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ABSTRACT

Vehicular Ad Hoc Networks (VANETs) play a key role in Intelligent Transportation Systems (ITS),
particularly in enabling real-time communication for emergency vehicles. However, Distributed
Denial of Service (DDoS) attacks, which interfere with safety-critical communication channels,
can severely impair their reliability. This study introduces a robust and scalable framework to
detect DDoS attacks in highway-based VANET environments. A synthetic dataset was constructed
using Network Simulator 3 (NS-3) in conjunction with the Simulation of Urban Mobility (SUMO)
and further enriched with real-world mobility traces from Germany’s A81 highway, extracted via
OpenStreetMap (OSM). Three traffic categories were simulated: DDoS, VoIP, and TCP-based video
streaming (VideoTCP). The data preprocessing pipeline included normalization, signal-to-noise
ratio (SNR) feature engineering, missing value imputation, and class balancing using the Synthetic
Minority Over-sampling Technique (SMOTE). Feature importance was assessed using SHapley
Additive exPlanations (SHAP). Eleven classifiers were benchmarked, among them XGBoost (XGB),
CatBoost (CB), AdaBoost (AB), GradientBoosting (GB), and an Artificial Neural Network (ANN).
XGB and CB achieved the best performance, each attaining an F1-score of 96%. These results
highlight the robustness of the proposed framework and its potential for real-time deployment in
VANETs to secure critical emergency communications.

Keywords VANET, DDoS attacks, Emergency vehicles, Machine learning, Intrusion detection, NS-3, SUMO, Traffic
classification, Supervised learning, Artificial Neural Network

1 Introduction

VANETs have emerged as a cornerstone of ITS, enabling real-time communication between vehicles and infrastructure
to improve traffic efficiency and road safety [1, 2]. These systems are particularly vital for emergency response units,
which rely on uninterrupted connectivity to minimize response time and save lives. However, their open communication
channels, decentralized architecture, and dynamic topology expose them to a wide range of cybersecurity threats [3].
Among the most critical of these threats are DDoS attacks, which aim to overwhelm network resources and degrade the
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performance of safety-critical services. Such disruptions can cause severe consequences, including delayed emergency
interventions, increased traffic congestion, and potential loss of life [4, 5].

Despite increasing academic interest in intrusion detection systems for VANETs, many existing studies present notable
limitations, such as exclusive reliance on synthetic datasets, lack of reproducibility, and a predominant focus on
dense urban environments [3, 6]. In particular, realistic highway scenarios—where uninterrupted communication for
emergency vehicles is equally critical—remain significantly underexplored. Moreover, most prior research depends on
a single machine learning classifier, which limits the robustness and generalization capacity of the proposed models.

To bridge these gaps, this paper proposes a comprehensive machine learning-based framework for detecting DDoS
attacks in VANETs operating in highway environments.

The main contributions of this work are as follows:

• We design and simulate realistic VANET traffic using the NS-3 and SUMO simulators, incorporating real-world
vehicle mobility traces from Germany’s A81 highway extracted via OSM.

• We evaluate a wide range of supervised learning algorithms, including XGB, CB, AB, Extra Trees (ET),
Random Forest (RF), GB, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression
(LR), Decision Tree (DT), and ANN.

• We apply SHAP to assess feature importance, thereby enhancing the interpretability and reliability of the
models. The proposed framework achieves excellent predictive performance, with F1-scores reaching up to
96% for XGB and CB classifiers.

The remainder of this paper is organized as follows: Section 2 presents a comprehensive literature review of machine
learning-based intrusion detection in VANETs. Section 3 details the methodology, including dataset generation and
preprocessing. Section 4 describes the classifiers used and the predictive modeling approach. Section 5 reports and
discusses the experimental results. Finally, Section 6 concludes the paper and outlines future research directions.

2 Literature Review

Securing VANETs against DDoS attacks has emerged as a critical research area due to the potential disruptions in vital
communication channels, especially those involving emergency vehicles. Recent advances have emphasized developing
robust, accurate, real-time intrusion detection mechanisms utilizing machine learning (ML) and deep learning (DL)
approaches.

Several researchers have investigated innovative machine learning models tailored explicitly to the unique constraints
of VANET environments. For instance, Setia et al. proposed a framework employing machine learning combined
with fuzzification methods within cloud-based VANET systems, achieving a remarkable accuracy of 99.59% in
proactively detecting DDoS threats [7]. Similarly, Polat, O. et al. introduced a hybrid model blending a one-dimensional
Convolutional Neural Network (1D-CNN) with decision trees for real-time detection in Software-Defined Vehicular
Ad-Hoc Networks (SD-VANETs), attaining an accuracy close to 90% [8]. Further expanding this direction, Polat, H.
et al. presented an advanced deep learning architecture using stacked sparse autoencoders combined with a softmax
classifier, significantly improving accuracy to approximately 96.9% in SDN-based VANET scenarios [9].

Addressing not only attack detection but also network congestion, Gopi et al. developed a two-phase Intelligent DoS
Attack Detection with Congestion Control (IDoS-CC) system. Their methodology combined Teaching and Learning-
Based Optimization (TLBO) with a Gated Recurrent Unit (GRU) deep learning model, demonstrating substantial
reductions in network congestion and improved detection accuracy [10]. Kadam et al. also contributed notably by
proposing a hybrid classification approach (KSVM) integrating K-Nearest Neighbors (KNN) and Support Vector
Machines (SVM), exhibiting superior sensitivity, recall, and precision compared to traditional classifiers [11].

Data realism and reproducibility represent essential challenges often overlooked in the literature. In response, Alkadiri
et al. generated a contemporary dataset leveraging OMNeT++, Veins, and SUMO simulations, optimized via SMOTE
and classified using the XGBoost algorithm, achieving an F1-score of approximately 99% [12]. Similarly, Rashid et
al. adopted OMNeT++ and SUMO for a realistic VANET simulation, presenting a real-time adaptive framework with
various ML classifiers, yielding accuracies of up to 99% [13]. Anyanwu et al. further optimized detection by integrating
Radial Basis Function SVM (RBF-SVM) with Grid Search Cross-Validation, showing detection rates of 99.22% on
realistic SDN-based VANET datasets [14].

Hybrid optimization and multi-stage detection systems have also been extensively explored. Marwah et al. combined
modified SVM enhanced by Harris Hawks Optimization (HHO) and Whale-Dragonfly optimization for efficient routing
and bandwidth allocation, significantly improving throughput and reducing communication overhead under DDoS
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conditions [15]. Adhikary et al. developed a hybrid model merging AnovaDot and RBFDot SVM kernels into a chained
detection mechanism, achieving improved robustness and detection accuracy compared to single-kernel models [16].
Moreover, Tariq et al. proposed a comprehensive detection framework integrating Autoencoders, LSTM, clustering
methods, fog computing, and blockchain technology, offering a low-latency, scalable, and robust solution with a
detection rate of approximately 94% [17].

Deep learning-based anomaly detection approaches have recently gained momentum due to their scalability and superior
pattern recognition capabilities. Lekshmi et al. leveraged convolutional autoencoders coupled with LSTM networks and
self-attention mechanisms, achieving an F1-score of 98.20% in detecting DDoS attacks on realistic VANET data [18].
Similarly, Haydari et al. introduced a semi-supervised, non-parametric intrusion detection system using roadside
units (RSUs), capable of detecting novel attack patterns without prior knowledge, significantly enhancing real-time
responsiveness and detection accuracy [19].

While extensive progress has been made, gaps remain in terms of evaluating these methodologies in realistic highway
scenarios. Most existing works predominantly target dense urban environments or lack reproducible real-world mobility
data, limiting the generalizability of results. Additionally, comprehensive comparisons of various machine learning
classifiers within a unified, realistic highway scenario remain scarce.

Our study aims to address these critical gaps by evaluating multiple prominent ML classifiers—including XGB, CB, AB,
ET, RF, GB, SVM, KNN, LR, DT, and ANN—in a realistic VANET highway scenario. Leveraging NS-3 and SUMO
simulators enriched with real mobility data from the A81 highway in Germany, our approach not only ensures realism
but also enables reproducibility. Furthermore, data balancing through SMOTE and rigorous performance evaluation
metrics (accuracy, precision, recall, and F1-score) strengthen our methodological framework, providing a robust and
comprehensive assessment of classifier effectiveness.

Table 1 below summarizes and positions our work compared to existing state-of-the-art approaches based on several
critical criteria.

Table 1: Comparative summary of DDoS detection in VANETs (continued on next page)

Reference Model Type Simulation
Environment

Attack
Type

Detection
Approach

Data
Balancing

Best Reported
Metric

[7] ML +
Fuzzification

NS-2 (VANET cloud
sim.)

DDoS Fuzzy logic aided
ML classifier

None Accuracy: 99.59%

[8] 1D-CNN +
Decision Tree

SD-VANET
(Mininet+SUMO)

DDoS Hybrid CNN+DT
classification

None ∼90% accuracy

[9] Stacked
Autoencoder

(SSAE)

SDN-based VANET
(sim.)

DDoS Deep learning
(SSAE +
Softmax)

None Accuracy: 96.9%

[10] TLBO + GRU
(two-stage)

VANET traffic
simulation

DoS Optimization
(TLBO) + RNN

classifier

None Not specified

[11] KNN + SVM
(Hybrid KSVM)

Simulated VANET
(not spec.)

DDoS Combined
KNN/SVM

classifier

None Accuracy: 92.46%

[12] XGBoost OMNeT++/Veins +
SUMO

DDoS Supervised ML
(tree-based)

SMOTE F1-score ≈99%

[13] Multi-ML
ensemble

OMNeT++/Veins +
SUMO

DDoS Distributed
multi-layer IDS

None Accuracy up to 99%

[14] RBF-SVM
(optimized)

SDN-VANET
(realistic data)

DDoS SVM +
grid-search

tuning

None Detection Rate:
99.22%

[15] SVM + HHO +
WDO

Simulated VANET
(Hwy)

DDoS Optimized SVM
(HHO, Whale-

Dragonfly)

None F1-score: 96%

[16] Dual-kernel SVM Simulated VANET
(RSUs)

DDoS Chained
AnovaDot+RBF

SVM

None Accuracy ∼96–98%

Continued on next page
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Table 1 Continued from previous page
Reference Model Type Simulation

Environment
Attack
Type

Detection
Approach

Data
Balancing

Best Reported
Metric

[17] Autoenc. +
LSTM + BC

(fog)

Simulated SD-VANET
(fog)

DDoS Hybrid IDS +
blockchain

None Detection Rate
≈94%

[18] ConvAE + LSTM Simulated VANET
data

DDoS Deep anomaly
detection

None F1-score: 98.20%

[19] Statistical
(non-param.)

SUMO + real traffic
traces

DDoS RSU-based
anomaly
detection

None Detection ∼94%

Ours ML & DL (XGB,
CB, ANN...)

NS-3, SUMO, Real
traces (A81 Hwy)

DDoS ML/DL
classifiers (with

SMOTE)

SMOTE F1-score ∼96%

This comparative analysis underscores the novelty and relevance of our research, emphasizing both methodological
rigor and practical applicability, thus effectively filling the identified gaps in the current state of VANET cybersecurity
research.

3 Methodology

This section outlines the methodological framework for developing a robust classification model for DDoS attacks in a
VANET environment, simulating a realistic highway scenario.

3.1 Experimental Architecture

This section outlines the architecture and methodology used to simulate a realistic highway-based VANET under
coordinated DDoS attacks. It details the scenario design, simulator integration, and incorporation of real mobility traces
to ensure data realism and model applicability.

3.1.1 Scenario Description

The data collection scenario is structured to simulate a VANET highway environment with 13 vehicles (from V0 to
V12) moving at a constant speed. V0 to V2 act as legitimate nodes, while V3 to V12 act as malicious nodes. Vehicle V0,
which symbolizes an emergency vehicle (for instance, a police car), will generate TCP traffic to vehicle V2, which
simulates a real-time video streaming application. At the same time, vehicle V1 is transmitting VoIP messages over
UDP to the same destination. On the other hand, malicious nodes (V3 to V12) initiated a DDoS attack by overwhelming
V2 with high UDP traffic flows to disrupt its communication capabilities. This scenario demonstrates the critical
security threat in a VANET highway environment, where a coordinated cyberattack threatens the emergency vehicle’s
operational integrity. Table 2 presents the NS-3 simulation parameters used in the VANET DDoS scenario.

3.1.2 NS-3 and SUMO Integration

The experiment uses NS-3 [20] and SUMO [21] simulators to simulate communication protocols and vehicle dynamics.
NS-3 handles network stack, protocol behavior, and traffic generation, while SUMO provides the precise mobility
dynamics of the vehicle for realistic traffic scenarios.

3.1.3 Incorporation of Real Mobility Traces

To further enhance the realism of the simulation, real-world mobility traces from the A81 highway in Germany were
integrated into the SUMO simulation and imported into NS-3 using the Ns2MobilityHelper module. This integration
ensures that the generated dataset reflects authentic vehicular behavior and spatial-temporal patterns, thus increasing the
applicability and reliability of the intrusion detection model trained on this data. Figure 1 illustrates the A81 highway in
OSM and its corresponding import within the SUMO environment.
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Table 2: Simulation parameters used for the VANET DDoS scenario
Parameter Value / Description
Simulation Time 30 seconds
Number of Nodes 13 vehicles total (3 legitimate, 10 malicious)
Legitimate Vehicles V0: TCP (Video), V1: UDP (VoIP), V2: Sink
Malicious Vehicles V3 to V12 (UDP DDoS)
WiFi Standard IEEE 802.11 (10 MHz channel bandwidth)
WiFi Range 250 meters
Routing Protocol OLSR (Optimized Link State Routing)
Propagation Model Two-Ray Ground Propagation Loss Model
Mobility Model Ns2MobilityHelper (A81 highway traces)
Packet Size (VoIP) 160 bytes
VoIP Rate 64 Kbps
Packet Size (DDoS) 1024 bytes
DDoS Rate per Bot 1 Mbps
Traffic Classification TCP (Video), UDP (VoIP/DDoS), based on source address
Monitoring Tools FlowMonitor (with SNR via MonitorSniffRx)
Output Files vanet-ddos-data.csv, vanet-ddos-flowmon.xml

(a) A81 highway segment extracted
from OpenStreetMap.

(b) Imported road segment visualized in SUMO.

Figure 1: Visualization of the A81 highway segment used in the simulation. (a) Map segment from OSM. (b) Simulation
rendering in SUMO.

3.2 Data Generation and Labeling

The simulated dataset utilized in this study comprises three distinct classes of network traffic: (DDoS), Voice over
IP (VoIP), and VideoTCP. Each traffic category was generated using appropriate application models within the NS-3
simulation environment. Specifically, VideoTCP traffic, emulating a real-time video streaming application, was produced
using the BulkSendHelper application over a TCP connection directed toward the target vehicle. Concurrently, VoIP
traffic was simulated using the OnOffHelper application, configured at a constant data rate of 64 kbps and a fixed
packet size of 160 bytes, thereby adhering to the widely used G.711 standard in VoIP communications. In contrast,
DDoS traffic was generated using the same OnOffHelper application, but set to a significantly higher data rate of
1Mbps per flow, explicitly modeling malicious traffic intended to saturate network resources.

To characterize the behavior and performance of each network flow, several relevant metrics were collected using the
FlowMonitor module in NS-3. Key metrics extracted include the average throughput, measured in kilobits per second
(kbps), computed according to the following equation:

Throughput =
8× RxBytes

FlowDuration × 103
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Where RxBytes denotes the total number of bytes received and FlowDuration represents the effective duration of the
flow in seconds. The mean delay was calculated using:

MeanDelay =

∑Nrx

i=1 Delayi
Nrx

Where Delayi is the delay experienced by each successfully received packet and Nrx corresponds to the total number of
received packets. Additionally, the packet loss rate (LostPackets) was determined by calculating the difference between
transmitted (Ntx) and received (Nrx) packets:

LostPackets = Ntx −Nrx

Lastly, each network flow was explicitly labeled according to its traffic class (DDoS, VoIP, or VideoTCP) based on
the originating IP address and the employed network protocol. Consequently, TCP-based flows were systematically
classified as VideoTCP, UDP-based flows originating from legitimate nodes (IP addresses ≤ 10.0.0.3) were labeled
as VoIP, whereas UDP flows initiated by malicious bot nodes were categorized as DDoS. This meticulous labeling
procedure enhances the reliability and accuracy of the dataset, facilitating the development of robust and effective
intrusion detection models. Figure 2 shows the first five rows of the dataset sample extracted from the NS-3 simulation.

Figure 2: Dataset sample

3.3 Data Preprocessing

The preprocessing stage is a fundamental step in building an effective intrusion detection model. This process was
structured into three main phases: data cleaning and normalization, creation of a derived SNR variable, and class
rebalancing through oversampling techniques.

3.3.1 Cleaning and Normalization

The raw dataset initially consisted of 6882 network flows described by 19 features, including identifiers, traffic
characteristics, performance metrics, and physical measurements such as average signal and noise power. Several
cleaning operations were applied:

• Removal of non-informative or highly correlated features: Columns such as FlowID, Src, Dest, SrcPort,
DestPort, and Samples were discarded due to their low predictive value. Similarly, the temporal features
TimeFirstTx and TimeLastRx were removed in favor of the derived feature FlowDuration, and DelaySum
was excluded in favor of MeanDelay.

• Categorical feature encoding: The categorical variables Protocol and TrafficLabel were converted to
numerical representations using LabelEncoder, where DDoS, VoIP, and VideoTCP were encoded as 0, 2, and
1, respectively.

• Duplicate removal: Approximately 7.5% of the data were identified as duplicates and subsequently removed
to reduce model bias.

• Normalization: All numerical features were normalized using StandardScaler to enforce zero mean and
unit variance—an essential condition for many machine learning algorithms.

3.3.2 SNR Feature Engineering

Although the dataset initially contained the fields AvgSignal_dBm and AvgNoise_dBm, a new variable representing
the average Signal-to-Noise Ratio (SNR) was computed as follows:

SNR = S −N

where S and N denote the mean received signal and noise power respectively, measured in dBm. However, SHAP
(SHapley Additive exPlanations) analysis revealed that these features had negligible predictive value in the highway
VANET scenario, and they were therefore excluded from the final dataset used for training.
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3.3.3 Class Rebalancing Using SMOTE

The Figure 3 below highlights a significant class imbalance: 3489 DDoS flows, 1996 VoIP flows, and only 882 VideoTCP
flows. To address this, we applied the SMOTE [22] to the training data. SMOTE generates synthetic samples for the
minority classes, resulting in a balanced training set with 2617 flows per class.

Figure 3: Traffic label distribution before SMOTE

This rebalancing significantly improved model generalization and reduced bias toward the majority class during training.

3.4 Feature Selection

Feature selection plays a pivotal role in the development of any predictive model, particularly in the context of VANETs,
where the dataset may include redundant or highly correlated variables. To identify the most relevant attributes for
classifying network traffic (DDoS, VoIP, and VideoTCP), we adopted an interpretability-based approach using SHAP
values (see Fig. 4). This method quantifies the marginal contribution of each feature to the model’s output while
accounting for complex interdependencies among features.

Figure 4: Feature importance based on SHAP values

As illustrated in Fig. 4, the SHAP analysis highlighted TxPackets, LostPackets, and Protocol as the most
influential features in predicting the traffic class. Although these features exhibit some degree of correlation, they
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offer complementary insights into traffic intensity and anomalous behavior, such as packet losses resulting from DDoS
attacks.

Nonetheless, TxPackets and LostPackets, despite their high SHAP scores and strong correlation with the target
variable, were deliberately excluded from the final feature set to mitigate multicollinearity effects. These variables
directly influence several other performance metrics (e.g., ThroughputKbps and MeanDelay), and including them
could introduce bias by over-representing certain aspects of the traffic.

The final selection includes the following features:

• Protocol: distinguishes UDP flows (VoIP) from TCP flows (VideoTCP), and supports the identification of
traffic patterns typical of DDoS attacks.

• ThroughputKbps: reflects traffic intensity and helps discriminate between high-volume flows such as those
generated by VideoTCP and DDoS.

• MeanDelay: captures average packet latency, which is critical for detecting delays caused by attacks or
real-time services like VoIP.

• RxPackets: although moderately ranked in SHAP importance, this feature complements flow-level analysis
without the redundancy of TxPackets.

• FlowDuration: captures the temporal dynamics of each flow and effectively substitutes highly correlated
variables such as TimeFirstTx and TimeLastRx.

This refined feature set was selected based on its discriminative power while minimizing redundancy. It ensures
improved robustness and interpretability of the classification model, which is essential for reliable intrusion detection in
VANET environments.

4 Modeling and Classification

This section presents the modeling approach to classify network traffic in a VANET scenario under DDoS conditions.

4.1 Tested Machine Learning Models

To assess the ability to classify network traffic in a VANET environment, several machine learning algorithms were
tested, encompassing both traditional methods and more advanced ensemble and boosting techniques.

The traditional models evaluated include:

• Random Forest: An ensemble method based on building multiple decision trees and averaging their predictions
to improve generalization.

• Extra Trees: Similar to Random Forest, but introducing greater randomness in the selection of splitting
thresholds to enhance diversity.

• Decision Tree: A simple hierarchical model based on attribute-based decision rules.

• Logistic Regression: A linear model adapted for multiclass classification through the softmax activation
function.

• Support Vector Machine: Using an optimized linear kernel to separate network traffic classes effectively.

• K-Nearest Neighbors: A non-parametric method that classifies each observation based on the majority vote
among its k nearest neighbors.

Advanced boosting and ensemble methods were also evaluated:

• XGBoost: A gradient boosting framework optimized for multiclass classification tasks using the
multi:softmax objective function.

• CatBoost: Designed to efficiently handle categorical variables and exhibit robustness against class imbalance.

• AdaBoost: An iterative ensemble technique that sequentially improves weak classifiers.

• Gradient Boosting: Builds models sequentially to correct errors made by prior models.

Finally, an Artificial Neural Network was designed and implemented using Keras. The architecture consists of:
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• An input layer receiving 5 features (Protocol, ThroughputKbps, MeanDelay, RxPackets, FlowDuration).

• A first dense hidden layer with 32 neurons and a ReLU activation function.

• A second dense hidden layer with 16 neurons, also activated by ReLU.

• A Dropout layer with a rate of 30% applied after the second hidden layer to mitigate overfitting.

• A third dense hidden layer with 8 neurons and a ReLU activation function.

• An output dense layer with 3 neurons using the Softmax activation function to classify among three classes:
DDoS, VoIP, and VideoTCP.

Figure 5 illustrates the architecture of the designed ANN.

Figure 5: Architecture of the designed ANN

4.2 Training and Validation

The dataset was split into a training set (75%) and a test set (25%) while maintaining class proportions through a
stratified split. To address the class imbalance—particularly the under-representation of VideoTCP traffic—the SMOTE
(refer to subsection 3.3.3) was applied to the training set, ensuring a balanced number of samples across classes.

For the scikit-learn models, training was performed after standardizing the variables using a StandardScaler. No
explicit class_weight parameter was specified since SMOTE effectively mitigated the initial class imbalance.
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For the ANN, class labels were converted into one-hot encoding before training. Validation was conducted through an
internal split (20% of the training set) combined with an EarlyStopping strategy, monitoring the minimization of the
validation loss. Figure 6 illustrates the evolution of the model’s performance during training, showing (a) the model
accuracy and (b) the model loss.

(a) Evolution of model accuracy during training.

(b) Evolution of model loss during training.

Figure 6: Training history of the ANN: (a) model accuracy and (b) model loss.

4.3 Model Evaluation

The performance of each classification algorithm was assessed using standard evaluation metrics derived from the
confusion matrix (CM), namely Accuracy, Precision, Recall, and F1-score. These metrics quantify the models’ ability
to correctly classify the network traffic into the three categories: DDoS, VoIP, and VideoTCP. The definitions and
formulas are as follows:

10
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• Accuracy (AC): Represents the ratio of correctly predicted instances over the total number of samples. It is
computed using:

Accuracy(AC) =
TP + TN

TP + TN + FP + FN

• Recall (R): Measures the proportion of true positives detected among all actual positive cases. The formula is:

Recall(R) =
TP

TP + FN

• Precision (P): Indicates the ratio of correctly predicted positive observations to the total predicted positives:

Precision(P ) =
TP

TP + FP

• F1-score: Combines precision and recall into a single metric by calculating their harmonic mean:

F1 Score = 2× Precision×Recall

Precision+Recall

To compute these metrics for each algorithm, the confusion matrices were extracted after testing on the evaluation set.
These matrices contain the number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
predictions for each class. The values were used to assess how each model performed in distinguishing between normal
traffic (VoIP, VideoTCP) and malicious traffic (DDoS).

Figure 7 illustrates an example confusion matrix for the best-performing model (XGBoost), showing a high rate of
correct predictions across all classes. This model achieved an F1-score of 0.96, with a balanced performance across the
three traffic types.

Figure 7: Confusion matrix of the XGBoost model. Class labels 0, 1, and 2 correspond to DDoS, VideoTCP, and VoIP,
respectively.

5 Results and Discussion

This section outlines the performance outcomes of the machine learning models used in this study and provides a
corresponding analysis and interpretation of these findings.
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5.1 Results

The classification report summary (Table 3), together with the comparative analysis of F1-scores across various
algorithms (Figure 8), offers a thorough evaluation of the predictive capabilities of each model.

Figure 8: F1-score comparison across models.

Table 3: Summary of classification results across different models.

Class Precision Recall F1-score Accuracy Support
XGBoost

DDoS 0.97 0.96 0.96 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.92 0.95 0.94 - 499
Overall 0.96 0.96 0.96 0.96 1592

AdaBoost
DDoS 1.00 0.92 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.87 1.00 0.93 - 499
Overall 0.96 0.95 0.95 0.95 1592

CatBoost
DDoS 0.98 0.94 0.96 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.91 0.96 0.93 - 499
Overall 0.96 0.96 0.96 0.96 1592

Extra Trees
DDoS 0.95 0.94 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.90 0.92 0.91 - 499

Continued on next page
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Table 3 – continued from previous page
Class Precision Recall F1-score Accuracy Support
Overall 0.94 0.94 0.94 0.94 1592

Random Forest
DDoS 0.95 0.94 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.90 0.92 0.91 - 499
Overall 0.94 0.94 0.94 0.94 1592

Gradient Boosting
DDoS 0.96 0.94 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.90 0.93 0.92 - 499
Overall 0.95 0.95 0.95 0.95 1592

Logistic Regression
DDoS 0.85 0.84 0.84 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.72 0.74 0.73 - 499
Overall 0.83 0.83 0.83 0.83 1592

Decision Tree
DDoS 0.95 0.94 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.90 0.92 0.91 - 499
Overall 0.94 0.94 0.94 0.94 1592

K-Nearest Neighbors
DDoS 0.95 0.92 0.93 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.87 0.91 0.89 - 499
Overall 0.93 0.93 0.93 0.93 1592

Support Vector Machine
DDoS 0.84 0.82 0.83 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.70 0.72 0.71 - 499
Overall 0.82 0.82 0.82 0.82 1592

Artificial Neural Network
DDoS 1.00 0.91 0.95 - 872
VoIP 1.00 1.00 1.00 - 221
VideoTCP 0.86 1.00 0.93 - 499
Overall 0.96 0.95 0.95 0.95 1592

5.2 Results Analysis

This section analyzes the classification results obtained from various models, focusing on overall performance, robust-
ness to class imbalance, and sources of misclassification. Key insights are drawn from evaluation metrics and confusion
matrices to highlight model strengths and areas for improvement.

5.2.1 Performance Interpretation

The classification results obtained from the tested models are summarized in Table 3 and illustrated in Figure 8.
Overall, algorithms leveraging boosting methods (XGBoost, CatBoost, AdaBoost, and Gradient Boosting) along with
ANN exhibited remarkable performance, achieving global F1-scores ranging between 0.95 and 0.96. Particularly, the
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XGBoost and CatBoost models demonstrated superior performance, each attaining an F1-score of 0.96, underscoring
their effectiveness in capturing the characteristic patterns of network traffic within DDoS, VoIP, and VideoTCP scenarios.

Decision tree-based models (Random Forest, Extra Trees, and Decision Tree) also yielded robust results, each reaching
an F1-score of 0.94. In contrast, simpler approaches such as Logistic Regression and Support Vector Machines exhibited
relatively lower performances, achieving global F1-scores of 0.83 and 0.82, respectively. These findings confirm their
limitations in effectively capturing complex interactions inherent to network traffic flows.

5.2.2 Robustness to Class Imbalance

The unequal distribution of data across the DDoS, VoIP, and VideoTCP classes represents a significant challenge
to model robustness. Nevertheless, detailed results shown in Table 3 indicate that most tested models successfully
maintained high precision and recall rates for the minority class (VoIP), often achieving scores close to 1.00. This
outcome highlights the effectiveness of the adopted data rebalancing strategy via SMOTE, combined with the inherent
robustness of the tested algorithms, in mitigating negative impacts caused by initial class imbalance. However, despite
being less imbalanced than VoIP, the VideoTCP class consistently displayed slightly lower precision and recall scores.
This observation suggests the persistent sensitivity of models to subtle intrinsic variations of VideoTCP flows, indicating
a potential need for supplementary augmentation or specific data generation strategies targeting this particular class.

5.2.3 Misclassification Analysis

Confusion matrix analysis (cf. Table 3) reveals that most classification errors predominantly occur between DDoS
and VideoTCP classes, while the VoIP class is almost perfectly distinguished by all models. This finding indicates
that flows associated with DDoS attacks and VideoTCP transmissions exhibit very similar characteristics regarding
throughput and duration, complicating their clear differentiation by classification algorithms. Models such as XGBoost
and CatBoost managed to significantly reduce these errors compared to other algorithms. However, the observed
persistent confusion highlights the importance of better differentiating features used during training and suggests
exploring hybrid approaches or advanced deep learning methods capable of capturing subtle distinctions between these
two traffic types more effectively.

6 Conclusion and Future Work

This paper presented a comprehensive evaluation of multiple machine learning techniques for detecting DDoS attacks
in VANETs, specifically targeting emergency vehicle communication scenarios on highways. Leveraging a realistic
simulation setup, which integrates the NS-3 network simulator with the SUMO mobility simulator and real-world
vehicular mobility traces from Germany’s A81 highway, we generated a robust and reproducible dataset for rigorous
evaluation.

The experimental results demonstrated the high effectiveness of several machine learning algorithms, notably XGB,
CB, AB, GB, and ANN, all achieving exceptional classification performance with F1-scores up to 96%. Our findings
confirmed the efficacy of SMOTE to handle imbalanced datasets, significantly enhancing the model’s ability to
accurately classify minority classes, particularly the VoIP traffic class.

This study offers significant scientific contributions, including the introduction of a reproducible and realistic method-
ology combining NS-3 and SUMO simulators with authentic mobility data, and a systematic comparison of widely
recognized machine learning classifiers in the context of highway VANET scenarios. Furthermore, the detailed SHAP-
based feature selection analysis provided valuable insights into the key predictors necessary for accurate intrusion
detection.

Despite these contributions, the study has several limitations. Primarily, the results remain constrained by the synthetic
nature of the dataset, albeit enhanced by real-world mobility patterns. Moreover, the simulations did not encompass the
full complexity of real-world communication scenarios, such as varying signal propagation conditions, diverse network
topologies, and real-time network adaptations.

Future research should focus on extending the present approach through the following perspectives:

• Conducting experiments in real-world settings by utilizing actual connected vehicles and infrastructure, which
would validate and potentially refine the proposed classification models.

• Investigating the feasibility and effectiveness of deploying these detection systems onboard vehicles, thus
enabling practical intrusion detection solutions in real-time scenarios.
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• Expanding the methodology to detect other prominent cybersecurity threats in VANETs, including spoofing,
Sybil, and blackhole attacks, thereby broadening the scope and practical applicability of the developed intrusion
detection framework.
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Abbreviations

The following abbreviations are used in this manuscript:

1D-CNN One-Dimensional Convolutional Neural Network
AB AdaBoost
ANN Artificial Neural Network
CB CatBoost
DL Deep Learning
DDoS Distributed Denial of Service
DT Decision Tree
FDI False Data Injection
GB Gradient Boosting
GRU Gated Recurrent Unit
IDoS-CC Intelligent DoS Attack Detection with Congestion Control
IoV Internet of Vehicles
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
ML Machine Learning
NS-3 Network Simulator 3
OMNeT++ Objective Modular Network Testbed in C++
OSM OpenStreetMap
RF Random Forest
RSU Roadside Unit
SD-VANET Software-Defined Vehicular Ad Hoc Network
SDN Software Defined Networking
SHAP SHapley Additive exPlanations
SMOTE Synthetic Minority Over-sampling Technique
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
SUMO Simulation of Urban MObility
TLBO Teaching and Learning-Based Optimization
UDP User Datagram Protocol
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
VANET Vehicular Ad Hoc Network
VoIP Voice over IP
XGB XGBoost
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