
ar
X

iv
:2

50
5.

08
96

4v
1

 [
cs

.L
G

]
 1

3
M

ay
 2

02
5

GPML: Graph Processing for Machine Learning

Majed Jaber1,2, Julien Michel1,2, Nicolas Boutry2, and Pierre Parrend1,2

1 EPITA, Laboratoire de Recherche de l’EPITA (LRE), 14-16 Rue Voltaire, 94270 Le
Kremlin Bicêtre {julien.michel, nicolas.boutry, pierre.parrend}@epita.fr
2 ICube UMR7357, Université de Strasbourg, CNRS, F-67000 Strasbourg, France

majed.jaber@etu.unistra.fr

Abstract. The dramatic increase of complex, multi-step, and rapidly
evolving attacks in dynamic networks involves advanced cyber-threat
detectors. The GPML (Graph Processing for Machine Learning) library
addresses this need by transforming raw network traffic traces into graph
representations, enabling advanced insights into network behaviors. The
library provides tools to detect anomalies in interaction and commu-
nity shifts in dynamic networks. GPML supports community and spec-
tral metrics extraction, enhancing both real-time detection and historical
forensics analysis. This library supports modern cybersecurity challenges
with a robust, graph-based approach.

Keywords: Graph processing · Machine Learning · Python-based library · Spec-
tral graph analysis · Graph communities · Attack detection

1 Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version 1̌.0.0
C2 Permanent link to code/repository used for this code

version
https://github.com/lre-security-systems-team/gpml

C3 Permanent link to Reproducible Capsule https://www.kaggle.com/code/majedjaber/
gpml-reproducible-capsule

C4 Legal Code License ISC https://opensource.org/license/
isc-license-txt

C5 Code versioning system used git
C6 Software code languages, tools, and services used python
C7 Compilation requirements, operating environments &

dependencies
https://github.com/lre-security-systems-team/
gpml/blob/main/requirements.txt

C8 If available Link to developer documentation/manual https://github.com/lre-security-systems-team/
gpml/blob/main/README.md

C9 Support email for questions {julien.michel,majed.jaber}@epita.fr

Table 1. METADATA

2 Motivation and significance

In today’s digital landscape, network security faces growing challenges due to the
increasing complexity of cyber-threats [12]. Attackers constantly improve their

https://github.com/lre-security-systems-team/gpml
https://www.kaggle.com/code/majedjaber/gpml-reproducible-capsule
https://www.kaggle.com/code/majedjaber/gpml-reproducible-capsule
https://opensource.org/license/isc-license-txt
https://opensource.org/license/isc-license-txt
https://github.com/lre-security-systems-team/gpml/blob/main/requirements.txt
https://github.com/lre-security-systems-team/gpml/blob/main/requirements.txt
https://github.com/lre-security-systems-team/gpml/blob/main/README.md
https://github.com/lre-security-systems-team/gpml/blob/main/README.md
https://arxiv.org/abs/2505.08964v1

techniques, targeting vulnerabilities across interconnected devices, systems, and
services. Traditional security measures often struggle to keep up, as they primar-
ily rely on signature-based detection [5] or rule-based methods [10], which may
not capture emerging threats in network traffic. To effectively monitor, analyze,
and secure network environments, new approaches are required—approaches
that can handle large-scale and dynamic data from highly interconnected en-
vironments while addressing the alert fatigue in security operations [11].

Two main approaches emerge from the literature: graph analytics, or complex
network analysis, which characterizes the connectivity properties on the graph
itself, and embedding analysis, which extracts information about node surround-
ings for each node. Graph analytics leverages Community, Spectral, or Complex
Network information to quantify the relative connectivity of node groups, the
structure of the connections between nodes, or the position wrt. to whole net-
work. Embedding analysis typically rely on Graph Neural Networks (GNN) and
their variants. In all cases, graph-based models represent entities as nodes and
their interactions as edges and enable effective analysis of network traffic. Graph
Neural Networks (GNNs) extend this by learning at the node, edge, and graph
levels [13]. While traditional GNNs rely on node features and topology [6], re-
cent models integrate edge features to better capture interaction-specific infor-
mation such as packet volume or connection type. Edge-aware variants like E-
GraphSage [7] and NE-GConv [1] incorporate these features during aggregation,
improving the precision of edge-level predictions. NE-GConv performs binary
edge classification, whereas E-GraphSage supports both binary and multi-class
outputs.

Dynamic Graph Community (DGC) metrics significantly enhance detection per-
formance in network traffic classification tasks. Enriching the baseline feature set,
it captures dynamic interaction patterns in network data. The spectral method
in GPML library (SPEC − TRA) analyzes graph states over time using time
windows and classifies attacks based on aggregated behaviors. While GNNs aim
to identify specific malicious edges, SPECTRA detects broader anomalous evo-
lutions over multiple attack categories.

GPML library integrates both community and spectral analytics to leverage a
graph-based approach to network security analysis. This library transforms raw
network traffic data into graph representations [3]. This approach not only en-
hances the detection of known issues but also reveals hidden or emerging patterns
within complex networks. By identifying interconnections through communities
and spectral analysis, and monitoring their changes over time, it becomes possi-
ble to detect unusual connectivity patterns, isolate suspicious nodes, and proac-
tively respond to potential threats. Tracking both static and dynamic network
metrics enables both real-time and historical analyses are critical. GPML library
builds on established methods in network graph analysis and leverages widely
used libraries like NetworkX [2] for graph operations and Pandas [8] for data
handling.

In future studies, the GPML library could serve as a foundational tool for de-
veloping AI-driven solutions to detect sophisticated threats.

3 Software description

3.1 Supported metrics

The graph community metrics are calculated from a graph community partition
at time t, and their dynamicity is calculated from the difference between time
t+1 and t. Let Vt be the number of node of a community at time t. Stability=
|Vt∩Vt+1|−|(Vt∩V̄t+1)∪(Vt+1∩V̄t)|

|Vt∪Vt+1| , is a ratio of similarity between two consecutive

states of a community. Density in a community is the probability for a node to
be adjacent to any given node in the community,Conductance is the proportion
of communications pointing outside the community and Degree are the number
of edges going out of a node. Refer to [14] for their definition.
The spectral metrics are derived from the spectrum Λ t of the Laplacian ma-
trix at time t, for more details you can refer to our work about detecting at-
tacks using spectral graph analysis [3]. We denote by Λ t[i] the ith eigenvalue,
i ∈ [1, n], sorted in increasing order, and by Z(t) the multiplicity of zero in
Λ t.Connectedness=(exp (1/Z(t)− 1)), measures interconnectivity in the net-
work. Let (N) be the number of network devices (e.g. switches and servers).

Flooding=((1
N

∑Z(t)+N
i=Z(t)+1 Λ t[i])− 1) and Wiriness=(1

N
∑n

i=n−N+1 Λ t[i]),

3.2 Software architecture

The library is organized into three main components, as illustrated in Fig 1.
The hierarchy starts with the root gpml directory, branching down into three
primary sub-directories: data preparation, metrics, and visualization.

– The data preparation directory is responsible for preparing data, starting
with CSV files. It contains three classes: data frame handler.py, graph extractor.py
and time series extractor.py

– The second directory, metrics, is central to our methodology, and com-
putes spectral metrics in spectral metrics.py as well as community metrics
in graph community.py.

– The final directory, visualization, focuses on presenting graphs of nodes and
edges for user interpretation, using network traffic CSV files as input. Vi-
sualization can be done through plot.py, which extracts and plots graphs
using the networkx library, or graphviz.py, which enhances representation
and provides interactivity for HTML web versions.

3.3 Software Implementation

The library is structured under its main directory as follows:

– gpml - Contains the core processing modules for two primary methodolo-
gies: community and spectral graph detection, along with components for
graph processing and visualization. This is the central part of the library,
offering diverse functionalities that aid in attack classification and dataset
exploration.

Fig. 1. UML diagram showing the structure of the GPML
library

– data - Includes various datasets in CSV format.
– doc - Holds the library documentation, detailing the dataset functionalities

and usage.
– test - Contains test cases for regression, providing examples that can be

adapted to similar datasets using the specified constraints and parameters.

Fig. 2. UML workflow diagram community strategy

3.4 Software functionalities

The library functionalities can be divided into three main parts:

– Extracting community graph features,
– Extracting spectral graph features,
– Plotting connectivity graphs.

Additionally, because the library requires correct inputs to function normally,
you must make sure your dataset contains the following common features that
exist in every traffic network data:

– Timestamp for the arriving packets.
– Source and destination IP addresses.
– For spectral metrics extraction, you need in addition to the above, the total

number of packets, size of bytes and the rate of packets. These features exists
in every traffic network data logs.

Fig. 3. UML workflow diagram for spectral graph strategy

The library provides a set of functionalities that help to add new features for
better predictions. The main functionalities are:

1 time_series_extractor(df,stime ,time_unit ,features_list ,

sortby_list ,groupby_list ,aggregation_dict)

Listing 1.1. Extraction of time series

In the time series extractor, a time interval of t = 1s is applied to the dataframe
df provided by the user. Within this interval, the features are sorted according
to sortby list and grouped based on the features specified in the groupby list.

The remaining features, such as packets, bytes and rates are aggregated using
the functions defined in the aggregation dict such as mean, avg and max/min
functions. This transformation converts the dataset into a time series format,
typically reducing the number of rows compared to the original dataset.

1 insert_graph_community_metrics(dataframe ,time_interval ,

date_time ,edge_source ,edge_dest ,label ,name ,date_timestamp

, community_strategy ,continuity)

Listing 1.2. Insertion of graph community metrics

The insert metrics to dataframe function take a pandas DataFrame and for a
given time windows and community partitioning strategy as the parameters
time interval and community strategy will produce the corresponding commu-
nity metrics and insert them back to the DataFrame as columns. The user needs
to specify the column used for the time as date time and the columns used for the
nodes as lists in the edge source and edge dest parameters. A column from the
DataFrame has to be set to label for the edges and a name for a suffix of the new
columns in the returned DataFrame. A continuity parameter has been added to
choose if the user allows holes in the timeline of the data. The input DataFrame
is divided in time windows, for each time windows primarily, three underlying
method will be called by this function: gc metrics first order(G) which calculates
metrics by one travel of the graph G, gc metrics second order(forder metrics c,
forder metrics g) which calculates metrics by one travel over the first order met-
rics, and propagate communities(g1, g2, center, center t) which creates the cor-
respondence of communities from two graph at consecutive time windows. Dy-
namic community metrics are then computed from those metrics and propagated
through communities; all of them are added to the output DataFrame.

1 spectral_metrics_extractor(ts,stime ,saddr ,daddr ,pkts ,

2 bytes_size ,rate ,lbl_category)

Listing 1.3. Extraction of spectral metrics

In the spectral metrics extractor, the parameters are provided by the user; how-
ever, constructing weighted edges within the network graph extracted over each
time window requires selecting a specific feature. For this purpose, pkts, bytes size,
and rate are passed as inputs to weigh the graph during processing across three
distinct topologies within each time window. Spectral metrics are then com-
puted for each time window at the midpoint and the end. The output of this
function is a new dataframe where each row represents a time window, including
its corresponding common features, spectral features, and the associated label.

1 print_graph(dataset ,graph_type ,label ,src_addr ,dst_addr , sport

,dport ,url ,title ,attack_name ,src_mac ,dst_mac)

Listing 1.4. Print graph

The print graph function is designed to display the graph in two formats: a non-
interactive format using networkx and an interactive HTML format that allows
user interactions.

4 Illustrative examples

4.1 Code snippets

– Community metrics example

1 from datetime import date , timedelta , datetime

2 from gpml.data_preparation import data_frame_handler as

ins_data

3 community_df = ins_data.insert_graph_community_metrics(df,

timedelta(minutes =5),’Date time’,[’Source IP’], [’

Destination IP’],’Label ’, ’ip5’,date_timestamp=False ,

community_strategy=’louvain ’,continuity=True)

Listing 1.5. Insertion of graph community metrics - Example

– Spectral metrics example

- Parameters:

1 features = [’stime ’, ’datetime ’, ’saddr ’, ’daddr ’, ’sport ’

, ’dport ’, ’pkts’, ’bytes ’, ’rate’, ’attack ’, ’

category ’, ’subcategory ’, ’weight ’, ’dur’, ’mean’, ’

sum’, ’min’, ’max’,’spkts’, ’dpkts’, ’srate’, ’drate’]

2 sortby_list = [’stime ’]

3 groupby_list = [’stime’, ’datetime ’, ’saddr ’, ’daddr ’]

4 aggregation_dict = { ’pkts’: ’sum’, ’bytes’: ’sum’, ’

attack ’: ’first ’, ’category ’: ’first ’, ’subcategory ’:

’first ’, ’rate’: ’mean’, ’dur’: ’mean’, ’mean’: ’mean’

, ’sum’: ’mean’, ’min’: ’mean’, ’max’: ’mean’, ’spkts ’

: ’mean’, ’srate’: ’mean’, ’drate’: ’mean’, ’weight ’:

’sum’

5 }

Listing 1.6. Spectral metrics - parameters

-Timeseries extraction:

1 ts = time_series_extractor(df, ’stime ’, ’s’, features_list

, sortby_list , groupby_list , aggregation_dict)

Listing 1.7. Extraction of time series - Example

-Extracting spectral metrics:

1 spectral_metrics_df = spectral_metrics_extractor(ts , stime

, saddr , daddr , pkts , bytes , rate , lbl_category)

2 print(res)

Listing 1.8. Extraction of spectral metrics - Example

– Graph visualization example

1 import pandas as pd

2 df = pd.read_csv(’data/ton_iot/ransomware -normal.csv’)

3 print_graph(df, ’ip’, ’label ’, ’src_ip ’, ’dst_ip ’,

src_port ’, ’dst_port ’)

Listing 1.9. Upload data - Example

The output file is saved in /graph representation/ directory as an .html
extention file as shown in Fig. 4

Fig. 4. Ransomware attack in Ton-IoT dataset presented via
HTML using graphviz function that exist in GPML library

4.2 Evaluation and effectiveness

Fig. 5. Comparison of graph community approaches with baseline on UGR16 dataset
with 5-folds evaluation using XGboost. Base set is original dataset feature space, the
other one are the same dataset enriched with incrementally: graph metrics, graph
community metrics and dynamic graphe community metrics.

Base set Graph Graph community DGC

0.5

0.6

0.7

0.8

0.9

1

Binary prediction

S
co
re

MCC

Balanced Accuracy

TPR

TNR

Base set Graph Graph community DGC

0.2

0.4

0.6

0.8

1

multi-class Prediction

F
1
S
co
re

anomaly-spam

dos
scan11
scan44

nerisbotnet

Base set Graph Graph community DGC
0.96

67.95

Time performances

T
im

e(
s)

Prediction time

Fitting time

The evaluation highlights the effectiveness of both community and spectral ap-
proaches in detecting network threats. The community-based method, referred to
as DGC (Dynamic Graph Community) as shown in Fig 5, demonstrates improved
metrics on the UGR16 dataset. For binary predictions, DGC shows Matthews
Correlation Coefficient (MCC) of 0.96, Balanced Accuracy of 0.96 and True Pos-
itive Rate (TPR) of 0.93, surpassing the baseline with MCC of 0.52 and TPR of
0.44 , as well as graph and graph community models on a 5-folds evaluation. In
multi-class predictions, DGC achieves high F1-scores, notably 0.89 for anomaly-
spam and 0.99 for both scan44 and scan11 attacks, against respectively 0.01 for
anomaly-spam, 0.69 for scan44 and 0.11 for scan11 in the baseline. Time perfor-
mance analysis reveals prediction times from around 1s to 1.5s, though fitting
times increase from 16.15s to 67.95s due to model complexity.

Fig. 6. Comparison of spectral graph approaches with baseline on Botnet dataset

COD CTS CTW SM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Binary prediction

S
co
re

MCC

Balanced Accuracy

TPR

TNR

COD CTS CTW SM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

multi-class Prediction

F
1
S
co
re

DDoS

ScanService

OS-Fingerprint

Keylogging

COD CTS CTW SM
0

62

Time performances

T
im

e(
s)

Prediction time

Fitting time

We adopt four distinct approaches to classify network traffic data. The first ap-
proach, Classification on Original Data-logs (COD), uses the raw dataset with
minimal filtering, excluding only time and sequence-related features to avoid
bias from temporal patterns. The second approach, Classification on Time-
Series (CTS), introduces a time-series transform mechanism to segment traffic
logs data into series of data and extract basic quantitative features like packet
counts and rates, aiming to capture evolving traffic behaviors without relying on
topological structures. The third approach, Classification on Time-Windowing
(CTW), enhances CTS by aggregating data within each time window into new
datasets labeled based on the presence of attacks, improving temporal context
while still focusing on quantitative attributes. The fourth and final approach,
Spectral Metrics (SM), constructs graphs within each time window and splits
them into two sub-windows to observe structural changes. It then extracts spec-
tral metrics from Laplacian matrices of these subgraphs, providing topological
insights and enabling a graph-based representation of dynamic network behav-
ior for classification. These approaches are detailed in our previous work [3] for
further details.

The spectral approach, represented as SM (Spectral Metrics) as shown in Fig 6,
proves highly effective on the Botnet dataset. For binary predictions, SM reaches
near-perfect metrics, including an MCC of 0.91 out of approximate of 0.9 for the
COD, Balanced Accuracy of 0.97 out of 0.61 for COD, TPR of 0.93, and TNR
of 0.99 out 0.01 for COD. In multi-class predictions, SM achieves excellent F1-
scores, such as 0.99 for ScanService and 0.91 for DDoS attacks. Despite higher
fitting times at 62s for COD, prediction times remain efficient across all config-
urations.

A comparison evaluation between SPECTRA, E-GraphSage and EN-GConv is
performed for Botnet [4] and TonIoT [9] IoT datasets. The results for binary
are shown in tables 2, and 3. The results for multi-classification are shown in
Appendix in tables 4, 5. SPECTRA significantly outperforms GCN for BotNet
IoT in binary and multi-class detection for all attacks and outperforms them for
multi-class detection in 7 cases out of 9 (when considering balanced accuracy) or
8 out of 9 (for F1-score) for TonIoT. For binary classification, it is competitive
but second to E-GraphsSage.

Table 2. Comparison study between E-GraphSage, EN-GConv and SPECTRA over
Botnet IoT dataset for binary classification

E-GraphSage EN-GConv SPECTRA

F1 Score 0.9888 0.3322 0.9944

Balanced Acc 0.9796 0.8817 0.9971

MCC 0.7772 0.3892 0.9936

ADR (%) 97.86 97.14 99.52

Precision 0.9993 0.2004 0.9936

DGC and SM address advanced network security challenges through comple-
mentary strengths. DGC excels in analyzing large-scale networks by identifying
clusters based on community-driven patterns, which helps detect anomalies like
insider threats or advanced persistent threats. On the other hand, SM leverages
mathematical rigor to uncover structural insights, identifying hidden substruc-
tures such as covert communication channels or botnets.

5 Impact

The software opens up avenues for addressing new research questions throughout
the pipeline for attack detection. One area of exploration involves graph-based
models. Researchers can compare various graph structures and complex network
metrics, evaluating their utility in the context of cybersecurity. Additionally, a
comparison between graph convolutional models (GCNs), where learning oper-
ates directly on graph data, and graph-derived features, where learning oper-
ates on tabular data, can reveal insights into their detection capabilities, time
performance, complexity, and support for parallelization. A promising direction
involves exploring how traditional graph metrics and knowledge graphs comple-
ment each other to improve detection methods. Traditional metrics—such as de-
gree centrality, betweenness centrality, closeness, and clustering coefficient—help
identify structural patterns, including influential nodes or anomalies. Knowledge
graphs add contextual semantics, supporting accurate classification of entities
and relationships. Combining both approaches strengthens the detection of com-
plex threats and irregular behaviors.

For attack detectors, the software facilitates characterizing detectors for specific
types of attacks, defining weak signal analysis to improve detection capabilities,
and advancing feature engineering tailored to attack scenarios. Explainability
remains a critical focus, providing transparency and interpretability in the de-
tection process.

The software significantly enhances the pursuit of existing research questions in
several ways. It enables the automated extraction of derived features, streamlin-
ing the process of preparing data for machine learning models. Similarly, it auto-
mates the computation of graph metrics, reducing manual effort and increasing
efficiency. Moreover, the systematized visualization and evaluation framework
provided by the software improves the ability to assess and interpret machine
learning approaches for attack detection, enabling more robust and reproducible
research outcomes.

6 Conclusions

The GPML (Graph Processing for Machine Learning) library provides a robust
and scalable solution for addressing the challenges posed by advanced cyber-
threats. By leveraging graph-based methodologies, it enables the detection of

complex attack patterns, community dynamics, and emerging anomalies in net-
work environments. The library integrates community and spectral graph anal-
ysis with powerful Python tools, offering advanced functionalities for temporal
graph processing, feature extraction, and visualization. These capabilities not
only enhance threat detection but also support deeper exploration of network
behaviors, making GPML a valuable resource for researchers and practitioners
in cybersecurity. Future work can expand its use for real-time applications and
AI-driven threat detection solutions, further advancing network security prac-
tices.

Acknowledgements

The authors acknowledge the support of the Région Grand-Est and École Pour
l’Informatique et les Techniques Avancées (EPITA) for the joint funding of the
XDGMed Project.

References

1. Tanzeela Altaf, Xu Wang, Wei Ni, Ren Ping Liu, and Robin Braun. Ne-gconv: A
lightweight node edge graph convolutional network for intrusion detection. Com-
puters & Security, 130, 2023.

2. Aric Hagberg and Drew Conway. Networkx: Network analysis with python. URL:
https://networkx.github.io, 2020.

3. Majed Jaber, Nicolas Boutry, and Pierre Parrend. Graph-based spectral analysis
for detecting cyber attacks. In Proceedings of the 19th International Conference
on Availability, Reliability and Security, pages 1–14, 2024.

4. Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull.
Towards the development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-iot dataset. Future Generation Computer Systems,
100:779–796, 2019.

5. Parameshwar Reddy Kothamali and Subrata Banik. Limitations of signature-based
threat detection. Revista de Inteligencia Artificial en Medicina, 13(1):381–391,
2022.

6. Jielun Liu, Ghim Ping Ong, and Xiqun Chen. Graphsage-based traffic speed fore-
casting for segment network with sparse data. IEEE Transactions on Intelligent
Transportation Systems, 23(3):1755–1766, 2020.

7. Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Marius
Portmann. E-graphsage: A graph neural network based intrusion detection system
for iot. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, pages 1–9. IEEE, 2022.

8. Wes McKinney et al. pandas: a foundational python library for data analysis and
statistics. Python for high performance and scientific computing, 14(9):1–9, 2011.

9. Nour Moustafa. A new distributed architecture for evaluating ai-based security
systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72,
2021.

10. Iqbal H Sarker, Helge Janicke, Mohamed Amine Ferrag, and Alsharif Abuadbba.
Multi-aspect rule-based ai: Methods, taxonomy, challenges and directions toward
automation, intelligence and transparent cybersecurity modeling for critical infras-
tructures. Internet of Things, 2024.

11. Shahroz Tariq, Mohan Baruwal Chhetri, Surya Nepal, and Cecile Paris. Alert
fatigue in security operations centres: Research challenges and opportunities. ACM
Computing Surveys, 2025.

12. M Uma and Ganapathi Padmavathi. A survey on various cyber attacks and their
classification. Int. J. Netw. Secur., 15(5):390–396, 2013.

13. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. A comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems, 32(1):4–24, 2020.

14. Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, MDS ’12, New York, NY, USA, 2012. Association for Computing
Machinery.

Table 3. Comparison study between E-GraphSage, EN-GConv and SPECTRA over
TonIoT dataset for binary classification

E-GraphSage EN-GConv SPECTRA

F1 Score 0.966 0.9991 0.9977

Balanced Acc 0.9652 0.8741 0.9493

MCC 0.9623 0.1765 0.9252

ADR (%) 93.43 99.82 99.87

Precision 0.9999 0.9999 0.9968

Table 4. Comparison study between E-GraphSage and SPECTRA over TonIoT
dataset for multi-class classification

E-GraphSage SPECTRA

DDoS F1 Score 0.9823 0.9944

Balanced Acc 90.839 0.9999

MCC 0.9760 0.9944

ADR (%) 0.9694 100

Precision 0.9956 0.9889

DoS F1 Score 0.7304 1

Balanced Acc 0.9220 1

MCC 0.7006 1

ADR (%) 0.9608 100

Precision 0.5892 1

Scanning F1 Score 0.8549 1

Balanced Acc 0.8755 1

MCC 0.8125 1

ADR (%) 0.7584 100

Precision 0.9795 1

Ransomware F1 Score 0.9410 0.9649

Balanced Acc 0.9907 0.9793

MCC 90.395 0.9648

ADR (%) 0.9855 95.88

Precision 0.9003 0.9711

SQL Injection F1 Score 0.8282 0.9933

Balanced Acc 0.9420 0.9962

MCC 0.8264 0.9933

ADR (%) 0.8894 99.24

Precision 0.7749 0.9943

Password F1 Score 0.9115 0.9869

Balanced Acc 0.9437 0.9952

MCC 0.9062 0.9867

ADR (%) 0.8915 99.07

Precision 0.9324 0.9832

XSS F1 Score 0.9463 0.9285

Balanced Acc 0.959 0.9521

MCC 0.9412 0.9287

ADR (%) 0.9208 90.43

Precision 0.9732 0.9541

Backdoor F1 Score 0.0787 0.9944

Balanced Acc 0.5226 0.9972

MCC 0.0839 0.9942

ADR (%) 0.0506 99.46

Precision 0.1771 0.9942

MitM F1 Score 0.1752 0.9924

Balanced Acc 0.935 0.9925

MCC 0.2909 0.9925

ADR (%) 0.8743 98.5

Precision 0.0973 1

Table 5. Comparison study between E-GraphSage and SPECTRA over Botnet IoT
dataset for multi-class classification

% E-GraphSage SPECTRA

DDoS F1 Score 0.9999 1

Balanced Acc 0.9997 1

MCC 0.9995 1

ADR (%) 100 100

Precision 0.9999 1

ScanService F1 Score 0.9321 0.9986

Balanced Acc 0.9374 0.9817

MCC 0.9267 0.9697

ADR (%) 87.52 99.89

Precision 0.9968 0.9982

OS Fingerprint F1 Score 0.7926 0.9953

Balanced Acc 0.9865 0.9953

MCC 0.8025 0.9952

ADR (%) 98.69 99.07

Precision 0.6623 1

Keylogging F1 Score 0.8224 1

Balanced Acc 1 1

MCC 0.8357 1

ADR (%) 100 100

Precision 0.6984 1

	GPML: Graph Processing for Machine Learning

