatly not
only between clubs but among club members, highlighting a
non-uniform approach to security. Understanding these barri-
ers can help us recommend solutions.

• RQ3: What processes and tools can we recommend to
improve smallsat team security?

Through a combination of interviews and our own knowledge
as security researchers (4 of the authors), members of a univer-
sity satellite club (2 of the 4), and as a leader within a satellite
club (1 of the 4), we identify design recommendations and
tools. These recommendations aim to bridge the gap between
current satellite security practices and a more thorough secu-
rity posture for smallsats appropriate to the university satellite
context, i.e., groups with limited time, budget, and security
expertise. We anticipate that some of these recommendations
will apply to industry, as multiple participants indicated lim-
ited security considerations in industry. Additionally, many
satellite club members end up working in the space indus-
try (as we observed in our sample of leaders and our own
satellite club experience), so understanding and addressing
the security barriers at the university level may equip future
space industry professionals with tools to build more secure
industry space vehicles.

Emerging Technology Security Research It is well-
known in the field of computer security research that computer
security often lags technology innovations. For example, the
modern automobile became computerized long before the
automotive industry embraced computer security as a prac-
tice [8]; likewise, the medical device industry incorporated
computation and wireless communications before embracing
computer security [9]. The goal of our work is to contribute to
the study of the emerging smallsat computer security domain
— a domain that, like automobiles and medical devices before,
is exploding in innovation [1,2] but, to our knowledge, has not
yet ubiquitously embraced the need for strong and universal
computer security practices.

Whether today’s smallsats are presently at risk of exploita-
tion is speculative, but hacking enthusiasts have already
demonstrated the ability to compromise government satel-
lites [10], and commercial satellite communications networks
have also been targeted [11]. We return to assessing possi-
ble present and future risks in Section 5. Studying university
smallsats not only helps us explore the challenges and risks
that these specific non-profit smallsats face, but given the

proprietary nature of many smallsat manufacturers [12–14]
these open-source smallsat groups may be the closest possible
window into satellite security overall.

2 Background and Related Work

2.1 Satellite Applications and Overview
Though government-owned and commercial satellites are
the most widespread today, hundreds of university satellites
have launched since the 1980s, with launches increasing each
decade [15]. Even high school and middle school students
have built and launched satellites [16, 17].

University satellites support educational goals such as test-
ing scientific payloads, hands-on learning experiences for
students, and collecting space or Earth data. Some also serve
as communication relays for amateur radio satellites (amsats).
Amsats facilitate ham radio communications, which can some-
times aid emergency response [5]. These emergency response
utilities are another reason we believe that amateur smallsat
security should be further studied. University teams often use
amateur radio frequency bands for communication with their
satellite. While ham radio usually requires communications to
be unencrypted, it allows satellite command encryption [18].

Amsats are often supported by open-source infrastructure
and volunteers who collect and relay telemetry using their
own ground stations. One such example of this infrastructure
is SatNOGS, an open-source ground station network [19].
Multiple clubs we interviewed used SatNOGS to get data
from their satellites from parts of the earth not accessible
with their own ground stations. Many satellite clubs have
open-source code repositories that are publicly accessible
before and after their launch, which we discuss further in
Sections 5 and 6. Another common resource is the the suite
of communication protocols established by the Consultative
Committee for Space Data Systems (CCSDS) [20]. These
protocol specifications cover a number of protocols across
the network stack, some but not all of which include security
measures in their specs.

2.2 Satellite Architecture
At a high level, a smallsat consists of a few subcomponents,
shown in Figure 1:

Ground station The ground station is composed of a radio,
antenna, and computer to send commands up to a satellite. A
satellite might only receive commands from a single ground
station, or a network of ground stations in different locations
could help increase contact time with the satellite. The portion
of communication sent from the ground station to the satellite
is called the uplink, and the inverse is called the downlink.

Communications space segment (Comms) The comms
segment on the satellite receives commands from the ground
station via the uplink, and sends back telemetry (data about

2

Figure 1: Overview of components in a generic small-
sat. Ground station communicates with the satellite radio
(comms). The flight computer communicates with all sub-
components, including power, ADCS, the satellite’s payload,
and comms.

the satellite’s state) and other command responses via the
downlink. Some satellites have the ability to communicate
directly with other satellites, especially if part of a fleet of
satellites, but this is less common with university satellites.

Flight computer The flight computer schedules and facili-
tates communication between each subcomponent.

Attitude determination and control system (ADCS)
ADCS helps control the orientation of the satellite, which
is critical for keeping the satellite stable and ensuring that
the satellite’s solar panels are pointed toward the sun. Some
satellites use propellant to maneuver, while others just use
magnetorquers and reaction wheels.

Payload Payloads are the “purpose” of the mission. Exam-
ples include cameras and novel batteries to test in space.

2.3 Satellite Security Challenges

Securing satellites poses difficult security and reliability chal-
lenges, including:

Contact constraints In low Earth orbit, satellites take
around 90 minutes to orbit Earth. Single ground stations can
typically only contact a satellite for 7-10 of those minutes [21].
And if the satellite were to enter an unrecoverable state, there
is no way to physically access the satellite to reboot it.

Latency constraints Satellites may need to respond real-
time for tasks like collision-avoidance or ADCS [22]. Adding
encryption and other security measures could increase the
amount and size of packets needed when communicating.
With the very limited bandwidth that many smallsats have,
added packet size/count could lead to slower communications,
ore even violate real-time constraints.

Processing constraints To meet their size and weight con-
straints for launch, smallsats typically have a limited power
supply. Due to this, they have minimal processing power.
Every processing step, including encryption and decryption,
takes up valuable power and compute time [13].

Custom Systems Many satellites are largely bespoke sys-
tems, with custom protocols, operating systems, and hardware

Table 1: Interview participants by identifier. Security knowl-
edge ranged from 1 (novice) to 5 (expert). Knowledge was
based on self-reported scores except for D1. A * next to their
score means that the respondent did not give a specific num-
ber, and therefore the score was an estimate based on their
interview responses.

ID Club Industry Security
Experience Knowledge

A1 A ✓ 3
A2 A × 4
B1 B ✓ 3
B2 B × 3
C1 C ✓ 2
D1 D × 1*
D2 D ✓ 2
D3 D ✓ 5

components. This makes it difficult to use existing security
tools, such as fuzzing, as supported by Willbold et al. [23].
Our security analysis in Section 6 was therefore manual.

2.4 Satellite Security Research
A wide body of academic work has enumerated and taxono-
mized security and privacy threats of and to satellites [13, 14,
24–30]. Pavur et al. compiled a set of satellite threats enumer-
ated in previous work and explained the history of satellite
security incidents by decade [26]. This threat modeling aided
in our own threat modeling in Section 6.

While many papers have focused on threat enumera-
tion, increasingly work has taken a more experimental ap-
proach [12,22,31–35]. Willbold et al. [12] analyzed firmware
security of various satellites and surveyed industry members
about security practices, highlighting a need for improved se-
curity among industry satellites. We build upon this work by
more deeply exploring the university satellite security space,
surfacing unique security barriers and needs.

Some work has highlighted the need for more security on
university and other smallsats [6, 36, 37]. Kurzrok et al. ex-
plored the theoretical extent that a hacked smallsat could travel
under different propulsion methods [6], showing the physi-
cal danger of unsecured ADCS telecommands. Kurzrok et al.
also mentioned informal conversations among the smallsat
community suggesting university teams often do not encrypt
their telecommands and highlighted the need for a systematic
analysis on university satellite security. Our work intends to
fill this gap.

3 Methodology

We used a combination of interviews and code analysis to
explore the security practices of university smallsat teams.

3

Our methodology involved five steps: 1) identifying univer-
sity clubs online, 2) selecting clubs to interview and analyze
based on publicly available code, 3) assessing the code to
identify code-specific interview questions, 4) conducting in-
terviews, and 5) analyzing the security of the code, cross-
referenced with interview responses, based on our satellite-
specific threat model. We interviewed 8 participants across 4
clubs and looked through all publicly available repositories
for 3 of those clubs.

3.1 Finding Clubs to Analyze
We used a search engine to identify as many university satel-
lite clubs as possible, resulting in 41 overall. We then filtered
for clubs with public code repositories and documentation.
This resulted in 7 clubs, 5 of which are in the U.S. We chose
public code repositories 1) because we did not wish to pres-
sure clubs into revealing their code that could then lead to
the possibility of them becoming de-anonymized, 2) avoiding
conflict with their funders or institutions who might require
that the code remain private, and 3) preventing violation of any
ITAR guidelines, since many satellites have ITAR restrictions
where certain implementation details cannot be shared to non-
U.S. citizens. We chose not to interview members from the 2
clubs outside the U.S. because our research team is within the
U.S. and regulations and policies may vary by country. Focus-
ing on clubs within the U.S. allowed us to minimize variables
including regulations and local educational cultures. Further,
1 of the 5 U.S.-based clubs did not respond to requests for
interview and thus is not included in analyses. Finally, we
interviewed Club D but excluded a code analysis after deter-
mining the available repositories corresponded to previous
satellites our interviewees had not worked on (whereas more
current code was not yet publicly available). We determined
this only after Club D interviews started, so we still report
their interview responses in Section 5. While this may be a
small set of clubs, there are not many clubs in the first place
that have actually launched satellites per our searches, and a
smaller set of those that have their code open source.

3.2 Interviews
Our interviews take a standard approach by surveying de-
velopers to understand how security and privacy are treated
in practice [38–40]. This approach allows us to understand
gaps between research and practice and pose solutions to-
wards reducing these gaps. We interviewed participants from
4 clubs.

3.2.1 Recruitment and Screening

To help answer RQ1, we especially recruited for members
who worked on (and preferably led) satellite software. We
also recruited satellite club leaders because their preferences

likely affect satellite security implementation downstream.
We found contact information through websites and public
documentation. We reached out by email to each club and rel-
evant club leaders, members, and alumni. Table 1 summarizes
our interview participants.

3.2.2 Developing Interview Questions

We constructed a set of interview questions based on our
research questions. The first author constructed a semi-
structured interview script, with pre-determined questions but
allowing for flexibility (e.g., omitting questions, rewording,
or asking follow-up questions as necessary depending on an
interviewee’s responses). This interview script was evaluated
and revised by the authors and an external security expert.
Two authors piloted the interview script with another author
and an external colleague in robotics.

3.2.3 Interview Procedure

Interview questions below are labeled with their correspond-
ing research questions.

Two authors led the interviews virtually over Zoom meet-
ings. The first author asked questions from the script while
the second interviewer took notes, and both asked follow-up
questions as necessary. We did not mention security until the
security-specific questions to avoid biasing participants’ re-
sponses about their goals and concerns when building a satel-
lite [41–43]. The interview script is included in Appendix A.

General Questions. To get a better understanding of par-
ticipants’ club experience, we asked about the satellites they
worked on, what years they were in the club, and whether they
had worked on satellites outside of the club.

Mental Models. We asked participants to draw a high-level
diagram of how their satellites worked, and asked those with
software experience to focus most on the software compo-
nents. We used this diagram to help the participants and us as
interviewers visualize further potential security threats. We
did not yet mention security in this or the previous sections.
We asked what goals they have when building satellites (Re-
search Question 1) and what scenarios they were concerned
about. These scenarios revealed whether security issues were
a concern at the top of their mind (RQ1). We also asked
about goals to further understand what tradeoffs to security
they might be willing to make, which may serve as a barrier
for implementing security (RQ2). Some of the wording and
questions in this section and the following security-specific
questions were inspired by Zeng et al.’s exploration of security
and privacy perceptions of IoT users [44].

Security-specific Questions. We next asked whether they
had any security-related concerns, or if they had other secu-
rity concerns that they hadn’t mentioned yet (RQ1, RQ2). We
asked what they think the worst thing that could happen is if
the satellite is not secure, who might attack a satellite, what

4

discussions the club had about security, and how much they
discussed security compared to reliability (RQ1, RQ2). These
questions assessed participants’ overall threat models by ask-
ing implicitly about assets (worst-case outcomes), adversaries
(who might target the satellite), and vulnerabilities (what their
security concerns were). We then asked what security tools
they already used (RQ1) and what they wish existed (RQ3).

Demographics. We asked about the participant’s area of
study, satellite team size and budget, their satellite industry
experience, and their cybersecurity knowledge.

Closing Questions. We asked if there was anything else
the participants wanted to share and whether they expected
us to ask anything else, a recommended practice in HCI re-
search [41]. We also asked several participants code-related
questions relevant to their club’s repositories to gain further
insight into their procedures.

3.2.4 Data Analysis

For each interview transcript, both interviewers used emer-
gent coding [41] to note concepts that arose in each transcript.
We compared themes that came up, then used axial coding
to categorize these themes into groups. We translated these
axial codes into a final codebook (Appendix B). For the fre-
quency results in this paper, both interviewers coded based
on the videos and the transcript. We coded these frequencies
independently and calculated initial agreement using Cohen’s
Kappa, with substantial agreement between coders (κ = 0.75,
SE = 0.08). We then further refined our codes and discussed
differences in coding to reach agreement.

3.3 Software Analysis

Our analysis of the clubs’ satellite software was split into two
parts. First, two authors identified and analyzed repositories
(along with public documentation and diagrams) belonging
to each satellite club. As mentioned in the introduction, these
analyses were entirely manual due to the goal of analyzing
whether clubs implemented the high-level security goals that
they stated in their interview, as well as the inherent diffi-
culty in running automated tooling on disparate embedded
platforms [23, 45]. From these analyses, we then derived
high-level block diagrams (like Figure 2) of each satellite’s ar-
chitecture and system functionality. Second, four authors (all
security and privacy experts) synthesized a threat model for
each evaluated satellite based on these high-level diagrams.
If our threat model differed from the threat model of the par-
ticipants (as expressed in the interviews and corroborated by
the software), we evaluated whether the code met the security
requirements of our threat model. We argue that this code
analysis methodology serves as both a barometer on if the
clubs’ perceptions of their security postures are accurate (i.e.,
the satellites behave how their clubs expect them to based
on their mental models of the satellites, other interview re-

sponses, and comments in their code), as well as an indication
of threat model suitability (i.e., whether the threat models are
appropriate for the satellite’s goals, as judged by security and
privacy experts).

Our manual code analysis was primarily guided by two
authors’ experience with satellite software. After identifying
the clubs’ Github organization and associated repositories,
we filtered for security-relevant repositories. Since many of
the repositories were for hardware designs or design collat-
eral (Appendix C.1), the most relevant repositories tended to
include software for ground stations, communication systems,
and flight computers. For each of these repositories, we read
the code at a high level to understand its intent and how it
fits together with other subsystems. Rarely, we were able to
additionally execute code that did not depend on bespoke
embedded hardware (such as for Satellite C). Based on these
insights, we made diagrams for each satellite that describe (at
a high level) how the security-critical components interact.

We then specified a general threat model (Section 6.1) to
guide a more in-depth security analysis for each satellite. This
threat model defines a remote adversary who can reverse-
engineer the satellite’s communication protocol and send ar-
bitrary commands to the satellite. Our in-depth code analyses
therefore typically began at each satellite’s communication
subsystem, specifically the handling function for received
messages. We explored the threat surface of available com-
mands, noting any reachable commands that might violate our
participants’ threat models, or confirm/deny any of their per-
ceived risks or goals (Section 4). If the participants noted that
they implemented encryption or authentication, we verified
whether this was the case. Finally, we also traced backwards
from the participants’ security and safety goals, and checked
whether any internal state could lead to a violation of these.

3.4 Scope and Limitations

Our goal is to understand the computer security practices,
barriers, and opportunities within the small yet growing com-
munity of university satellite clubs and their members. Our
sample size was limited, in part because we recruited from
a small and specific population (on the order of dozens of
clubs based on our searches), which is itself a valuable en-
deavor [7] and aligns with our broader research goals. Though
our goal is not generalizability, qualitative methods can afford
transferability [46], such that lessons and recommendations
uncovered here may be valuable in understanding other uni-
versity satellite teams. Further, security vulnerabilities in only
a few launched smallsats still have the capacity to cause harm
to the entire space ecosystem, which is why it is so important
to study this overlooked group of satellite operators. All par-
ticipants interviewed were subsystem leads or heads of their
clubs, so our results speak to club leaderships’ perspectives
on computer security and privacy. While there might be mem-
bers within a club with different security knowledge than

5

those that we interviewed, their existence does not detract
from our findings with club leadership. Nevertheless, like any
interview study, the results may suffer from self-reporting
bias. We attempted to mitigate this through cross-referencing
discussions of security with our manual code audit (except
for Club D).

In terms of code analysis, it is possible that we missed rel-
evant vulnerabilities given the scope of the repositories and
the difficulty of using any automated tools on heterogenous,
bespoke embedded systems. Because our security analysis
focuses on the design-level, we attempted to mitigate this by
anchoring our code analysis on the satellite-specific threat
model we developed based on each payload, rather than ana-
lyzing for as many potential vulnerabilities as possible.

3.5 Our Perspective
Our team of authors has experience with both attack-focused
and defensive research. Two of our authors are members of
a university satellite club and have experience developing
components for a satellite. One author has experience as the
lead of multiple subsystems within a satellite club. Three au-
thors have expertise in participant-focused studies, including
one author who is a social psychologist. Two authors have
amateur radio communications experience. Multiple authors
have embedded systems hardware and software expertise.

4 Ethical Considerations

Our institution’s IRB approved the interview study under the
exempt research category. Before each interview, we shared a
consent form that participants agreed to verbally. Participants
optionally consented to video recording through the Zoom
recording functionality so that we could have an accurate
script and record any drawn diagrams. All participants agreed
to the recording option. One interviewer manually transcribed
participant responses during each interview.

We paid each interview participant $75 for their responses
with an expected time of 1 hour per interview. This pay rate
is higher than usual for interview studies; we wanted our pay
to reflect an estimate of the time it would take out of an in-
dustry job to participate in our interview, since some of our
participants were in industry. All questions were clarified to
be optional. We anonymized study participants; the goal of
this study is not to focus on individual clubs, but rather to un-
derstand what the range of security practices, preferences, and
security barriers might be for university and other smallsat
teams. To further protect participants, we sometimes obfus-
cate which anonymous participant said what in the combined
results when we believe that it would not affect the interpreta-
tion of the response. For security vulnerabilities that we found
that satellite clubs were not already aware of, we disclosed our
findings to them. We offered our help to answer any questions
or help resolve the vulnerabilities if needed.

5 Interview Results

We present below our interview results combined across clubs.
Based on these results, we note strengths of security practices
among teams, as well as specific barriers that might lead to
difficulty implementing appropriate security measures. These
results then inform our discussion of potential tools to help
smallsat teams build more securely (Section 7).

5.1 Participants

We interviewed 8 former and current university satellite club
members about their satellite club experience across 4 clubs.
See Table 1 for a summary of participants. Participants con-
sisted of club leaders, subsystem leads, software leads, or a
combination of the above. 4 members were current and 4
were former members, graduating 2018 at earliest. 5 out of 8
members had experience in the space industry, both through
internship and full-time roles. Security knowledge ranged
from 1 (novice) to 5 (expert). Interviews lasted between 30
and 75 minutes.

5.2 Satellite Goals

To understand what tensions between security and other fac-
tors might exist, we asked participants about what overall
goals they had when building their satellites. As a reminder,
we did not mention security prior to the security-specific ques-
tions later in the interview. Answers fit broadly into the follow-
ing categories: scientific missions, educating club members,
educating community and other clubs, building the satellite
cheaply, and building the satellite reliably.

Clubs’ scientific missions included taking images of Earth,
testing battery systems in space, and relaying sensor data from
remote regions. Clubs prioritized hands-on satellite develop-
ment to educate club members, while outreach activities and
payloads were often used to educate communities.

Some clubs tried to build cheaply to stay within their own
budget, while others also tried to build cheaply so that other
clubs could replicate their designs in the future on a limited
budget. They did this by relying minimally on off-the-shelf
components, instead opting to build their own components
from scratch or from open-source software and hardware.
One such example was using the (unencrypted-by-default)
OpenLST transceiver, a component with high manual cost to
integrate but costing under $100 per radio.

Barrier 1: Low-budget and education goals can lead
to using homebrewed designs, which might influence
the security tools used.

6

5.3 Difficulties faced

Non-technical difficulties were emphasized the most. Par-
ticipants discussed a wide range of difficulties within the club,
both technical and non-technical. One of the most common
categories of difficulties was non-technical issues relating
to lack of various resources, with 7 participants bringing up
difficulties in this category. Resource deficits included insuffi-
cient time for development, lack of people, limited experience,
insufficient documentation within the club to transfer knowl-
edge, insufficient public documentation to help clubs figure
out what and how to build, difficulty finding materials and ma-
terials being discontinued, limited budget, and limited access
to expensive physical testing infrastructure.

Technical Difficulties Varied. Technical difficulties men-
tioned varied by club and depended on both scientific missions
and hardware used, though creating good software testing in-
frastructure and simulations was mentioned as a difficulty by
4 participants. Participant A2 provided a concrete example of
this when they happened to find a memory corruption error:

While our attack surface was pretty limited, the
worst case I suppose would be someone manag-
ing to gain remote code execution via a malicious
uplink command entry point. . . I discovered an ar-
ray out of bounds issue at one point while testing
myself when I noticed some data was corrupted
and fixed it; we didn’t have good automated tests
to catch that kind of stuff even at the beginning.
Most microcontroller code is written in C which is
notorious for letting you shoot yourself in the foot
with memory issues. . . That combined with ama-
teur software engineers is a potentially dangerous
combo, especially for missions where a malicious
actor could do more damage. (A2)

Barrier 2: Insufficient testing — potentially due to
lack of time and other resources — can lead to missing
important satellite security flaws.

5.4 Security Discussions During Development

The remaining portion of our interview focused on security.
Only 1 participant mentioned insufficient security as a poten-
tial scenario of concern in our interviews before we explicitly
asked about security concerns. 6 participants across 3 clubs
said that security was discussed in the club once we asked.

Security perceptions differed across and within individ-
ual clubs. Whereas some clubs did not authenticate or encrypt
their commands, others did. However, the differences in se-
curity practices did not correspond with actual threats. For
example, Satellite B had a propulsion system but did not have
encryption, while D3 said they would implement encryption
even though all participants from Club D felt that there was

minimal risk for their satellite.
There was also disagreement within individual clubs about

whether a security protection was employed (Club A, Club B)
and whether security was discussed at all (Club D). We discuss
this more in the code analysis section of individual clubs in
Section 6. D3 said that reliability “is mainly how I sold my
[security] research and thesis.” Their research was mainly
on fuzzing, so this meant that finding security issues, such
as memory corruption, was important for reliability as well.
However the Club D leader said that there was no security
discussion or security concerns with their satellite.

Barrier 3: Inconsistent security goals and discussions
within a club can lead to non-uniform implementa-
tion of security across the entire satellite system. One
subsystem or code segment might have considered
security while others have not.

Some clubs employed aspects of threat modeling in their
design phase. Both Club A participants said that security was
discussed. A2 mentioned that their team met to whiteboard
all the things that could go wrong. One design point they dis-
cussed in whiteboarding sessions was whether or not to allow
software updates. On the plus side, being able to fix a bug after
launching could save the mission. The downside is that this
is complex and could introduce additional risk if incorrectly
implemented. Thus, they decided not to include a software
update mechanism. While software updates were discussed,
the participant did not explicitly mention their value from a
security perspective. Another example of at least partial threat
modeling is participant D3’s security fuzzing project; they
mentioned using fuzzing to find bugs that would prevent the
satellite being taken over and having firmware flashed onto it.

Strength 1: Some clubs practice threat modeling in
their satellite development process.

5.5 Satellite Threat Models
Participants discussed negative outcomes but mostly
thought they were unlikely. Participants brought up a wide
array of potential threats to their satellite. 6 believed that these
outcomes were unlikely, which often affected their security
practices. For example, D1 believed that the satellite’s sensor
data was not sensitive and thus would not be a target.

We do not wish to imply that their risk assessments are
misguided; based on our interview discussions, we have no
evidence to suggest any club that has already launched their
satellite was targeted by attackers. However, as threats change
in the future and as the capabilities of university satellites
change over time, these threat models may not hold. We see
theories of this changing threat landscape, including space
warfare, further into these results.

7

Both club members and third parties had concerns. For
example, participants said that NASA was concerned that
the lights on Club B’s satellite could harm astronauts. The
participants framed the blinding concerns as a safety issue
rather than security issue.

B1 recalled that some outside groups, though they could not
remember who, required Club B to think about security. B2 as
club leader needed to ensure that all systems complied with
International Traffic in Arms Regulations (ITAR [47]), which
sets some controls over how advanced various technologies
on the satellite can be while still being open source, such as
the propulsion and star tracking system. ITAR is enforced for
national security and safety reasons rather than preventing the
satellite itself from being exploited.

Of Note 1: In some cases, security considerations
might have been imposed from the outside, though
the reasons may have been for safety.

Some threats were discussed during the design pro-
cess while others were only discussed in the interviews.
Throughout our questions about security, club members men-
tioned a variety of possible ways to attack a satellite and
potential security issues. These issues include sending up
malicious commands, exploiting memory corruption vulnera-
bilities, performing remote code execution, denying service,
unintentionally using malicious third-party code, and physi-
cal access pre-launch allowing someone to upload malicious
code onto the satellite. However, some concerns only came
up in the interviews and not while building the satellite. Re-
mote code execution, third-party code, or physical access
pre-launch were not discussed amongst club members while
building the satellites. Some participants had industry experi-
ence where they were required to think more about security,
which may have helped them with their threat modeling dur-
ing the interview. The limited discussions of security within
clubs despite many current members being aware of other
potential security issues corroborates that security was not a
main priority when building the satellites. We discuss what
tools were used to mitigate these risks in Section 5.6.

Barrier 4: A lack of extensive threat modeling prior
to launch means that some attack vectors were not
considered.

Worst-case outcomes. For satellites that had propellant,
one outcome that participants mentioned included sending
malicious commands to ADCS to wreck their satellite, caus-
ing space debris. Even worse, B2 mentioned how the satellite
might hit another satellite or the International Space Station
(ISS). Some participants who worked on satellites without
propellant or believed their propellant was not sufficiently
powerful were not as concerned, with 1 participant mention-

ing that hackers could only retrieve public sensor data, and
2 others saying that they could lose communication with the
satellite or otherwise be denied service. The above concerns
were only considered during the interview, not prior to launch.

Physically harming astronauts Club B had an extremely
bright flashing light on their satellite. Club B participants
mentioned blinding astronauts as a key concern in their design
phase since their satellite was planned to launch from the ISS
and would thus start out next to astronauts. Section 6.2 shows
what preventative measures they took to mitigate this risk.
Club B participants mentioned that third-party providers who
were helping launch the satellite were also concerned of this
risk. This physical safety concern is the only threat considered
prior to launch in this section of worst-case outcomes.

Violating Regulations C1 mentioned that attackers could
use satellites to violate regulation. For example, they could
violate FCC guidelines and broadcast messages when they
are not supposed to, or use a satellite’s on-board camera to
violate regulations and take images of other satellites rather
than images of Earth [48].

Inciting International Incidents Another concern that came
up was that some foreign government could take hold of a
university satellite from the U.S., use it to cause harm, and
then blame it on the U.S. to limit U.S. presence in space,
or to incite an incident. This concern came up without any
prompting other than the interview script, and it shows an
example of what the future of space warfare might look like:

The worst case that I can think of is that a foreign
adversary takes control of the satellite and [causes
it] to run into the International Space Station. . . [or]
crash into some sort of satellite that’s part of an in-
ternational collaboration. At that point, the amount
of paperwork that you’re going to have would build
a mountain high enough to get into orbit. . . Any
time that you have a satellite with a propulsion ca-
pability. . . , you effectively have a kinetic weapon
that can destroy other satellites. . . A traditional ad-
versary to the United States could take control of
some U.S. satellite and say “The student satellite
is malfunctioning and it has crashed into our satel-
lite . . . This is a big international incident . . . The
United States can’t control their satellites.” (B2)

This threat implies that any satellite with sufficient propul-
sion systems should consider its security, even if it’s a uni-
versity smallsat. Thus, teams should be aware about how this
kind of threat might become more likely in the future as more
warfare involves space [49].

8

Barrier 5: Incomplete threat models about why an
adversary may target a club in the future (for example,
to incite an international incident) can lead to differ-
ences between real threats and implemented threat
mitigations.

Potential Adversaries. When we asked from whom the
clubs’ satellites might need protection, answers ranged from
those hacking out of curiosity and boredom, to foreign gov-
ernment adversaries. Again, there was no indication that most
of these adversaries or the adversaries below were considered
prior to the interview. Some participants explicitly mentioned
adversaries that they thought would not target their satellites,
including foreign governments. Some explicitly mentioned
intentions that adversaries would not have towards university
satellites, including not wanting money and that there would
be no national security benefit to hacking them.

Environmental Advocacy Groups Some participants based
potential adversaries off their experience. Club B received
a letter from an environmental advocacy group against light
pollution asking them to stop development of the satellite,
and proposed that this group could be a potential adversary.

“Space Pirates” Some participants posed that future space
warfare might include “satellite pirates” or “space pirates”.
While this does have an existing definition regarding piracy
of satellite-distributed content like satellite television, D2 had
heard of satellite pirates as for-fun hackers who try to decode
messages and use it against people. D3 heard of “space pirates”
through previous work on a government-funded satellite secu-
rity project. D3 defined space pirates as a satellite hacker that
will become more important as space warfare becomes more
prevalent [49]. D3 said that space pirates could even refer to
someone with physical access to the satellite in the future:
“someone could have a spacecraft where they can approach
your satellite or grab it out of space and modify its hardware.”

Barrier 6: Conducting an informed risk analysis of
adversarial threats in space may be challenging, since
discussion of some risks and predictions of risk, like
“space pirates”, require information not readily ac-
cessible in the open literature and therefore not as
accessible to university satellite clubs.

5.6 Security Strategies and Tools Used

Clubs used a variety of tools and techniques, both effectively
and ineffectively to try to implement security. In addition
to whiteboarding out worst-case scenarios (Club A), partic-
ipants said that they did manual security audits of code, are
building fuzzers, and doing “hardware debugging” (Club D).
As we will see in Section 6, some security protections em-
ployed were partially incorrect. 4 participants did not know

what security tools were used or said that none were used.
One tool for encryption mentioned was “frequency modula-
tion,” so there was likely confusion about the term encryption.
Based on participant ideas and our own analysis, we discuss
potential future tools to help improve security in Section 7.
Another security choice was to “scrub commands” from the
public code (Club B). The command scrubbing in Club B
was not effective for preventing adversaries from knowing the
commands; see Section 6.2 for more details.

Barrier 7: Clubs may not be currently equipped with
sufficient security tools and/or understanding of the
security tools to effectively secure their satellite.

5.7 Security Tradeoffs
All clubs made tradeoffs that directly impacted security, as
any organization must do. Some clubs chose to forego confi-
dentiality since they intended the communications downlink
(satellite sending info to ground station) to be public for edu-
cational purposes, or were required for it to be public if they
were within an amateur radio frequency band. One participant
believed they could not encrypt the commands to the satellite
in the uplink due to amateur radio laws, but this is not the
case. Based on the authors’ own experience in satellites clubs,
this misconception is not uncommon.

Barrier 8: Misunderstanding in regulations might
lead to implementing less security protections.

Club A chose not to encrypt their uplink because they were
concerned that they might implement it incorrectly and had
seen other clubs “shoot themselves in the foot” when trying
to implement encryption (A2). Club A decided it was a rea-
sonable tradeoff because they did not think there was enough
of a threat to justify encryption. Another participant said they
cared a lot about maintaining simplicity of their software,
which in turn would help with maintaining reliability (D2).

Barrier 9: If a security solution has potential real or
perceived negative reliability impacts, there may be
resistance to the adoption of the security solution.

5.8 Security Issues in Industry
5 out of 8 participants had industry experience specific to
satellites or in the space industry overall. 4 out of 5 only
had industry experience after leaving the club, while 1 had
industry experience during undergrad through internships. 4
participants said that industry takes security more seriously
than their university satellite team (though one of these partic-
ipants works now on rockets and not satellites). 2 participants

9

said that there were insufficient security practices in indus-
try. Some responses show a lack of priority in security in
government satellites and possibly beyond:

Any internships that I’ve applied for that have in-
volved testing . . . has been mainly on a reliability
basis. (D3)

Not my specific company, but the space industry
as a whole is hilariously bad at cybersecurity. It
is comical and also terrifying, with the scope of
projects in industry that have absolutely zero en-
cryption. They’re waking up to that now . . . and it
is being taken more seriously. . . Cyber warfare has
become much more of a concern in general (C1)

D3 was going to be involved in developing the security of
a government-funded satellite communications project that
their university was involved in, until the funding for the
security initiative was cut (at least for D3’s institution):

We were involved with [the satellite project] in the
very early phases. . . I think our group was chosen
to do the security portion and then a month later
when they were getting the cybersecurity budget
sorted out for this project, they decided the budget
would be $0. (D3)

D3 worked on another satellite project outside of Club D:

I was in integration testing on [a government satel-
lite communications system]. As far as I could
tell. . . , they did no unit testing, no fuzzing, no secu-
rity auditing. All the testing for catastrophic failures
was done by people. . . I was there for one or two
potentially disastrous problems with the flight soft-
ware that almost ended the project. I think most
security stuff is left up to chance and most of these
projects trust encryption as their only way to pre-
vent hacks. (D3)

Of Note 2: Security practices of satellites in industry
and government may be insufficient relative to the
satellites’ capabilities.

6 Code Analysis

We now report on a code analysis of 3 clubs’ satellite im-
plementations, and compare and contrast these with security
perceptions from our interviews. This code analysis encom-
passes dozens of repositories and many thousands of lines of
code; Appendix C lists statistics about these repositories.

6.1 Threat model
To inform our code analysis and satellite-specific threat mod-
els, we first establish a more general threat model. We assume

an adversary on the ground who only has access to public
documentation about the satellite, i.e., is not an insider to the
club. Public documentation includes all open-source code
repositories, documentation within those repositories, or any
other information about the satellite available on the internet.
Public documentation also includes network traffic, since ad-
versaries could reconstruct the protocol based on observing
commands sent from the ground station [50]. The adversary
can construct their own ground station or use a ground sta-
tion as a service company and send commands up with a
software-defined radio or other tool.

We intentionally exclude pre-launch physical access to
satellites and their underlying hardware by the adversaries
from our analysis; therefore, supply-chain attacks and physi-
cal access are not part of our threat models. We are not saying
that these two threats could not compromise the operation
of a university satellite. Rather, given that building satellites
to handle supply chain adversaries is an emerging area of
research [22], we do not expect (and did not see) any defenses
for these threats in the code that we analyze, and hence we
define it as out of scope in our analysis. Second, all satellites
analyzed were vulnerable to a much less privileged remote
adversary, making whether the satellite could defend against
supply chain attacks not relevant. To clarify, excluding these
results does not impact our interview results, as the partici-
pants were not told to consider a certain threat model. Still,
we explicitly acknowledge that future works should consider
supply-chain attacks, especially as satellites become more
ubiquitous and capable.

6.2 Satellite A

Satellite A launched in 2018 and decayed from orbit in 2020.
Satellite A had two main science missions: 1) to test a battery
technology in space and 2) to implement a “flashsat” using
a 40000 lumen LED panel, designed to be seen from space
by the naked eye. For the rest of this section, we use the term
“flash” to refer to the LED panel, rather than persistent storage
or the process of installing software updates into that storage.

We find that the Satellite A designers were primarily fo-
cused on mitigating flash panel safety concerns, which they
did successfully via precise state transitions (Figure 2). How-
ever, we identify availability and confidentiality issues.

6.2.1 System Overview

Bootloader The command/control/communications (C3, aka
flight computer) software component consists of a low-level
bootloader and the main real-time OS (RTOS). The boot-
loader is a tiny program which runs when the C3 first starts
up. Its main task is to interface with an external MRAM
(magnetoresistive random access memory) chip to load the
larger operating system image. MRAM is inherently tolerant
of radiation (i.e., not prone to bit flips), and is therefore a safe

10

Figure 2: Satellite A state transition diagram. The satellite can
only flash during the IDLE_FLASH state, which is only reach-
able after a wait period of 26 orbits for safety reasons. State
names correspond closely with satellite actions taken during
those states, except for HELLO_WORLD which acts simply as
an idle state. The LOW_POWER state is activated any time the
satellite detects that the battery levels are too low.

place to store the large, mission-critical operating system.
Operating System The main OS is built on FreeRTOS

9.0.0, a widely-used RTOS with a broad range of hardware
support. The OS performs low-level hardware initialization,
bootstraps the scheduler and other core subsystems, and fi-
nally launches RTOS tasks to manage individual hardware
components. These tasks include battery charging (BATT),
antenna deployment (ANT), and (of note) flash panel activa-
tion (FLASH), among others. The RTOS schedules these tasks
based on the satellite’s current state as shown in Figure 2.

Ground station Satellite A used two distinct ground station
networks to collect downlink telemetry for portions of orbit
not reachable by the club’s own ground stations. At first, the
club solicited amateur radio observations by offering an online
upload portal for observations. Later, the club began using
a new local decoding feature in the SatNOGS open source
ground station network, which required them to have their
downlink protocol be publicly accessible. Based on comments
in the code and interviews, the club thought of these ham radio
operators as honest-but-curious.

6.2.2 Threat Model Comparison

Participant Threat Models As reported in Section 5.5, Satel-
lite A designers and NASA had safety concerns related to
the flash panel. Satellite A’s designers also had confidential-
ity concerns with the satellite’s comms protocol, mentioning
that they “scrubbed commands” from their public reposito-
ries as an “operational security measure.” The interviewees
discussed various potential adversaries, including an environ-
mental advocacy group who sent them a letter prior to launch

and honest-but-curious ham radio operators. Another threat
that A2 mentioned was sending commands in such a way that
their battery system payload would explode.

Does Participant Threat Model and Code Match?
Satellite A’s designers successfully mitigated the astronaut-
blinding threat by ensuring that the satellite is far enough
away from its launch vehicle and the ISS before it can begin
flashing. We show the implementation of this mitigation in
Figure 2. We find evidence in the code that the authors thought
about the safety of every state transition. The satellite’s “flash
immediately” command, for example, does not activate the
flash panel unless the satellite is in the IDLE_FLASH state.

However, the club’s confidentiality expectations were not
met. All commands were still available in the code, and all
information necessary to build Satellite A’s ground station
was publicly available during its lifetime. Even if commands
were scrubbed, a motivated adversary could reconstruct the
protocol based on their unencrypted uplink network traffic.
Since the satellite commands are not authenticated, adver-
saries could have interacted with the satellite, although nei-
ther we nor the participants saw evidence that this occurred.
We were unable to verify whether sending up a certain set of
commands could cause the satellite to explode.

Does our Threat Model Match? We also believe the most
significant risk is physical harm to astronauts, and this out-
come is successfully mitigated by precise state transitions.
While we do not evaluate the feasibility of the exploding
satellite attack, we do think that there are other ways to deny
service not discussed by participants. Available commands
included simple pinging, rebooting the satellite, enabling/dis-
abling radio responses (presumably to comply with amateur
radio laws), enabling/disabling the flash panel, and sending a
command to flash the panel immediately. An attacker with a
ground station could arbitrarily disable both radio responses
and the flash panel, as well as reboot the satellite. If the club
does not think to re-enable radio responses or the flash panel
they may believe that the satellite has failed in some more
severe way, affecting the satellite’s perceived availability.

Before the satellite decayed, we count several reported
CVEs 2 for FreeRTOS 9.0.0. While we did not evaluate
whether these CVEs were applicable for Satellite A’s con-
figuration, dependence on external code that is not updated
regularly is a well-known security risk. Satellite A also lacks
a firmware update mechanism, which increases this risk.

6.3 Satellite B

Satellite B launched in 2020 and decayed in 2023. This satel-
lite tested a propellant system and a second payload that we
omit since it is not relevant to our study and revealing it could
facilitate de-anonymization of the club.

2https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
freertos

11

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=freertos
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=freertos

Satellite B’s security posture heavily relies on obfuscation.
While the satellite’s source code was public during its life-
time, B2 mentioned that extensive protocol layering made it
“pretty impossible to send commands.” Additionally, the radio
implementation (which was provided to the club by amateur
radio collaborators) was not public for our analysis. Focusing
instead on the satellite’s bus architecture, we find that the
radio broadcasts packets directly on a CAN bus for consump-
tion by subsystems. These packets are implicitly trusted by
all subsystems, indicating that the radio was the main security
boundary for the satellite.

6.3.1 System Overview

Satellite B was constructed out of many individual microcon-
trollers implementing various subsystems, such as ADCS and
propellant control, and connected via a shared CAN bus. The
radio system was provided by AMSAT (the Radio Amateur
Satellite Corporation [51]), and was also connected to the
satellite’s CAN bus; received uplink packets were written
directly to CAN and filtered/interpreted by the subsystems,
while telemetry packets were downlinked as they were gen-
erated by the microcontrollers. The satellite used an open-
source high-level operations tool to issue commands that get
translated to lower-level messages on the CAN bus.

6.3.2 Threat Model Comparison

Participant Threat Models B1 was in Club B while their
satellite launched, while B2 only started after the launch.
Both mentioned concern about the thrusters and propellant
on-board. B1 did not think that the thruster was strong enough
to be used as a projectile. Instead, they were concerned with
denial-of-service through the attacker sending up many mes-
sages to the satellite, either to flood the comms system or to
send commands to use and drain the propellant. B1 thought
that the adversary would be a “for-fun hacker.”

B2 on the other hand does believe that the propellant could
have been a problem, and that the worst case was inciting
an international incident by either moving the satellite to
cause debris or to knock into space vehicles owned by other
countries (See Section 4). Because of this threat, B2 thought
an adversary might be a foreign nation.

Does Participant Threat Model and Code Match? Satel-
lite B’s architecture implicitly places all security expectations
onto the radio. The satellite’s internal bus is a broadcast CAN
bus where every node can see every message, but filters only
for messages it can handle. The radio writes all received
packets to the CAN bus, presumably after unwrapping some
link-layer framing information. As such, the AMSAT radio
would have been our primary focus for code analysis had it
been made public. We instead checked AMSAT’s documen-
tation for this line of systems and Satellite B’s open-source
ground station, and did not see evidence of security mech-

anisms in either. Our participants did not recall there being
comms link encryption, further supporting this assumption.

To meet Club B’s threat models for propulsion system
safety, we believe that command authentication would be nec-
essary to prevent either denial-of-service or an international
incident, as envisioned by our interviewees. A2 said that ra-
dio sequence numbers could make it harder for adversaries
to “patch in a command,” but we did not find evidence of
sequence numbers being used in either AMSAT’s public doc-
umentation or Satellite B’s ground station. Therefore, there
is a mismatch of safety expectations between Satellite B’s
designers and their code.

Based on interview responses, we believe Satellite B’s com-
plex and layered comms protocol led club members to mis-
takenly believe it was confidential; one participant said it was
“encrypted by obfuscation” but “not industrial-grade encryp-
tion.” However, their perceived threats did not necessarily
require confidentiality to be successfully mitigated.

Does Our Threat Model Match? We find evidence that
the Satellite B repositories were public during its deployment.
Since we found no authentication or encryption of commands,
we argue that a motivated nearby adversary could have dis-
covered which commands exist and how to send them.

We agree with our interviewees that denial of service and
causing an international incident are the worst-case scenar-
ios. We find commands primarily for changing the ADCS
magnetorquer settings, powering on/off various subsystems,
and pulsing the propulsion system. An adversary on a lim-
ited budget (Section 6.1) could use these commands to harm
availability, e.g. by tumbling the satellite, turning off subcom-
ponents, or exhausting propellant.

6.4 Satellite C

Club C implemented a complete open-source amateur satellite
system, used so far in two launched satellites. The most recent
satellite was launched in 2024.

We find that the main security boundary for Satellite C is
the comms subsystem, and that authentication (rather than
obscurity) is the primary security mechanism. We identify two
small implementation errors in their authenticity mechanisms
and a lack of defense-in-depth. Beyond the comms subsystem,
we find advanced functionality enabled by Satellite C’s Linux-
capable C3. Unique among the satellites we analyzed is a
software update capability.

6.4.1 System Overview

Satellite C’s architecture consists of a variety of intercon-
nected ARM-based processing units, ranging from microcon-
trollers running an embedded RTOS to Linux-capable CPUs.
These processors are all attached to their relevant subsystems
(ranging from ADCS to solar panels) and a central CAN bus

12

for intercomponent communication. The C3 is built as a stan-
dard Python application running on Linux, enabling advanced
functionality such as software updates.

Satellite C’s payloads are a novel high-speed comms link
and a camera. As part of the club’s outreach goals, they want
to take images with the camera from space and then transmit
them to mobile ground stations built by local high schools.

Communications Satellite C’s comms protocol follows the
official CCSDS protocol of the Unified Space Link Protocol
(USLP). They use a keyed HMAC built on 256-bit SHA3 for
authenticity. Sequence numbers are used to attempt to prevent
“repeat attacks,” (we believe they meant replay attacks) as
noted in their public documentation. Their high-speed comms
system, operated by the C3, is separate from the main comms
link. Commands for taking photos and quickly transmitting
them first go through the main C3 computer (following the
packet structure), then are immediately routed to and handled
by the high-speed subsystem.

6.4.2 Threat Model Comparison

Participant Threat Models C1 identifies both confidentiality
and regulatory concerns, stating they did the “bare-minimum
of encryption and due diligence”. They also expressed con-
cerns related to the camera [48] violating NOAA regulations
by taking images of space (and orbiting objects) rather than
Earth. Command integrity is required to prevent the risk of
an adversary sending a malicious camera command.

Does Participant Threat Model and Code Match? C1’s
stated threat model is partially addressed in the code. Com-
mand integrity concerns are addressed in the comms uplink
aside from two implementation issues. We saw no evidence of
uplink encryption, contradicting C1. However, based on their
concern about violating regulations, uplink confidentiality is
unnecessary; only uplink authenticity is needed.

We find that Satellite C developers consider the comms
subsystem to be the satellite’s main security boundary. Each
message includes both an HMAC and a sequence number to
prevent replay attacks, though there were two slight errors.

First, we found an off-by-one error on packet sequence
numbers, allowing for replay of the last received packet an
arbitrary number of times until another authentic command
increments the internal sequence number. We confirmed that
this replay attack works by running the C3 software locally
and successfully sending the same packet multiple times.

We argue that sequence numbers only protect commands
which change the system state independently of the num-
ber of times they are invoked (idempotent commands). Our
code analysis revealed a rich set of nonidempotent commands,
ranging from component- and system-level resets to real-time
clock updates. We did not fully investigate the idempotency
of every command (since there are very many), but did check
some of the more sensitive ones related to availability. For
example, we verified that the magnetorquers are configured

via “setpoint” commands that indicate the desired torque level
along each axis, rather than specifying changes to these lev-
els; this makes the magnetorquer commands idempotent and
mitigates against the effects of a potential replay attack.

The other issue is a timing vulnerability on the packet
HMAC check due to a non-constant-time comparison opera-
tor. An attacker with sufficiently precise timing information
could possibly deduce the expected HMAC for an arbitrary
packet. We did not check the feasibility of this attack since
there are some major limitations, such as the HMAC’s 32-byte
length and a lack of prior work on ground-to-space timing
side channels. Nevertheless, we reserve establishing practical
exploitability for future work.

Additionally, we did not find evidence of specific security
measures that were taken in the rest of Satellite C’s code,
indicating that defense-in-depth was not a concern for the
developers (which also matches C1’s threat model). For ex-
ample, we found that no integrity or authenticity checking
is done on update files beyond the HMAC/sequence number
checks as update packets are received. Therefore, if an at-
tacker were able to bypass these checks they may be able to
establish persistence on Satellite C via a malicious software
update. Similarly, we find no specific security measures taken
to prevent illicit imaging of other satellites. Instead, the cam-
era is simply triggered by a command from the C3 when a
corresponding radio command is authenticated.

Does our Threat Model Match? We agree that regulatory
concerns in space are important to consider. Like other satel-
lites, another potential threat is denial of service. The replay
attack vulnerability could harm satellite availability.

7 Security Recommendations for Smallsats

Informed by our interviews, code analysis, and our own satel-
lite club experience, we discuss approaches that could help
improve security practices among university and smallsat
teams. Some recommendations apply to other amateur satel-
lites and even industry, as our participants and prior work [12]
show industry security also needs enhancement.

7.1 Open-Source Tools and Techniques
Software/Hardware Any tool should consider the incentives
impacting the satellite development process, including the par-
ticular emphasis on satellite systems’ reliability (Barrier 9).
Any proposed smallsat security tool would ideally have re-
liability benefits. An example of an effective security and
reliability tool is updating the hardware of a commonly used
smallsat component. We found that multiple university clubs
rely on the open-source OpenLST transceiver package3 for
their communications. One comment in OpenLST code is
“TO-DO: handle encryption”. In their documentation they say

3https://github.com/OpenLST

13

https://github.com/OpenLST

that they do not implement encryption. A future project could
be to fork this repo and update it with encryption and authen-
tication. Since OpenLST is on longer maintained, hardware
updates alongside security improvements would increase reli-
ability and thus likelihood of adoption.

As university clubs prioritize learning, a fully-furnished
secure smallsat framework may have limited appeal. However,
an out-of-the-box cryptographic comms solution could be
valuable, as comms systems often define security boundaries.
Authentication-only tools may also be useful as confidentiality
is not applicable to every club’s threat model.

Checklists Security considerations in smallsat repositories
are incomplete. B2 suggested a security checklist. This could
include recommendations for cryptographic libraries, secure
reference code, design guides, and organizational security
practices. A2 raised concerns about cryptographic techniques
affecting reliability, so the checklist could integrate lessons
from embedded software and network security.

7.2 Operational
Actions Within Club We saw partial threat modeling in Club
A and Club C. Satellite clubs could incorporate more thorough
threat modeling into the design stage. Clubs could use tools
such as threat modeling cards [52, 53]. Though suggesting
tools does not diminish the time constraints clubs face.

Third-party Actions To address these competing incen-
tives, a trusted third party, such as NASA, could recommend
or require security measures before launch. NASA’s Cubesat
Launch Initiative Program [54] would be a particularly good
location to promote good security practices in educational
and non-profit satellites, since they are involved in the process
of many universities’ smallsat development. NASA could
provide some information about the importance of smallsat
security in their educational resources, such as their Cubesat
101 book [55], or even incorporate the secure design check-
list suggested above. For those not involved in NASA CSLI,
launch providers could also set some requirements for satel-
lites. Trusted third parties could also offer threat modeling
support or serve as security contacts for university teams.

A “No Encryption, No Fly Rule” was proposed by authors
based on their analysis of the damage propulsive systems on
smallsats could cause [6]. We propose expanding this rule to
cover integrity and authentication, since these are even more
important than confidentiality for many amateur smallsats.

8 Conclusion

We examined the security practices and perspectives of uni-
versity smallsat teams through interviews and code analysis.
While teams implemented some security measures, they were
neither systematic nor complete. We observed impressive
engineering efforts and believe improvements in tools, orga-
nizations, and third parties involved in launch can improve

smallsat security. These changes will hopefully align with
teams’ goals of reliability and education while mitigating
risks to the broader space community.

Acknowledgments

This work was supported in part by the University of Wash-
ington Tech Policy Lab and the National Science Foundation
under award CNS-2207019.

References

[1] “Annual Number of Objects Launched into Space,” Our
World in Data, Aug. 2023, https://ourworldindata.org/s
pace-exploration-satellites.

[2] N. Adilov, P. Alexander, B. Cunningham, and N. Albert-
son, “An Analysis of Launch Cost Reductions for Low
Earth Orbit Satellites,” Economics Bulletin, 2022.

[3] D. J. Kessler and B. G. Cour-Palais, “Collision Fre-
quency of Artificial Satellites: The Creation of a Debris
Belt,” Journal of Geophysical Research: Space Physics,
1978.

[4] D. J. Kessler, N. L. Johnson, J. Liou, and M. Matney,
“The Kessler Syndrome: Implications to Future Space
Operations,” Advances in the Astronautical Sciences,
2010.

[5] A. R. R. League, “Amateur Radio Emergency Service -
When All Else Fails,” https://www.arrl.org/ares.

[6] A. Kurzrok, M. D. Ramos, and F. Mechentel, “Evaluat-
ing the Risk Posed by Propulsive Small Satellites with
Unencrypted Communications Channels to High-Value
Orbital Regimes,” Smallsat, 2018.

[7] O. Bertelsen, S. Bødker, E. Eriksson, E. Hoggan, and
J. Vermeulen, “Beyond Generalization: Research for the
Very Particular,” ACM Interactions, 2019.

[8] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 S & P. IEEE, 2010.

[9] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S.
Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and
W. H. Maisel, “Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power
defenses,” in 2008 IEEE S & P. IEEE, 2008.

[10] L. Mathews, “Researchers Used a Decommissioned
Satellite to Broadcast Hacker TV,” Wired, Mar.
2022, https://www.wired.com/story/satellite-hacking-a
nit-f1r-shadytel/.

[11] ——, “Viasat Reveals How Russian Hackers Knocked
Thousands Of Ukrainians Offline,” Forbes, Mar. 2022,
https://www.forbes.com/sites/leemathews/2022/03/31/
viasat-reveals-how-russian-hackers-knocked-thousan
ds-of-ukrainians-offline/.

14

https://ourworldindata.org/space-exploration-satellites
https://ourworldindata.org/space-exploration-satellites
https://www.arrl.org/ares
https://www.wired.com/story/satellite-hacking-anit-f1r-shadytel/
https://www.wired.com/story/satellite-hacking-anit-f1r-shadytel/
https://www.forbes.com/sites/leemathews/2022/03/31/viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/
https://www.forbes.com/sites/leemathews/2022/03/31/viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/
https://www.forbes.com/sites/leemathews/2022/03/31/viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/

[12] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt,
T. Holz, and A. Abbasi, “Space Odyssey: An Exper-
imental Software Security Analysis of Satellites,” in
IEEE S&P, 2023.

[13] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and
A. Davis, “Cyber Security in New Space: Analysis of
Threats, Key Enabling Technologies and Challenges,”
International Journal of Information Security, 2021.

[14] G. Falco, “The Vacuum of Space Cyber Security,” in
2018 AIAA SPACE and Astronautics Forum and Exposi-
tion, 2018.

[15] M. Swartwout, “Reliving 24 Years in the Next 12 Min-
utes: A Statistical and Personal History of University-
Class Satellites,” Smallsat, 2018.

[16] FOX 5 DC Digital Team, “Thomas Jefferson
High School Students Launch Satellite on SpaceX
Rocket,” Fox 5 Washington DC, Nov. 2022,
https://www.fox5dc.com/news/thomas-jefferson-hig
h-school-students-launch-satellite-on-spacex-rocket.

[17] Sarah Peters, “Middle School Students’ Satellite
Launched Into Space,” The Daytona Beach News-
Journal, Dec. 2018, https://www.news-journalonline.c
om/story/news/state/2018/12/31/middle-school-stude
nts-satellite-launched-into-space/6414842007/.

[18] Federal Communications Commission, “47 cfr 97.211 -
space station control operator license grant eligibility,”
Code of Federal Regulations, Title 47 Part 97, https:
//www.ecfr.gov/current/title-47/section-97.211.

[19] SatNOGS, “SatNOGS – Open Source Global Network
of Satellite Ground-Stations,” https://satnogs.org/.

[20] CCSDS, “The Consultative Committee for Space Data
Systems,” https://public.ccsds.org.

[21] K. Devaraj, R. Kingsbury, M. Ligon, J. Breu, V. Vit-
taldev, B. Klofas, P. Yeon, and K. Colton, “Dove High
Speed Downlink System,” Smallsat, 2017.

[22] S. Jero, J. Furgala, M. A. Heller, B. Nahill, S. Mergen-
dahl, and R. Skowyra, “Securing the Satellite Software
Stack,” in SpaceSec, 2024.

[23] J. Willbold, M. Schloegel, F. Göhler, T. Scharnowski,
N. Bars, S. Wörner, N. Schiller, and T. Holz, “Scaling
Software Security Analysis to Satellites: Automated
Fuzz Testing and Its Unique Challenges,” in IEEE
Aerospace Conference, 2024.

[24] G. Falco, A. Viswanathan, and A. Santangelo, “Cubesat
Security Attack Tree Analysis,” in IEEE SMC-IT, 2021.

[25] B. Cyr, Y. Long, T. Sugawara, and K. Fu, “Position Pa-
per: Space System Threat Models Must Account for
Satellite Sensor Spoofing.” in SpaceSec, 2023.

[26] J. Pavur and I. Martinovic, “Building a Launchpad for
Satellite Cyber-Security Research: Lessons from 60
Years of Spaceflight,” Journal of Cybersecurity, 2022.

[27] R. McAmis, M. Sim, M. Bennett, and T. Kohno, “Over
Fences and Into Yards: Privacy Threats and Concerns of
Commercial Satellites,” PoPETS, 2024.

[28] E. Jedermann, M. Strohmeier, V. Lenders, and J. Schmitt,
“RECORD: A RECeption-Only Region Determination
Attack on LEO Satellite Users,” in USENIX Security,
2024.

[29] D. Koisser, R. Mitev, N. Yadav, F. Vollmer, and A.-R.
Sadeghi, “Orbital Trust and Privacy: SoK on PKI and
Location Privacy Challenges in Space Networks,” in
USENIX Security, 2024.

[30] D. Koisser, R. Mitev, M. Chilese, and A. Sadeghi, “Don’t
Shoot the Messenger: Localization Prevention of Satel-
lite Internet Users,” in IEEE S&P, 2024.

[31] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla,
“ICARUS: Attacking Low Earth Orbit Satellite Net-
works,” in USENIX ATC, 2021.

[32] D. Lane, E. Leon, D. Solio, D. Cunningham,
D. Obukhov, and F. C. Tacliad, “High-Assurance
Cyber Space Systems for Small Satellite Mission
Integrity,” Smallsat, 2017.

[33] M. Usman, M. Qaraqe, M. R. Asghar, and
I. Shafique Ansari, “Mitigating Distributed Denial of
Service Attacks in Satellite Networks,” Transactions on
Emerging Telecommunications Technologies, 2020.

[34] E. Jedermann, M. Strohmeier, M. Schäfer, J. Schmitt,
and V. Lenders, “Orbit-Based Authentication Using
TDOA Signatures in Satellite Networks,” in Proceed-
ings of the 14th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks, 2021.

[35] D. Maurice-Michel, “How I Hacked an ESA’s Experi-
mental Satellite,” deadf00d, https://www.deadf00d.com
/post/how-to-hack-an-esa-experimental-satellite.html.

[36] S. D. Kerlin, J. Straub, J. Huhn, and A. Lewis, “Small
Satellite Communications Security and Student Learn-
ing in the Development of Ground Station Software,” in
IEEE Aerospace Conference, 2015.

[37] S. S. Saha, S. Rahman, M. U. Ahmed, and S. K. Aditya,
“Ensuring Cybersecure Telemetry and Telecommand in
Small Satellites: Recent Trends and Empirical Proposi-
tions,” IEEE Aerospace and Electronic Systems Maga-
zine, 2019.

[38] M. Y. Wong, M. Landen, F. Li, F. Monrose, and
M. Ahamad, “Comparing Malware Evasion Theory with
Practice: Results from Interviews with Expert Analysts,”
in SOUPS, 2024.

[39] M. Prybylo, S. Haghighi, S. T. Peddinti, and S. Ghana-
vati, “Evaluating Privacy Perceptions, Experience, and
Behavior of Software Development Teams,” in SOUPS,
2024.

[40] H. S. Ramulu, H. Schmitt, D. Wermke, and Y. Acar,
“Security and Privacy Software Creators’ Perspectives
on Unintended Consequences,” in USENIX Security,
2024.

[41] J. Lazar, J. H. Feng, and H. Hochheiser, Research Meth-
ods in Human-Computer Interaction. Morgan Kauf-
mann, 2017.

15

https://www.fox5dc.com/news/thomas-jefferson-high-school-students-launch-satellite-on-spacex-rocket
https://www.fox5dc.com/news/thomas-jefferson-high-school-students-launch-satellite-on-spacex-rocket
https://www.news-journalonline.com/story/news/state/2018/12/31/middle-school-students-satellite-launched-into-space/6414842007/
https://www.news-journalonline.com/story/news/state/2018/12/31/middle-school-students-satellite-launched-into-space/6414842007/
https://www.news-journalonline.com/story/news/state/2018/12/31/middle-school-students-satellite-launched-into-space/6414842007/
https://www.ecfr.gov/current/title-47/section-97.211
https://www.ecfr.gov/current/title-47/section-97.211
https://satnogs.org/
https://public.ccsds.org
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html

[42] E. M. Redmiles, Y. Acar, S. Fahl, and M. L. Mazurek,
“A Summary of Survey Methodology Best Practices for
Security and Privacy Researchers,” 2017.

[43] M. Galesic and R. Tourangeau, “What is Sexual Harass-
ment? It Depends on Who Asks! Framing Effects on
Survey Responses,” Applied Cognitive Psychology: The
Official Journal of the Society for Applied Research in
Memory and Cognition, 2007.

[44] E. Zeng, S. Mare, and F. Roesner, “End User Security
and Privacy Concerns with Smart Homes,” in SOUPS,
2017.

[45] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Chal-
lenges in Designing Exploit Mitigations for Deeply Em-
bedded Systems,” in EuroS&P, 2019.

[46] B. K. Daniel, “Using the TACT Framework to Learn the
Principles of Rigour in Qualitative Research,” Electronic
Journal of Business Research Methods, 2019.

[47] U. S. D. of State, “International traffic in arms regula-
tions,” https://www.ecfr.gov/current/title-22/chapter-I
/subchapter-M.

[48] T. Hitchens, “NOAA Eases Licensing Restrictions on
Commercial Remote Sensing,” Breaking Defense, Aug.
2023, https://breakingdefense.com/2023/08/noaa-eases
-licensing-restrictions-on-commercial-remote-sensing.

[49] J. Morin, “Is Space Becoming the Next Front
for War—and Traffic Jams?” Yale Insights,
https://insights.som.yale.edu/insights/is-space-b
ecoming-the-next-front-for-war-and-traffic-jams.

[50] N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
C. Guo et al., “Generic application-level protocol ana-
lyzer and its language.” in NDSS, 2007.

[51] AMSAT, “AMSAT - The Radio Amateur Satellite Cor-
poration.” https://www.amsat.org/.

[52] N. R. Mead, F. Shull, K. Vemuru, and O. Villadsen, “A
hybrid threat modeling method,” CMU/SEI-2018-TN-
002, 2018.

[53] T. Denning, B. Friedman, and T. Kohno, “The security
cards: A security threat brainstorming toolkit,” 2013,
https://securitycards.cs.washington.edu/.

[54] NASA, “Cubesat Launch Initiative,” NASA,
https://www.nasa.gov/kennedy/launch-services-p
rogram/cubesat-launch-initiative/.

[55] Chin, Jamie and Coelho, Roland and Foley, Justin and
Johnstone, Alicia and Nugent, Ryan and Pignatelli, Dave
and Pignatelli, Savannah and Powell, Nikolaus and Puig-
Suari, Jordi, CubeSat 101: Basic Concepts and Pro-
cesses for First-Time CubeSat Developers. NASA,
2017, https://www.nasa.gov/wp-content/uploads/2017/
03/nasa_csli_cubesat_101_508.pdf?emrc=05d3e2.

A Interview Protocol

Introduction Good morning/afternoon. Our names are
[Researcher 1] and [Researcher 2] and we’re working with

[Institution 1] and [Institution 2] on this study. Thank you
for coming. You are one respondent in our sample who has
been asked about their university satellite club experience.
We’re doing this so that we can understand the challenges
and complexities of building university satellites, and our
ultimate goal is to have these interviews help us come up
with and build future open-source tools for small satellites.

[Other introduction, recording consent.]

Experience/Background
• What satellite clubs are you a member of or have you

been a member of? What years?
• What role or roles do/did you perform at the Satellite

Club? For example, electrical, structures, admin, com-
munications, etc.

• How many years of experience do you have working on
satellite-related projects?

• Which satellites have you worked on developing? You
can count ones that are still in progress and have not
gone into space yet.

Mental Models
• For this next part, I’d like you to pick one satellite you

worked on if you worked on multiple. I’d like you to
spend 3-5 minutes drawing a diagram of how all of the
subcomponents of the satellite are connected together,
including the ground station. I will open up a whiteboard
on Zoom. If you don’t want to do a Zoom whiteboard,
you can draw on your preferred format instead. This
doesn’t have to be perfect.

• Could you walk us through the diagram?
• What goals do you have when building your satellite?
• What are the most difficult aspects of building your satel-

lite?
• If they haven’t already talked about engineering/techni-

cal details in the previous question: What are the most
difficult technical aspects of building a satellite?

• Are there any scenarios you’re concerned about when
building and/or launching a satellite?
If yes:

– How do you address these concerns?
– If satellite was launched: Did any of those scenar-

ios end up happening?
– If scenarios did end up happening: If you were to

advise your past self about preparing for different
scenarios, what advice would you give?

Security-Specific Questions

• If they have not brought up security: One type of concern
we’re interested in is cybersecurity concerns. From this

16

https://www.ecfr.gov/current/title-22/chapter-I/subchapter-M
https://www.ecfr.gov/current/title-22/chapter-I/subchapter-M
https://breakingdefense.com/2023/08/noaa-eases-licensing-restrictions-on-commercial-remote-sensing
https://breakingdefense.com/2023/08/noaa-eases-licensing-restrictions-on-commercial-remote-sensing
https://insights.som.yale.edu/insights/is-space-becoming-the-next-front-for-war-and-traffic-jams
https://insights.som.yale.edu/insights/is-space-becoming-the-next-front-for-war-and-traffic-jams
https://www.amsat.org/
https://securitycards.cs.washington.edu/
https://www.nasa.gov/kennedy/launch-services-program/cubesat-launch-initiative/
https://www.nasa.gov/kennedy/launch-services-program/cubesat-launch-initiative/
https://www.nasa.gov/wp-content/uploads/2017/03/nasa_csli_cubesat_101_508.pdf?emrc=05d3e2
https://www.nasa.gov/wp-content/uploads/2017/03/nasa_csli_cubesat_101_508.pdf?emrc=05d3e2

point on, when we use the word secure or security, we
mean in terms of cybersecurity. Do you or did you have
any concerns related to security about your satellites?
You might not have any such concerns – that’s fine, and
we’d like to hear about that too.

• If they brought up security organically: From this point
on, when we use the word secure or security, we mean
in terms of cybersecurity. Do you or did you have any
other security concerns that you haven’t mentioned yet?

• What do you think is the worst thing that could happen
if the satellite is not secure?

• If adversaries not already discussed: From whom do
you think satellites might need protection in the worst
case?

• Satellite teams have many reasons to not focus on secu-
rity. Was security discussed? If so, how much?

– What were/are the conversations often about?

– If adversaries were not already discussed: Did you
discuss what entities your satellites might need
protection from?

• How much was security discussed compared to reliabil-
ity?

• What tools or techniques, if any, does or did your team
already use to help with security?

• If satellite groups have tried to make their satellites se-
cure: Have you experienced any challenges in trying to
incorporate security into your satellite?

• If technicaly challenges not mentioned in previous ques-
tion: What technical challenges did you have trying to
incorporate security into the design or implementation
stage?

• Do you think there are tools or practices your team could
incorporate to help improve security for future univer-
sity satellites? These tools do not need to exist yet. The
answer to this question can also be no.

• How confident are you that you are able to build a satel-
lite that is secure on a scale of 1 to 5, with 5 being the
most confident? Why did you rate yourself that number?

• How would you rate your knowledge of computer se-
curity on a scale of 1 to 5, with 1 being a novice and 5
being an expert? Why did you rate yourself that number?

Demographics
• What is/was the size of your satellite team?
• What is/was the team’s budget?
• What is your major / what was your major in college?
• Have you taken a security course or learned about cyber-

security? Before or after you worked on a satellite?
• Have you worked on satellites in industry?

– If yes: What differences, if any, did you notice in
the security practices and tools between university
and industry satellites?

– If there were differences: Based on your experi-
ence, if you were to work in your satellite club
again, is there anything from a security standpoint
that you would do differently?

Closing Questions
• (Ask club-specific questions)
• Are there any other questions you expected us to ask?
• Is there anything else you want to tell us about your

satellite-building experience?

B Interview Response Codebook

• Goals when building satellite

• Reliability

• Scientific missions

• Education of club members

• Education/Outreach outside of club

• Building cheaply

• Difficulties

• Non-technical

• Safety/harm to themselves
• Access to resources

• Time
• People
• Experience
• Communication/Knowledge transfer
• Money
• Existing external documentation
• Materials
• Physical Testing

• Technical
• Specific subsystem implementation
• Integrating subsystems together
• Building from scratch
• Reliability
• Getting design stage correct
• Minimizing complexity
• Testing

• Security

• Was security discussed in the interview before we
explicitly asked?

• Yes
• No

• Was security discussed within the club?

• Yes

17

• No

• Respondent perceived threat likelihood

• “Unlikely”

• Who was concerned

• Third-party concerns (launch provider,
NASA)

• Within club

• When did security concerns come up?

• Security concerns discussed in club
• Security concerns only came up when we

asked in interview

• Security Issues

• Denial of service
• Malicious commands
• Memory corruption
• Remote code execution
• Physical access pre-launch
• Malicious third-party code

• Security Impact/Outcomes

• Wrecking own satellite
• Harming other satellites
• Propelling the satellites
• Blinding astronauts
• Hitting International Space Station (ISS)
• Violating regulation
• International incident
• Crash causing debris

• Adversary

• “Hacker”
• “Satellite pirates”
• Environmental advocacy group (specific

group anonymized)
• Foreign adversary
• Amateur radio operator
• Personal vendetta
• For-fun hackers (curiosity, boredom)

• Non-Adversary (when people specifically men-
tioned adversaries they were not concerned about)

• Foreign adversary

• Security choices

• No encryption
• Protections other than encryption
• Exploring worst-case scenarios
• Encrypting uplink
• Obfuscation

• Of code (not public)
• Of commands

• Security Tradeoffs

• Intended public downlink
• Open-source implementation
• Maintaining simplicity
• Maintaining functionality

• Challenges Incorporating Security

• None/not sure
• Misunderstanding of regulation (e.g., think-

ing you cannot encrypt amateur radio telecom-
mands to satellites)

• Monitoring code across systems/people
• Time/effort
• Expertise

• Security Tools Used

• None/not sure
• Fuzzers
• Manual auditing
• “Hardware debugging”
• Encryption
• “Frequency modulation”
• Obfuscation

• Industry Security Practice Differences

• Equal practices between university and indus-
try

• Industry more secure
• Lack of good security practices in industry
• No satellite industry experience

• Future Security Ideas

• None/not sure
• Non-technical

• Check organizational security (e.g., docu-
ment access)

• Technical
• Check security of third-party software li-

braries
• Vulnerability testing
• “Public key/private key hashing”
• Fuzzing tools
• Encryption tools
• More secure versions of existing tools

(e.g., OpenLST)
• Documentation
• Example code
• Best practices descriptions

18

C Repository Information

C.1 Repository Statistics per Satellite Club
Tables 2, 3, and 4 show repository statistics for each satellite
club where we performed a code analysis. For each group, we
manually categorize repositories based on both the subsystem
they are for and the type of design collateral they contain.
We collect this information by first cloning each repository
from the satellite clubs’ GitHub organizations. Then, we man-
ually categorize each repository and parse the Git histories
to extract author/commit information. Note that totals may
not sum up across the rows, since repositories may address
multiple subsystems or design collateral types.

Entries marked with asterisks (*) represent outliers which
we can explain in the data:

• Table 2 (miscellaneous commits): this satellite club used
an automated script to update some of their repositories,
hence the high commit count.

• Table 4 (flight computer authors): this satellite club
forked an industry-standard boot firmware into their or-
ganization. Our Git author counts also include all (non-
satellite club) committers who contributed to the fork’s
upstream repository.

C.2 Number of Files per Software Type
We now focus on only the repositories we categorized as con-
taining "software". Tables 5, 6, and 7 show the number of
source code files for each of the satellite club’s most com-
monly used languages. This data was collected by using the
commonly used cloc 4 utility, which counts the number of
source lines for a large array of recognizable programming
languages.

For all satellite clubs, but especially Satellite A, we see a
high number of C/C++ headers. This is because these satellite
clubs vendored various SDKs for embedded devices directly
into their repositories. Satellite A also implemented a mobile
app, the repository for which includes vendored Objective-C
libraries.

C.3 Number of Code Lines per Software Type
Tables 8, 9, and 10 use the same underlying data from cloc,
but instead display the number of lines characterized as
"source code" (as opposed to "blank lines" or "comments").
Again, C/C++ headers from vendored SDKs comprise a large
proportion of the overall codebase. Satellite C also includes
two huge Rust files which appear to be automatically gener-
ated libraries for interfacing with specific microcontrollers.

4https://linux.die.net/man/1/cloc

19

https://linux.die.net/man/1/cloc

Satellite A Hardware Software Infrastructure Documentation Total
R A C R A C R A C R A C R A C

Ground Station 0 0 0 11 35 786 0 0 0 2 7 280 13 35 1066
Sensors 0 0 0 5 10 63 1 2 4 0 0 0 6 10 67
Communications 1 3 24 5 13 217 1 1 8 0 0 0 7 16 249
Bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Power 3 3 9 0 0 0 0 0 0 0 0 0 3 3 9
Flight Computer 1 14 256 9 38 1145 1 1 2 0 0 0 11 51 1403
Actuators 0 0 0 1 4 39 0 0 0 0 0 0 1 4 39
Educational 0 0 0 3 9 62 0 0 0 2 3 67 5 10 129
Website 0 0 0 8 32 330 2 9 34 2 6 24 12 39 388
Miscellaneous 0 0 0 4 146 6339* 3 115 5782* 0 0 0 7 146 12121
Total 5 19 289 40 244 8732 8 125 5830 6 15 371 53 270 9135

Table 2: Number of Repositories, unique Authors, and Commits per subsystem and type for Satellite A.

Satellite B Hardware Software Infrastructure Documentation Total
R A C R A C R A C R A C R A C

Ground Station 0 0 0 1 13 462 0 0 0 0 0 0 1 13 462
Sensors 4 4 62 7 32 521 1 1 31 0 0 0 12 35 614
Communications 1 1 11 2 5 27 0 0 0 0 0 0 3 5 38
Bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Power 5 6 79 2 5 45 1 1 11 0 0 0 8 7 135
Flight Computer 3 6 54 5 40 2199 1 1 3 1 37 2138 10 44 4394
Actuators 8 11 75 7 10 131 4 10 62 0 0 0 19 18 268
Educational 1 8 12 3 10 49 0 0 0 3 7 20 7 20 81
Website 20 0 0 0 0 0 2 2 9035 1 7 78 3 9 9113
Miscellaneous 3 8 62 4 22 546 2 12 63 0 0 0 9 29 671
Total 24 22 328 30 88 3518 11 22 9205 5 47 2236 60 107 12916

Table 3: Number of Repositories, unique Authors, and Commits per subsystem and type for Satellite B.

Satellite C Hardware Software Infrastructure Documentation Total
R A C R A C R A C R A C R A C

Ground Station 1 19 282 2 19 292 0 0 0 0 0 0 3 19 574
Sensors 6 43 920 16 73 3285 3 22 1848 2 4 10 27 99 6063
Communications 5 35 1266 10 50 1255 1 2 2 0 0 0 16 72 2523
Bus 9 71 2443 3 15 573 6 49 668 1 2 7 19 83 3691
Power 5 30 817 2 9 167 4 17 355 0 0 0 11 30 1339
Flight Computer 4 36 930 10 3444* 97028* 5 31 1986 1 2 7 20 3463 99951
Actuators 2 11 109 1 17 1757 1 17 1757 1 2 3 5 29 3626
Educational 0 0 0 0 0 0 0 0 0 5 26 175 5 26 175
Website 0 0 0 4 14 128 1 2 10 1 2 5 6 15 143
Miscellaneous 2 33 617 6 19 368 4 13 317 1 1 2 13 52 1304
Total 32 157 7172 50 3571 102745 22 100 5172 9 29 192 90 3664 109584

Table 4: Number of Repositories, unique Authors, and Commits per subsystem and type for Satellite C.

20

Satellite A C C++ C/C++ Header* Java Javascript Objective-C* Python Total
Ground Station 16 230 13472 148 120 884 610 15480
Sensors 60 0 264 0 0 0 6 330
Communications 0 0 0 0 131 0 24 155
Bus 0 0 0 0 0 0 0 0
Power 0 0 0 0 0 0 0 0
Flight Computer 268 0 1115 0 0 0 4 1387
Actuators 0 0 0 0 0 6 0 6
Educational 35 0 199 0 0 0 0 234
Website 3 211 13427 148 547 884 0 15220
Miscellaneous 52 32 250 0 77 0 0 411
Total 330 262 14786 148 757 884 644 17811

Table 5: Number of source code files per subsystem and language for Satellite A.

Satellite B Arduino Sketch C C++ C/C++ Header Python Ruby Total
Ground Station 0 0 0 0 8 88 96
Sensors 3 27 49 113 20 24 236
Communications 0 0 0 0 35 0 35
Bus 0 0 0 0 0 0 0
Power 6 0 0 0 0 0 6
Flight Computer 6 216 16 275 21 216 750
Actuators 1 5 11 21 3 0 41
Educational 0 4 7 8 0 0 19
Website 0 0 0 0 0 0 0
Miscellaneous 2 2 5 14 8 88 119
Total 18 254 88 431 87 275 1153

Table 6: Number of source code files per subsystem and language for Satellite B.

Satellite C Assembly C C++ C/C++ Header Python Rust Total
Ground Station 0 22 0 300 2 0 324
Sensors 274 554 20 1076 110 2* 2036
Communications 0 130 3 395 22 18 568
Bus 0 25 0 18 68 0 111
Power 0 0 3 4 10 0 17
Flight Computer 0 48 0 45 108 3 204
Actuators 0 132 2 176 5 0 315
Educational 0 0 0 0 0 0 0
Website 0 0 0 0 0 0 0
Miscellaneous 1 1 0 0 36 0 38
Total 275 728 26 1217 311 23 2580

Table 7: Number of source code files per subsystem and language for Satellite C.

21

Satellite A C C++ C/C++ Header Java Javascript Objective-C Python Total
Ground Station 5850 49144 1703803 33883 7455 113530 142245 2055910
Sensors 12532 0 128926 0 0 0 771 142229
Communications 0 0 0 0 6014 0 1857 7871
Bus 0 0 0 0 0 0 0 0
Power 0 0 0 0 0 0 0 0
Flight Computer 59954 0 448973 0 0 0 245 509172
Actuators 0 0 0 0 0 771 0 771
Educational 3630 0 108735 0 0 0 0 112365
Website 4773 47687 1702967 33883 110853 113530 0 2013693
Miscellaneous 4539 6591 114756 0 151790 0 0 277676
Total 71825 55735 2209085 33883 268059 113530 145118 2897235

Table 8: Number of source code lines per subsystem and language for Satellite A.

Satellite B Arduino Sketch C C++ C/C++ Header Python Ruby Total
Ground Station 0 0 0 0 1645 1776 3421
Sensors 203 15640 8045 60076 1069 264 85297
Communications 0 0 0 0 3515 0 3515
Bus 0 0 0 0 0 0 0
Power 325 0 0 0 0 0 325
Flight Computer 700 45408 10893 44224 1224 11888 114337
Actuators 60 1142 568 971 114 0 2855
Educational 0 209 174 203 0 0 586
Website 0 0 0 0 0 0 0
Miscellaneous 63 274 114 14429 1645 1776 18301
Total 1351 62673 19794 119903 7567 13522 224810

Table 9: Number of source code lines per subsystem and language for Satellite B.

Satellite C Assembly C C++ C/C++ Header Python Rust Total
Ground Station 0 6018 0 72450 80 0 78548
Sensors 85802 234261 3633 1059330 8804 449665* 1841495
Communications 0 37138 268 77353 1120 8145 124024
Bus 0 4016 0 442 5113 0 9571
Power 0 0 515 238 1146 0 1899
Flight Computer 0 5741 0 7338 10239 364 23682
Actuators 0 26041 43 45936 509 0 72529
Educational 0 0 0 0 0 0 0
Website 0 0 0 0 0 0 0
Miscellaneous 140 6 0 0 3591 0 3737
Total 85942 274719 4416 1068598 26935 458174 1918784

Table 10: Number of source code lines per subsystem and language for Satellite C.

22

	Introduction
	Background and Related Work
	Satellite Applications and Overview
	Satellite Architecture
	Satellite Security Challenges
	Satellite Security Research

	Methodology
	Finding Clubs to Analyze
	Interviews
	Recruitment and Screening
	Developing Interview Questions
	Interview Procedure
	Data Analysis

	Software Analysis
	Scope and Limitations
	Our Perspective

	Ethical Considerations
	Interview Results
	Participants
	Satellite Goals
	Difficulties faced
	Security Discussions During Development
	Satellite Threat Models
	Security Strategies and Tools Used
	Security Tradeoffs
	Security Issues in Industry

	Code Analysis
	Threat model
	Satellite A
	System Overview
	Threat Model Comparison

	Satellite B
	System Overview
	Threat Model Comparison

	Satellite C
	System Overview
	Threat Model Comparison

	Security Recommendations for Smallsats
	Open-Source Tools and Techniques
	Operational

	Conclusion
	Interview Protocol
	Interview Response Codebook
	Repository Information
	Repository Statistics per Satellite Club
	Number of Files per Software Type
	Number of Code Lines per Software Type

