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The integration of Large Language Models (LLMs) and Federated Learning (FL) presents a promising solution for joint training on
distributed data while preserving privacy and addressing data silo issues. However, this emerging field, known as Federated Large
Language Models (FLLM), faces significant challenges, including communication and computation overheads, heterogeneity, privacy
and security concerns. Current research has primarily focused on the feasibility of FLLM, but future trends are expected to emphasize
enhancing system robustness and security. This paper provides a comprehensive review of the latest advancements in FLLM, examining
challenges from four critical perspectives: feasibility, robustness, security, and future directions. We present an exhaustive survey of
existing studies on FLLM feasibility, introduce methods to enhance robustness in the face of resource, data, and task heterogeneity,
and analyze novel risks associated with this integration, including privacy threats and security challenges. We also review the latest
developments in defense mechanisms and explore promising future research directions, such as few-shot learning, machine unlearning,
and IP protection. This survey highlights the pressing need for further research to enhance system robustness and security while
addressing the unique challenges posed by the integration of FL and LLM.
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1 Introduction

Large language models (LLMs), represented by DeepSeek and ChatGPT, have demonstrated remarkable performance in
intelligent question answering, logical reasoning, and natural language processing. This has led to their significant
success in various fields, such as biomedicine [51, 63], legal consulting [145], and recommendation systems [55, 149],
and has once again sparked a research boom in artificial intelligence technologies. However, as the scale of these models
continues to expand, the demand of raw data for pre-trained models (also known as foundation models [12], FMs) is
also increasing, leading to growing data anxiety. The current trend is that a large amount of high-quality private data
is widely distributed among various data holders. Due to privacy concerns, regulation restrictions, or other reasons,
these data cannot be publicly shared, resulting in the emergence of data silos [47]. Villalobos et al. [108] found that
high-quality public data will be exhausted before 2026, which will not be able to support the further development of
LLMs. Meanwhile, the traditional centralized large-scale collection of private data for training will inevitably violate
user privacy.

To address the aforementioned challenges, the integration of LLMs with federated learning (FL) [73] emerges as a
silver-bullet solution. FL is a distributed machine learning paradigm that enables multiple parties to collaboratively
train a single model using their private data while preserving data privacy. This union, known as Federated Large
Language Model (FLLM), has recently become a burgeoning research hotspot. Although this powerful combination can
overcome data limitations, it also introduces multifaceted challenges, including parameter aggregation for feasibility,
heterogeneity for robustness, and privacy and security concerns.

LLMs are a type of FMs, and several recent reviews have explored the prospects of combining FL with FMs [50,
52, 91, 114, 135, 159], but only a few have focused on FLLM [18, 35, 129]. Distinct from these works, we examine
FLLM from a novel perspective, focusing on four critical dimensions: Feasibility, Robustness, Security, and Future
Directions, with an emphasis on Robustness and Security. Notably, existing surveys, due to the limited pool of early
FLLM papers, predominantly cite studies on FL or LLM rather than FLLM itself. In contrast, our work surveys the latest
FLLM research, offering readers a more direct and up-to-date understanding of the current research trends. Table 1
provides a comparative overview of our work and some previous surveys.

To address the feasibility of FLLM, it is essential to explore efficient implementation methods. Training LLMs involves
updating parameters at the trillion scale, which generates substantial communication and computational overheads that
are unacceptable for resource-constrained federated participants. To tackle this issue, Federated Parameter-Efficient
Fine-Tuning (FedPEFT) [71] has emerged as a promising solution. Based on extensive research, we categorize the
fine-tuning methods for FLLM into four types: full-parameter fine-tuning, parameter-efficient fine-tuning, prompt
tuning, and other specialized fine-tuning methods. Currently, numerous studies have addressed the feasibility of FLLM
from an academic perspective, demonstrating the potential for fine-tuning LLMs on client devices.

Robustness corresponds to the heterogeneity of FLLM. Unlike centralized training, where data is aggregated in
a single location, FLLM is trained on discretely distributed data across various clients, each equipped with distinct
hardware and software environments. This setup readily gives rise to heterogeneity issues, which we categorize into
Manuscript submitted to ACM
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Table 1. Comparison of our work with the Previous Surveys1

Year Work Topic Feasibility Robustness Security Future Directions

2023
Chen et al. [18] FLLM ✓ ✗ ✔– ✗

Yu et al. [135] FL-FM ✓ ✗ ✗ ✓

Zhuang et al. [159] FL-FM ✔– ✗ ✔– ✓

2024

Ren et al. [91] FL-FM ✓ ✗ ✔– ✓

Li et al. [50] FL-FM ✓ ✓ ✔– ✓

Woisetschlager et al. [114] FL-FM ✓ ✗ ✗ ✔–

Li et al. [52] FL-FM ✓ ✗ ✔– ✓

Yao et al. [129] FLLM ✓ ✓ ✔– ✓

Hu et al. [35] FLLM ✓ ✗ ✔– ✔–

2025 Our work FLLM ✓ ✓ ✓ ✓

1 ✓ represents high correlation, ✔–represents few references to the FLLM paper, and ✗ represents no
relevant content.

three types: resource heterogeneity, data heterogeneity, and task heterogeneity. (i) Resource heterogeneity refers to
the differences in the computational and storage resources available to clients, which affects the training process and
aggregation strategies. Unlike traditional FL, the large scale of parameters trained during FLLM means that resource-
constrained clients may not be able to efficiently complete the fine-tuning tasks, resulting in slow training processes
and even incomplete training. (ii) Data heterogeneity refers to the unequal distribution of data across clients, that is,
the data are non-independent and identically distributed (Non-i.i.d.) [19]. Different clients may have different update
directions, leading to drift in the global model update. Due to the complex structure and strong memory of the model
resulting from its parameters, FLLM is more affected by data heterogeneity compared to traditional FL, leading to greater
instability. (iii) Task heterogeneity indicates that different clients may have different types of tasks [6, 19, 21, 84, 126].
Given the strong semantic understanding capabilities of LLMs, they can be applied to a wide range of tasks, such
as question-answering, classification, text generation, and translation. This diversity in tasks across clients leads to
significantly different convergence directions for the models, creating obstacles to the robustness of FLLM. Currently,
several studies have focused on addressing the heterogeneity issues in FLLM to enhance their robustness. However,
more in-depth research is still needed to tackle the challenges posed by data and task heterogeneity.

Security corresponds to the privacy and security of FLLM. Integrating FL into LLMs may simultaneously introduce
privacy threats from both LLMs and FL, such as data reconstruction and membership inference[18, 32]. Security
challenges mainly refer to the threats posed by malicious attackers or curious participants exploiting vulnerabilities to
impair system performance. In the traditional FL, these primarily include model poisoning attacks[117], data poisoning
attacks[11], backdoor attacks[127], and adversarial attacks[31]. In FLLM, textual data is characterized by its discrete
nature, where each word or character corresponds to a discrete index. For gradient leakage attacks, this discreteness
makes it more challenging to directly reconstruct the original text from the gradient information. For poisoning attacks,
the complexity of the model and the discreteness of the data require more sophisticated strategies for the attacker
to achieve effective poisoning. For inference attacks, attackers need to infer certain features of the text by analyzing
the model’s outputs or the activations of intermediate layers. These attacks may either affect the model convergence
speed or even prevent convergence, degrade model performance, or cause incorrect inference results on specific data,
ultimately reducing the credibility of the model.

Manuscript submitted to ACM



4 W. Jiang et al.

Privacy
Leakage

PEFT

Prompt 
Tuning

Other 
Methods

Resource 
Hetero-
geneity

Data 
Hetero-
geneity

Task 
Hetero-
geneity

Privacy
Defenses

Security 
Threats

Security 
Defenses

Un-
learning

Few-shot 
Learning

IP Pro-
tection

Federated 

Large Language

Model

Full-
paramete 

Fine-
tuning

Fig. 1. The framework of this survey. Darker circles indicate a higher number of related studies.

The future direction primarily focuses on the issues that remain unexplored by FLLM. For example, making full use
of scarce training data, protecting user rights, and protecting the intellectual property (IP) of models are additional
requirements for FLLM to achieve long-term development. The significance of studying few-shot scenarios is substantial,
as acquiring large amounts of labeled data is both time-consuming and costly. In training FLLM, insufficient labeled
data can prevent the model from fully learning and understanding the patterns and features within the data, thereby
affecting the model’s training effectiveness and generalization ability. Moreover, the issue of catastrophic forgetting,
which may arise as FLLM meets the need for clients to delete private training data, poses a significant barrier to its
development. Furthermore, in terms of intellectual property protection, ensuring that the model is not illegally copied,
redistributed, or misused has become a crucial challenge for FLLM.

In this survey, we focus primarily on recent papers concerning FLLM from four aspects: feasibility, robustness,
security, and future directions. We present the framework of our survey in Figure 1, where the darker circles indicate
a larger number of related studies. Unlike previous reviews, we place particular emphasis on the novel issues of
heterogeneity and privacy and security arising from the integration of FL and LLMs, as well as the corresponding
solutions, and have collected the latest FLLM-related papers. Our goal is to provide valuable references for researchers
and practitioners interested in this interdisciplinary field. We systematically review the latest methods, highlight their
contributions, and discuss how they address the inherent challenges of combining FL with LLM. Finally, we emphasize
potential research directions that may emerge in the near future and summarize the entire text.

Manuscript submitted to ACM
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2 Feasibility of FLLM

FLLM essentially involves training LLMs using the methodology of FL. The conventional process of training an LLM
comprises two primary stages: pre-training and fine-tuning. Currently, the number of parameters in LLMs has reached
hundreds of billions and continues to increase. Companies such as Google, OpenAI, and Huawei have all proposed the
development of models with trillions of parameters. For the majority of clients participating in FLLM, they lack the
abundant resources of a server, making it impractical to jointly train LLMs from scratch. Therefore, FLLM predominantly
focuses on the fine-tuning phase. Under the premise of preserving privacy, fine-tuning FLLM with vertical domain
data represents the optimal approach for fine-tuning on private data for downstream tasks. However, in terms of
computational costs, the substantial computational demands of backpropagation make it challenging for clients to fine-
tune LLMs. Even with GPU clusters, training such models remains a formidable challenge. Regarding communication
costs, since FLLM necessitates the sharing of model gradients or aggregated model parameters, the limited network
bandwidth of clients and the extensive transmission of parameters can lead to communication bottlenecks between
clients and the server.

To overcome the challenges posed by computational and communication costs and to realize the feasibility of FLLM, a
series of Federated Parameter-Efficient Fine-Tuning (FedPEFT) methods have continuously emerged [71]. In this section,
we categorize the training methods according to the modifications made during the training process of FLLM into
full-parameter fine-tuning, parameter-efficient fine-tuning, prompt tuning, and other special techniques, and introduce
each method respectively, as shown in Table 2. To clearly delineate the distinctions among various fine-tuning methods,
we have indicated the trainable parameters in orange in Figure 2.

Table 2. Overview of feasibility in FLLM.

Type Describe Approaches
Full-parameter
Fine-tuning Fine tune all of the parameters Fedlegal [145], FedRDMA [143]

Parameter-Efficient
Fine-tuning (PEFT)

Fine tune part of the parameters,
or freeze parameters of LLM and

insert additional trainable modules.

FedCyBGD [112], BitFit [136],
FeS [13], FedSelect [104],
AdaFL [16], FlexLoRA [6],

HETLORA [21], FwdLLM [120],
LP-FL [39], DP-DyLoRA [119]

Prompt tuning Fine-tunes prompts without altering
the parameters of LLMs.

Promptfl [29], FedTPG [87],
TCFL [150]

Other methods Model compression, split learning,
and zeroth-order optimization. [116, 124, 134], [57, 152], [58, 66, 86]

2.1 Full-parameter Fine-tuning

Full-parameter fine-tuning refers to the process of continuing to train the parameters of a pre-trained LLM on a private
dataset, which involves updating all parameters. During fine-tuning, the model architecture remains unchanged, and
only the existing parameters are optimized to adapt to specific downstream tasks.

Full-parameter fine-tuning is the most straightforward method of parameter fine-tuning, where all model parameters
are updated during the fine-tuning process. Zhang et al.[145] achieved the first FLLM in the legal domain by federated
fine-tuning the RoBERTa-WWM pre-trained model released by HuggingFace on private information. However, the
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communication and computational costs associated with this method are highly prominent issues. To address this, Zhang
et al.[143] integrated RDMA technology into the FL framework to improve communication efficiency and robustness,
thereby realizing the FedRDMA framework for FLLM fine-tuning based on an industrial FL framework. Compared with
traditional TCP/IP-based FL systems, FedRDMA improves communication efficiency by 3.8 times. Nevertheless, this
framework merely enhances communication efficiency through RDMA technology without resolving the significant
computational costs, storage demands, and communication overheads associated with full-parameter fine-tuning.
Wang et al.[112] proposed a full-parameter fine-tuning method called FedCyBGD to tackle these issues. This method
uses cyclic block gradient descent to divide the model into multiple blocks, with each client responsible for updating
one or several specific blocks cyclically, rather than the entire model, thereby reducing computational and storage
costs. In addition, a model compression scheme was designed to lower communication costs, enabling full-parameter
fine-tuning with lower resource consumption. However, this approach lacks sufficient convergence analysis and is
limited by the small number of clients considered in its experiments. Due to the inability of full-parameter fine-tuning
to fundamentally solve the problems of high computational costs, storage demands, and significant communication
overheads, independent research on this method is relatively rare, and it is not the preferred approach for FLLM. Instead,
it is often used as a reference and comparison for other methods [136].

The advantages and disadvantages of full-parameter fine-tuning are both quite evident. This fine-tuning approach is
highly adaptable, allowing for fine-grained adjustments to the model’s internal representations to better fit downstream
tasks. When sufficient resources are available, Full-parameter fine-tuning typically yields the best performance, making
it widely applicable across various model architectures and task types. However, it requires updating and transmitting a
large number of parameters during each communication round, demanding high hardware requirements for the devices.
Moreover, with limited data, overfitting is likely to occur, which in turn degrades the model’s generalization ability.

Trainable parameters Frozen parameters

Prompt TuningAdapter-based Fine-tuning LoRA-based Fine-tuning  Partial-parameter
Fine-tuning 

Input 

Output
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Fig. 2. The fine-tuning process of full-parameter fine-tuning, PEFT (including partial-parameter fine-tuning, LoRA, Adapter) and
prompt tuning. The orange box denotes the trainable parameters.

2.2 Parameter-Efficient Fine-Tuning

Federated Parameter-Efficient Fine-Tuning (FedPEFT) [71] is a series of methods aimed at reducing the computational
and communication overhead of federated fine-tuning. We categorize these methods into three types based on the part
being updated: partial-parameter fine-tuning, LoRA-based fine-tuning and Adapter-based fine-tuning.
Manuscript submitted to ACM
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Partial-parameter fine-tuning methods improve the full-parameter fine-tuning methods, reducing computational,
storage, and communication costs by decreasing the number of trained parameters. Zaken et al. [136] proposed
BitFit, a sparse fine-tuning method that updates only the bias parameters. This method achieves comparable or even
better performance than fine-tuning the entire model with significantly fewer parameters on small-scale to medium-
sized datasets, as full-parameter fine-tuning is prone to overfitting. However, the theoretical explanation for BitFit
is insufficient, and whether the selection of bias terms is optimal remains questionable. Sun et al. [103] also focused
on reducing overhead by updating only the bias part of the globally shared model, achieving good results. Cai et al.
[13] extended this idea by proposing the FeS framework, which updates only the bias parameters of the intermediate
layers and freezes the weights of the lower layers, resulting in improved training efficiency while maintaining good
model performance. Rishub Tamirisa et al. [104] were inspired by the Lottery Ticket Hypothesis to introduce a method
for finding the optimal parameters for local fine-tuning while freezing the remaining parameters. They use gradient
information to identify the parameters that change the least during training, which are considered suitable for freezing
and carrying shared knowledge, while parameters with significant changes are considered the best choices for local
fine-tuning.

Adapter [33] and LoRA [34] (a.k.a. Reparameterization) freeze the entire pre-trained LLM and introduce some
trainable small modules at different positions of the model structure to achieve model fine-tuning for downstream tasks.
These small trainable modules usually have low-rank characteristics, which can significantly reduce the number of
training parameters and thus lower the computational, storage, and communication costs. Adapter is inserted into the
model in a “serial” manner, while LoRA is inserted in a “parallel” manner. Therefore, it is generally believed that adapter
will cause additional inference latency, while LoRA will not introduce new inference latency. Adapter-based fine-tuning
inserts small adapter modules into each layer of the pre-trained model and fine-tunes only the parameters of these
adapter modules to adapt to downstream tasks, as shown on the left side of Figure 3. LoRA (Low-Rank Adaptation)
introduces low-rank decomposition matrices into specific layers of LLMs, as shown on the right side of Figure 3. For a
weight matrix𝑊 , LoRA represents its update as Δ𝑊 = 𝐵𝐴, where 𝐵 and 𝐴 are low-rank matrices, and 𝑟 ≪ 𝑑 (where 𝑑
is the dimension of the original matrix, and 𝑟 is the dimension of the low-rank matrix). During training, the original
weight matrix𝑊 is frozen, and only the low-rank matrices 𝐵 and 𝐴 are trained. Thus, during forward propagation, the
model’s output can be expressed as ℎ =𝑊𝑥 + 𝐵𝐴𝑥 .

In FLLM with adapters, after the client training is completed, the adapter parameters are sent to the server for
aggregation, and then the aggregated adapter parameters are broadcast back to the clients for the next round of training.
Cai et al. [16] proposed a FLLM scheme with dynamically configured adapters based on the adapter configuration
method in [81], and provided a search method for the optimal adapter configuration, supplemented by cache activation
technology to achieve efficient federated fine-tuning of pre-trained LLMs. Subsequently, they proposed the FedAdapter
[15] scheme, which inserts adapters into different layers of the pre-trained model for training, adopts a dynamic
configuration mechanism to adjust the depth and width of the adapters according to the training progress, and further
optimizes the computational efficiency of the clients through activation caching technology. However, the dynamic
configuration process of adapters in FedAdapter requires additional computational and communication overhead,
and the configuration space of adapters (depth and width) may not cover all optimization solutions. FedOA [132]
enhances the model’s generalization ability in out-of-distribution scenarios by combining adapters with feature distance
regularization techniques and the global model’s invariant feature learning capability, effectively addressing the
challenges posed by large-scale parameters and data heterogeneity in FLLM. However, its convergence speed and
stability in practical applications may be affected by the client data distribution and communication frequency, and it is

Manuscript submitted to ACM



8 W. Jiang et al.

Adapter

+

Adapter

+

Input (�)

Feedforward 
down-project

(�)

+

Nonlinearity

Output (�)

Feedforward 
up-project

A
da

pt
er

� ∈ ℝ�×�

Pretrained
weights

�{

� = �(0, �2)

� = 0

�

ℎ

Lo
R

A

Trainable parameters

Frozen parameters

Fig. 3. The process of Adapter-based Fine-tuning and LoRA-based Fine-tuning.

sensitive to the selection of hyperparameters (such as regularization strength 𝜆). Jia et al. [37] proposed the HeteroTune
scheme, combining multi-branch cross-model aggregators to achieve efficient knowledge aggregation of models of
different sizes on heterogeneous devices.

For FLLM with LoRA, different frameworks have different implementation processes. For example, in the FedLoRA
framework [131], clients upload their trained𝐴 and 𝐵 matrices to the server, which aggregates these matrices to generate
global 𝐴 and 𝐵 matrices and broadcasts them back to the clients. Clients then use the global 𝐴 and 𝐵 matrices for
further optimization in the next round of training. Using this LoRA fine-tuning method, Jiang et al. [39] implemented
federated fine-tuning of pre-trained LLMs and found through experimental comparisons that this method can achieve
performance similar to or even better than full-parameter fine-tuning. Bai et al. [6] designed the FlexLoRA method,
which allows clients to dynamically adjust the rank of LoRA matrices based on local resources to change the number of
trainable parameters. After aggregating the global LoRA, the server uses singular value decomposition to redistribute
the parameters. Cho et al. [21], based on LoRA fine-tuning, employed techniques such as rank self-pruning and sparse
weighted aggregation to further improve the convergence speed of the global model. Fang et al. [25] designed methods
for identifying trainable weight importance and fast search algorithms to quickly search for the optimal low-rank
adaptive matrices locally and further reduced storage requirements using quantization techniques. To further reduce
memory overhead, researchers have integrated techniques such as forward differentiation with LoRA fine-tuning
[79, 119, 120].

Adapter and LoRA methods are both representative techniques of PEFT and are suitable for fine-tuning LLMs in FL.
Adapter inserts lightweight modules and is suitable for a variety of tasks (such as NLP, CV) and heterogeneous data
distribution scenarios, with performance close to full model fine-tuning, but with higher communication overhead;
LoRA, on the other hand, decomposes weight matrices into low-rank matrices and is particularly suitable for NLP tasks
and homogeneous data distribution scenarios, with low communication overhead, but may have limited expressive
power in complex tasks. Overall, adapter is more suitable for diverse tasks and heterogeneous data, while LoRA performs
better in NLP tasks and scenarios with low communication demands.
Manuscript submitted to ACM



Federated Large Language Models: Feasibility, Robustness, Security and Future Directions 9

2.3 Prompt tuning

Prompt tuning can fine-tune continuous prompts(a.k.a. soft prompts) without altering the parameters of the LLM [42],
and is an emerging promising method for reducing costs and protecting privacy. The embedding layer, which is the
initial component of the model, maps discrete words or tokens into a continuous vector space. These embedding vectors
capture the semantics and contextual information of the words, forming the basis for the model’s subsequent processing.
The feasibility of prompt tuning is attributed to the fact that pre-trained language models (such as GPT, BERT) have
acquired extensive linguistic knowledge and universal semantic representations through unsupervised learning on
large-scale corpora. This universality provides the foundation for prompt tuning. Essentially, a prompt serves as a
guiding signal, which directs the model to generate the desired output by incorporating specific text segments or
structures into the input text. The core of prompt tuning lies in utilizing the model’s embedding layer to implement
trainable prompts, which are adjusted through optimization methods such as gradient descent to better adapt to specific
tasks. During the process of prompt tuning, a set of prompt embedding vectors generated via the model’s embedding
layer is first initialized. Subsequently, these prompt embedding vectors are combined with task-specific input data
to form the complete input. By optimizing the prompt embedding vectors using labeled data, the model can better
adapt to specific tasks. In the inference stage, the optimized prompt embedding vectors are employed to generate the
output for the task, thereby enhancing the model’s performance on specific tasks. Since the number of parameters in
the prompt embedding vectors is relatively small, updating these parameters is much more efficient than updating the
entire model’s parameters, making prompt tuning feasible on resource-constrained devices. As for FLLM, the classical
approach of prompt tuning involves each client generating specific prompts for its local data and fine-tuning these
prompts. Subsequently, the updated prompts are transmitted to the server for aggregation. The server then broadcasts
the aggregated prompts back to the clients for the next round of training, as proposed in the referenced paper [29].

Fig. 4. The framework and workflow of PROMPTFL from [29]. Clients locally train a prompt learner with a small number of parameters,
without altering the original LLM, and the server aggregates only the updates from the prompt learners.

The effectiveness of training prompts stems from the fact that LLMs are already quite intelligent. Pre-trained models
(such as GPT, BERT, etc.) have already learned a vast amount of linguistic knowledge, but they require a clear "guidance"
to complete specific tasks. The prompt serves as this "guidance." Training prompts only adjusts the prompt embeddings,
not the parameters of the entire model, much like a teacher instructing a student on how to understand a question,
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10 W. Jiang et al.

rather than reteaching the student all the knowledge. Guo et al. [29] generated a prompt learner on the client side,
transforming federated model training into federated prompt training. Taking the pre-trained LLM CLIP [89] as an
example, clients train soft prompts with a small amount of local data, send the updates of the prompt learner to the
server for aggregation, and then update the local prompt learner based on the feedback from the server, as shown
in Figure 4. This method of prompt tuning only requires training a small-scale prompt learner, without the need to
fine-tune the LLM itself, thereby significantly reducing computational and communication costs. Qiu et al. [87] proposed
the FedTPG scheme, which involves learning a unified prompt generation network (Prompt Generator) globally to
convert task-related text inputs into context-aware prompt vectors. This approach transforms the training of LLMs
into the training of the prompt generation network, not only enhancing the model’s adaptability but also maintaining
low communication costs, making it suitable for FLLM scenarios. Zhao et al. [150] proposed the TCFL scheme. This
dual-prompt FL integrates visual and textual modalities to overcome the limitations of single-modality prompt tuning
in FL, thereby improving data representation among nodes.

In addition, P-Tuning v2 [61] is an improved deep prompt tuning method that aims to address the limitations of
traditional prompt tuning across models of varying sizes and tasks. By introducing trainable prompt embeddings at
each layer of the model, it significantly enhances model performance, enabling it to match fine-tuning in a variety of
natural language understanding (NLU) tasks.

The advantages of prompt tuning lie in its efficiency, privacy protection, as well as adaptability and flexibility. Given
that the number of parameters in prompt embedding vectors is relatively small, updating these parameters is much
more efficient than updating the entire model’s parameters. This makes prompt tuning feasible on resource-constrained
devices. In FLLM, the updates of prompt embedding vectors can protect the privacy of user data, as clients only need to
share the updates of prompt embedding vectors, rather than the original data. Moreover, prompt embedding vectors are
continuous in the embedding space and can be freely adjusted, without being restricted by natural language vocabulary.
This flexibility enables prompts to better capture the complexity of tasks. Through careful design and optimization of
prompts, prompt tuning can enable large language models to perform well in a variety of application scenarios.

2.4 Other Methods

In addition to parameter fine-tuning and prompt tuning, several other techniques have also contributed to the feasibility
of FLLM. For instance, the introduction of model compression, split learning, and zeroth-order optimization has reduced
the computational and communication overhead of FLLM, further facilitating its practical implementation.

Model compression minimizes the size of LLMs without compromising performance, thereby reducing the number
of parameters that need to be trained [116, 124, 134]. This approach effectively reduces computational, memory, and
communication costs. Researchers from Google, including Yang et al. [124], proposed the Online Model Compression
(OMC) technique for lightweight operations, which compresses model parameters. Parameters are only decompressed
and released into memory when they are involved in computations, and the model is shared and stored in a compressed
format, thus reducing storage and communication costs. Model parameter quantization techniques reduce the storage
and computational resources required by models by lowering the representation precision of model parameters,
thereby reducing resource costs[25, 124, 156]. Yang et al. [124] studied the impact of parameter quantization on model
performance from three different dimensions: full parameter quantization, weight-only quantization, and partial variable
quantization, demonstrating the feasibility of quantization techniques.

Split learning approaches the problem from the perspective of model architecture by partitioning the LLM into
several sub-models of varying sizes, which are then distributed across the server and clients. This ensures that the
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primary computational load during training remains on the server. This method significantly reduces the resource
demands on client devices in FLLM and has been applied in FLLM [57, 152].

Zeroth-order optimization techniques [58, 66, 86] consider the training process, achieving the feasibility of FLLM
by adjusting the backpropagation process during training, optimizing model parameters without directly computing
gradients, greatly reducing time costs. Noting that the resource demands of neural network training are significantly
higher than those of inference, Xu et al. [120] proposed an efficient federated fine-tuning of LLMs based on perturbation
inference without the backpropagation process. This method uses forward inference to determine the correctness of
perturbations and combines specially designed perturbation discrimination methods to quickly eliminate perturba-
tions that are almost orthogonal to the true gradient, achieving efficient training. Despite the efficient perturbation
discrimination method, forward inference still needs to be executed multiple times to obtain an unbiased estimate of
the true gradient. Panchal et al. [79] proposed estimating gradients by computing Jacobian-Vector Products based on
random perturbations of weights during the forward pass. This allows gradient estimation to be completed with only
two forward inferences, further improving training efficiency.

The feasibility of FLLM remains a recent research hotspot. At its core, the issue is to address the significant overhead
associated with FLLM. The solutions we discussed have basically achieved the integration of FL and LLM in academia.
Currently, FedPEFT methods are evolving towards lower computational, storage, and communication costs, enhancing
the efficiency of FLLM on the basis of achieving feasibility.

3 Robustness of FLLM

Traditional FL already faces challenges of resource heterogeneity[46] and data heterogeneity[76] due to the distributed
nature of training data across numerous clients with varying label distributions, sample sizes, and diverse device and
network environments. Owing to the substantial parameter scale of LLMs, FLLM significantly exacerbates the issue
of resource heterogeneity. Edge nodes with limited resources may not be able to participate in training normally due
to computational and communication challenges. LLMs are highly complex and more sensitive to the quality and
quantity of data, thereby exacerbating the impact of data heterogeneity. Moreover, FLLM introduces a novel issue: task
heterogeneity. [6]. This arises because LLMs possess strong semantic understanding capabilities and can be applied to a
wide variety of tasks, leading to different clients having distinct tasks such as question-answering, classification, text
generation, and translation. The heterogeneous tasks on clients result in significantly different model convergence
directions, which is markedly different from traditional FL. Heterogeneity issues are significant barriers to the practical
deployment of FLLM, profoundly affecting their robustness. We have conducted a survey of recent works on resource
heterogeneity, data heterogeneity, and task heterogeneity in FLLM, as shown in Table 3.

3.1 Resource Heterogeneity

In reality, FLLM systems are highly likely to be composed of devices with heterogeneous resources, featuring diverse
software and hardware environments. This leads to differences among clients in terms of computing platforms,
computational capabilities, storage space, communication bandwidth, and training efficiency, thereby affecting the
training process and aggregation strategies [88]. FLLM is also subject to the "bucket effect," where efficiency is determined
by the least capable participant, resulting in the waste of resources from other participants. Given the widespread
existence of resource heterogeneity, existing research on the heterogeneity of FLLM mainly focuses on this issue
[5, 6, 21, 96, 98, 101, 102, 105, 106, 122, 148]. In these studies, most methods are based on LoRA and adapter to address
resource heterogeneity.
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Table 3. Overview of robustness in FLLM.

Type Describe Approaches

Resource Heterogeneity Diverse computational resources impact
the aggregation efficiency of FLLM.

FedLoRA [131], FlexLoRA [6],
Fed-piLot [148], HETLORA [21],
FedRA [101], FedSpaLLM [5]

Data Heterogeneity Unbalanced data distribution
leads to global model drift.

FDLoRA [85], FedPipe [25],
PFIT [38], SPRY [79],

FwdLLM [74]

Task Heterogeneity The demand for multitasking makes it
difficult for FLLM to converge stably.

M2FEDSA [146], FedDPA [126],
FedBone [20], FedDAT [19],

FL-TAC [84]

The PEFT methods mentioned above not only contribute to the feasibility of FLLM, but also enhance their robustness.
The FedLoRA framework [131] mentioned previously achieves parameter-efficient fine-tuning of large heterogeneous
models by inserting a small LoRA on each client and aggregates LoRA on the server side to enable knowledge sharing
among clients. Zhang et al. [148] proposed the Fed-piLot scheme, which, based on the observation that training
different LoRA layers results in different memory consumption and that different layers contribute differently to
model performance, formulated the allocation of LoRA as a knapsack optimization problem. They designed a value
function based on local-global information gain score (IG-Score) to optimize the allocation of LoRA under client memory
constraints. Cho et al. [21] first discussed that in resource-heterogeneous scenarios, the redistribution aggregation
method using LoRA faces problems of overfitting and slow convergence, and thus proposed the HETLORA scheme. By
applying local rank self-pruning and sparse weighted aggregation on the server, it combines the advantages of high-
and low-rank LoRAs, achieving better convergence speed and final performance compared to homogeneous LoRA. Su
et al. [101] proposed the FedRA scheme, which randomly generates an allocation matrix in each communication round
to determine which layers of the model each client is responsible for updating. Resource-constrained clients only need
to handle a small number of layers assigned to them and fine-tune through adapters, thereby reducing computational
overhead. The server aggregates the adapter updates from clients to the corresponding layers of the global model
according to the allocation matrix. This strategy not only fully utilizes the computational resources of different clients
but also supports extremely heterogeneous scenarios where no client can fine-tune the entire model.

Furthermore, Bai et al. [6] proposed the FlexLoRA scheme, which allows clients to dynamically adjust local LoRA
ranks based on their own resources, as shown in Figure 5. Unlike previous methods where the server aggregated
matrices A and B as 𝐵𝑔 = (∑𝑚
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𝑖𝐵𝑖
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𝑖=1 𝑛

𝑖𝑊 𝑖
𝑙
)/(∑𝑚

𝑖=1 𝑛
𝑖 ) =

(∑𝑚
𝑖=1 𝑛

𝑖𝐵𝑖
𝑙
𝐴𝑖
𝑙
)/(∑𝑚

𝑖=1 𝑛
𝑖 ), where𝑊 𝑖

𝑙
is the full-size LoRA of the i-th client. Clients with abundant resources can use

higher LoRA ranks, thereby contributing more general, task-agnostic knowledge. This dynamic adjustment mechanism
avoids the problem in traditional FL where the resources of other clients cannot be fully utilized due to the limitations
of the client with the least resources.

In addition, there are also methods based on model pruning[5] and split learning[96, 106, 122] that can address
resource heterogeneity. Bai et al. [5] first proposed the pruning scheme FedSpaLLM for FLLM, which allows clients
to prune the model locally based on private data while considering system resource heterogeneity and maintaining
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Fig. 5. FlexLoRA workflow from [6]. The server aggregates the full-size LoRA after multiplication, not the individual matrices A and B.
The global full-size LoRA is then decomposed into smaller matrices of varying ranks via SVD and allocated sequentially based on
client resources.

competitive communication efficiency. The server randomly samples a portion of the model layers for each client in
each communication round, with the sampling quantity proportional to the client’s computational resources. This
proportional allocation ensures that each client can effectively participate in model training within its capabilities.
Split learning, on the other hand, reduces the processing load on clients by dividing the complete model into smaller
submodels. Clients can choose to run the initial layers of the model based on their computational resources, while the
server is responsible for running the remaining layers. This division allows resource-constrained clients to handle only
the lightweight parts of the model, leaving the computationally intensive tasks to the server.

The resource capacity of clients determines the size of themodel they can train, whichmay lead tomodel heterogeneity.
Samiul Alam et al. [1] proposed a model-heterogeneous training scheme based on partial training called FedRolex.
Through a rolling sub-model extraction scheme, it enables the parameters of the global server model to be trained
uniformly, thereby mitigating the client drift problem caused by model heterogeneity.

3.2 Data Heterogeneity

Data heterogeneity, that is, the imbalance in data distribution across different clients, unequal data volumes, and the
non-independent and identically distributed (Non-i.i.d.) nature of the data [19], can lead to drift in local model updates
during training. This means that the update directions of models on different clients are significantly different. As
a result, the global model obtained by aggregating parameters from various client models on the server is unstable
and usually not the optimal model [46, 76]. LLMs typically require substantial amounts of data for adequate training.
However, in FL, data is distributed across multiple clients and is highly heterogeneous, making it difficult for the model
to learn globally effective features from local data. Moreover, clients may only be exposed to specific patterns in their
local data, leading to overfitting of local models and a decrease in the generalization ability of the global model.
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Similar to resource heterogeneity, most current methods for addressing data heterogeneity are based on LoRA and
Adapter. Qi et al. [85] proposed the FDLoRA scheme with a dual-module configuration. Each client is equipped with
two LoRA modules, one for capturing local personalized knowledge and the other for global knowledge. Only the
parameters of the global LoRA module are shared during parameter sharing. Clients then adaptively fuse the parameters
of the dual LoRA modules based on the aggregated parameters from the server, achieving good performance, especially
when the degree of data heterogeneity among clients is severe. Fang et al. [25] proposed the FedPipe scheme, whose
core idea is to configure different LoRA matrices for each client. FedPipe first identifies the weights that contribute most
to model training. By analyzing the importance of these weights, it selects the weights suitable for fine-tuning on edge
devices. For each selected weight, FedPipe configures a LoRA that is trained on local data, dynamically adjusting the
LoRA’s parameters (such as batch size and decomposition rank) according to the computational and storage resource
constraints of each edge device. This method ensures that each edge server can efficiently fine-tune the model within
its resource limitations. Jiang et al. [38] proposed the PFIT method, which uses reinforcement learning to fine-tune
local LLMs. Each client adjusts model parameters using different reward models based on the characteristics and needs
of its local data. Clients use a global adapter to fine-tune the global model. The role of the global adapter is to enable the
model to adapt to the characteristics of global tasks, but its parameter updates are fed back to the server for updating the
global model. Meanwhile, clients train local LoRA on local data to achieve personalized adjustments. The parameters of
these LoRAs are updated locally and are not uploaded to the server, thereby eliminating the heterogeneity of client data.

In addition, there are also some schemes that consider the training process and propose innovative methods. Panchal
et al. [79] proposed SPRY, which uses Forward-mode Auto-Differentiation to fine-tune LLMs, achieving low memory
usage, high accuracy, and fast convergence. When the data among clients are homogeneous, the global gradient
aggregated on the server side by SPRY is an unbiased estimator of the true global gradient. Although heterogeneity
increases the bias of the estimator, it remains usable. Mei et al. [74] addressed the challenges posed by data heterogeneity
by employing a Mixture-of-Experts (MoE) model. The proposed FedMoE constructs an optimal sub-MoE model for
each client and feeds knowledge back into the global MoE to improve efficiency in data heterogeneity environments.

In the FLLM environment, data heterogeneity is a key challenge. However, most of the current methods for addressing
data heterogeneity focus on model architecture design, with fewer methods employing other techniques such as model
distillation. We believe that more universal and efficient FLLM solutions for data heterogeneity will emerge soon.

3.3 Task Heterogeneity

Task heterogeneity refers to the fact that different clients may have different types of tasks. In real-life FLLM scenarios,
computational and storage resources are very limited. Training separate models for each task would significantly
increase the computational and storage burden, potentially exceeding the resource limitations of the devices. By
sharing a single model, multiple tasks can be handled simultaneously within limited resources, improving resource
utilization. For example, a LLM can handle tasks such as text classification, sentiment analysis, and machine translation
simultaneously, without the need to train and deploy separate models for each task. Multi-task learning can enhance
the model’s generalization ability because it forces the model to learn more generic feature representations instead of
overfitting to the data of a specific task. This generalization ability enables the model to perform better when facing
new tasks. These advantages make multi-task learning a more practical and efficient choice in resource-constrained and
privacy-sensitive environments. However, multi-task learning is prone to model forgetting issues [62], and conflicts in
optimization objectives as well as differences in model structures pose significant challenges to the stable convergence
of the global model.
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Currently, research on task heterogeneity in FLLM is relatively limited, and the focus is on expanding model scale by
setting up multiple adapters. Zhang et al. [146] proposed the M2FEDSA framework, which combines split learning and
multi-modal FL. It introduces a dual adaptive fine-tuning strategy by adding task adapters in the high-level encoder on
the main server and modality adapters in the low-level encoder on the client side to enhance the model’s adaptability
to different tasks and modalities. It also employs a dual knowledge transfer strategy to pass multi-modal knowledge
to single-modal features at the feature and decision levels, further improving model performance. Yang et al. [126]
proposed the FedDPA framework, which combines global and local adapters to learn general knowledge across different
distributions and provide personalized services for each client. Additionally, FedDPA introduces an instance-based
dynamic weighting mechanism that dynamically integrates global and local adapters during inference to achieve
effective test-time personalization. Chen et al. [20] proposed the FedBone framework, which splits the model into
a general model deployed on the cloud and a task-specific model deployed on the client side. The cloud’s powerful
computing capabilities handle general feature extraction, while the client is only responsible for lightweight data
embedding and task output. FedBone also introduces the GPAggregation method, which calculates the attention values
of task gradients and historical aggregated gradients and performs projection operations to eliminate conflicts between
gradients of different tasks, enhancing the model’s generalization ability. It designs a task adaptation module using
deformable convolution and self-attention mechanisms to further enhance the model’s adaptability to different tasks.
Chen et al. [19] proposed the FedDAT scheme, which effectively addresses task heterogeneity through a dual-adapter
teacher module and mutual knowledge distillation strategy, achieving distributed fine-tuning of the base model while
maintaining communication efficiency. Experimental results show that FedDAT significantly outperforms existing
centralized PEFT methods in multiple multi-modal FL benchmarks, demonstrating better convergence speed and
scalability. Ping et al. [84] proposed a FLLM training method called FL-TAC, which trains a low-level adapter for each
individual task on the client side and then clusters similar adapter groups on the server side for task-specific aggregation.

The heterogeneity issues of FLLM are primarily manifested in resource heterogeneity, data heterogeneity, and task
heterogeneity. The ability to address these heterogeneity issues in FLLM is crucial for their robustness and has become
one of the current research hotspots. Presently, most research focuses on the resource heterogeneity of FLLM, while
further in-depth studies are needed for data and task heterogeneity.

4 Security of FLLM

The primary motivation for combining LLMs with FL is to enable LLM training that collects data from various parties
while protecting user privacy. Therefore, privacy protection is the most important feature of FLLM. However, due to
the emerging nature of FLLM, current research has focused excessively on how to achieve efficient fine-tuning of FLLM,
with insufficient analysis of the system’s privacy and security. Both FL and LLM have their own privacy and security
threats. Whether the combination of the two will lead to an accumulation of all risks or mitigate some attacks has not
yet been clearly summarized in any review. This section analyzes whether the attacks that originally existed separately
in FL and LLM are still effective for FLLM and surveys the new risks generated by the combination of FL and LLM. After
conducting an extensive search, we found that research on attacks targeting FLLM remains limited. Correspondingly,
studies on defense mechanisms for FLLM are also scarce, posing significant challenges to its security.

In FL systems, although the server cannot access the raw data of clients, it may still be able to infer client privacy
through the collection of model parameters or gradients. For example, membership inference attacks [109] and input
reconstruction attacks [151] are potential threats. Malicious clients, aiming to control the direction of global model
training or to prevent model convergence, may launch data poisoning attacks [111, 118, 147] and model poisoning
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attacks [4, 10, 28, 110], as shown in Figure 6. LLMs are trained on vast amounts of public data, which may include
private information such as email addresses and phone numbers. As high-quality public data becomes scarce, training
LLMs on private data is becoming more common, potentially exposing private data to privacy breaches. Prominent
methods for privacy theft include membership inference and reconstruction attacks. Additionally, during training,
LLMs not only learn the underlying logic of language but also potentially acquire knowledge that contradicts human
values, posing the risk of generating harmful content. Jailbreaking attacks are a primary means that may trigger this
risk. Furthermore, the combination of FL and LLMs introduces new privacy and security threats. Training data for
LLMs can inadvertently be reflected in generated content, potentially revealing sensitive personal information such as
medical records and bank account numbers. This allows other clients in the FL system to potentially steal user privacy.
Due to the deep transformer architecture and multi-stage training process of LLMs, poisoning attacks are more likely
to succeed and are harder to detect in FLLM training. The high reliability of FLLM is a key factor for their successful
implementation. We provide an overview of privacy and security attacks and defenses of FLLM in Tables 4 and 5,
respectively.

MIA
Match

D
R

A

�� ⟶ �

JA, PI, LTDL

Client 1 Client 2

DPA, MPA,
BA

Client N......

Fig. 6. Privacy and security threats faced by FLLM system. Honest-but-curious server steals client privacy through MIA and DRA.
Malicious clients steal other users’ privacy through JA, PI, and LTDL, and also damage or manipulate the aggregation of the global
model through DPA, MPA, and BA.

4.1 Privacy Leakage and Defenses

4.1.1 Membership Inference Attack. Membership Inference Attack (MIA) aims to determine whether a target sample
exists in a specific participant’s training set [97]. Bai et al. [7] categorized the implementation methods of membership
inference attacks in FL into update-based and trend-based approaches. One update-based method involves using model
gradients as attack feature vectors [30, 77] or comparing the differences in gradients across different rounds [45, 75] to
infer membership status. However, given that FLLM training requires datasets on the scale of billions, the presence
or absence of a single training data point may have a negligible impact on gradient changes, making it difficult to
determine whether it has been trained on. This has been confirmed in the research by Duan et al. [22]. They conducted
a large-scale evaluation of a series of language models (ranging from 160M to 12B parameters) and found that in most
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Table 4. Overview of privacy in FLLM.

Type Describe Approaches

Attacks

Membership
Inference
Attack

Determine whether a specific data point was used. [109]

Data
Reconstruction

Attack
Recover original data from model outputs or parameters. [80], [151]

Jailbreaking
Attack

Exploit vulnerabilities in system constraints to gain
unauthorized access. [49]

Prompt
Injection Manipulate input prompts to elicit malicious outputs. -

Long-Tailed
Data Leakage

Infer sensitive information from underrepresented classes
in imbalanced datasets. -

Defenses

Multi-
layered
defense

Adapt multi-layered defense mechanism, such as weighted
aggregation, geometric median, model pruning, and noise

addition to resist attacks.
FedSecurity [32]

Parameter
quantization

Integrating quantization and LoRA to exchange only partial
model parameters during training. FedLPP [156]

Differential
privacy Combine differential privacy with adapter mechanisms. FedPA [139]

Local
fine-
tuning

Fine-tuning LLMs directly on client devices with private data. Titanic [99]

cases, the performance of membership inference attacks only slightly outperformed random guessing, which is in stark
contrast to previous findings in traditional machine learning models. This inefficiency is primarily attributed to two
characteristics of LLMs: first, the use of massive amounts of data for training, which makes it difficult for the model to
overfit the training data; and second, the training process typically involves only a little over one epoch, resulting in
strong model generalization and difficulty in distinguishing between training and non-training data.

Another update-based method infers membership status through structure modifying [78, 83]. A malicious server
can meticulously design the model structure, embedding malicious parameters that activate when the target member
participates in training, thereby leaking membership information. Although this method places high demands on
how the server designs the model structure, similar attacks have been realized in FLLM [109]. Minh N. Vu et al. [109]
proposed two methods for a malicious server to launch active membership inference attacks in the context of FLLM. The
first involves setting the first two layers of the model as fully connected layers and carefully designing the weights and
bias parameters based on the target sentence or token. The presence of zeros in the output of these layers determines
whether the target exists in the input. The second focuses on the self-attention layer, similarly designing the parameters
of the 𝑄 , 𝐾 , and 𝑉 matrices of the self-attention layer based on the target token and analyzing the output values to
determine the target member’s attributes. However, the paper assumes that the attacker can fully control the global
model and manipulate its architecture, which may not entirely hold in practical applications.

Trend-based methods leverage the change trajectories of model outputs or parameters across multiple rounds to
infer membership information [137, 142], requiring only the observation of metric changes in each round with minimal
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time overhead. This method is simple and efficient to implement and could potentially be realized in FLLM, although
such instances have not yet appeared.

4.1.2 Data Reconstruction Attack. Data Reconstruction Attack (DRA) is a type of attack that reconstructs original
data from gradients or other information. Yang et al. [123] categorized gradient leakage attacks in FL into two major
types: optimization-based attacks and analysis-based attacks, and proposed a new generation-based GLA paradigm,
demonstrating its advantages in terms of data reconstruction performance and efficiency. Optimization-based attacks
generate initial data randomly and optimize the data based on gradients to make it close to the private training data,
thereby achieving data reconstruction. For example, Mu et al. [157] studied a gradient-based reconstruction attack
algorithm, mainly using deep learning techniques and algorithms to analyze the gradient information in FL models to
recover the original training image data. They proposed an algorithm called deep leakage from gradient (DLG), which
can recover the original image by generating virtual image labels and calculating virtual gradients to match the real
gradients, without access to the original dataset. This optimization-based method, relying solely on gradient changes,
remains applicable to the fine-tuning methods of LLM parameter updates. In contrast, analysis-based attacks solve
a system of linear equations to obtain the original private data, which is more accurate but only suitable for smaller
models [26, 82, 155]. For LLMs with a huge number of parameters, this type of attack is more difficult to implement.

In the context of FLLM training, adversaries attempt to recover users’ input text, and the discrete nature of this input
increases the difficulty of data reconstruction attacks. Zheng et al. [151] explored the security issues of implementing
vertical FL for LLMs in a white-box scenario, pointing out that attackers can easily and at low cost reconstruct users’
input text from the intermediate embedding layers, and discussed several possible solutions to enhance the privacy
protection of vertical federated LLMs. Petrov et al. [80] proposed DAGER, a gradient inversion attack algorithm
targeting FLLM, capable of accurately recovering entire input text batches from shared gradients. DAGER leverages
the low-rank structure of gradients in self-attention layers and the discrete nature of token embeddings, employing
exhaustive heuristic search and greedy methods to precisely recover batches for both encoder-based and decoder-based
architectures. Lu et al. [65] proposed APRIL, a novel attack method that analyzes the gradient leakage risks of self-
attention mechanisms and demonstrates that attackers can use the shared gradient updates of models to recover private
training data within the FL framework. The paper particularly observed that learnable positional embeddings are a
weak link in the privacy protection of Transformer models. Fowl et al. [27] proposed the DECEPTICONS attack method,
which deploys malicious parameter vectors in FL to leak users’ private text data, utilizing the characteristics of the
Transformer architecture and token embeddings to extract token and positional embeddings separately to recover
high-fidelity text, even in the face of small batches, multiple users, and long sequences. Rashid et al. [90] identified which
training rounds included the participation of victims using the victim round identification method and proposed the
maximizing data memorization method based on selective weights optimization and weights transformation learning
to further enhance the model’s memorization of sensitive data, significantly increasing the success rate of private data
reconstruction (up to 71%).

4.1.3 Jailbreaking Attack. Jailbreaking Attacks (JA) refer to bypassing or breaking through the security and censorship
functions of a model to perform unauthorized operations or output non-compliant content [49, 121], which has become
one of the unique and mainstream attacks against LLMs. In the FLLM scenario, the training process involves multiple
participants, each of whom can be a potential target for jailbreaking attacks. Attackers may inject malicious data into
the training set or craft malicious prompts to steal other users’ privacy from the global model. These attacks typically
involve designing clever prompts to induce the model to exceed its preset limitations while performing tasks, thereby
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achieving the attacker’s goal. Usually, attackers launch jailbreaking attacks on LLMs through "jailbreaking prompts."
Initially, "jailbreaking prompts" were mainly designed manually, which had limitations in terms of readability and
fluency, and were later improved in subsequent work [40]. As jailbreaking attacks continue to evolve, diffusion models
have been employed for generating "jailbreaking prompts" [113], significantly increasing the success rate of jailbreaking
attacks while optimizing the fluency and diversity of the prompts. Current defense measures require security-oriented
training and adversarial training at the model level to enhance the model’s resistance to attacks [49]. Although various
robust FL mechanisms, such as robust aggregation schemes [48], can protect training from malicious updates, their
effectiveness against emerging jailbreaking threats remains to be explored.

4.1.4 Prompt Injection. Prompt Injection (PI) is a technique that uses malicious instructions as part of the input prompt
to manipulate the output of a language model. In the FLLM scenario, where the models are exposed to a large number
of unfamiliar users, prompt injection attacks exhibit characteristics of being difficult to predict and defend against, and
having a strong immediacy. It is similar to SQL injection attacks in database security, where carefully crafted inputs
bypass the model’s normal processing procedures to achieve unauthorized data access, execute malicious code, or
produce harmful outputs. Prompt injection can be divided into two forms: direct injection and indirect injection. The
former involves directly adding malicious instructions to user input, while the latter hides malicious instructions in
documents that may be retrieved or ingested by the model [36]. This type of attack primarily affects the integrity and
security of applications based on LLMs, potentially leading to unauthorized data access, execution of malicious code, or
generation of harmful outputs. General defense methods involve strengthening input validation and filtering at the
application level to prevent untrusted user input from being directly passed to the LLM.

4.1.5 Long-Tailed Data Leakage. Long-tailed data leakage (LTDL) refers to the over-memorization of rare data by a
minority of participants. This characteristic is particularly dangerous in FLLM because the local data of participants
often contains sensitive information (such as medical records and financial transactions), and the global model may
inadvertently leak these details through parameter aggregation. On the one hand, due to the large number of parameters
and multi-layer attention mechanisms in LLMs, they possess extremely strong data representation capabilities, but also
face the risk of over-memorizing long-tailed data [23]. Studies have shown that even when facing extremely few samples
(such as rare case data from a certain participant), the model may accurately memorize data details through subtle
changes in gradient updates. For example, Liu et al. [60] verified a variety of adversarial attack techniques targeting
LLMs and found that high attack success rates can still be achieved with a small number of attack samples, especially
on LLaMA-7B, where the ASR of 8-shot attacks always remains above 50%.

On the other hand, the training method of FLLM itself also exacerbates the severity of this problem. Taking a
trillion-parameter model as an example, a single gradient update requires the transmission of hundreds of GB of
parameters, and the frequent global aggregation in FL leads to exponential growth in communication bandwidth and
computational resource consumption [128]. For instance, training a model of the scale of GPT-3 requires thousands of
GPUs to work in parallel for several months, and the dispersed participants in FL may be forced to reduce the frequency
of aggregation due to hardware heterogeneity (such as insufficient computing power of edge devices), which exacerbates
the overfitting of local models to long-tailed data. Ma et al. [68] pointed out that the Non-i.i.d. data distribution will
intensify the training directionality problem of the model, and the low-frequency update strategy is difficult to eliminate
the parameter bias in the local model during global aggregation.

Research on the long-tailed privacy leakage risks in FLLM is currently still in its infancy. However, some foundational
work on FL or LLMs can offer valuable insights. For instance, adding noise (such as Gaussian or Laplacian noise) to
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the gradients or parameters of FLLM can mitigate the risk of data memorization. Batool et al. [9] proposed a VANETs
FL framework that implements a lightweight privacy budget allocation strategy through differential privacy design,
optimizing model aggregation efficiency while ensuring privacy security. However, this solution experiences a more
significant accuracy loss in Non-i.i.d. data scenarios. Additionally, Mao et al. [72] suggested reducing the number of
trainable parameters through LoRA, splitting LLMs into shared and private layers, and aggregating only the shared
parameters. This approach can reduce parameter scale and memory effects to some extent but still faces communication
efficiency issues in models with hundreds of billions of parameters.

4.1.6 Defenses. The privacy protection of FLLM faces numerous challenges, including data leakage risks and model
protection. Recently, researchers have proposed a variety of privacy protection schemes, ranging from quantization
techniques and differential privacy to distributed training paradigms, aiming to balance the relationship between
privacy protection and model performance.

In the FedSecurity framework proposed by Han et al. [32], FedDefender, as a key component, is specifically designed
for the defense mechanisms of FLLM to counter various attacks. FedDefender implements defensive measures at different
stages of FL training, including the "pre-aggregation," "during-aggregation," and "post-aggregation" phases. Before
aggregating client models, FedDefender can score local models to identify potentially malicious ones and reweight
them to mitigate the impact of malicious models. For example, the Krum algorithm tolerates a certain number of
Byzantine clients by selecting the single most likely benign model as the global model. During the aggregation process,
FedDefender modifies the aggregation function to make it more robust against potential malicious client models. For
instance, Robust Federated Aggregation calculates the geometric median of client models as the aggregated model
instead of simply averaging them. After aggregation, FedDefender can directly modify the global model by clipping or
adding noise to protect it from potential attackers. For example, Clipping-based Robust FL clips the global model after
each aggregation to limit the model’s norm. Through these multi-layered defense mechanisms, FedDefender can flexibly
respond to different types of attacks, including data poisoning, model poisoning, and data reconstruction attacks.

Zhu et al. [156] proposed the FedLPP framework, which combines quantization techniques and LoRA to protect both
data and model privacy in FL. FedLPP distributes quantized rather than complete model parameters during training,
preventing clients from obtaining the full model on the server and effectively protecting the privacy of the global model.
By updating only a small portion of the model’s parameters, FedLPP further reduces communication overhead and
limits clients’ access to the global model’s details.

Zhang et al. [139] suggested that LLM privacy protection can be achieved through FL frameworks and personalized
adapter mechanisms. Each client learns a lightweight personalized adapter using its private data, which collaborates
with the pre-trained base model to provide efficient and fine-grained services for recommendation systems. Throughout
the process, users’ private data remains on local devices and is not shared with the server, ensuring data privacy.
The method further enhances privacy protection with differential privacy techniques, such as adding noise to model
parameters when clients upload them to prevent the server from inferring users’ original data. This data-localized
privacy protection mechanism not only safeguards users’ privacy but also allows models to integrate shared knowledge
without sharing sensitive information while retaining each user’s personalized preferences.

Su et al. [99] proposed the Titanic scheme, which deploys the fine-tuning process of LLMs directly on client devices
holding private data. This approach ensures that private data always remains on local devices and is not sent to the
cloud or other centralized servers, thereby maximizing data privacy protection. However, this method is impractical for
resource-constrained clients. To address the challenge of client resource limitations, Titanic implements fine-tuning
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of LLMs on client devices in four ways: (i) Model partitioning and distributed fine-tuning: Titanic splits the LLM
across multiple client devices for fine-tuning instead of requiring each client to train the entire model independently.
This significantly reduces the computational burden on individual clients, allowing resource-constrained devices to
participate in model training. (ii) Optimized client selection: Titanic first selects a subset of clients using an efficient
integer optimization algorithm. These clients are more representative in terms of computational resources and data
quality. In this way, Titanic ensures that the participating clients can efficiently complete the tasks assigned to them
while reducing over-reliance on individual client resources. (iii) Reduced communication overhead: Titanic significantly
reduces communication costs by transmitting only a small number of model weights between clients instead of entire
model updates. This not only protects privacy but also lowers bandwidth requirements, making distributed training
more feasible. (iv) Model-agnostic partitioning mechanism: Focusing on feasibility, Titanic adopts a model-agnostic
partitioning mechanism that can fully automate the splitting and distribution of any LLM to client devices. This means
that Titanic can flexibly adapt to different models and trainers without modifying the model source code. Through
these technical means, Titanic effectively addresses the problem of client resource limitations while protecting data
privacy, making it possible to fine-tune LLMs on resource-constrained devices.

The privacy protection solutions for FLLM are still in their infancy, and the specific problems they target vary. To
enhance the security of FLLM, there is an urgent need for deeper and broader exploration in this area.

4.2 Security threats and defenses

Table 5. Overview of security in FLLM.

Type Describe Approaches

Attacks

Data
Poisoning
Attack

Maliciously alter training data to degrade model performance. -

Model
Poisoning
Attack

Maliciously modify model parameters or updates to degrade the
overall model performance. -

Backdoor
Attack

Insert hidden triggers into the LLM to produce incorrect outputs
when activated.

[53], [67],
[115], [54]

Defenses

Distance
based
defense

Adversaries are identified by the distance deviations in malicious
updates from normal ones.

[153], [92],
[147]

Feature
based
defense

Maliciously tampered model updates exhibit distinct characteristics
from benign updates in certain features.

[69], [8],
[144], [3]

Knowledge
Distillation

Integrate clustering, model selection, and knowledge distillation
to identify and filter malicious client updates. [2]

4.2.1 Data Poisoning Attack. Data Poisoning Attacks (DPA) occur during the data collection phase on the client side,
where the original data is modified to train a poisoned local model, which is then uploaded to participate in aggregation
to harm the global model and compromise its availability or integrity. Shafahi et al. [93] explored an optimization-based
"clean-label" data poisoning attack on neural networks, which manipulates the model’s behavior at test time by adding
carefully designed samples to the training set. This type of attack does not require the attacker to control the labels of
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the training data but instead leverages the model’s "memory" of the data during training to achieve its goals. Another
form of DPA is the label-flipping attack, where the adversary modifies the labels of the dataset rather than the sample
features to generate a poisoned model. Tolpegin et al. [107] studied label-flipping attacks on FL systems, demonstrating
that even a small number of malicious participants can significantly reduce classification accuracy and recall, and that
the attack can be targeted to negatively impact specific categories. LLMs, with their higher complexity and stronger
fitting capabilities, can capture subtle features in the data, including maliciously altered label information. Therefore,
label-flipping attacks may have a more pronounced impact on LLMs, as they are more prone to overfitting incorrect
label information. Shejwalkar et al. [95] systematically analyzed various possible threat models, variants of poisoning
attacks, and different capabilities of attackers, with a particular focus on non-targeted poisoning attacks. They found
that, contrary to common belief, FL shows high robustness in practical applications even with simple and low-cost
defense measures. Based on this, they proposed new state-of-the-art data poisoning attack methods and demonstrated
their ineffectiveness in the presence of simple defense mechanisms through extensive experiments on three benchmark
datasets. In addition to directly modifying the original data, Zhang et al. [140] proposed PoisonGAN, a generative
poisoning attack model for FL systems. This method, based on generative adversarial networks (GANs), uses the
parameters of the global model to generate toxic data samples that mimic the training samples of other participants and
forge the labels of these samples. Since the federated fine-tuning process typically involves making a small number of
updates to the pre-trained model, these toxic data samples can significantly impact the model’s performance during the
fine-tuning stage.

4.2.2 Model Poisoning Attack. Unlike DPA, Model Poisoning Attacks (MPA) occur during the training phase on the
client side, where the local model is modified to achieve the goal of corrupting the global training. Fang et al. [24] first
systematically studied MPA and formalized the attack problem as an optimization problem, targeting four byzantine
fault-tolerant FL defense methods. This optimization approach helps minimize the difference between the current
poisoned model and the model from the previous round, making it more difficult for the server to detect the attack.
Bagdasaryan et al. [4] used a model replacement method to blend the poisoned model with a benign model and employed
hyperparameter scaling to evade detection. Shejwalkar et al. [94] proposed a more effective model poisoning attack,
similar to the Min-Max attack, which constrains the upper bound of the sum of squared distances between the malicious
gradient and all benign gradients to be the sum of squared distances between any benign gradient and other benign
gradients, thereby ensuring the survival rate of the malicious model. Federated fine-tuning typically involves making a
small number of updates to the parameters of the pre-trained model, based on the local data of the clients. Attackers
can tamper with these updates to directly affect the fine-tuning process of the global model. However, MPA targeting
FLLM have not yet emerged.

4.2.3 Backdoor Attack. Poisoning attacks degrade the performance of the global model by tampering with data and
models, while backdoor attacks (BA) manipulate model behavior by injecting specific attack information or data. Li
et al. [53] investigated the threat of backdoor attacks when fine-tuning base models in FL, proposing a method to
embed backdoors into the base model and transfer them into the FL system. This allows the successful implantation of
backdoors in the global model without fully participating in the FL process. Yang et al. [125] explored vulnerabilities
to backdoor attacks in the word embedding layer of natural language processing models. They found that attackers
could inject backdoors by modifying only one word embedding vector (i.e., the embedding vector of the trigger word)
without accessing the target dataset. This enables the model to produce incorrect classifications for input samples
containing the specific trigger word without affecting its performance on normal samples. However, the trigger word
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needs to be rare and not appear in the clean test set, which may limit the practical application scenarios of the attack,
as attackers need to carefully select trigger words to avoid detection. Yoo et al. [133] studied the feasibility of backdoor
attacks through rare word embeddings and gradient ensembling. Attackers can inject backdoors by manipulating the
embedding vectors of rare words, causing the model to produce incorrect outputs for inputs containing specific trigger
words without affecting its performance on normal samples. Lyu et al. [67] proposed a novel backdoor attack method
called PFedBA, which optimizes the trigger generation process to align the gradients and losses of the backdoor task
with the main task, embedding undetectable backdoors in personalized models. Wu et al. [115] introduced a novel
attack strategy that generates synthetic data on the server side using a tampered base model and implants backdoors
during client model initialization and knowledge distillation. This attack method has a high success rate in various
image and text classification tasks, and existing FL defense strategies have limited effectiveness against this novel attack.
Xi et al. [54] proposed a new backdoor attack called Fed-EBD, which generates backdoored synthetic data on the server
side using a tampered base model and propagates it to client models without requiring the attacker to fully control
clients or continuously participate in the FL process. Experiments showed that this attack has a high success rate in
various heterogeneous FL configurations and benchmark datasets and can effectively evade existing backdoor defense
strategies. The study revealed significant security risks when using federated models in horizontal FL and emphasized
the urgency of developing more robust defense mechanisms.

However, current backdoor attacks generally have strong attack assumptions and limited experimental scopes, with
insufficient consideration of practical application scenarios. They do not fully account for the potential impact of other
security mechanisms (such as client authentication and data encryption) that may exist in real systems on the attacks.

4.2.4 Defenses. To achieve robust evaluation of model parameters from client models, researchers have conducted more
in-depth explorations. Zhou et al. [153] proposed SecFFT, which utilizes frequency-domain transformations to extract
the low-frequency components of model updates and identifies malicious updates inconsistent with the normal update
distribution using chi-square distance. It also analyzes the historical behavior sequences of nodes to construct attack
intentions and employs the local outlier factor algorithm to identify malicious intentions hidden behind seemingly
normal behaviors. By combining these two methods, SecFFT can effectively detect complex and covert backdoor attacks
while maintaining high performance and robustness in federated fine-tuning. Ma et al. [69] proposed a classifier based
on persistent homology and persistent graphs, which identifies malicious clients by analyzing the topological features
of neural network models. This method can efficiently detect various types of backdoor attacks even under highly
imbalanced non-i.i.d. data conditions. Basak et al. [8] proposed the DPAD scheme, which uses an auditing mechanism
to check the integrity and consistency of client updates, identifying potentially maliciously tampered data or abnormal
behaviors to prevent these harmful updates from affecting the global model. Ren et al. [92] proposed the BPFL method,
which detects malicious behavior by calculating the cosine similarity between client local gradients and global gradients.
Malicious gradients typically have lower similarity to the global gradient, so this similarity calculation can identify
tampered gradients and prevent them from causing damage to the global model.

To enhance the robustness of FLLM systems against poisoning and backdoor attacks, researchers have successively
proposed targeted defense schemes. Zhang et al. [144] proposed the Fed-FA backdoor attack defense algorithm, which
uses the f-divergence metric to estimate the differences in client data and addresses the issue of client data invisibility
through a Hessian redistribution mechanism in the synthetic dataset and embedding layer. It demonstrates how to detect
and exclude suspicious clients by modeling the differences in client data distributions, thereby effectively defending
against backdoor attacks. However, the complexity of calculating the Hessian matrix and the f-divergence metric is
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high, and the defense capability for non-i.i.d. data is limited. Ali et al. [3] proposed a new defense mechanism called
AGSD, which detects malicious client model updates by identifying adversarial biases and overly confident predictions
in the attacked model. It combines clustering algorithms and client trust history to select the most trustworthy client
updates for model aggregation. AGSD can effectively defend against attacks even with a very small retained dataset (≤
0.1% training data) or when using out-of-distribution data, with minimal impact on the accuracy of clean data. However,
the defense effectiveness of AGSD against certain specific types of adaptive attacks (such as low-confidence backdoor
attacks) still needs further verification. Alharbi et al. [2] proposed the RKD (Robust Knowledge Distillation) defense
mechanism, which identifies and filters out malicious client updates by combining clustering, model selection, and
knowledge distillation techniques. This approach constructs a reliable model ensemble and distills the knowledge of
these models into the global model. However, it requires additional computational resources, especially in large-scale
FL environments. Zhang et al. [147] proposed Dim-Krum, noting that backdoor attacks in NLP are more difficult to
defend against compared to the computer vision (CV) domain. This is because NLP attacks typically have lower relative
backdoor strengths, leading to poor performance of existing robust federated aggregation methods in NLP tasks. To
address this, the authors proposed an improved algorithm Dim-Krum based on the Krum framework, which calculates
distances between clients only in a few dimensions. This effectively detects and discards malicious updates, significantly
reducing the success rate of backdoor attacks while maintaining high accuracy on clean data.

5 Future Directions

As FLLM continue to improve in terms of feasibility, robustness, and security, user demands are also increasing. For
example, joint training under few-shot conditions, the need for unlearning techniques when users withdraw their
private data or exit the system, and the protection of model IP rights by the server. These issues pose challenges to the
sustainable development of FLLM.

5.1 Few-shot learning in FLLM

Existing FL methods, when dealing with LLMs, often require a substantial amount of labeled data to achieve effective
fine-tuning, which is neither economical nor feasible in practical applications. Particularly in fields such as healthcare
and finance, where data privacy and security are of utmost importance, data is often difficult to label and share on a
large scale. Few-shot learning (FSL) techniques have made significant progress in reducing the demand for labeled data,
but integrating them with FL to adapt to LLMs still faces many challenges. On the one hand, FSL relies on the model’s
ability to learn from context, and the distributed nature of FL may lead to insufficient knowledge transfer between
clients, thereby affecting the effectiveness of FSL. On the other hand, how to efficiently generate and utilize a small
amount of labeled data within the federated framework to enhance model performance remains an urgent issue to
be resolved. Therefore, how to fully leverage the potential of decentralized data while protecting data privacy and
reducing dependence on large-scale labeled data has become a key issue in current research on FLLM.

Existing instruction fine-tuning methods typically assume that clients already possess structured instruction-response
pair data, which is unrealistic in practice because client data is usually unstructured text. Therefore, manually annotating
this data is not only time-consuming but also limits the widespread application of federated instruction fine-tuning. Ye et
al. [130] proposed the FedIT-U2S framework, which leverages few-shot prompting techniques to combine unstructured
text and a small number of examples to automatically generate structured instruction-response pair data, as shown in
Figure 7. It also introduces a retrieval-based example selection technique that automatically selects examples based
on the relevance between client data and the example pool, avoiding the complexity of manually selecting examples.
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Fig. 7. FedIT-U2S workflow from [130]. FedIT-U2S employs a retrieval-based example selection technique to automatically select the
most relevant examples for each client’s unstructured data from an example pool provided by the server. These examples are then
combined with the client’s unstructured data pieces to form prompts, which are fed into a pre-trained language model to generate
instruction-response pairs. This process transforms the unstructured data into structured instruction-tuning data.

Although FedIT-U2S reduces the need for manually annotated data and expands the application scope of federated
instruction fine-tuning, the quality of the generated data lacks an excellent evaluation mechanism for screening, and
its performance is highly dependent on the base model. Cai et al. [17] proposed the AUG-FedPrompt scheme, which
designs a comprehensive data generator to simulate the distribution of labeled data in few-shot learning tasks and
combines prompt learning and pseudo-labeling techniques to augment data using a large amount of unlabeled data.
However, while this method achieves high performance, it also brings significant system overhead, including high
computational latency, large memory requirements, and high communication costs, and its robustness to LLMs is
debatable. Building on this, to address the issue of scarce and unevenly distributed data labels, they proposed the FeS
framework [14]. Unlike [17], FeS focuses more on system-level optimization, significantly reducing training latency,
device energy consumption, and network traffic through curriculum training progress control, representative diversity
filtering, and co-planning of training depth and layer capacity, while maintaining model performance comparable to
full dataset fine-tuning [14]. Jiang et al. [39] proposed the LP-FL framework, which guides LLMs to understand task
objectives by adding task descriptions to input samples. This allows clients to leverage the global model’s knowledge to
assign soft labels to unlabeled data and gradually incorporate it into the training set, thereby dynamically expanding
the labeled dataset during the FL process.

5.2 FLLM Unlearning

The goal of machine learning is to extract knowledge from data, while machine unlearning endows models with the
ability to "forget" specific data. Its core lies in adjusting model parameters to achieve the effect of certain data not
participating in training, thereby avoiding retraining [70]. This approach allows the server to remove the contributions
of specific user data according to user requests, ensuring that the model cannot trace these data, thereby protecting
privacy. Meanwhile, model updates resulting from forgetting erroneous or low-quality data can further enhance model
security.

In FL, simply removing the updates of the target user from the global model is not sufficient, as other users’ historical
models still retain the data to be forgotten, and these data will be re-aggregated in subsequent training. Large-scale
data forgetting may lead to catastrophic forgetting [62] significantly reducing model performance. Zhang et al. [141]
proposed CGKD, which is specifically designed to address the model recovery issue in federated unlearning, particularly
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under scenarios with limited server data resources. CGKD constructs the unlearning model by erasing all historical
contributions of the target client and treats it as the student model. It then fine-tunes the pre-trained CLIP model using a
small number of samples on the server side to generate a more robust teacher model. During the fine-tuning process, the
original backbone network of CLIP is kept intact, and an adapter module is introduced to dynamically integrate the fine-
tuned features with the original features through residual connections, thereby enhancing the model’s understanding
of the semantic context of images. This approach effectively mitigates the negative impact of unlearning operations
on model performance. Zuo et al. [160] proposed a blockchain-based federated learning framework for LLMs, which
leverages the tamper-proof and distributed ledger features of blockchain to create an immutable record of each model’s
contributions, thereby enhancing transparency and accountability. This function is seamlessly integrated with the
federated learning mechanism, allowing data owners to remove their data from the training process while minimizing
the impact on other participants. The mechanism is implemented through blockchain’s smart contracts, ensuring the
security and transparency of the unlearning process. Liu et al. [64] proposed an efficient federated unlearning method
called Rapid Retraining, which uses fast retraining and a distributed Newton-type update algorithm. It leverages the
diagonal empirical Fisher information matrix to approximate the inverse Hessian vector and introduces momentum
techniques to achieve data deletion while reducing errors and enhancing model utility. This method is model agnostic
and can be combined with the optimization techniques commonly used in federated fine-tuning (such as LoRA), and it
is possible to implement it in LLMs. Su et al. [100] proposed a novel asynchronous federated unlearning mechanism
called KNOT, which divides clients into multiple clusters and performs aggregation only within each cluster. This
approach confines the retraining caused by data deletion to within the cluster. To optimize the assignment of clients to
clusters, the authors formulated the problem as a solvable optimization problem, namely the lexicographic minimization
problem, and demonstrated that it can be efficiently solved using a linear programming solver, significantly reducing
time overhead. This asynchronous federated learning method can improve efficiency in FLLM. However, although
clustering reduces the number of clients that need to be retrained, the cost may still be high in the FLLM scenario. Zhu
et al. [158] proposed the FedLU framework for learning and offloading heterogeneous knowledge graph embeddings.
Based on cognitive neuroscience theory, they proposed an offloading method that combines retroactive interference
and passive decay. This method can delete specific knowledge from both local clients and the global model without
significantly affecting overall performance, meeting the needs of privacy protection and data deletion. This method
is promising for FLLM. Clients can utilize their local data to fine-tune pre-trained LLMs and then transfer the local
knowledge to the global model through knowledge distillation.

For complex LLMs, fine-tuning is prone to catastrophic forgetting, which is the loss of old knowledge when learning
new tasks [138]. This limits the generality and scalability of multi-task learning. Zhu et al. [154] introduced a post-
training adjustment method called "Model Tailor." This method retains the pre-trained parameters of LLMs while
replacing a small portion (≤ 10%) of the fine-tuning parameters. Model Tailor employs a second-order analysis-based
approach to evaluate the importance of each parameter and selectively modifies those parameters that have the least
impact on both the target and original tasks, thereby ensuring that the model retains most of the pre-trained knowledge
after fine-tuning. Li et al. [44] revealed a direct link between the flatness of the model loss landscape and the degree of
catastrophic forgetting. Based on this connection, they introduced the Sharpness-Aware Minimization method to flatten
the optimization landscape, attempting to maintain the model’s memory of previous knowledge during fine-tuning,
thereby alleviating the model forgetting issue. Lee et al. [41] proposed a new method called Base-Anchored Preference
Optimization. The core idea of BAPO is to maintain the possibility of the policy model generating base responses
originating from the reference model during the process of personalized preference optimization. By introducing an
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anchoring mechanism for base responses in the optimization process, BAPO can ensure that the policy model does not
lose the knowledge contained in the base responses when adapting to different user preferences, thereby effectively
alleviating the problem of knowledge forgetting. These unlearning methods for LLMs may be inefficient in FLLM, as
when a client initiates a request to forget data, the server cannot simply unlearn on the global model alone but also
needs to ensure that the historical models of other clients forget this data as well. This can likely only be achieved
through multiple iterations slowly, posing a significant challenge to the efficiency of unlearning.

Although there has been much research on machine unlearning in FL and LLMs, there is still a gap in the emerging
issue of data forgetting in FLLM. Current federated unlearning methods are not only computationally and commu-
nicatively expensive for LLMs but also difficult to transplant to LoRA and adapter architectures. How to implement
federated unlearning schemes for LLMs while avoiding catastrophic forgetting is of high research value in the coming
period.

5.3 IP Protection in FLLM

Given the high training costs of LLMs, managing the authorized use of models becomes particularly crucial, and
cost-effective model watermarking techniques can protect model intellectual property (IP) rights and prevent models
from being illegally copied or misused. Liu et al. [59] summarized text watermarking techniques for LLMs and found
that the advanced semantic understanding and context-aware capabilities of LLMs make watermark embedding more
covert while reducing the impact on the original text semantics. Embedding watermarks in LLM-generated text can
effectively track and detect LLM-generated text, helping to control potential misuse.

Yang et al. [43] proposed the FedIPR framework, which allows users to independently embed private watermarks
in their local models and verify these watermarks after model aggregation to prove IP rights over the federated
model. FedIPR implements feature-based watermarking, embedding binary strings in the parameters of the model’s
normalization layers as watermarks, and backdoor-based watermarking, introducing specific trigger samples (such as
adversarial samples) during model training so that the model outputs specific incorrect labels when receiving these
trigger samples, thereby verifying ownership.

LLMs typically have complex structures and a large number of parameters, providing more space for watermark
embedding. For example, the normalization layers of the transformer architecture can be used for feature-based
watermark embedding, while adversarial samples can serve as triggers for backdoor-based watermarking. Liao et al. [56]
noted that in heterogeneous FL, watermarks embedded in the global model may be damaged to varying degrees when
transferred to users’ heterogeneous models, failing to provide complete ownership protection in local models. Therefore,
they proposed the PWFed method to protect model IP rights in heterogeneous FL. PWFed uses GAN technology
to generate dynamic watermark samples that are indistinguishable from original samples and designs two different
granularity watermark embedding strategies to ensure the robustness and stealth of watermarks in personalized models.
However, in the context of LLMs, PWFed may require greater computational overhead, and its robustness remains to be
considered.

So far, there has been a considerable amount of literature on IP protection for FL and LLMs, but there is still much
room for exploration regarding the emerging FLLM. In the FL environment, how to ensure the legal and authorized use
of LLMs and prevent unauthorized copying and dissemination is an urgent issue to be addressed.
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6 Conclusion

With the increasing popularity of LLMs among the general public, the demand for training data has surged exponentially,
while public data resources are gradually being depleted. Directly using users’ private data for training would severely
violate privacy. Against this backdrop, the integration of LLMs and FL has emerged and is gaining increasing attention,
with the potential for broader applications in the future. However, the field of FLLM is still in its infancy, with key
issues that need to be addressed urgently. Starting from the temporal overhead, heterogeneity, security and privacy
issues, and other special issues of FLLM, we have discussed the cutting-edge research on the feasibility, robustness,
security, and future directions of current FLLM and found the following characteristics:

1. Research on the feasibility of FLLM has become increasingly sophisticated academically but still has a significant
gap from practical application. The computational overhead of client training and the communication overhead required
for transmitting models during federated fine-tuning of LLMs can be reduced by hundreds or even thousands of times
compared to full-parameter tuning through PEFT and some special methods. However, due to the large base of these
overheads, even with such reductions, it remains challenging for ordinary participants to train LLMs on local devices.
In the future, with the continuous optimization of computing resources and the development of distributed training
technologies, the fine-tuning efficiency of FLLM is expected to improve further, especially with efficient training and
optimization in large-scale distributed environments becoming a research focus.

2. Research on the robustness of FLLM is being actively conducted but still needs to address challenges from multiple
aspects. The current research mainly focuses on resource heterogeneity, due to the high resource threshold for training
LLMs and the significant differences in training capabilities among users, which easily leads to resource heterogeneity.
For data and task heterogeneity issues, there are currently few solutions, and it is evident that most of them are based
on LoRA and Adapter. In the future, the robustness of FLLM will gradually become a research focus after feasibility,
and solving various realistic heterogeneity issues will be a key step for the practical application of FLLM.

3. Research on the security of FLLM has just begun and urgently needs to focus on threats and defenses related
to privacy and security. Current research on the security of FLLM mainly focuses on backdoor attacks, while other
potential threats such as data reconstruction attacks, jailbreaking attacks, and poisoning attacks are still very rare. We
have found that due to different fine-tuning methods in FLLM training, the related attack and defense schemes also
vary. Currently, there is limited research on various attack and defense schemes targeting different fine-tuning methods
of FLLM. It can be anticipated that the field of privacy and security for FLLM will exhibit a wide range of involvement
and diverse solutions.

4. Future directions of FLLM holds significant potential. For instance, the few-shot learning problem is particularly
salient for FLLM, which necessitates a substantial amount of training data; federated unlearning of LLMs serves as a
safeguard for users’ rights to delete data; and the issue of IP protection for FLLM profoundly affects the enthusiasm of
all parties involved in the training process. Research on these aspects of FLLM is currently nascent, with only a handful
of papers addressing these issues. Moving forward, as these technologies continue to evolve and converge, FLLM is
anticipated to better accommodate diverse complex scenarios, thereby facilitating sustainable development.

By further exploring the synergistic relationship between FL and LLMs, the field of FLLM can be advanced, leading
to the development of more efficient, effective, secure, privacy-preserving, and personalized LLMs. This integration
has the potential to transform artificial intelligence across various fields and promote the deployment of powerful and
ethically responsible advanced AI systems.
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