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Abstract

This paper focuses on implanting multiple hetero-
geneous backdoor triggers in bridge-based diffu-
sion models designed for complex and arbitrary
input distributions. Existing backdoor formula-
tions mainly address single-attack scenarios and
are limited to Gaussian noise input models. To
fill this gap, we propose MixBridge, a novel
diffusion Schrödinger bridge (DSB) framework
to cater to arbitrary input distributions (taking
I2I tasks as special cases). Beyond this trait, we
demonstrate that backdoor triggers can be injected
into MixBridge by directly training with poi-
soned image pairs. This eliminates the need for
the cumbersome modifications to stochastic dif-
ferential equations required in previous studies,
providing a flexible tool to study backdoor be-
havior for bridge models. However, a key ques-
tion arises: can a single DSB model train mul-
tiple backdoor triggers? Unfortunately, our the-
ory shows that when attempting this, the model
ends up following the geometric mean of benign
and backdoored distributions, leading to perfor-
mance conflict across backdoor tasks. To over-
come this, we propose a Divide-and-Merge strat-
egy to mix different bridges, where models are
independently pre-trained for each specific ob-
jective (Divide) and then integrated into a uni-
fied model (Merge). In addition, a Weight Re-
allocation Scheme (WRS) is also designed to en-
hance the stealthiness of MixBridge. Empirical
studies across diverse generation tasks speak to
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the efficacy of MixBridge. The code is avail-
able at: https://github.com/qsx830/
MixBridge.

Warning: This paper contains model outputs that may
be offensive in nature.

1. Introduction
Diffusion models have demonstrated remarkable perfor-
mance across various domains, including image (Ho et al.,
2020; Dhariwal & Nichol, 2021; Ho & Salimans, 2022),
text (Lou et al.), audio (Kong et al., 2020), speech gener-
ation (Huang et al., 2022), and others (Wen et al., 2022).
Alongside the success of diffusion models, potential risks
have emerged, such as vulnerability to backdoor attacks. In a
backdoor attack scenario, the attacker secretly implants trig-
gers into a victim model. Once unsuspecting users deploy
the victim model in their applications, these triggers can
be activated to produce harmful content (e.g., Not-Suitable-
For-Work images).

So far, various backdoor attack methods have been de-
veloped to reveal the mechanism of backdoor attacks in
diffusion models. Existing research primarily focuses on
two specific formulations: unconditional diffusion mod-
els (Chou et al., 2023; Chen et al., 2023a; Chou et al., 2024)
and conditional Text-to-Image (T2I) diffusion models (Zhai
et al., 2023; Struppek et al., 2023; Shan et al., 2023; Wang
et al., 2024c). However, we argue that two crucial scenarios
remain unexplored in the current literature. First, exist-
ing backdoor formulations are designed for diffusion-based
models that exclusively take Gaussian noise as input. Un-
fortunately, real-world tasks often require models to handle
more arbitrary and complex input distributions, rather than
pure noise. For example, tasks like super-resolution and
image inpainting use images as input in an Image-to-Image
(I2I) generation context. Second, most studies merely focus
on the single backdoor attack. Yet in practice, malicious
attackers may consider heterogeneous backdoor attacks,
such as injecting multiple backdoors with different triggers
simultaneously, to enhance stealthiness and maximize the
impact of their attack.
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To address these issues, our goal in this paper is two-fold:

1) Investigate I2I backdoor attacks on diffusion mod-
els across arbitrary input and output image distribu-
tions. 2) Explore heterogeneous backdoor attacks in
this context.

For 1), our proposed method is on top of the bridge-based
diffusion models (De Bortoli et al., 2021; Zhou et al.,
2023; Gushchin et al., 2024; Yang et al., 2021), which
have garnered significant attention due to their flexibility in
achieving transformations between arbitrary distributions.
Specifically, we propose MixBridge, an MoE-based I2I
Schrödinger bridge (I2SB) model (De Bortoli et al., 2021;
Liu et al., 2023; Shi et al., 2024). Different from traditional
diffusion models, our proposed method can now handle arbi-
trary input image distributions. This completely avoids the
need to implant triggers on the noises. Moreover, we theo-
retically show that one only needs to train the MixBridge
model directly with backdoor images (Prop. 4.1), where
the stochastic differentiable equations (SDEs) could be im-
plicitly learned. This differs significantly from previous
studies (Chou et al., 2023; Chen et al., 2023a; Chou et al.,
2024; Bao et al., 2025), which all require the cumbersome
design of SDEs to implement diffusion backdoor attacks.

For 2), we find that it is challenging to execute heteroge-
neous backdoor attacks within a single I2SB model. Specif-
ically, if one uses a single model to fit the sample path of
the benign distribution and all different types of backdoored
distribution, then we prove that (Thm. 4.2) the algorithm
follows the geometric mean of these distributions. Because
the sample paths for benign and different backdoor tasks
differ greatly in distribution, the geometric mean and most
target distributions often lies from afar, degrading genera-
tion quality for both benign and malicious generation tasks.
To resolve this challenge, we propose a divide-and-merge
strategy to reconcile the performance conflict between dif-
ferent tasks. In the divide stage, we use a task-specific
warm-up strategy to pre-train different tasks separately. In
the merge stage, we integrate the pre-trained model with
the Mixture of Experts (MoE) framework. Another key is-
sue is that a naive MoE framework tends to assign a much
higher weight to the original pre-trained expert for the given
tasks. By looking at the weight assignment statistics, the
user can easily detect which experts are responsible for the
backdoor attacks. To further improve the stealthiness of
MixBridge, we propose a Weight Reallocation Scheme
(WRS) to encourage uniform weight assignment, making
the backdoor experts less noticeable to the victim user. In
this sense, MixBridge can retain the advantages of task-
specific models while keeping the weight assignments in-
conspicuous.

Finally, we validate the effectiveness of MixBridge on

the ImageNet and CelebA datasets. Our results demonstrate
the model’s dual capabilities: producing high-quality be-
nign outputs when given clean input images (i.e., utility)
and generating heterogeneous malicious outputs when input
images contain triggers (i.e., specificity).

Our contributions can be summarized in three folds:

• We propose MixBridge, an I2I diffusion
Schrödinger Bridge (DSB) model, to study the
backdoor attacks. To our knowledge, we are the first
to study the backdoor attacks on the arbitrary diffusion
bridge models.

• We propose a divide-and-merge training strategy to
reconcile the performance conflict between benign and
different malicious generation tasks.

• We validate the performance of the proposed frame-
work on ImageNet and CelebA, demonstrating that our
model can generate high-quality benign and heteroge-
neous malicious outputs.

2. Related Work
Diffusion Model. The diffusion model is widely used in
image generation (Song et al., 2020a;b; Meng et al., 2024).
While early diffusion models (Ho et al., 2020) were designed
for unconditional image generation, subsequent models in-
corporated additional guidance to enhance control over the
generated content (Dhariwal & Nichol, 2021; Chao et al.,
2022). Based on these, researchers propose Image-to-Image
(I2I) diffusion models, which take input images and generate
guided outputs (Nichol et al., 2021; Sasaki et al., 2021). (Sa-
haria et al., 2022a) applies conditional diffusion models to
edit images, and (Saharia et al., 2022b) uses a stochastic it-
erative denoising process to achieve super-resolution. Apart
from these, some studies have explored diffusion bridges for
image generation (Shi et al., 2024; Zhou et al., 2023). For
instance, the diffusion Schrödinger Bridge (DSB) achieves
an optimal transport between two distributions, suitable for
I2I generation. In (Kim et al., 2023), DSB is applied to
solve the unpaired I2I translation between distinct image
distributions. (Wang et al., 2024b) employs DSB to perform
super-resolution for medical images.

Backdoor Attacks for Diffusion Models. Early stud-
ies on backdoor attacks mainly focus on the classification
tasks (Gu et al., 2017; Doan et al., 2021), where a back-
doored model produces predefined predictions only when
the input contains the trigger. Recently, researchers have
investigated backdoor attacks on different generative mod-
els (Rawat et al., 2022; Jiang et al., 2024). In this paper, we
restrict our discussion to the diffusion-based models, which
aim to modify diffusion models so that the attacker can ma-
nipulate outputs by activating hidden backdoors. Regarding
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the diffusion model, previous studies can be roughly divided
into Text-to-Image (T2I) and unconditional diffusion attacks.
The T2I diffusion model involves additional text as input, so
the attacker can easily inject triggers into the text (Zhai et al.,
2023; Struppek et al., 2023; Wang et al., 2024c; Pan et al.,
2023; Huang et al., 2023). Previous backdoor attack meth-
ods on unconditional diffusion models (Chou et al., 2023;
2024; Chen et al., 2023a) generate benign images from a
standard Gaussian noise and inject triggers into the Gaus-
sian noise to induce the model to generate backdoor outputs.
In response to backdoor attacks, some defense algorithms
have been proposed (An et al., 2024; Guan et al., 2024;
Mo et al., 2024; Yang et al., 2023b; 2022), which detect
backdoor attacks by analyzing the input noise distributions.

A Summary of Ours. The relationship between our pro-
posed backdoor attack and prior studies can be concluded
as follows. In terms of the similarities, our backdoor attack
method is built upon the generative diffusion framework,
which solves I2I tasks in the benign case, and generates
malicious outputs if the input contains a trigger. However,
it differs in four key aspects. First, unlike early backdoor
attacks that induce misclassifications, the MixBridge aims
to generate target backdoor images. Second, the MixBridge
targets the bridge-based diffusion models that directly take
images as inputs, while previous studies mainly focus on
unconditional or T2I diffusion models that start from a stan-
dard Gaussian noise. Third, we consider heterogeneous
backdoor attacks against diffusion models, while previous
studies consider a single backdoor attack only. Fourth, ex-
isting defenses for diffusion models rely on the assumption
that the diffusion process begins with Gaussian noise. As
a result, they may not effectively mitigate our proposed I2I
backdoor attack.

3. Preliminary
In this paper, built upon the bridge-based diffusion model,
we aim to investigate the I2I backdoor attacks as a rep-
resentative case of the general diffusion process between
arbitrary distributions. In this section, we will first introduce
the I2I Schrödinger bridge we implement and then outline
the setups for the backdoor attacks.

3.1. Image-to-Image Schrödinger bridge

Our work is primarily built on a recently emerging ef-
fective diffusion bridge model called the Image-to-image
Schrödinger bridge (I2SB) (Liu et al., 2023). The goal of
I2SB is to learn the nonlinear diffusion bridge between two
given distributions, which can be used in various down-
stream image restoration tasks, such as super-resolution
and image inpainting. To be specific, let x1 ∼ pB repre-
sent the input image of I2SB and x0 ∼ pA represent the

corresponding target image1. The I2SB model ϵ(xt, t;θ)
parameterized by θ can be trained as follows:

L(θ) = Et∼U(0,1),xt,x0,x1

(∥∥∥∥ϵ(xt, t;θ)−
xt − x0

σt

∥∥∥∥2
)
,

(1)
where xt ∼ q(xt|x0,x1) can be considered as a linear com-
bination of x0 and x1. After training, the target examples
can be sampled in the same way as the standard diffusion
model according to DDPM (Ho et al., 2020). This way,
the target image x0 can be recursively deduced from the
input image x1. Details of the DSB problem and I2SB are
discussed in Appendix A.

3.2. Heterogeneous Backdoor Attacks

The backdoor attacker’s goal is to manipulate a diffusion
model’s output to produce malicious results. Previous stud-
ies have explored single-pattern backdoor attacks in diffu-
sion models and some associated defense methods. How-
ever, in real scenarios, a model is likely to face attacks in
various patterns when an aggressive attacker injects mul-
tiple, distinct triggers into the model, which we call het-
erogeneous attacks. Seeing this new threat, we explore
heterogeneous backdoor attacks on top of diffusion bridge
models to deepen our understanding of the inner mechanism.
To begin, we outline the attacker’s setup as follows.

Attacker’s Capacity and Goal: We assume that the at-
tacker has full control over the training dataset and the
training process. Once the model is trained, the attacker
then uploads the poisoned model to a public marketplace.
When people deploy this poisoned model, the attacker aims
to activate the embedded backdoors to generate malicious
images predetermined by the attacker while keeping others
unaware. These malicious outputs may cause ethical and
legal issues for the user hosting the model.

To achieve the goal, the model must satisfy two critical
requirements as discussed in previous studies: utility and
specificity (Chou et al., 2023; 2024). The utility requires
the poisoned model to behave normally when processing
clean inputs, generating high-quality benign outputs. This
ensures the poisoned model does not arouse suspicion. On
the other hand, when the input images contain triggers, the
specificity enables the model to produce malicious outputs,
such as Not-Suitable-For-Work (NSFW) images (Zhang
et al., 2025), copyright infringement images (Wang et al.,
2024a), etc.

4. MixBridge
In this section, we first introduce the backdoor attack prob-
lem for diffusion models. Then, we study how to inject

1The generation process is reversed from t = 1 to 0.
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Figure 1: Overview of the generation process of the diffusion model. (Left) The model processes images from an input
distribution and generates output images along distinct diffusion trajectories. Notably, both the input and output distributions
are mixture distributions. While the input images maintain a degree of similarity, there exists a significant disparity among
the heterogeneous output distributions. (Right) With various δi injected into the input image, the model generates different
outputs. Obviously, the quality of the output image generated by the MixBridge is much better than the single model.

backdoor triggers into the typical diffusion bridge model
(I2SB). Taking a step further, we explore how to conduct het-
erogeneous backdoor attacks in this context. Due to space
constraints, all proofs are deferred to Appendix B.

4.1. Problem Formulation

In a typical diffusion process over t ∈ [0, 1], the model pro-
cesses a clean input image xc

1 to generate a benign output
image xc

0. To manipulate the model, an attacker may inject
a backdoor trigger δ into xc

1, creating a poisoned input xp
1.

This input then guides the model to produce a malicious out-
put image xp

0 as specified by the attacker. Mathematically,
this poisoning process is formalized as follows:

xp
1 = (1−M)⊙ xc

1 +M ⊙ δ, (2)

where M denotes the binary mask corresponding to the
trigger, and xp

1 is the resulting poisoned input. Typically,
backdoor triggers are subtle and visually inconspicuous,
such as a small black patch in the corner of the input image,
as illustrated in Fig. 1 (left).

The discussion above assumes homogeneous attacks, where
a single type of backdoor is deployed. However, real-world
scenarios often involve heterogeneous attacks, where mul-
tiple backdoor triggers coexist within the same poisoned
model. In this setting, the model must simultaneously learn
the clean generative process xc

1 → xc
0 and M distinct back-

door processes. Formally, the i-th backdoor process is rep-
resented as xp,i

1 → xp,i
0 , where the poisoned input xp,i

1 is
obtained by blending the clean input xc

1 with a trigger δi
similar to Eq. 2. In our method, different triggers are strate-
gically applied to distinct locations (i.e., using different
binary masks Mi) to differentiate between attacks.

As described in Eq. 1, we prepare pairs of images to train
the DSB model. We use Dc = {(xc

0,j ,x
c
1,j)}

Nc
j=1 and

Di = {(xp,i
0,j ,x

p,i
1,j)}

Ni
j=1 to denote the clean and i-th poi-

soned training datasets, containing Nc and Ni image pairs

respectively. The image pairs for benign generation can be
easily obtained. For example, the image pairs for the super-
resolution task are naturally the high-resolution images and
the corresponding low-resolution images.

However, there is no innate relationship between clean and
malicious images. For each backdoor attack, we prepare a
malicious dataset Dm = {mp,i

j }Nm
j=1. To form appropriate

pairs for attacks, we select the malicious image xp,i
0,j from

Dm for each clean input based on the proximity evaluated
by Euclidean distance: xp,i

0,j = arg min
k∈Dm

∥xp,i
1,j − k∥2.

Given the settings above, we argue that a critical challenge
in this context is managing the mixed data distribution of
clean and poisoned images. The overall data distribution at
time step t is modeled as:

p (xt) = p(c) · p (xc
t |c) +

M∑
i=1

p(i) · p
(
xp,i
t |i

)
, (3)

where p(xt) represents the probability density function of
the mixture distribution at time t. Here, xc

t and xp,i
t de-

note the clean and poisoned images under the i-th attack,
respectively. The terms p(c) and p(i) are proportion for
the clean and i-th poisoned images, with the constraint
p(c) +

∑M
i=1 p(i) = 1 ensuring a valid distribution.

How to deal with such a mixed sample path? Next, we will
introduce our method, starting with a naive solution, and
then propose the final heterogeneous method.

4.2. A Naive Method for Heterogenous Backdoor
Injection

Existing methods often require extensive modifications to
both the forward and reverse diffusion processes in denois-
ing diffusion models to execute backdoor attacks, enabling
the model to learn an undesired correlation between the
backdoor trigger and the backdoor target. Fortunately, on
top of the diffusion bridge model I2SB, we theoretically re-
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veal that the backdoor attacks towards bridged-based models
can be implemented more easily:

Proposition 4.1 (Image generation with pair relationship).
Given the image pairs (xp,i

0 ,xp,i
1 ) or (xc

0,x
c
1) in the train-

ing datasets, the ground-truth sample-path of I2SB always
generate images consistent with pairwise relationships with
t → 1 and t → 0.

Prop.4.1 demonstrates that the sample path of I2SB auto-
matically connects the input and output distribution for I2I
generation. In this sense, we no longer need to design spe-
cific SDEs to cater to different backdoor generation tasks.
In other words, the backdoor triggers can be embedded by
simply training the model with poisoned image pairs. As a
naive solution, one only needs to simply poison or add a
subset of the training data with malicious triggers. Then,
given a clean dataset Dc and various types of poisoned
image pairs Di, i ∈ [M ], we can employ the following
objective function to train a backdoored I2SB model:

Lbackdoor(θ) = ℓc +

M∑
i=1

ℓi , (4)

where

ℓc = p(c) · Et,xc,xc
0,x

c
1|c

∥∥∥∥ϵ(xc
t , t;θ)−

xc
t − xc

0

σt

∥∥∥∥2 ,
ℓi = p(i) · Et,xp,i

t ,xp,i
0 ,xp,i

1 |i

∥∥∥∥∥ϵ(xp,i
t , t;θ)− xp,i

t − xp,i
0

σt

∥∥∥∥∥
2

.

The key issue with this method is that it neglects the model
fitting ability. Although I2SB guarantees a flexible sample
path, we also need to consider whether the expressivity of
the employed model is sufficient to fit such a sample path.
Unfortunately, for a complicated heterogeneous backdoor
attack, we find that the sample paths can hardly be fitted by
a single I2SB model. In the setting of backdoor attacks, the
model is required to simultaneously generate a clean output
xc
0 and a poisoned malicious output xp,i

0 . The challenge
arises because xc

0 and xp,i
0 have significantly different dis-

tributions, whereas their respective inputs xc
1 and xp,i

1 differ
only by a small mask δi, leading to mutual interference
between different tasks.

Below, we present a theoretical analysis of its limitations:

Theorem 4.2 (Limitations of using a single I2SB model
for heterogeneous backdoor attacks). Given an arbitrary
image x0, the posterior of a trained I2SB model can be
formulated as p̃θ(xt|x0). If we assume ∇xt

ϵθ(xt, t;θ)
possesses full column rank2, the posterior is proportional

2It is plausible that ∇xtϵθ(xt, t;θ) has full column rank, given
that the number of parameters in the model significantly exceeds
the dimensionality of the image feature space.

to the Geometric Average of the mixture distribution of all
generation tasks,i.e.:

p̃θ(xt|x0) ∝
∏
i

p(xt|x0, i)
p(i|z), (5)

where p(i|z) = p(i|xt,x0,x
i
1), where i refers to a specific

member among the clean and backdoored distributions.

Thm.4.2 demonstrates that when a single I2SB model is
used to fit the sample paths of both the benign distribu-
tion xc

1 → xc
0 and all heterogeneous backdoor distributions

xp,i
1 → xp,i

0 , the model tends to approximate the geomet-
ric average of these distributions. Given the significant
disparity between the clean and backdoored distributions,
this geometric mean often deviates greatly from most target
distributions, leading to performance degradations for both
benign and malicious tasks. We conduct a simple experi-
ment illustrated in Fig. 1 (right) to highlight the limitation of
this, where a single model struggles to generate satisfactory
outputs for both clean and poisoned images.

What if we integrate the generation ability from multiple
models? In the upcoming discussions, we will present a
solution in this manner.

4.3. Exploring Heterogeneous Backdoor Attacks
Beyond a Single Model

To achieve the performance balance across different tasks,
we propose a divide-and-merge strategy borrowing the idea
from the Mixture of Experts (MoE) mechanism (Chen et al.,
2023b; Ma et al., 2018; Du et al., 2024). The critical point is
we first train well-performing I2SB models tailored to indi-
vidual tasks independently and subsequently integrate them
into a unified MixBridge model. The overall framework
of the proposed MixBridge is illustrated in Fig. 1 (left).

Stage 1: Divide. We propose a task-specific warm-up strat-
egy to pre-train different tasks independently, where each
task corresponds to an I2SB model. Specifically, let the
clean I2SB model be denoted as ϵc(·, ·;θc) and the back-
doored I2SB experts be denoted as ϵi(·, ·;θi), i ∈ [M ],
totally M +1 experts. In this stage, each model ϵ∗ is trained
independently with its corresponding paired images to mini-
mize Eq. 1. For the benign I2I generation task, the expert
ϵc is trained exclusively on clean paired images Dc. Sim-
ilarly, the backdoored expert ϵi, i ∈ [M ] is trained on the
i-th poisoned training dataset Di. This stage ensures that
each model excels in its specific generation task without
interference from others, while also enhancing the overall
diversity of the models.

Stage 2: Merge. After the dividing stage, we merge all
pre-trained experts as a mixture model. This requires en-
couraging cooperation among these experts and preserving
their individual generative capabilities as much as possible.
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Table 1: Experimental results for super-resolution and per-task backdoor attacks on the CelebA dataset. The backdoor
attack results are reported as the average across all individual backdoor tasks. Note that the purple cell represents the optimal
value, and the green cell represents the sub-optimal value. SR.: Super-resolution. Entro. (Steal.): Entropy (Stealthiness).

SR.
(Benign)

Fake
Face NSFW Anime

NSFW

Super-resolution Evaluation
(Benign) Per-Task Backdoor Average

FID↓ PSNR↑ SSIM
(E-02) ↑

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑ Entro.

(Steal.)↑

I2SB ✓ 72.59 27.55 81.72 36.71 58.42 0.00 0.00

Single Model

✓ ✓ 132.83 25.64 71.13 27.16 66.63 32.77 0.00
✓ ✓ 135.82 25.71 71.62 25.25 67.44 32.50 0.00
✓ ✓ 134.46 25.21 67.37 22.43 65.32 30.10 0.00
✓ ✓ ✓ 143.42 25.38 69.30 16.00 73.23 62.98 0.00
✓ ✓ ✓ 158.23 25.18 68.19 12.68 69.47 53.69 0.00
✓ ✓ ✓ 159.85 25.33 68.99 11.60 71.54 52.11 0.00
✓ ✓ ✓ ✓ 161.35 24.98 66.19 3.05 71.59 60.91 0.00

M.B. (Ours)

w/o WRS

✓ ✓ 41.48 27.46 83.35 27.06 69.77 33.17 4e-03
✓ ✓ 41.20 27.33 81.54 25.10 71.16 33.19 3e-03
✓ ✓ 42.26 27.29 81.40 22.11 70.80 33.04 8e-03
✓ ✓ ✓ 61.73 26.72 83.18 13.13 83.03 63.79 3e-03
✓ ✓ ✓ 61.25 25.74 76.00 11.06 74.68 62.63 2e-03
✓ ✓ ✓ 63.51 26.63 83.00 11.74 78.32 60.65 1e-03
✓ ✓ ✓ ✓ 71.84 25.68 82.33 1.17 88.85 96.45 7e-03

w WRS

✓ ✓ 60.65 26.43 82.17 27.04 69.60 33.25 0.99
✓ ✓ 68.12 26.50 80.57 25.24 71.05 33.08 0.99
✓ ✓ 66.59 26.70 80.59 22.08 70.57 33.19 0.99
✓ ✓ ✓ 80.88 24.61 73.37 15.83 79.46 66.04 1.57
✓ ✓ ✓ 83.85 24.07 71.07 12.48 78.85 65.75 1.57
✓ ✓ ✓ 77.21 24.99 73.69 10.88 81.74 65.84 1.57
✓ ✓ ✓ ✓ 85.88 24.36 70.40 1.13 88.94 96.98 1.99

To do this, we introduce a learnable expert router r to adap-
tively determine the contribution of each model to the final
output, represented by w = (wc, w1, ..., wM )⊤ ∈ R(M+1).
Considering that backdoor attacks are typically triggered by
input images, we design the router to distinguish high-level
backdoor patterns embedded in the input features x∗

1. For
generality, x∗

1 represents either clean images or any type
of poisoned image. Concretely, the router r calculates the
normalized weights as follows:

w = r(x∗
1) = Softmax(W⊤F(x∗

1) + b), (6)

where F(·) ∈ Rd is a deep neural network (e.g., ResNet (He
et al., 2016)) used to extract useful features, d is the feature
dimension; W ∈ Rd×(M+1) is the learnable transformation
matrix, and b ∈ RM+1 is the bias term.

Subsequently, the output of the MixBridge at each step
t (t ∈ [0, 1]) is computed as the weighted sum:

ϵMix(x
∗
t , t;θMix) =wc · ϵc (x∗

t , t;θc)+

M∑
i=1

wi · ϵi(x∗
t , t;θi),

(7)

where x∗
t is the generated image at time t, and again

ϵc(x
∗
t , t;θc) and ϵi(x

∗
t , t;θi) are the denoising predictions

of the clean and backdoored experts, respectively.

Equipped with Eq.6 and Eq.7, we proceed to fine-tune
MixBridge using all datasets Dc and Di (i ∈ [M ]) to rec-
oncile performance conflicts between tasks. Ideally, given
different inputs (clean or backdoored), MixBridge now
can adaptively approximate the optimal diffusion trajectory
by assigning a higher weight to the relevant model.

Weight Reallocation Scheme. However, in practice, we
observe that simply merging these multiple experts is in-
sufficient. To minimize the reconstruction error (Eq. 1), the
router r tends to assign a higher weight to the model specifi-
cally pre-trained for a particular k-th generation task during
the divide stage, effectively setting wk = 1 while assigning
wj = 0 for all j ̸= k (Refer to Sec. 5.4). This behavior
undermines the model’s stealthiness, as users can detect
anomalies by inspecting the components of MixBridge.

To address this issue, we propose a Weight Reallocation
Scheme (WRS) to prevent the weight assignment from being
too far from uniform:

LWRS = Ew

[∥∥∥∥w − 1

M + 1

∥∥∥∥2
]
. (8)

Intuitively, Eq. 8 encourages the router r to assign uni-
formly smooth contributions to each expert, enhancing the
stealthiness of the MixBridge model.
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Finally, we optimize the following objective function during
the merging stage to balance generative performance and
backdoor stealthiness:

L(θMix) = Lbackdoor(θMix) + λLWRS (9)

where θMix = (θc,θ1, ...,θM ,θr) represents all trainable
parameters included in MixBridge, θr is the learnable
parameters of the router r; λ is a tunable trade-off hyper-
parameter. Detailed training and generation procedures are
provided in Alg. 1 and Alg. 2, respectively.

5. Experiments
5.1. Experimental Setup

Datasets and Models. We evaluate our proposed backdoor
attack method in two normal tasks, super-resolution and
image inpainting.

The experiments of super-resolution are conducted on the
CelebA dataset (Liu et al., 2015). The images are resized
to 128 × 128, and then the images are further corrupted
to 32 × 32 by a pool filter to create low-resolution input
images. The model is trained to recover the high-resolution
image (128 × 128) from the low-resolution input (32 ×
32). The experiments of image inpainting are conducted on
the ImageNet 256 × 256 (Deng et al., 2009). We use the
20%-30% freeform masks from (Saharia et al., 2022a) to
corrupt the images for the inpainting task.

We prepare M = 3 backdoor attacks: Fake Face, NSFW,
and Anime NSFW. For each backdoor attack, we prepare
Nm = 10 malicious images for Dm to ensure the diversity
of the backdoor attacks. The Fake Face alters an input image
to generate a completely different face, while the other two
attacks generate pornographic outputs. We manually select
ten images of the same person from the CelebA dataset
for the Fake Face attack. For the latter two, we randomly
select ten NSFW images and ten Anime NSFW images
from (Yang et al., 2023a)3 and Hugging Face4.

For a fair comparison, we adopt the same model architec-
ture and parameter settings as in (Liu et al., 2023). Each
expert ϵ∗ in the MixBridge is a UNet block pre-trained
on ImageNet 256 × 256 (Dhariwal & Nichol, 2021). The
router r is implemented as a ResNet50 model.

5.2. Evaluation Metrics

We evaluate our backdoor attack method from two perspec-
tives, utility and specificity.

Utility: We use FID (Heusel et al., 2017), PSNR, and

3https://github.com/alex000kim/nsfw_data_
scraper

4https://huggingface.co/datasets/
Qoostewin/rehashed-nsfw-full

SSIM (Wang et al., 2004) to evaluate the utility of super-
resolution and image inpainting tasks. A low FID indicates
that the output image closely matches the input data dis-
tribution. The high PSNR and SSIM values indicate the
recovered image preserves the original image structure.

Specificity: We use MSE, CLIP score (Hessel et al., 2021),
Attack Success Rate (ASR) (the ratio of successful attacks to
total attacks) and Shannon information Entropy (Diaz et al.,
2002; Murdoch, 2013) for backdoor attack evaluation. A
low MSE implies the output image is pixel-wise close to the
predefined malicious image. For the CLIP score, we apply
a CLIP model to extract the image embeddings and compute
the cosine similarity. A high CLIP score signifies the gener-
ated image’s features resemble those of the malicious image.
For the ASR, we consider a backdoor attack successful if the
CLIP score exceeds a specific threshold. A high ASR indi-
cates the model is sensitive to triggers, leading to successful
attacks. In addition, we assess the stealthiness of backdoor
attacks using Entropy (Entro.), computed with the weight
distribution: H(w) = −wc logwc −

∑M
i=1 wi logwi. A

high entropy suggests a uniform weight distribution, en-
hancing the anonymity of experts and the stealthiness of
backdoor attacks.

5.3. Main Results

Fig. 2 presents an overall performance visualization of the
proposed method. The results show that with the joint effect
of MoE and Weight Reallocation Scheme, our approach
successfully achieves both high-quality generations and a
uniform distribution of expert weights.

5.3.1. CELEBA DATASET

We present the super-resolution and the per-task backdoor
average results on the CelebA dataset in Tab. 1.

Super-resolution. Our findings show that even when the
MixBridge model is trained on both the super-resolution
task and backdoor attacks simultaneously, it outperforms
the baseline I2SB model. For example, the FID of the
MixBridge model trained with the Fake Face backdoor
attack is close to half that of the I2SB model. This suggests
that the MixBridge model enhances the model’s capacity,
enabling it to successfully conduct backdoor attacks while
also benefiting benign image generation. On the contrary,
the single model performs significantly worse than the base-
line. This validates the challenge of solving both benign
tasks and backdoor attacks within a single model.

Backdoor Attacks. As for the average performance of back-
door attacks, the results indicate our method successfully
executes heterogeneous backdoor attacks, outperforming
the single model in generating higher-quality malicious im-
ages. Notably, the entropy of the weight distribution in the
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Figure 2: Visualization of the generation results of the MixBridge. We visualize the results of different generation tasks
with different methods. Clearly, our MixBridge achieves high performance across all tasks. Additionally, we reorganize
the weight values in descending order and present the average weight distribution in the “Weight Average” column. The
results demonstrate that, with the help of the Weight Reallocation Scheme (WRS), we encourage a more uniform distribution
of the weights, thereby enhancing the stealthiness of the model.

(a) MSE (b) CLIP Score (c) ASR (d) Entropy

Figure 3: Results of the backdoor attacks on the ImageNet. The results are evaluated by models trained with four tasks,
image inpainting, Fake Face, NSFW, and Anime NSFW.

MixBridge trained with WRS is significantly higher than
in the model without WRS, which implies WRS enhances
the stealthiness of the MixBridge by promoting more uni-
form weight distributions. It is also worth emphasizing that
the model trained with WRS generates better malicious im-
ages. This may be attributed to the fact that, compared to
super-resolution tasks, the target distributions for the back-
door attacks are more distinct from the input distribution.
Thus, without WRS, the model tends to prioritize the easier
task—super-resolution. However, when trained with WRS,
the model is encouraged to focus more on the backdoor
attack tasks, resulting in better performance in generating
malicious images.

5.3.2. IMAGENET DATASET

Due to the space constraint, the detailed numerical results
of are provided in Appendix D.3. Here we show a summa-
rized backdoor attack results in Fig.3. It demonstrates that
MixBridge achieves nearly 100% ASR while generating
higher-quality images compared to a single model.

(a) Without WRS (b) With WRS

Figure 4: The distribution of weight w. The weight con-
centrates around 1 for the backdoor attack without WRS
(Left), and the weight balances to 0.5 with WRS (Right).

5.4. Effect of Weight Reallocation Scheme

We construct a simple MixBridge model consisting of ϵc
and ϵ1. A batch of 128 poisoned images xp,1

1 is input into
the model, and we record the weight w1 assigned to the
expert ϵ1. The results are shown in Fig. 4. Unsurprisingly,
the weights w1 concentrated around 1, indicating that the
MixBridge model heavily relies on the expert pre-trained
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in backdoor generation task. In contrast, if we apply WRS
during training, the weights are balanced around 0.5.

The weight distribution directly impacts the stealthiness
of the model. Without WRS, ϵ1, pre-trained for backdoor
generation, tends to generate images with backdoor-related
features even for clean inputs. Conversely, with WRS, ϵ1 is
forced to contribute more to the benign image generation,
thus ϵ1 has to generate outputs devoid of malicious features.

5.5. Additional Results

Due to the space constraints, we provide additional exper-
iment results in Appendix D. In particular, the detailed re-
sults and analysis concerning the CelebA and ImageNet
datasets are presented in Appendix D.2 and Appendix D.3.
In addition, we visualize the outputs of each expert in the
MixBridge model in Appendix D.4 to demonstrate the
effects of WRS. Besides, we discuss the performance of the
MixBridge in different poison rates in Appendix D.5.

6. Conclusion
In this paper, we introduce a novel diffusion Schrödinger
Bridge model (DSB), MixBridge, to investigate the het-
erogeneous backdoor attacks in Image-to-Image (I2I) gen-
eration tasks. To mitigate the interference between differ-
ent generation tasks, we incorporate the Mixture of Ex-
perts (MoE) architecture and propose a divide-and-merge
training strategy, which enables the MixBridge to gener-
ate high-quality benign images when the inputs are clean,
and heterogeneous malicious high-quality outputs when
the inputs are poisoned. Extensive experiments on two
datasets demonstrate the versatility and harmfulness of the
MixBridge model. As a first step in this direction, we
present MixBridge as a red-team tool to better understand
the vulnerabilities of diffusion bridge models and to inspire
further research on defensive methods against backdoor
attacks on I2I generation tasks.

Impact Statement
The growing threat of backdoor attacks against diffusion
models has garnered increasing attention. However, back-
door attacks targeting bridge-based diffusion models re-
main an unexplored area. In this paper, we aim to fill this
gap by investigating heterogeneous backdoor attacks on the
MixBridge model. It is crucial to note that we have mo-
saicked the sensitive regions in the visualization results in
this paper to minimize any potential harm to the readers.
All the pornographic contents used in this study are sourced
from public datasets. While there is a risk that the proposed
method could be misused for unethical purposes, we believe
that this research serves a more important purpose as a tool
to understand the mechanisms behind backdoor vulnerabili-

ties in bridge-based diffusion models. Moreover, we hope
this work will inspire the research community to prioritize
the development of effective defense strategies against such
attacks.
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A. Schrödinger Bridge and I2SB
The Schrödinger Bridge (Schrödinger, 1932; Léonard, 2013) operates by achieving an entropy-regularized optimal transport
between two given distributions. This unique property allows the Diffusion Schrödinger Bridge (DSB) to directly transfer
images between distinct distributions, which can address a wide range of I2I tasks, such as super-resolution, inpainting, and
deblurring (Gushchin et al., 2024; Wang et al., 2024b; Liu et al., 2023).

Given two marginals pA and pB , the DSB problem can be formulated by a minimization problem over a stochastic process
Pt:

min
P0=pA,P1=pB

DKL(Pt∥Qt),

where Q represents a reference process such as Brownian motion.

If we characterize the DSB problem with SDE form (Léonard, 2013; Chen et al., 2021), we obtain the forward and backward
SDEs conditioned by the marginals at x0 ∼ pA and x1 ∼ pB :

dxt = [f(xt) + βt∇ logΨ(xt, t)]dt+
√

βtdWt,

dxt = [f(xt)− βt∇ log Ψ̂(xt, t)]dt+
√

βtdW t,
(10)

where f is a drift function, βt is a diffusion coefficient, and Wt is a Wiener process. In addition, Ψ and Ψ̂ satisfy the
Kolmogorov backward/forward equations:

−∂Ψ(xt, t)

∂t
= f(xt)

∂Ψ(xt, t)

∂xt
+

1

2
βt

∂2Ψ(xt, t)

∂2xt
,

∂Ψ̂(xt, t)

∂t
= − ∂

∂xt
[Ψ̂(xt, t)f(xt)] +

1

2

∂2

∂2xt
[βtΨ̂(xt, t)].

In I2SB (Liu et al., 2023), f(xt) is set to zero, then Ψ̂ and Ψ can also be regarded as path p.d.f functions for the following
two SDEs respectively:

dx =
√
βtdWt, x0 ∼ Ψ̂(·, 0),

dx =
√
βtdW t, x1 ∼ Ψ(·, 1).

(11)

Under this special case, the posterior of xt given the paired image (x0,x1) enjoys a closed-form solution according to the
Nelson’s duality (Nelson, 2020):

q(xt|x0,x1) = N (xt;µt,Σt) ,

µt =
σ̄2
t

σ̄2
t + σ2

t

· x0 +
σ2
t

σ̄2
t + σ2

t

· x1,

Σt =
σ̄2
t σ

2
t

σ̄2
t + σ2

t

· I,

(12)

where

σ2
t =

∫ t

0

βτdτ (13)

σ̄2
t =

∫ 1

t

βτdτ (14)

represent the variance of the SDE at time t in the diffusion process. Therefore, xt can be expressed as a linear combination
of x0 and x1.

In I2SB, the sampling path is fitted on top of the standard diffusion model based on the results above. The corresponding
objective function is expressed as follows:

L(θ) = Et∼U(0,1),xt,x1,x0

(
∥sθ(xt)−∇xt

log p(xt|x0)∥2
)
. (15)

where ϵ(xt, t;θ) = sθ(xt) and ∇ log p(xt|x0) = ∇ log Ψ̂(xt, t).
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B. Proof
Proposition 4.1 (Image generation with pair relationship). Given the image pairs (xp,i

0 ,xp,i
1 ) or (xc

0,x
c
1) in the training

datasets, the ground-truth sample-path of I2SB always generate images consistent with pairwise relationships with t → 1
and t → 0.

Proof of Proposition 4.1. As discussed in Eq. 14, the limiting variances at time t = 0, t = 1 can be expressed as follows:

lim
t→0

σ2
t = lim

t→0

∫ t

0

βτdτ = 0,

lim
t→1

σ̄2
t = lim

t→1

∫ 1

t

βτdτ = 0.

Thus, one can get the limiting mean and variance for the I2SB bridge as follows (see Eq.12 for the mixture distribution):

lim
t→0

µt = lim
t→0

xt = x0,

lim
t→0

Σt = 0.

lim
t→1

µt = lim
t→1

xt = x1,

lim
t→1

Σt = 0.

Here, (x0,x1) represents the images with pairwise relationships in our framework, which can be either clean pairs
(xp,i

0 ,xp,i
1 ) or poisoned pairs (xc

0,x
c
1). According to the continuity of the guassian p.d.f function w.r.t to its mean and

variance, we reach the limiting distribution of xt|x0,x1:

lim
t→0

q(xt|x0,x1) = δx0
,

lim
t→1

q(xt|x0,x1) = δx1 ,

where δx is Dirac’s delta function such

δx(u) =

{
0, x ̸= u

∞, x = u
(16)

Assume p(x0,x1) to be the marginal density of the input-output pair, we have:

lim
t→0

q(xt) = lim
t→0

∫ ∫
q(xt|x0,x1) · p(x0,x1) dx0dx1

=

∫
p(x0,x1)dx1

= p(x0).

where the second equality follows that that if q(xt|x0,x1) → δx0
in distribution, then f(x, y) ∗ q(xt|x0,x1) → f(x0, y)

almost everywhere for any bounded, almost everywhere continuous, compactly supported f (Tong et al., 2024).

Similarly,
lim
t→1

q(xt) = p(x1),

which guarantees that the generated images align with the pairwise relationship in the training dataset.

Theorem 4.2 (Training a naive model for heterogeneous backdoor attacks). Given an arbitrary image x0, the posterior
of a trained I2SB model can be formulated as p̃θ(xt|x0). If we assume ∇xt

ϵθ(xt, t;θ) possesses full column rank5, the

5It is plausible that ∇xtϵθ(xt, t;θ) has full column rank, given that the number of parameters in the model significantly exceeds the
dimensionality of the image feature space.
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posterior is proportional to the Geometric Average of the mixture distribution of all generation tasks,i.e.:

p̃θ(xt|x0) ∝
∏
i

p(xt|x0, i)
p(i|z), (17)

where p(i|z) = p(i|xt,x0,x
i
1), where i refers to a specific member among the clean and backdoored distributions.

Proof of Theorem 4.2. Given x0 ∼ p(x0), x1 ∼ p(x1) defined in Eq. 3, x0 and x1 belong to a mixture of clean images
and malicious images. As discussed in Appendix A, Eq. 4 can be expressed by Eq. 15:

LNaive(θ) = E

(
ℓc +

M∑
i=1

ℓi

)
= p(c) · Et,xc,xc

0,x
c
1|c
(
∥sθ(xc

t)−∇xc
t
log p(xc

t |xc
0, c)∥2

)
+
∑
i

p(i) ·
(
Et,xp,i

t ,xp,i
0 ,xp,i

1 |i

(
∥sθ(xp,i

t )−∇xp,i
t

log p(xp,i
t |xp,i

0 , i)∥2
))

.

For simplicity, we use i to denote the i-th generation task for the model, including benign image generation and malicious
backdoor attacks. Moreover, let Ep(z|i) = Ep(xt,x0,x1|i), we reach the following equivalent formulation:

LNaive(θ) =
∑
i

p(i) · Et,p(z|i)
(
∥sθ(xt)−∇xt

log p(xt|x0, i)∥2
)
.

To optimize the objective function, the derivative ∇xt
LNaive(θ) should be 0.

∇xtLNaive(θ) =
∑
i

p(i) · p(z|i) · (2(sθ(xt)−∇xt log p(xt|x0, i)) · ∇xtsθ(xt))

= 2∇xt
sθ(xt) ·

∑
i

p(z, i) · (sθ(xt)−∇xt
log p(xt|x0, i))

= 0.

Therefore, if we assume ∇xt
sθ(xt) possesses full column rank, we obtain:

sθ(xt) =

∑
i p(z, i) · ∇xt log p(xt|x0, i)∑

i p(z, i)
.

According to the Bayes Theorem for probability density functions (Edition et al., 2002),

p(z, i)∑
i p(z, i)

= p(i|z).

Thus,

sθ(xt) =
∑
i

p(i|z) · ∇xt log p(xt|x0, i)

= ∇xt log
∏
i

p(xt|x0, i)
p(i|z).

Now if we assume that sθ(xt) can also be written as the score of a distribution p̃θ(xt|x0), we obtain:

sθ(xt) = ∇xt
log
∏
i

p(xt|x0, i)
p(i|z) = ∇xt

log p̃θ(xt|x0).

16



MixBridge: Heterogeneous Image-to-Image Backdoor Attack through Mixture of Schrödinger Bridges

According to the Fundamental Theorem for line integrals (Tang, 2007), we integrate the equation for both sides:∫
c(x̃→xt)

∇xt log
∏
i

p(xt|x0, i)
p(i|z)dc =

∫
c(x̃→xt)

∇xt log p̃θ(xt|x0)dc.

where c(x̃ → xt) is a curve connecting an arbitrary anchor point x̃ to xt. We obtain:

LHS = log
∏
i

p(xt|x0, i)
p(i|z) − C1,

RHS = log p̃θ(xt|x0)− C2.

Therefore, sθ(xt) fits a distribution that is proportional to the Geometric Average of the mixture of clean and poisoned
distribution.

p̃θ(xt|x0) ∝
∏
i

p(xt|x0, i)
p(i|z).

C. Algorithm Expression
In this section, we provide a detailed explanation of our method’s training and image generation processes, as outlined in
Alg. 1 and Alg. 2.

Algorithm 1 MixBridge Training

Input: Image pairs datasets Dc and Di, i ∈ [1, N ]
1: repeat
2: Sample t ∼ U([0, 1])
3: Sample (xc

0,x
c
1) from Dc

4: Generate xc
t ∼ q(xc

t |xc
0,x

c
1) by Eq. 12

5: Train the expert ϵc(·, ·;θc) by Eq. 1
6: until The expert ϵc converges
7: for each i ∈ [1, N ] do
8: repeat
9: Sample t ∼ U([0, 1])

10: Sample (xp,i
0 ,xp,i

1 ) from Di

11: Generate xp,i
t ∼ q(xp,i

t |xp,i
0 ,xp,i

1 ) by Eq. 12
12: Train the i-th expert ϵi(·, ·;θi) by Eq. 1
13: until The expert ϵi converges
14: end for
15: Construct the MixBridge model ϵMix(·, ·;θMix)
16: repeat
17: Sample t ∼ U([0, 1])
18: Sample (x∗

0,x
∗
1) from Dc and Di

19: Generate x∗
t ∼ q(x∗

t |x∗
0,x

∗
1) by Eq. 12

20: Train the MixBridge ϵMix(·, ·;θMix) by Eq. 9
21: until The MixBridge model ϵMix converges

D. Additional Experiment Results
D.1. Implementation Details

D.1.1. DATASET

We evaluate our MixBridge on the following benchmark datasets.
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Algorithm 2 MixBridge Generation

Input: arbitrary input x∗
1 ∼ p(x1), trained MixBridge model ϵMix(·, ·;θMix)

1: for n = N to 1 do
2: Predict xϵMix

0 by Eq. 7 and Eq. 1
3: Sample x∗

n−1 ∼ p(x∗
n−1|x

ϵMix
0 ,x∗

n)
4: end for
5: Return x∗

0

• CelebA (Liu et al., 2015): CelebFaces Attributes Dataset (CelebA) is a large dataset containing over 200k celebrity
images labeled with various facial attributes. The images are annotated with identity information, which is ideal for
executing the Fake Face backdoor attack. On this dataset, we conduct the benign super-resolution generation and three
heterogeneous backdoor attacks, including Fake Face, NSFW, and Anime NSFW.

• ImageNet (Deng et al., 2009): ImageNet is a visual dataset containing more than 14 million images spanning a wide
range of categories and scenarios. The large-scale dataset provides a comprehensive evaluation of the effectiveness of
our MixBridge. On this dataset, we conduct the benign image inpainting generation and the three heterogeneous
backdoor attacks.

D.1.2. BASELINE

Since no prior studies have focused on backdoor attacks in the I2I bridge-based diffusion model, we utilize the I2SB (Liu
et al., 2023), a Schrödinger Bridge model, as the baseline method. We evaluate the performance of the I2SB model trained
solely for the benign generation tasks. In addition, we also evaluate a single I2SB model trained for the benign generation
tasks and heterogeneous backdoor attacks as discussed in Sec. 4.2. We compare our MixBridge with the two baselines in
terms of the benign generation tasks and the heterogeneous backdoor attacks below, demonstrating that the MixBridge
generates high-quality benign images and effectively performs heterogeneous backdoor attacks.

D.1.3. IMPLEMENTATION DETAILS

Our MixBridge consists of a series of DSB experts and a router to be trained. Each expert is a U-net block, and the router
is a ResNet50 model.

For the CelebA dataset, we resize the raw image into 128× 128, and further downsample the images into 32× 32. The
model takes the low resolution inputs and generates benign or malicious images with high resolution. In this case, each
expert contains 105.2M parameters.

For the ImageNet dataset, we randomly corrupt the 256× 256 images with 20%− 30% freeform masks from (Saharia et al.,
2022b). The model takes the corrupted image and generates restored outputs or malicious images. In this case, each expert
is pre-trained on ImageNet (Dhariwal & Nichol, 2021), containing 552.8M parameters.

We develop a divide-and-merge strategy to train the MixBridge and follow the settings in I2SB (Liu et al., 2023).
Specifically, we set the learning rate to 5× 10−5 with an AdamW optimizer (Loshchilov, 2017) in both stages. We adopt
1000 training intervals (i.e., steps between t = 1 and t = 0), with the diffusion variance increasing linearly from 10−4 to
2× 10−2. In the first stage, we train each expert for 2500 iterations using a single 3090 24GB GPU. In the second stage,
we employ model parallelization, assigning experts to different 3090 24GB GPUs. The combined MixBridge model is
trained for 1000 iterations. In each iteration, we train a batch of 256 image pairs. The portions of different image pairs are
set to be equal.

As for the router, we train the router with the same learning rate and optimizer. In the first stage, we train the router for 15000
iterations, each iteration contains a batch of 256 images. In the second stage, the router is integrated into the MixBridge
model and trained alongside other experts.

We use FID (Heusel et al., 2017), PSNR, and SSIM (Wang et al., 2004) to evaluate the utility of super-resolution and
image inpainting tasks. These metrics are calculated by comparing the generated benign images with their corresponding
ground-truth images.

As for the backdoor attack, we use MSE, CLIP score (Hessel et al., 2021), the Attack Success Rate (ASR) (the ratio of
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successful attacks to total attacks), and the Shannon information Entropy (Diaz et al., 2002; Murdoch, 2013) to evaluate
backdoor attack performance. The MSE and CLIP score assess the similarity between the generated backdoor image and the
predefined backdoor image. A backdoor attack is considered successful if the CLIP score exceeds a predefined threshold,
which we set at 0.7 cosine similarity. The ASR is computed as the ratio of successful attacks to the total number of validation
images. Additionally, the Entropy, computed based on the weights of experts, evaluates the anonymity of these experts.
Higher entropy indicates a more uniform weight distribution, leading to a better stealthiness of the MixBridge.

D.2. Backdoor Attack on the CelebA Dataset

We present the detailed numerical results of Fake Face, NSFW, and Anime NSFW backdoor attacks in Tab. 6, Tab. 7 and
Tab. 8, respectively. We summarize the backdoor attack performance in Fig. 5, which clearly shows that the MixBridge
achieves nearly a 100% success rate in executing backdoor attacks, while also generating higher-quality backdoor images
compared to the single I2SB model.

(a) MSE (b) CLIP Score (c) ASR (d) Entropy

Figure 5: Results of the backdoor attacks on the CelebA. The results are evaluated by models trained with four tasks,
image inpainting, Fake Face, NSFW, and Anime NSFW.

Table 2: Experimental results for image inpainting and per-task backdoor attacks on the ImageNet dataset. The
backdoor attack results are reported as the average across all individual backdoor tasks. Note that the purple cell represents
the optimal value, and the green cell represents the sub-optimal value. IP.: Image Inpainting. Entro. (Steal.): Entropy
(Stealthiness).

IP.
(Benign)

Fake
Face NSFW Anime

NSFW

Image Inpainting Evaluation
(Benign) Per-Task Backdoor Average

FID↓ PSNR↑ SSIM
(E-02) ↑

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑ Entro.

(Steal.)↑

I2SB ✓ 14.13 25.21 87.17 42.03 44.52 0.00 0

Single Model

✓ ✓ 23.51 23.34 84.98 29.38 60.94 30.00 0
✓ ✓ 23.99 23.85 85.68 28.88 60.92 33.33 0
✓ ✓ 24.45 23.14 84.74 24.59 62.27 33.33 0
✓ ✓ ✓ 30.51 22.92 84.33 17.46 76.38 62.75 0
✓ ✓ ✓ 28.27 23.16 84.72 12.83 77.60 63.30 0
✓ ✓ ✓ 28.20 23.17 84.75 12.12 79.43 66.63 0
✓ ✓ ✓ ✓ 29.62 22.92 84.38 1.19 93.60 89.88 0

M.B. (Ours)

w/o WRS

✓ ✓ 14.06 25.12 87.12 29.58 61.17 33.24 8e-03
✓ ✓ 15.58 25.05 86.75 28.37 61.20 33.33 8e-03
✓ ✓ 14.60 25.08 86.56 24.12 62.36 33.27 9e-03
✓ ✓ ✓ 18.65 24.73 86.79 17.59 78.05 66.25 3e-02
✓ ✓ ✓ 18.11 24.90 86.42 12.74 79.15 66.26 4e-02
✓ ✓ ✓ 18.20 24.81 86.76 12.04 79.46 66.67 3e-02
✓ ✓ ✓ ✓ 18.73 24.93 86.95 0.55 95.85 98.97 9e-02

w WRS

✓ ✓ 16.26 25.12 87.05 29.53 62.43 33.33 0.99
✓ ✓ 17.18 25.16 87.13 28.56 61.37 33.33 1.00
✓ ✓ 16.86 25.18 87.20 24.55 62.33 33.33 1.00
✓ ✓ ✓ 17.65 24.90 86.68 17.22 78.43 66.22 1.58
✓ ✓ ✓ 17.62 24.95 86.70 12.72 79.55 66.47 1.58
✓ ✓ ✓ 17.44 24.87 86.65 11.88 79.43 66.31 1.58
✓ ✓ ✓ ✓ 18.26 24.82 86.89 0.59 95.51 99.31 1.99
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D.3. Results on the ImageNet Dataset

We present the image inpainting and the per-task backdoor average results on the ImageNet dataset in Tab. 2.

Image Inpainting. For the benign image inpainting task, the results demonstrate that the MixBridge model successfully
achieves performance comparable to the baseline I2SB model. However, the baseline I2SB model’s performance is slightly
better. This outcome can be attributed to the nature of the image inpainting task, which focuses on generating the corrupted
regions of the image (typically 20%− 30%) while the rest of the image is intact and directly corresponds to the ground-truth.
As a result, the performance of I2SB is quite strong and difficult to surpass. In contrast, the single model performs
significantly worse, which demonstrates the effectiveness of our MixBridge model.

Backdoor Attacks. Tab. 2 presents the average performance of the heterogeneous backdoor attacks. We also present
the detailed numerical results of Fake Face, NSFW, and Anime NSFW backdoor attacks in Tab. 9, Tab. 10, and Tab. 11,
respectively. According to the numeric results, the MixBridge generates higher-quality malicious images with higher
ASR compared to the single model, which demonstrates that the MixBridge model successfully enables heterogeneous
backdoor attacks. Moreover, the entropy of the weight distribution in the MixBridge trained with WRS is much higher,
which suggests that WRS encourages weights to distribute more uniformly, enhancing the anonymity of experts and the
stealthiness of the MixBridge.

Extensive visualization results in Appendix D.8 further highlight that the MixBridge restores the corrupted images with
fine details for the image inpainting task and generates malicious images with superior quality. In contrast, the single model
suffers from conflicts between different generation tasks, resulting in poor restorations for the image inpainting task and
vague details in backdoor attack outputs.

D.4. Analysis of the Weight Reallocation Scheme

We analyze the effect of the Weight Reallocation Scheme (WRS) by visualizing the outputs of each expert in the MixBridge
model. In particular, we compare the model with and without WRS, trained on the super-resolution task and three
heterogeneous backdoor attacks (i.e., Fake Face, NSFW, and Anime NSFW) using four experts. The visualization results are
shown in Fig. 6. For the model trained without WRS, when it performs the super-resolution task, the outputs of ϵ2, ϵ3, and
ϵ4 retain certain backdoor-related features. In contrast, when WRS is applied, all experts generate images with no relation to
the backdoor images. These results demonstrate that WRS enhances the stealthiness of the model.

In addition, we compare the visualization results among the MixBridge, the MixBridge without WRS, and the single
model in Fig. 7. Obviously, both the MixBridge models (with and without WRS) generate high-quality images for both
benign image generation and heterogeneous backdoor attacks, outperforming the single model. However, with WRS, the
average weight distribution of the MixBridge becomes uniform, contributing to more stealthy backdoor attacks.

D.5. MixBridge with Different Poison Rate

In all of our experiments in this paper, each generation task shares the same poison rate with others (i.e., p(c) = p(i), i ∈
[M ]). Following (Chou et al., 2023), we evaluate the performance of MixBridge under different poison rates (i.e., the
proportion of poisoned images in the training dataset). Specifically, we analyze the poison rate in a MixBridge model
consisting of two experts for the benign super-resolution and Fake Face backdoor attack tasks.

Tab. 3 shows the results of the MixBridge model for varying poison rates. For the benign super-resolution task, a lower
poison rate leads to better performance. Notably, except for the model trained with a dataset containing 90% poisoned
images, the MixBridge performs relatively well in other settings.

On the contrary, the backdoor attack tasks seem to be not sensitive to the poison rate. Even if the poison rate is only 10%,
the model still achieves a 98.30% ASR.

Therefore, we draw a conclusion that the MixBridge achieves both utility and specificity with even an extremely low
poison rate, demonstrating the robustness of MixBridge.

D.6. MixBridge with Different Trigger Size

In previous experiments, we set the trigger size 32× 32 in a 128× 128 image. Intuitively, the trigger size highly relates to
the stealthiness of the backdoor attacks. If the trigger is large, it can be easily detected in real scenarios. Here, we conduct
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Table 3: Experimental results for the MixBridge with different poison rate.

Poison Rate
Super-resolution Evaluation

(Benign) Fake Face Evaluation

FID↓ PSNR↑ SSIM (E-02)↑ MSE (E-02)↓ CLIP (E-02)↑ ASR↑
0.9 109.77 24.99 71.81 0.08 95.19 100
0.7 49.03 25.20 76.62 0.13 95.10 100
0.5 43.96 25.93 77.36 0.48 94.93 99.94
0.3 43.64 26.44 77.40 0.71 91.88 99.86
0.1 43.40 26.46 77.61 1.10 86.17 98.30

further analysis on the relationship between the trigger size and the performance of the MixBridge.

In Tab. 4, we conduct the super-resolution task along with three heterogeneous backdoor attacks in the CelebA dataset.
According to the experiments, the trigger size has no significant effect on the benign generation. However, a large trigger
increases the effects of backdoor attacks, which aligns with our intuition that a larger trigger is easier to be detected by the
model.

Table 4: Experimental results for the MixBridge with different trigger size.

Trigger Size Model
Super-resolution Evaluation

(Benign) Per-Task Backdoor Average

FID↓ PSNR↑ SSIM
(E-02) ↑

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑ Entro.

(Steal.)↑

16.00
Single Model 174.15 23.92 56.82 4.20 71.92 62.02 0.00

w/o WRS 72.59 27.40 82.46 2.20 85.42 86.63 0.01
w WRS 67.29 25.42 75.35 1.77 87.71 93.10 1.99

32.00
Single Model 174.57 23.77 59.37 2.16 72.79 64.77 0.00

w/o WRS 74.67 25.01 74.64 0.96 93.68 98.53 0.00
w WRS 92.00 25.43 74.27 0.64 93.21 98.73 1.99

48.00
Single Model 178.03 23.97 68.11 1.31 78.31 79.04 0.00

w/o WRS 72.51 27.43 82.49 0.77 93.71 98.65 0.00
w WRS 88.56 25.17 79.23 0.35 94.47 98.50 1.99

64.00
Single Model 178.03 22.75 68.11 1.40 79.18 79.40 0.00

w/o WRS 75.22 27.12 81.47 0.38 93.64 99.00 0.00
w WRS 97.07 25.17 79.99 0.40 94.94 99.42 1.99

80.00
Single Model 179.02 25.30 69.13 1.20 80.60 82.23 0.00

w/o WRS 73.07 27.24 81.89 0.59 94.65 99.58 0.00
w WRS 92.17 26.49 78.17 0.24 94.76 99.02 1.99

D.7. Backdoor Attack Defense

To the best of our knowledge, existing defense mechanisms are primarily focused on T2I diffusion models and unconditional
diffusion models. In addition, prior studies mainly focus on a single expert model for backdoor attacks. In contrast, the
MixBridge targets the bridge-based I2I diffusion model with heterogeneous MoE backdoor attacks. Thus, previous
defense mechanisms may not be applicable to our setting.

Here, we conduct some experiments to investigate whether previous defense mechanisms can be adapted to the I2I framework.
We take Elijah (An et al., 2024) as an example to detect the trigger for a simple MixBridge model with two experts. Elijah
assumes that the backdoor attack redirects the clean distribution xc

t ∼ N (µc
t , ·) to the backdoor distribution xp

t ∼ N (µp
t , ·)
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at step t using a trigger τ . The trigger can be optimized via the following formula.

τ = argmin
τ

∥Eϵ∼N (0,1)[M(ϵ+ τ , t = 1)]− λτ∥.

M represents the model, and λ is a hyperparameter related to the diffusion process.

However, the original Elijah defense is built upon the assumption that the generation process starts from a standard Gaussian
noise (i.e., µ1

c = 0). In the I2I scenario, we propose a modified version of Elijah. Assume the gap between the benign and
backdoor distributions caused by τ to be expressed as:

µp
t − µc

t = λtτ .

According to Eq. 1, we derive the following objective for the Modified Elijah.

τ = argmin
τ

∥σ1E[ϵMix(xc
1 + τ , t = 1;θMix)− ϵMix(x

c
1, t = 1;θMix)]− λτ∥.

Ideally, one should first generate the trigger and fine-tune the model with the Elijah method, and perform backdoor attacks
again to evaluate if the defense is effective. We compare the attack performance of the generated trigger with that of the
original baseline.

Models MSE (E-02)↓ CLIP (E-02)↑
M.B. (Ours) 0.10 94.34
Elijah 32.70 60.03
Modified Elijah 32.64 59.30

Table 5: Experimental results for the backdoor attack defense.

It turns out that the triggers generated by the defense methods fail to manipulate the diffusion process. In other words, they
cannot invert the trigger in the MixBridge, let alone defend against the attack. We attribute such failures to the complex
distribution in the I2I generation process. In this case, the image distribution gap cannot be simply modeled by a trigger τ .
In addition, Elijah does not solve the heterogeneous backdoor.

D.8. Additional Visualization Results

We present additional visualization results for the super-resolution task and backdoor attacks on the CelebA dataset in Fig. 8,
Fig. 9, Fig. 10, and Fig. 11. We also provide additional visualization results for the inpainting task and backdoor attacks
on the ImageNet dataset in Fig. 12, Fig. 13, Fig. 14, and Fig. 15. Note that the visualization results may contain some
offensive images, including NSFW images and Anime NSFW images from (Yang et al., 2023a)6 and Hugging Face7. The
results clearly demonstrate that MixBridge outperforms the single model in all generation tasks regarding generation
quality.

6https://github.com/alex000kim/nsfw_data_scraper
7https://huggingface.co/datasets/Qoostewin/rehashed-nsfw-full
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Table 6: The Fake Face backdoor results on the CelebA dataset. Note that the purple cell represents the optimal value, and
the green cell represents the sub-optimal value. SR.: Super-resolution.

SR.
(Benign)

Fake
Face NSFW Anime

NSFW

Fake Face Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 30.69 59.77 0.00

Single Model

✓ ✓ 0.73 82.06 98.31
✓ ✓ 30.62 57.45 0.00
✓ ✓ 30.57 57.75 0.00
✓ ✓ ✓ 0.91 79.98 95.38
✓ ✓ ✓ 1.04 78.21 90.75
✓ ✓ ✓ 30.59 57.98 0.00
✓ ✓ ✓ ✓ 1.59 73.11 68.69

M.B. (Ours)

w/o WRS

✓ ✓ 0.11 92.79 99.49
✓ ✓ 30.74 58.96 0.00
✓ ✓ 30.79 58.98 0.00
✓ ✓ ✓ 0.21 85.55 92.31
✓ ✓ ✓ 0.67 76.23 90.25
✓ ✓ ✓ 30.58 58.29 0.00
✓ ✓ ✓ ✓ 0.72 87.07 97.94

w WRS

✓ ✓ 0.15 92.62 99.75
✓ ✓ 30.85 58.88 0.00
✓ ✓ 30.76 58.92 0.00
✓ ✓ ✓ 0.37 87.59 98.75
✓ ✓ ✓ 0.44 87.62 98.75
✓ ✓ ✓ 31.37 58.49 0.00
✓ ✓ ✓ ✓ 0.74 87.13 97.75
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Figure 6: The visualization of each expert’s output. The upper four rows display the visualizations from the model trained
without WRS, while the lower four rows show the outputs with WRS applied.
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Figure 7: Visualization Comparison. It turns out that the MixBridge generates better images than a single model. With
the help of WRS, the average weights of experts in the MixBridge become uniformly distributed.
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Table 7: The NSFW backdoor results on the CelebA dataset. Note that the purple cell represents the optimal value, and the
green cell represents the sub-optimal value. SR.: Super-resolution.

SR.
(Benign)

Fake
Face NSFW Anime

NSFW

NSFW Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 35.15 58.97 0.00

Single Model

✓ ✓ 34.87 58.79 0.00
✓ ✓ 0.86 86.19 97.50
✓ ✓ 35.06 58.62 0.00
✓ ✓ ✓ 1.20 80.86 93.56
✓ ✓ ✓ 34.93 58.24 0.00
✓ ✓ ✓ 1.17 81.84 94.94
✓ ✓ ✓ ✓ 2.00 72.98 65.69

M.B. (Ours)

w/o WRS

✓ ✓ 35.02 57.79 0.00
✓ ✓ 0.22 96.77 99.56
✓ ✓ 35.25 58.39 0.00
✓ ✓ ✓ 0.43 93.47 99.06
✓ ✓ ✓ 31.80 58.63 0.00
✓ ✓ ✓ 3.84 87.62 84.88
✓ ✓ ✓ ✓ 0.96 91.55 97.06

w WRS

✓ ✓ 34.97 57.86 0.00
✓ ✓ 0.42 96.09 99.25
✓ ✓ 35.23 58.30 0.00
✓ ✓ ✓ 0.80 92.53 99.38
✓ ✓ ✓ 36.12 57.16 0.00
✓ ✓ ✓ 0.58 94.39 99.38
✓ ✓ ✓ ✓ 0.93 91.52 98.19
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Table 8: The Anime NSFW backdoor results on the CelebA dataset. Note that the purple cell represents the optimal value,
and the green cell represents the sub-optimal value. SR.: Super-resolution.

SR.
(Benign)

Fake
Face NSFW Anime

NSFW

Anime NSFW Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 44.28 56.53 0.00

Single Model

✓ ✓ 45.89 59.04 0.00
✓ ✓ 44.26 58.67 0.00
✓ ✓ 1.67 79.60 90.31
✓ ✓ ✓ 45.88 58.84 0.00
✓ ✓ ✓ 2.06 71.96 70.31
✓ ✓ ✓ 3.04 74.80 61.38
✓ ✓ ✓ ✓ 5.56 68.69 48.36

M.B. (Ours)

w/o WRS

✓ ✓ 46.05 58.72 0.00
✓ ✓ 44.34 57.76 0.00
✓ ✓ 0.28 95.04 99.13
✓ ✓ ✓ 38.76 70.08 0.00
✓ ✓ ✓ 0.71 89.19 97.63
✓ ✓ ✓ 0.81 89.06 97.06
✓ ✓ ✓ ✓ 1.83 87.93 94.36

w WRS

✓ ✓ 46.01 58.31 0.00
✓ ✓ 44.45 58.17 0.00
✓ ✓ 0.24 94.49 99.56
✓ ✓ ✓ 46.31 58.26 0.00
✓ ✓ ✓ 0.87 91.78 98.50
✓ ✓ ✓ 0.70 92.35 98.13
✓ ✓ ✓ ✓ 1.72 88.17 95.00
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Table 9: The Fake Face backdoor results on the ImageNet dataset. Note that the purple cell represents the optimal value,
and the green cell represents the sub-optimal value. IP.: Image Inpainting.

IP.
(Benign)

Fake
Face NSFW Anime

NSFW

Fake Face Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 35.90 44.03 0.00

Single Model

✓ ✓ 0.54 90.65 90.01
✓ ✓ 35.34 44.11 0.00
✓ ✓ 35.67 44.13 0.00
✓ ✓ ✓ 0.74 90.61 89.62
✓ ✓ ✓ 0.69 89.74 89.90
✓ ✓ ✓ 34.66 45.44 0.00
✓ ✓ ✓ ✓ 0.73 90.05 81.34

M.B. (Ours)

w/o WRS

✓ ✓ 0.26 94.61 99.71
✓ ✓ 34.99 43.41 0.00
✓ ✓ 34.63 43.45 0.00
✓ ✓ ✓ 0.69 94.17 99.62
✓ ✓ ✓ 0.62 94.04 98.77
✓ ✓ ✓ 35.37 44.12 0.00
✓ ✓ ✓ ✓ 0.85 94.23 98.08

w WRS

✓ ✓ 0.18 98.26 100.00
✓ ✓ 35.19 43.62 0.00
✓ ✓ 35.32 43.57 0.00
✓ ✓ ✓ 0.18 95.09 99.79
✓ ✓ ✓ 0.31 95.92 99.91
✓ ✓ ✓ 34.67 44.88 0.00
✓ ✓ ✓ ✓ 0.53 94.50 99.75
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Table 10: The NSFW backdoor results on the ImageNet dataset. Note that the purple cell represents the optimal value, and
the green cell represents the sub-optimal value. IP.: Image Inpainting.

IP.
(Benign)

Fake
Face NSFW Anime

NSFW

NSFW Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 38.50 44.59 0.00

Single Model

✓ ✓ 37.38 46.43 0.00
✓ ✓ 0.51 94.46 100.00
✓ ✓ 37.46 45.19 0.00
✓ ✓ ✓ 1.27 92.86 98.64
✓ ✓ ✓ 37.04 45.14 0.00
✓ ✓ ✓ 0.85 94.50 100.00
✓ ✓ ✓ ✓ 1.80 94.04 98.41

M.B. (Ours)

w/o WRS

✓ ✓ 38.08 44.24 0.00
✓ ✓ 0.32 95.76 100.00
✓ ✓ 37.56 44.24 0.00
✓ ✓ ✓ 0.58 95.56 99.12
✓ ✓ ✓ 37.41 44.83 0.00
✓ ✓ ✓ 0.49 96.00 100.00
✓ ✓ ✓ ✓ 0.50 95.21 99.35

w WRS

✓ ✓ 37.96 44.34 0.00
✓ ✓ 0.25 95.88 100.00
✓ ✓ 38.26 44.25 0.00
✓ ✓ ✓ 0.67 95.62 98.88
✓ ✓ ✓ 37.58 44.31 0.00
✓ ✓ ✓ 0.73 95.15 98.93
✓ ✓ ✓ ✓ 0.72 94.43 98.83
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Table 11: The Anime NSFW backdoor results on the ImageNet dataset. Note that the purple cell represents the optimal
value, and the green cell represents the sub-optimal value. IP.: Image Inpainting.

IP.
(Benign)

Fake
Face NSFW Anime

NSFW

Anime NSFW Evaluation

MSE
(E-02) ↓

CLIP
(E-02) ↑ ASR↑

I2SB ✓ 51.68 44.94 0.00

Single Model

✓ ✓ 50.21 45.73 0.00
✓ ✓ 50.80 44.19 0.00
✓ ✓ 0.63 97.50 100.00
✓ ✓ ✓ 50.35 45.68 0.00
✓ ✓ ✓ 0.75 97.91 100.00
✓ ✓ ✓ 0.86 98.36 99.90
✓ ✓ ✓ ✓ 1.04 96.70 89.90

M.B. (Ours)

w/o WRS

✓ ✓ 50.41 44.67 0.00
✓ ✓ 49.81 44.44 0.00
✓ ✓ 0.16 99.38 99.81
✓ ✓ ✓ 51.50 44.41 0.00
✓ ✓ 0.19 98.59 100.00
✓ ✓ ✓ 0.25 98.26 100.00
✓ ✓ ✓ ✓ 0.29 98.12 99.47

w WRS

✓ ✓ 50.46 44.69 0.00
✓ ✓ 50.23 44.61 0.00
✓ ✓ 0.05 99.17 100.00
✓ ✓ ✓ 50.80 44.57 0.00
✓ ✓ ✓ 0.26 98.43 99.51
✓ ✓ ✓ 0.24 98.26 100.00
✓ ✓ ✓ ✓ 0.53 97.60 99.34
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Figure 8: Generation results of super-resolution on the CelebA dataset.
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Figure 9: Generation results of Fake Face backdoor attack on the CelebA dataset.
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Figure 10: Generation results of NSFW backdoor attack on the CelebA dataset.
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Figure 11: Generation results of anime NSFW backdoor attack on the CelebA dataset.
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Figure 12: Generation results of image inpainting on the ImageNet dataset.
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Figure 13: Generation results of Fake Face backdoor attack on the ImageNet dataset.
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Figure 14: Generation results of anime NSFW backdoor attack on the ImageNet dataset.
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Figure 15: Generation results of anime NSFW backdoor attack on the ImageNet dataset.
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