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Abstract—As the digital landscape becomes more
interconnected, the frequency and severity of zero-day
attacks, have significantly increased, leading to an urgent
need for innovative Intrusion Detection Systems (IDS).
Machine Learning-based IDS that learn from the network
traffic characteristics and can discern attack patterns
from benign traffic offer an advanced solution to
traditional signature-based IDS. However, they heavily
rely on labeled datasets, and their ability to generalize
when encountering unseen traffic patterns remains a
challenge. This paper proposes a novel self-supervised
contrastive learning approach based on transformer
encoders, specifically tailored for generalizable intrusion
detection on raw packet sequences. Our proposed
learning scheme employs a packet-level data augmentation
strategy combined with a transformer-based architecture
to extract and generate meaningful representations of
traffic flows. Unlike traditional methods reliant on
handcrafted statistical features (NetFlow), our approach
automatically learns comprehensive packet sequence
representations, significantly enhancing performance in
anomaly identification tasks and supervised learning for
intrusion detection. Our transformer-based framework
exhibits better performance in comparison to existing
NetFlow self-supervised methods. Specifically, we achieve
up to a 3% higher AUC in anomaly detection for
intra-dataset evaluation and up to 20% higher AUC scores
in inter-dataset evaluation. Moreover, our model provides
a strong baseline for supervised intrusion detection with
limited labeled data, exhibiting an improvement over
self-supervised NetFlow models of up to 1.5% AUC when
pretrained and evaluated on the same dataset. Additionally,
we show the adaptability of our pretrained model when
fine-tuned across different datasets, demonstrating strong
performance even when lacking benign data from the
target domain.

Index Terms—Intrusion Detection, Transformer
Encoders, Self-Supervised Learning, Contrastive Learning

I. INTRODUCTION

Digital connectivity is significantly expanding day by
day and we now live in a highly interconnected world.
At the same time, well-known cyber threats are still
being encountered worldwide, there are new emerging
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ones that are often unknown to existing defense
mechanisms and cybersecurity experts, consequently
going undetected to form zero-day attacks. According
to Rapid7’s Attack Intelligence Report [1], 2023 was
the year that showed a higher percentage of zero-day
vulnerabilities than any previous year, with every such
breach resulting in significant operational and financial
costs, as highlighted by IBM 2024 Data Breach Report
[2], which indicates that the average cost of a data breach
stands at 4.88 million dollars. Therefore, there is an
urgent need for intelligent and innovative approaches
that extend the traditional threat detection mechanisms
to offer accurate and effective zero-day threat detection.

Traditional intrusion detection systems are unable to
identify new threats if there does not already exist
a known signature for them, while anomaly detection
systems often fail to distinguish between malicious
and legitimate anomalies, which leads to a lot of
false positives [3]. To overcome these challenges, many
approaches have been developed that employ Machine
Learning and Deep Learning methods to recognize
abnormal traffic patterns, thereby enabling them identify
known and zero-day attacks more effectively. Although
these supervised methods are accurate, they are limited
because they require a large and carefully labeled
training dataset. This limits their capacity to generalize
to various types of traffic and attacks and turns them
inefficient, as it renders them overly reliant on the
manual labor required to label the traffic flows.

Self-supervised learning (SSL) techniques, such as
transformer-based architectures and large language
models (LLMs), offer great potential for overcoming the
limitations and shortcomings of supervised learning, as
highlighted by recent advancements in Deep Learning,
especially in the domains of computer vision and natural
language processing (NLP). SSL techniques are able to
learn useful representations from unlabeled data that can
be leveraged for a variety of downstream tasks, such as
classification. In addition, contrastive learning, a process
that has been employed to extract representations from
images [4] as well as from text [5], is superior at
learning representations by maximizing the similarity
between related data points and minimizing dissimilar
ones. Consequently, contrastive learning models are
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significantly more generalizable and robust, when
encountering new and previously unseen traffic patterns.
This paradigm has also been recently adapted in the
domain of tabular data with conventional neural network
architectures [6] and transformer architectures [7].

Related works that are based on self-supervised
contrastive learning [8] derive insights from flow-level
statistical features such as traffic volume and packet
frequency. These features are capable of significant
predictive capabilities. Nevertheless, they are unable
to encapsulate packet-based specific information and
frequently require manual selection based on domain
expertise and traffic characteristics, resulting in a
reliance on handcrafted features that significantly limits
their adaptability to a variety of network environments.
Additionally, the ML models that are trained on a
fixed statistical distribution may be unable to detect
novel attack strategies as network architectures and
cyber threats continue to evolve. In order to address
these limitations, it is essential to implement a more
advanced methodology that is capable of automatically
extracting meaningful representations from network
traffic sequences.

In this paper, we propose a novel transformer-based
framework that can extract a flow representation
from a sequence of packets. To achieve this, we
train our model using a contrastive learning process,
where the model learns to minimize the distance
between an original flow packet sequence and an
augmented one, while maximizing the distance with
other samples. To create augmented packet sequences,
we employ a process that allows us to mix packets of
the original flow with that of another one, to create a
new sequence that is similar to the original. The source
code for the model implementation is provided here:
https://github.com/koukipp/contrastive transformers ids.

The main contributions of our paper are the following:

• The development of a novel transformer-based
framework pretrained on unlabeled data traffic that
can extract useful flow representations directly from
raw packet sequences, reducing the need for manual
extraction of statistical features from flows.

• The proposal of a simple augmentation process that
enables effective contrastive learning on sequences
of packets.

• The evaluation of the extracted representations
in an unsupervised setting to detect anomalous
flows and demonstrate our framework’s ability to
recognize novel attacks across multiple datasets.

• The demonstration of the effectiveness of our
pretraining procedure to enhance the generalization
of intrusion detection in supervised settings, where
the model is finetuned with a small amount of
samples.

II. RELATED WORK

A. Transformer-based models for network traffic

In the context of sequential modeling for network
traffic [9], transformer [10] architectures have gained
traction. This is due to the fact that general models
can be fine-tuned on a wide range of downstream tasks
using labeled data, including intrusion detection, after
being pretrained on unlabeled network traffic. In [11],
the authors propose a foundation model that facilitates
pretraining on raw packet data and fine-tuning on
specific security-related tasks. In this work, the packet
trace of each flow is tokenized by splitting the header
and a small portion of the payload into tokens and
the resulting sequence is then fed into the model to
classify each flow. Similarly, the authors in [12] employ
n-gram frequency to tokenize the entire payload of the
packet. Transformer-based architectures have also been
implemented in flow-based intrusion detection datasets
to classify each flow using its statistical features as
tokens [13] or by using temporally related flows as
tokens for a sequence [14], [15]. Additionally, they
have been used in packet-based datasets to classify
each packet individually by using the headers of each
packet as tokens [16]. Furthermore, transformer-based
models have been employed in unsupervised learning
schemes [17] to train the model exclusively with benign
flows in the context of anomaly detection, as well as
in semi-supervised schemes [18] where the model is
trained with a very small proportion of labeled data.

Transformer-based architectures have also been
employed in the broader task of traffic classification.
Modified language models, such as BERT [19] or GPT
[20], have been employed to identify encrypted traffic
flows that originate from a variety of applications.
These models use the headers of a sequence of packets
as tokens to construct a sentence. Additionally, other
proposals have taken into account inter-flow temporal
relationships to identify applications [21].

In addition, transformer-based models have been
employed in several works to conduct real-time traffic
classification or intrusion detection. The authors in [22]
have employed a modified transformer model to identify
attacks in real-time. Each token in the sequence is a
statistical feature vector that describes the aggregate
traffic in the network for a specific time slot. In contrast,
the authors in [23] collect statistical feature vectors
for each time slot per flow as tokens to feed into
a transformer-based model to perform per-flow traffic
classification. Transformers have also been used in
conjunction with reinforcement learning [24] on packet
sequences of flows to determine a lower bound on which
packet of the sequence the agent can confidently make
a prediction, thereby balancing the tradeoff between
accuracy and timeliness of the prediction.

https://github.com/koukipp/contrastive_transformers_ids


B. Self-Supervised learning for intrusion detection

In [17] the authors propose a self-supervised scheme
using a transformer architecture which combines
contrastive learning with mask reconstruction within a
sequence of flow statistical vectors, to provide robust
intrusion detection in unsupervised settings. In [25]
the authors propose a a contrastive learning approach
combined with supervised learning on sequences of
packets using a variety of CNN and LSTM models. The
augmentation method employed here is to mask a small
number of packets in a sequence to create an augmented
packet sequence. However, this augmentation method
does not create a challenging contrastive learning
process since the augmented sample barely differs from
the original. Similarly in [26] the authors propose an
augmentation process that treats each packet sequence
as an image and apply relevant augmentations such as
horizontal/vertical flip, random cropping, and shuffling.
Additionally, similar masking augmenting techniques
have been shown to be inefficient compared to
techniques that alter the contents of a sample [27]. In
[28] the authors investigate the use of Graph Neural
Networks (GNNs) for self-supervised intrusion and
anomaly detection in computer networks. The authors
in [8] propose a framework that leverages contrastive
learning on flow-based statistics. The authors employ an
augmentation process adopted for tabular data [6] that
generates new samples by randomly replacing features
in the original sample from the empirical marginal
distribution of each feature.

III. DATASET PREPROCESSING

To evaluate the real-time performance of our model,
we developed a straightforward processing pipeline
that captures information regarding the initial patterns
that emerge in a flow. A flow is defined as a
5-tuple comprising the IP source address, IP destination
address, source port, destination port, and protocol,
while packets lacking an IP header are eliminated
from the packet traces. For each packet trace, we
generate two distinct datasets; a packet-sequence dataset
comprising a sequence of packets for each flow,
alongside a flow-statistics dataset, henceforth referred
to as NetFlow, which contains aggregate statistics for
each flow analogous to flow-based datasets found in the
literature [29] [30].

We utilized a modified version of CICFlowmeter [31],
a network traffic analysis tool, to generate the NetFlow
dataset, which produces a statistical feature vector for
each flow comprising 43 unique features. We capture
packets until the flow concludes or until specific time
or packet count thresholds are attained. Specifically, we
configure the flow timeout to 120 seconds and capture
only the initial 32 packets of each flow. This guarantees
that each flow is distinct and not an element of a larger

flow. Consequently, packets arriving beyond this time
threshold are excluded from the calculation of the flow
statistics. Similarly, We developed a script to generate
the packet-sequence dataset, which implements the same
pre-processing logic and produces a truncated sequence
of packets received prior to the expiration of the flow
timeout limit.

TABLE I
DATASET FEATURES

Packet Sequence Netflows
IP Protocol IP Protocol

Packet Length Mean, Max, Min, Std, Total Packet size
TCP flags TCP flag counts

Inter Arrival Time Mean, Max, Min, Std, Inter Arrival Time
Direction Flow Duration

Packet counts

We eliminate all data from the NetFlow and
packet-sequence datasets that could potentially identify
an attacking host, including IP addresses and port
numbers. We utilize, however, this information to
develop a new feature termed ’direction’, which
indicates the direction of each packet in the
sequence between the source and destination. For
the packet-sequence dataset, we specifically selected
packet headers outlined in Table I that correspond
to the relevant features of the NetFlow dataset. We
meticulously ensured that none of the supplementary
features enable shortcuts in the learning process, as
fields in packet headers, like TTL, have been shown
to convey information regarding the distance from the
source [32].

In our tokenization process, we establish a vocabulary
size of 65538, comprising two special tokens: the [PAD]
token, utilized to standardize the sequence length of each
sample in a batch to the maximum sequence length; the
[CLS] token, designed to generate a representation of the
flow. We encode each packet header as a 4-byte unsigned
integer, with each token ranging from 0 to 65535.

IV. OVERVIEW OF MODEL ARCHITECTURE

We employed an architecture based on the BERT
[33] language model to facilitate intrusion detection
classification with our model. We selected the BERT
transformer encoder stack as the basis of our
model architecture due to its inherent suitability for
classification tasks, unlike architectures such as GPT
[34], which are primarily designed for generative
tasks. BERT utilizes bidirectional self-attention to
extract comprehensive contextual information from a
sentence, facilitating tasks associated with language
comprehension, including question answering and
language inference.
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Fig. 1. Overall architecture of the transformer-based model

A. Packet-based token embedding

Processing packets as a sequence of tokens requires
an efficient embedding procedure that maintains
the semantic integrity of the data. Related studies
have employed various approaches in which unique
tokens are generated for each byte or header of a
packet. Nonetheless, these approaches possess several
drawbacks. Firstly, the large amount of generated tokens
drastically impacts inference and training duration, as
attention computations in transformer models scale
quadratically with sequence length. This renders
inference on extended sequences of packets impractical
for real-time applications. Moreover, the presence of
distinct headers or bytes as tokens complicates the
learning process for any task, as the model must
independently recognize which tokens are part of
the same packet. Finally, in contrast to conventional
language-derived tokens, packet headers encompass a
wide variety of features, both categorical and numerical,
which cannot be effectively represented by tokens using
a single embedding layer approach. To address these
issues, we implemented an efficient packet-based token
embedding scheme that generates a single token for
each packet in a sequence. This approach significantly
reduces the sequence length, enabling the processing
of more tokens within reasonable timeframes. Figure
2 illustrates the pipeline of our tokenization and
embedding process.

To generate a packet-token, we take the value of
each header Hx ∈ R to initially produce individual
packet-header tokens for the selected packet headers.
The tokens are forwarded to an embedding layer to
obtain an embedding vector that represents each packet
header. For each header, we employ a unique embedding
function E(x) to generate the header token embedding
H ′

x ∈ Rdh , where dh denotes the dimension of the
header token embedding. We employ distinct embedding

functions, unlike the conventional single embedding
layer utilized in transformer models for NLP tasks,
since each header token derives from a different domain.
Specifically to generate tokens for categorical features
such as the direction and the flags of each packet, we
use a typical embedding layer that maps each discrete
value to a floating point vector with trainable weights.
To generate a header token embedding for numerical
values and preserve the ordinality of these features,
such as the inter-arrival time between packets and the
packet size, we employ a single layer projections as the
embedding functions E(x) for each numerical header
feature. Ultimately, the header token embeddings are
concatenated into a single packet-token Px ∈ Rd via
a linear layer L ∈ Rnh∗dh×d, where d represents
the embedding dimension of the packet token, thereby
forming the input sequence for the BERT encoder
stack. We utilize a positional embedding layer Pos ∈
RLmax×d to convey information regarding the position
of each packet token within the sequence, where Lmax

denotes the maximum sequence length, and this layer is
trained concurrently with the remainder of the model.
The representation of each position Posx is directly
incorporated into each token Px. Alongside the packet
tokens, we prepend a special [CLS] token at the start of
the sequence, which serves as the model’s output.

B. Encoder architecture

The encoder layer of our model is composed of a
series of stacked Transformer encoders, which apply
self-attention on a sequence of tokens in order to capture
correlations between the tokens. Each transformer
encoder is comprised of a multi-head self-attention layer
and a fully connected feed-forward network. The input
to the encoder stack is the packet-based token sequence.
Each token of the packet sequence is linearly projected
to multiple attention heads that are separated into a



query Q, key K and V value vectors with dimension
dk, which are used to calculate the scaled dot product
attention as defined in Equation 1 for each head. The
output of each attention head is then concatenated and
linearly projected to a vector that has the same shape as
the initial input sequence. Multi-headed attention allows
the transformer to attend to different characteristics of
the packet feature space allowing the model to find
correlations between the different packet headers in each
packet of the sequence.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

For our architecture we selected a model consisting
of 4 layers of stacked transformer encoders with an
embedding dimension d = 256, with 4 attention heads.
While this is a small-scale model compared to the
regular size of other transformer encoder models [33]
used for NLP tasks, it is sufficient to capture the
characteristics of a packet sequence, while keeping the
processing time for inference low.

C. Projection head

To train our model using the contrastive learning
objective we use a projection layer on the output of
the [CLS] token from the transformer encoder stack.
The projection layer comprises a multi-layer perceptron
(MLP) featuring a single hidden layer that employs
the ReLU activation function. During inference, the
projection head is discarded and the output of the [CLS]
token is utilized to evaluate the quality of the flow
representations.

D. Contrastive learning

The objective of the contrastive learning task is to
acquire meaningful representations by minimizing the
distance between similar samples in the embedding
space while maximizing the distance between dissimilar
samples. To accomplish this, we employ the NT-Xent
(Normalized Temperature-scaled Cross-Entropy) loss
function [4], as delineated in the Equation 2, where
(zi, zj) represent instances of similar ”positive” pairs,
while (zi, zk) denote instances of dissimilar ”negative”
pairs, which, in our self-supervised context, encompass
all other samples within a batch. The temperature
parameter τ regulates the sensitivity of the loss function
by adjusting the cosine distance. Lower values of τ
increase the penalty for discrepancies within a pair.

Li,j = − log
exp (sim(zi, zj)/τ)

2N∑
k=1

1[k ̸=i] exp (sim(zi, zk)/τ)

(2)
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Fig. 2. Overview of the augmentation and contrastive learning
procedure

E. Augmentation process

Contrastive learning can be either supervised, using
labels to identify similar and dissimilar samples,
or self-supervised, wherein an augmentation process
generates modified views of existing samples to provide
examples of similar instances for the training process.
We devised a straightforward procedure for generating
augmented views of our samples, as described in
Algorithm 1, of which we provide an overview in
Figure 2, in conjunction with the training process. To
generate positive pairs of flow packet sequences for
each sample, we select another sample of equivalent size
from the training dataset for the augmentation process.
Subsequently, from the chosen sample, we extract a
random segment of contiguous packets and replace
them in the batch sample. Similar processes have been
proven effective in guiding a model to attend to less
discriminative parts of an input [27] leading to better
generalization.

F. Fine-tuning

Once the model has been pretrained to learn the
relationships between packet headers and packets within
a flow sequence, it can serve as a basis for training
a fine-tuned model for intrusion detection tasks. We
employ a two-layer MLP classifier that utilizes the
output of the [CLS] token from the final hidden layer of
our model to generate a prediction regarding the class
of the flow sequence. During the fine-tuning process,
we train both the novel classifier and the pretrained
model. This is done to ensure that the weights of the
transformer encoder stack are also trained on malicious
data to provide an improved representation of the flow
in the [CLS] token output for the classifier.

V. EVALUATION

To evaluate our framework we measure the
performance of our pretrained model across
unsupervised and supervised tasks to demonstrate
its capacity to enable detection of unseen attacks as



Algorithm 1 Contrastive training process
input: unlabeled training data X ⊆ RM , batch size
N , temperature τ , encoder f , projection head g,
augmentation ratio λ.
for sampled mini-batch

{
x(i)

}N

i=1
⊆ X do

for all i ∈ {1, . . . , N} do
draw sample u∼X
# Choose the beginning of the patch
a∼Uniform (0, L ∗ (1− λ))
# Create augmented sample
x̃
(i)
j = uj if j ∈ (α, α+ λ ∗ L)

x̃
(i)
j = x

(i)
j otherwise

# Get embeddings
z(i) = g(f(x(i)))
z̃(i) = g(f(x̃(i)))

end for
for all i ∈ {1, . . . , N} and j ∈ {1, . . . , N} do

si,j = zi⊤z̃j/(∥zi∥∥z̃j∥) # pairwise
similarity
end for
define ℓ(i, j) as
ℓ(i, j)=− log

exp(si,j/τ)∑2N
k=1 1k ̸=i exp(si,k/τ)

update networks f and g to minimize L
end for
return encoder network f(·), and throw away g(·)

well as adapt to traffic data from various domains. We
evaluate our model using the packet traces of various
datasets as cited below:

• CICIDS2017 [29]. This dataset contains a diverse
set of attacks and benign traffic that were gathered
within a five-day period. More specifically, it
includes traffic for 14 distinct attacks including
Brute Force Attacks (FTP-Patator, SSH-Patator),
DoS attacks (Hulk, Golden-Eye, Slowloris,
Slowhttptest, Heartbleed), Web Attacks (Brute
Force, XSS, and SQL Injection), Infiltration
Attacks, Botnet, DDoS and PortScan. We also
relabeled the attacks from the original dataset
according to [31] [35] as a lot of the samples were
mislabeled. For the Web Attack, Infiltration and
Botnet classes, particularly, we only consider flows
that actually carry payload during the published
attack time frame to be malicious.

• UNSW-NB15 [30]. This dataset contains benign
and malicious traffic generated by a traffic
simulation hardware and provides a hybrid of
real modern normal activities and synthetic
contemporary attack behaviors. The wide range
of attacks in this dataset includes Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode and Worms.

TABLE II
UNSUPERVISED EVALUATION FOR CONTRASTIVE TRANSFORMERS

ON PACKET SEQUENCES

Train
Test CICIDS UNSW-NB CTU CICDDOS

CICIDS 99% 79% 63% 62%
UNSW-NB 84% 95% 80% 55%

CTU 94% 75% 96% 60%
CICDDOS 92% 60% 55% 93%

TABLE III
UNSUPERVISED EVALUATION FOR CONTRASTIVE DNN ON

NETFLOWS

Train
Test CICIDS UNSW-NB CTU CICDDOS

CICIDS 97% 77% 53% 58%
UNSW-NB 67% 93% 60% 55%

CTU 92% 55% 93% 58%
CICDDOS 91% 53% 53% 91%

• CTU-13 [36]. This dataset, which was captured in
a university network, includes a combination of
malicious botnet activity, normal traffic originating
from known hosts, and background traffic
originating from unknown hosts. Specifically,
the dataset comprises 13 different captures each
containing malicious traffic traces generated by
different malware such as Neris, Rbot, Virut,
Menti, Sogou, Murlo and NSIS.ay

• CIC-DDoS2019 [37]. This dataset contains an
extended set of Distributed Denial of Service
(DDoS) attacks along with a small subset of benign
traffic, all of which were collected within a two-day
period. The DDoS attacks in this dataset were
generated using a variety of methods to increase the
impact of the attack, including reflection, and the
exploitation of legitimate third-party components
to conceal the attacker’s identity. Reflection-based
attacks include DDoS attacks against a variety of
protocols such as MSSQL, SSDP, DNS, LDAP,
NETBIOS, SNMP, NETBIOS, CharGen, NTP,
TFTP. Exploitation attacks, on the other hand,
primarily employ SYN and UDP Flood.

A. Evaluation setup

For the implementation of our model we used the
Pytorch framework, along with an RTX 4070 12GB
GPU for the training and inference process. To train our
model for the self-supervised task we used a batch size
of 128 and the AdamW optimizer with a learning rate of
5e−5 for 1 epoch on the training subset of each dataset.
For our contrastive loss function, the temperature
parameter τ was set to 0.5, and the augmentation
ratio λ to 0.4. Additionally we applied a 0.1 dropout
probability in the transformer encoder stack. For the
training dataset used during self-supervised training,
both for intra-dataset and inter-dataset evaluation, we



select 60% of the unlabeled benign traffic from each
dataset. The remaining benign flows and all malicious
flows included in the dataset are utilized for the testing
dataset in the unsupervised evaluation. For supervised
training we use the same percentage of benign traffic for
the training process. However, we also add an additional
60% of the total malicious traffic from the same dataset,
while the remaining flows are used for the testing dataset
in the supervised evaluation.

To compare the performance of our model with
similar self-supervised schemes on NetFlows, we
employ a 4-layer DNN and an embedding dimension
of 256 as the encoder, along with a 2-layer MLP
as the projection head (or as the classification head
when supervised finetuning or evaluation takes place).
This DNN is trained with a similar contrastive learning
process. NetFlow features are corrupted randomly by
replacing them from the empirical marginal distribution
of each feature in the augmentation process for the DNN
model [6] [8]. The augmentation ratio that we employed
for our model remains unchanged. We compare the
performance of each model both in the supervised
and unsupervised cases using the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC)
score. The AUC-ROC score is a relative comparison
metric that evaluates the ability of each model to
distinguish between positive (malicious) and negative
(benign) instances. It assesses the true positive rate and
false positive ratio across multiple similarity thresholds
for the unsupervised evaluation or probability thresholds
for the supervised evaluation.

B. Unsupervised anomaly detection

To assess the quality of the flow representations in
our model we devise an anomaly detection process that
is based on flow similarity. Specifically, we compare
all flows from the testing dataset feval with the benign
flows from the training dataset ftrain by calculating the
cosine similarity for each possible pair, as illustrated in
Equation 3, using the flow representation output of our
model. From these we take the cosine similarity of the
pair with the highest similarity as the similarity score
between a flow and the benign traffic of the training
dataset. Since the training data do not contain malicious
flows,we expect that a malicious flow will have a low
similarity score to flows of the training dataset, while a
benign flow will most likely have high similarity to at
least one flow from the training dataset.

sim(feval, ftrain) = max

(
fT

evalftrain
∥feval∥∥ftrain∥

)
(3)

In Tables II, III, IV we present the results of the
evaluation within intra and inter-dataset settings for all
baselines. The highest score for each case is denoted

TABLE IV
SUPERVISED EVALUATION FOR CONTRASTIVE DNN ON NETFLOWS

Train
Test CICIDS UNSW-NB CTU CICDDOS

CICIDS 99% 60% 67% 52%
UNSW-NB 62% 98% 54% 51%

CTU 77% 55% 98% 48%
CICDDOS 85% 51% 50% 97%

with bold numbers. The performance of self-supervised
models to identify anomalies in an environment where
information about ordinary benign traffic is available
is evaluated in the intra-dataset evaluation, where
benign flows are split between the testing and training
datasets. In the intra-dataset evaluation we observe that
supervised training with NetFlows outperforms both
our self-supervised transformer with packet sequences
and DNN baselines with Netflows, by up to 4% in
the case of the CICDDOS dataset when compared to
the self-supervised transformer-based model. This is
expected as this scenario is the least challenging case
of intrusion detection where the training and evaluation
dataset are fairly similar, thus supervised learning is
sufficient to achieve good results. When comparing
the self-supervised approaches on the intra-dataset
evaluation, the transformer-based model comes on top
with up to 3% higher AUC score on the CTU dataset
compared to the DNN model that employs Netflows.

For the inter-dataset scenarios our model surpasses
the self-supervised and supervised Netflow baselines in
almost all cases, having up to 20% higher AUC score
compared to the self-supervised Netflow baseline when
training on the UNSW-NB dataset and evaluating on the
CTU dataset and vice versa. The only scenario where
our approach does not have the lead in inter-dataset
is on the scenarrio where we train on the CICIDS
dataset and evaluate on the CTU dataset, where the
supervised Netflow approach has 4% higher AUC score
than our approach. However, our model still shows
a 10% higher AUC score than the self-supervised
model using Netflows in this case. In the inter-dataset
evaluation, benign flows in the training and testing
datasets are derived from distinct environments. Since
benign flows can differ vastly from one domain to
another, it becomes easier for self-supervised models to
mistakenly identify benign flows in the testing dataset
as malicious when comparing them to those of the
training dataset. Consequently, the evaluation becomes
harder. The challenging aspect of this task becomes
apparent from the supervised baseline which has low
AUC scores for all inter-dataset evaluations, while the
self-supervised models show decently high AUC scores
with our transformer-based model demonstrating the
best performance once more.

These results verify that the self-supervised learning



TABLE V
AUC SCORES FOR FEW-SHOT SUPERVISED FINETUNING FOR

CONTRASTIVE TRANSFORMERS ON PACKET SEQUENCES

Pre-Train
Fine-tune Random weights Pretrained

CICIDS 96.9% 99.4%
UNSW-NB 98.3% 99.2%

CTU 94.2% 96.3%
CICDDOS 91% 93.4%

TABLE VI
AUC SCORES FOR FEW-SHOT SUPERVISED FINETUNING FOR

CONTRASTIVE DNN ON NETFLOWS

Pre-Train
Fine-tune Random Weights Pretrained

CICIDS 97.2% 98.4%
UNSW-NB 98.6% 98.9%

CTU 93.8% 95.3%
CICDDOS 91.3% 91.9%

process, in conjunction with our transformer-based
model architecture, has indeed acquired the ability
to detect similarities and differences between
flows, enabling the model to provide rich feature
representations for flow packet sequences that can be
used without the need for supervised training.

C. Supervised finetuning evaluation

In this subsection we assess the benefits of pretraining
in cases where some labeled data are available for
supervised learning. In addition to finetuning we also
assess the feasibility of transfer learning through our
pretraining procedure in intra-dataset and inter-dataset
settings. Specifically, in this evaluation our model along
with the self-supervised DNN baseline were fine-tuned
with a small amount of benign and malicious data
and we compared their performances with and without
employing pretraining. We fine-tuned each model for
a maximum of 30 epochs with early stopping with
patience 3 on the classification error of the validation
set. For our few-shot learning evaluation we used 0.1%
of all labeled data in each dataset.

We can see in Tables V and VI that pretraining does
increase the AUC score, regardless of the case increasing
the AUC score up to 2.5% using either Netflows or
packet sequences. Although our model initially has a
lower AUC score in certain instances, it is able to
surpass the pretrained DNN baseline with Netflows with
pretraining achieving up to 1.5% when pre-training and
fine-tuning on the CICDDOS dataset. The pretraining
procedure can provide us with a superior model as
a starting point when labeled data and, particularly,
malicious flow samples are scarce.

Lastly, Table VII presents the results of our model’s
ability to facilitate transfer learning between datasets.
In this scenario each model is pretrained on the benign

TABLE VII
AUC SCORES FOR TRANSFER LEARNING PERFORMANCE FOR

CONTRASTIVE TRANSFORMERS ON PACKET SEQUENCES

Pre-Train
Fine-tune CICIDS UNSW-NB CTU CICDDOS

CICIDS 99.4% 99% 94.9% 92.1%
UNSW-NB 99.1% 99.2% 94.9% 91.7%

CTU 97.8% 98.8% 96.3% 91.9%
CICDDOS 98.5% 98.7% 94.4% 93.4%

TABLE VIII
AUC SCORES FOR TRANSFER LEARNING PERFORMANCE FOR

CONTRASTIVE DNN ON NETFLOWS

Pre-Train
Fine-tune CICIDS UNSW-NB CTU CICDDOS

CICIDS 98.4% 98.8% 94.2% 91.8%
UNSW-NB 98.2% 98.9% 94.7% 91.3%

CTU 97.5% 98.8% 95.3% 91.6%
CICDDOS 98.1% 98.5% 94% 91.9%

flows of a single dataset and subsequently fine-tuned
using a small amount of labeled data from a target
dataset. From this process, it is evident that there
is still an improvement in the AUC scores of the
classifier in comparison to the scores obtained with
randomly initialized weights. This demonstrates that the
knowledge acquired through the pretraining process can
be transferred from the domain of one dataset to another.
Additionally, in comparison to the respective results
of the self-supervised DNN model using Netflows in
Table VIII our model also shows improved or equal
performance for inter-dataset transfer learning with an
improvement of up to 0.9% in the case of pre-training on
the UNSW-NB and fine-tuning on the CICIDS dataset.

VI. CONCLUSIONS

In this paper we proposed a transformed-based
model that utilizes self-supervised contrastive learning
to enable generalizable intrusion detection. Our model
is capable of directly processing sequences of packets
to provide a flow representation that can be leveraged
to identify anomalies in network traffic or to enhance
supervised learning in scenarios where labeled traffic
is either unavailable or available in limited quantities.
The proposed contrastive learning approach employs
packet replacement to create unique sequences for the
pretraining task, which enables our model to learn and
identify similarities or differences in the granularity of
the packet between flows. Our approach demonstrates
an improvement over similar self-supervised models on
NetFlow datasets, both in supervised and unsupervised
evaluation as a result of our transformer-based
architecture, showing the effectiveness of our model
to adapt to benign and malicious traffic from different
domains.
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