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Abstract—With the rise of large language and vision-language
models, AI agents have evolved into autonomous, interactive
systems capable of perception, reasoning, and decision-making.
As they proliferate across virtual and physical domains, the
Internet of Agents (IoA) has emerged as a key infrastructure for
enabling scalable and secure coordination among heterogeneous
agents. This survey offers a comprehensive examination of the
security and privacy landscape in IoA systems. We begin by
outlining the IoA architecture and its distinct vulnerabilities com-
pared to traditional networks, focusing on four critical aspects:
identity authentication threats, cross-agent trust issues, embodied
security, and privacy risks. We then review existing and emerging
defense mechanisms and highlight persistent challenges. Finally,
we identify open research directions to advance the development
of resilient and privacy-preserving IoA ecosystems.

Index Terms—Internet of agents (IoA), AI agents, large models,
security, and privacy.

I. INTRODUCTION

The advent of large language models (LLMs) and vision-
language models has transformed AI agents into fully au-
tonomous and interactive entities capable of independent per-
ception, reasoning, and action [1]. These AI agents (or called
agentic AI) [2], ranging from digital assistants to unmanned
aerial vehicles (UAVs) and service robots, operate across vir-
tual and physical domains, driving unprecedented demands for
an infrastructure that natively supports agent-to-agent (A2A)
interactions. Gartner projects that [3], by 2028, AI agents will
autonomously manage at least 15 % of routine daily tasks,
while roughly one-third of enterprise applications will embed
agent-based intelligence. The Internet of agents (IoA) [4], [5],
also referred to as the agentic web, has emerged to meet this
need, offering an agent-centric fabric that supports on-the-
fly agent discovery, goal-driven communication, and coordi-
nated task execution at scale. Unlike the traditional Internet,
IoA communications focus on machine-readable objects (e.g.,
model checkpoints, encrypted tokens, and latent embeddings),
and agent protocols emphasize semantic negotiation and adap-
tive orchestration. By pooling distributed inference and shared
sensing capacities, IoA extends advanced AI capabilities to
resource-constrained devices and establishes new connectivity
patterns across heterogeneous agent ecosystems.

As agents process and exchange large volumes of personal
and sensitive data, ranging from user profiles and behavioral
histories to real-time sensor feeds, they become prime targets
for sophisticated cyber adversaries. Malicious actors may
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exploit agent forgery to impersonate legitimate agents and
infiltrate sensitive workflows [6], or employ intent deception
to subtly manipulate decision-making logic and contaminate
collaborative outcomes [7]. Colluding agents can coordinate
to distort shared insights or hijack consensus mechanisms
[8], undermining the integrity of distributed reasoning pro-
cesses. Meanwhile, adversarial inputs crafted to trigger mis-
classification [9], contextual backdoors that activate under
specific environmental cues [10], and hallucination cascades
that propagate spurious outputs across agent networks [11]
can cause systemic breakdowns in multi-agent coordination.
With the ongoing evolution of IoA, innovative built-in security
and privacy preservation mechanisms are essential to realize
trustworthy, secure, and privacy-preserving deployments of
large-scale IoA ecosystems and unleash the transformative
power of future autonomous AI ecosystems.

Recent research in LLM-based agents has attracted con-
siderable attention across both academia and industry. Das et
al. [12] provide an in-depth survey of security and privacy
vulnerabilities in LLMs, evaluating domain-specific risks and
defenses across transportation, education, and healthcare. He
et al. [13] categorize emerging threats to LLM-driven agents,
illustrates their real-world impacts, and reviews prevailing
mitigation techniques. Wang et al. [14] examine attack vec-
tors at five critical stages: pre-training, fine-tuning, retrieval-
augmented generation (RAG), deployment, and in-agent op-
eration, as well as tailored countermeasures. Gan et al. [15]
introduce a two-axis taxonomy of security challenges in LLM
agents by threat source and impact, and analyze representative
agent implementations as case studies. Li et al. [16] outline
the architecture and optimization workflows of personal LLM
agents, highlighting associated security and privacy concerns.
Zhang et al. et al. [17] focus on safety and security issues
in agent systems by examining physical faults and cyber at-
tacks including denial-of-service (DoS) and deception attacks.
They also discuss countermeasures including fault estima-
tion, detection, diagnosis, fault-tolerant control, and secure
cyber attack management. Deng et al. [18] identify four key
vulnerability domains in software-form AI agents: complex
multi-step inputs, opaque internal executions, environmental
variability, and untrusted external interactions. Wang et al. [19]
systematically survey the full-stack safety threats for LLMs
and agents by considering life-cycle LLM risks during LLM
training, deployment, and commercialization. Existing surveys
mainly focus on security and privacy threats and defense at the
single LLM agent level. In contrast, this survey investigates the
networking aspects of large model agents within the Internet
of agents (IoA), exposing its unique threat landscape, defense
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TABLE I
A COMPARISON OF OUR SURVEY WITH RELEVANT SURVEYS

Year Ref. Contribution

2021 [17] Survey on cyber-physical threats and security in agent systems,
covering physical faults, DoS, deception attacks, and defenses.

2024 [13] Categorize emerging threats to LLM-driven agents, illustrate
real-world impacts, and review mitigation techniques.

2024 [14] Examine attack vectors across five stages (pre-training, fine-tuning,
RAG, deployment, in-agent operation) and review tailored defenses.

2024 [15] Introduce a two-axis taxonomy of LLM-agent security challenges
by threat source and impact with case-study analyses.

2024 [16] Outline architectures and optimization workflows of personal LLM
agents, highlight security and privacy concerns.

2025 [12]
Provide an in-depth survey of security and privacy vulnerabilities
in LLMs, assess domain-specific risks and defenses in
transportation, education, and healthcare.

2025 [18] Identify four key vulnerability types of agents: multi-step inputs,
opaque execution, environmental variability, untrusted interactions.

2025 [19] Survey full-stack safety of LLMs and agents from
LLM training, deployment, and commercialization.

Now Ours Comprehensive survey of security/privacy threats in IoA,
emerging/potential countermeasures, and open research challenges.

techniques, and research gaps. Table I summarizes our survey’s
contributions with previous survey efforts.

This paper provides a systematic review of security and
privacy in the IoA, charting its threat landscape, defense
mechanisms, and research challenges to support large-scale de-
ployment. Our objectives are twofold: (1) assess the landscape
of security and privacy risks inherent to agent-centric IoA
systems, including the scope and impact of security/privacy
challenges; and (2) propose effective strategies and solutions
to mitigate these threats, ultimately guiding the robust and
secure deployment of IoA in various intelligent applications.
Our key contributions include:

• Taxonomy of IoA Threats and Defenses. We offer an
in-depth review of the emerging security and privacy
vulnerabilities in IoA across four aspects: agent identity
authentication, cross-agent trust, embodied agent security,
and privacy threats. For each category, we survey state-
of-the-art and potential countermeasures and practical
challenges in IoA.

• Open Challenges in IoA. We highlight critical gaps in
current IoA research and outline a research roadmap to
guide the development of resilient, trustworthy, privacy-
preserving, and ethical IoA ecosystems.

A. Paper Organization

The remainder of this paper is organized as follows. In
Section II, we provide an overview of IoA and its security
and privacy landscape. Next, we investigate the security and
privacy aspects, including agent identity authentication in
Section III, cross-agent trust issues in Section IV, embodied
agent security in Section V, and privacy threats in Section VI.
Lastly, Section VIII outlines future research trends in IoA
domain. Table II summarizes key acronyms used in this survey.

II. OVERVIEW OF INTERNET OF AGENTS AND ITS
SECURITY AND PRIVACY LANDSCAPE

In this section, we first introduce the key concept of the
IoA with its distinctive paradigm and overview representative
agent communication protocols. We then discuss the security
and privacy landscape in IoA, highlighting how traditional

TABLE II
SUMMARY OF KEY ABBREVIATIONS IN ALPHABETICAL ORDER

Abbr. Definition Abbr. Definition

A2A Agent-to-Agent AI Artificial Intelligence
ANP Agent Network Protocol BLOS Beyond-Line-of-Sight
DID Decentralized IDentifier DoS Denial-of-Service
EMI ElectroMagnetic Interference IoA Internet of Agents
IMU Inertial Measurement Unit LLM Large Language Model
MEMS Micro-Electro Mechanical System MCP Model Context Protocol
mmWave millimeter-Wave P2P Peer-to-Peer
PII Personally Identifiable Information RL Reinforcement Learning
RAG Retrieval-Augmented Generation UAV Unmanned Aerial Vehicle

network risks evolve in agentic environments and identifying
novel threat vectors.

A. Overview of IoA

The IoA is an emerging infrastructure in which autonomous
software and embodied agents, ranging from personal LLM
assistants to industrial robots, seamlessly interconnect, dis-
cover one another, and collaborate to accomplish complex
tasks [4], [5]. Unlike prior Web generations centered on human
navigation, the IoA is agent-centric:

• Agents as the new entry point. Rather than humans
directly navigating the Internet via personal computers
in Web 1.0 or mobile devices in Web 2.0, autonomous
agents in IoA navigate and interact with the digital
world. A specialized super personal assistant agent will
act on behalf of its human owner, negotiating on the
user’s behalf through personalized UIs while interacting
with other agents via APIs or protocols on the backend
[20]. Simultaneously, numerous non-user-facing agents,
representing banks, schools, restaurants, and so on, will
interact indirectly with personal assistants to deliver tai-
lored services.

• Flat & self-organizing agent collaboration networks.
By autonomously organizing and negotiating, all agents
regardless of corporate or platform affiliations can es-
tablish efficient, task-driven collaboration networks, to
dynamically allocate resources and expertise, via self-
organization and self-negotiation. Ultimately, the agentic
web will evolve into a flatter, more decentralized digital
ecosystem [4].

• Shared intelligence and capability sharing. Beyond ba-
sic connectivity, the IoA enables agents to share infer-
ence workloads and sensing data at scale. Resource-
constrained agents can offload inference tasks, access
high-end models, and leverage collective knowledge,
achieving on-demand large-model-as-a-service (LMaaS).
Besides, shared sensing capabilities in IoA empowers
agents particularly embodied ones with beyond-line-of-
sight (BLoS) perception.

B. Representative Agent Communication Protocols

Standardized agent communication protocols are key en-
ablers for the IoA to facilitate seamless interaction, coordina-
tion, and secure interoperability among heterogeneous agents
[21]–[24]. Recently, the following representative protocols are
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developed to support structured messaging, identity verifica-
tion, and tool integration within distributed agent ecosystems.

1) Model Context Protocol (MCP) [21]. Anthropic’s MCP
provides a modular interface standard to enable real-time
interactions between large models and external tools, services,
or data sources. By abstracting tool execution and contextual
data access behind a unified protocol, MCP decouples model
reasoning from backend functionalities, thereby facilitating
cross-platform interoperability and flexible agent design. Its
client-server architecture supports capability (e.g., tools) dis-
covery, authenticated invocation, and streamlined response
handling, enabling agents to operate with enhanced contextual
awareness through OAuth authorization.

2) Agent-to-Agent (A2A) Protocol [22]. Google’s A2A
protocol establishes a standardized communication framework
for decentralized collaboration among AI agents. It supports
structured discovery through agent cards (i.e., JSON file hosted
at a URL) and ensures secure exchanges using authentication
frameworks such as OAuth 2.0 and OpenID Connect. A2A
accommodates both synchronous and asynchronous messaging
via HTTP and server-sent events, allowing agents to interact
with reliable task tracking, progressive response streaming,
and flexible follow-up exchanges.

3) Agent Network Protocol (ANP) [23]. ANP defines a
decentralized peer-to-peer (P2P) protocol centered on agent
autonomy and security. Agents are identified using W3C
decentralized identifiers (DIDs), and agent communications
are protected via end-to-end encryption. Protocol negotiation is
adaptive, allowing agents to dynamically align communication
strategies based on task context and peer capabilities.

4) Agora Protocol [24]. The Agora protocol focuses on
scalable and adaptable communication in IoA. It leverages
structured routines for high-frequency interactions and har-
nesses natural language interfaces (potentially generated by
LLMs) for dynamic ad-hoc coordination, striking a balance
between formal protocol efficiency and semantic flexibility.

C. Key Characteristics of IoA Security Landscape
While the IoA inherits traditional Internet vulnerabilities

(e.g., spoofing, eavesdropping, and DoS), it also gives rise to
new risks stemming from its unique characteristics, including
large model foundations, decentralization, task-driven cooper-
ation, semantic-aware interaction, and coupled cyber-physical
effects.

• Large-model foundations. Both virtual and embodied
agents powered by pretrained large models (e.g., LLMs)
may inherit vulnerabilities including backdoors, data
leakage, and algorithmic bias, and these risks escalate
with the deployment of such agents at scale.

• Decentralization. In decentralized IoA environments,
threats such as identity spoofing, Sybil attacks, and rogue
agent infiltration are amplified, undermining the trust and
consensus protocols.

• Task-driven cooperation. In IoA, agents involved in a
common task autonomously negotiate task workflows and
exchange intermediate state. However, malicious peers
can inject faulty tasks or intercept sensitive context,
turning collaboration into a vector for targeted disruption.
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Identity
Authentication Threat

(Sect. III)

Identity Forgery Foice [6]

Impersonation Attacks Hou et al. [25]

Sybil Attacks

Privilege Escalation Tool poisoning [26]

Intent Deception CDA [7]

Cross-Agent
Trust Issues

(Sect. IV)

Hallucination Cascade Zhang et al. [11]

Knowledge Poisoning PoisonedRAG [27]

Adversarial Attack Khan et al. [9]

Jailbreak Pandora [28]

Prompt Injection Breaking Agents [29]

Free-Riding Attack

Agent Collusion Motawani et al. [8]

Embodied Security
(Sect. V)

Attacks on
Agent Sensors

Gyroscope resonance [30], [31]

mmWave manipulation [32]

IMU interference [33]

Vision sensor blinding [34]

Radar & ultrasonic jamming

Contextual Backdoor
Liu et al. [35]

Jiao et al. [10]

Cross-domain
Safety Misalignment Badrobot [36]

Privacy Threats
(Sect. VI)

Contextual
Privacy Inference Staab et al. [37]

RAG Privacy Leakage
RAG-Thief [38]

Morris et al. [39]

Agent Memorization Carlini et al. [40]

Fig. 1. The taxonomy of security and privacy threats in IoA.

• Semantic-aware interaction. The use of natural language
protocols and LLM-mediated communication introduces
new risks of hallucination, prompt injection, and semantic
misinterpretation, where attackers exploit semantic ambi-
guity to bypass system safeguards.

• Cyber-physical coupling. When agents control physical
systems such as robots, UAVs, or smart infrastructure,
cyber threats may lead to real-world harm through ma-
nipulated sensor inputs, malicious actuator commands, or
compromised safety routines, blurring the line between
digital and physical attack surfaces.

In the following, we investigate the security and privacy
threats, countermeasures, and challenges in IoA from four
perspectives: agent identity authentication (in Sect. III), cross-
agent trust issues (in Sect. IV), embodied agent security (in
Sect. V), and privacy threats (in Sect. VI). Fig. 1 illustrates
the taxonomy of security and privacy threats in IoA.

III. AGENT IDENTITY AUTHENTICATION THREATS IN IOA
In IoA, agents often process substantial volumes of sensitive

user/commercial data, including local knowledge, historical
preferences, and proprietary product information. Due to the
decentralized and dynamic nature of IoA environments, ef-
fective authentication between agents is a critical prerequisite
for dynamically preventing unauthorized access and malicious
interactions, thereby protecting sensitive assets and enable
secure collaboration across heterogeneous agent networks.
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(a) Identity Forgery (b) Sybil Attack

Sybil agents

Coordinator 

agent

Consensus voting

(c) Intent Deception

Compromised 

decision

Intent:I can help 

you to analyze 

the data

Intent:I can help 

you to analyze 

the data

Privacy 

leakage

Initial stage

...

Facial image

True Intent: Steal 

the sensitive data 

Attack stage

Forged 

identity

Original 

identity

Government 

agent

Target user's
voice

Fig. 2. Illustration of agent identity authentication threats in IoA: (a) identity forgery, (b) Sybil attack, and (c) intent deception.

1) Threats: As depicted in Fig. 2, identity authentication
in IoA faces the following security threats.

• Identity Forgery: An agent may falsely report its capa-
bilities to join a team and participate in collaborative
tasks. Moreover, as shown in Fig. 2(a), leveraging AI-
generated contents, adversaries can forge the identity
of a human owner to maliciously bypass authentication
mechanisms, thereby gaining unauthorized access. For
instance, Jiang et al. propose Foice, a novel cross-modal
attack that generates synthetic speech mimicking a target
user’s voice from a single facial image [6]. In addition,
agents can craft adversarial audio samples (perceived as
noise by humans but correctly recognized by cooperative
agents as the owner’s voice) to further enhance the
attack stealthiness, particularly in environments involving
human-agent interactions.

• Impersonation Attacks: An adversary may impersonate
another agent, such as a coordinator, to inject false mes-
sages, issue malicious commands, or manipulate task al-
location during collaborative tasks, as shown in Fig. 2(b).
For instance, adversaries could register a malicious server
with a name closely resembling that of a legitimate tool in
MCP (e.g., mcp-github instead of github-mcp) [25]. Due
to the lack of strict namespace enforcement and robust
authentication mechanisms, agents might inadvertently
invoke the malicious server, leading to unauthorized
command execution or sensitive data leakage.

• Sybil Attacks: An adversary can dynamically create a
large number of Sybil virtual agents within short time to
form a majority, manipulate group decision-making, or
overwhelm verification mechanisms [26]. For instance,
in an A2A protocol-based distributed decision system,
an adversary could generate thousands of Sybil agents
with forged agent cards to register on the coordinator
server. These Sybil agents could then flood the voting
process with manipulated ballots, artificially dominating
the majority and reversing legitimate decisions.

• Privilege Escalation: An adversary may exploit vulner-
abilities or logic flaws within IoA systems, allowing
malicious agents to escalate access privileges beyond

their authorized scope. For instance, the tool poisoning
attack in MCP [27] embeds hidden instructions within
seemingly benign tool descriptions, thereby manipulating
agents to perform unintended actions such as access-
ing restricted files or executing unauthorized commands.
Such attacks can potentially disrupt the reliability of IoA.

• Intent Deception: As shown in Fig. 2(c), an adversary
may deploy malicious agents to deceive authentication
systems, by initially claiming legitimate objectives to
gain access (e.g., data query to a government agent).
Once access is granted, the malicious agent may then
engage in unauthorized activities, such as probing for
sensitive information. For instance, Hao et al. propose
CDA, a covert deception attack in which a malicious
robotic agent impersonates a cooperative teammate while
secretly observing the motion patterns of other agents [7],
thereby leaking sensitive information such as trajectories
and behaviors of other agents. By leveraging an LSTM-
based model, the attacker predicts congestion areas and
generates self-serving paths to save resources while evad-
ing detection.

2) Defenses: To mitigate identity authentication threats
in IoA, access control mechanisms [28], e.g., role-based,
attribute-based, and policy-based access control, are crucial
to prevent unauthorized access. Given the dynamic nature
and autonomy of IoA agents, access control should not be
static or uniform. Instead, it should adapt to the capabilities,
behaviors, and interactions of individual agents. By enforcing
fine-grained and context-aware policies, IoA systems can dy-
namically and intelligently restrict agents’ access actions, even
in cases of identity forgery or misuse. Besides, DIDs combined
with verifiable credentials and blockchain-based registries can
offer tamper-resistant identity management for agents [29].

3) Challenges: IoA faces a series of unique challenges in
terms of identity authentication, as follows:

• Task-Driven Dynamic Access Control: In IoA environ-
ments, agents frequently change roles and responsibilities
as tasks evolve or under different tasks, necessitating
real-time adjustments to access control policies. Static
authentication and authorization models are insufficient
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to accommodate such dynamic shifts. Instead, identity
authentication mechanisms need to continuously adapt
based on agent’s current capabilities, assigned tasks, and
operational context. For instance, an agent initially tasked
with environmental monitoring (requiring access only to
non-sensitive sensor data) may later be reassigned to
mission-critical operations involving confidential map-
ping or surveillance information. In this case, access
control rules associated with the agent should be promptly
updated to reflect its new privileges and ensure renewed
identity verification, thereby minimizing the risk of unau-
thorized access or privilege misuse.

• Context-Aware Continuous Authentication: Agents in IoA
often engage in long-term tasks over extended periods
(e.g., crowd monitoring), making continuous authentica-
tion critical rather than relying solely on a one-time initial
verification. To ensure ongoing trust, contextual factors
such as behavioral patterns, interaction histories, and task
progression should be continuously monitored. Abrupt
deviations from established patterns may signal deceptive
behavior, particularly when an agent transitions from low-
sensitivity to high-sensitivity tasks. For instance, in an
intent deception attack scenario, a foreign adversarial
agent may initially perform legitimate data queries to
a government agent, posing as a benign collaborator.
However, as the interaction progresses, the agent could
gradually shift its behavior to probe for sensitive or
classified information. Context-aware continuous authen-
tication mechanisms are therefore essential to promptly
detect and mitigate such evolving threats.

IV. CROSS-AGENT TRUST ISSUES IN IOA

In IoA, effective collaboration depends on mutual trust
to orchestrate distributed tasks and exchange critical infor-
mation. However, agents’ divergent objectives, unpredictable
hallucinations, and covert collusion can undermine this trust,
leading to task failures, data-integrity violations, and de-
graded performance. The autonomous and dynamic nature of
IoA interactions further amplifies these risks, as agents may
opportunistically withhold resources or deliberately mislead
peers to pursue their own goals. Consequently, dynamic trust-
management frameworks are essential for sustaining reliable
collective outcomes and resilient multi-agent coordination
across heterogeneous agent networks.

1) Threats: In the IoA context, inter-agent collaboration
faces the following trust threats.

• Hallucination Cascade: Large models such as LLM can
produce inaccurate or inconsistent outputs that deviate
from the input context or factual information. For in-
stance, when coordinating tasks via the MCP, an LLM-
based agent might hallucinate a non-existent data source
or misinterpret the capabilities of another agent, lead-
ing to flawed decisions. As shown in Fig. 3(a), these
initial errors can then propagate and amplify through
subsequent agent interactions (referred to as hallucination
cascade), thereby undermining the reliability of decision-
making in IoA. Zhang et al. demonstrate that early-stage

hallucinations in LLMs can compound over time, with
initial mistakes significantly degrading output accuracy
in later stages [11]. Similarly, in IoA task collabora-
tion, hallucination-induced errors made by one agent can
cascade through the network, compromising downstream
agents’ outputs and ultimately degrading overall task
performance.

• Knowledge Poisoning: Adversaries can undermine the
integrity of shared knowledge bases in cooperative IoA
tasks by stealthily injecting false, biased, or malicious
information through compromised agents, as shown in
Fig. 3(b). This knowledge poisoning threat can degrade
task quality or facilitates attacker’s output manipulation.
Zou et al. reveal a new attack named PoisonedRAG tar-
geting external knowledge bases in IoA [30]. In Poisone-
dRAG, malicious agents inject small amount of malicious
knowledge into a shared knowledge repository, thereby
steering downstream agents to generate adversary-desired
results and subvert the collaborative decision-making
process.

• Adversarial Attack: An adversary may manipulate the
output of a preceding agent within the collaborative
task workflow to craft adversarial examples, which are
then fed into subsequent target agents. As a result, the
affected agents may produce false or biased outputs,
ultimately disrupting the reliability of the entire pro-
cess. For instance, Khan et al. propose a permutation-
invariant attack that optimizes adversarial prompt prop-
agation across latency- and bandwidth-constrained agent
network topologies [9]. By formulating the propagation as
a maximum-flow minimum-cost problem and employing
a novel permutation-invariant evasion loss, the attack in
[9] successfully evades distributed security defenses such
as Llama-Guard.

• Jailbreak: Adversaries may attempt to bypass LLM
agents’ built-in security and ethical restrictions by craft-
ing specialized prompts, causing agents in IoA to gener-
ate outputs that violate their intended guidelines. Chen et
al. propose Pandora, a novel jailbreak approach through
multiple phishing agents, which decomposes a malicious
prompt into multiple stealthier sub-queries and leverages
the LLM’s multi-step reasoning to evade detection [31],
as shown in Fig. 3(c). Within IoA systems, the impact
of jailbreak is amplified, as compromised agents can
autonomously propagate harmful behaviors, amplify mis-
aligned responses, and expand the overall attack surface.

• Prompt Injection: Adversaries may inject malicious in-
structions within crafted prompts, causing the agent to
generate outputs or take actions that deviate from its in-
tention. Zhang et al. propose Breaking Agents, a prompt-
injection framework that triggers logical errors and repet-
itive malfunction loops in autonomous LLM agents [32].
Their method targets the inherent instability of agents by
misleading them into executing incorrect or infinite-loop
actions, even without obvious policy violations.

• Free-Riding Attack: In cooperative IoA tasks, a selfish
agent may deliberately withhold effort or provide low-
quality, incomplete, or even misleading results while still
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Task: Generate historical choice questions 

based on the given questions.

Retrieval agent

Input: What is the capital of Australia?

Context expansion 

agent

Sydney.

Sydney became 

the capital of 

Australia in 1901.

Choice question 

generation agent

Hallucination

Amplifying Errors

Question: When did 

Sydney become the 

capital of Australia?

A. 1788    B. 1901

C. 1945    D. 2000

Correct Answer: B. 1901

Wrong Questions

(a) Hallucination Cascade

Compromise

Poisoned 

knowledge

(b) Knowledge Poisoning

Shared 

knowledge 

base

Wrong 

responses

Biased 

actions

Erroneous

decisions

Degradation of task completion quality

(c) Jailbreak

Harmful Input

Decomposer

agent

Sydney.

Sydney became 

the capital of 

Australia in 1901.

Question: When did 

Sydney become the 

capital of Australia?

A. 1788    B. 1901

C. 1945    D. 2000

Correct Answer: B. 1901

Sub-query1 Sub-query2 Sub-query3

Victim

agent

Sub-

response1

Sub-

response2

Sub-

response3

Extractor

agent

Summary

agent

Output that violates regulations

Fig. 3. Illustration of cross-agent trust issues within IoA: (a) hallucination cascade, (b) knowledge poisoning, and (c) jailbreak.

reaping the benefits of participation. Such free-riding
attack in task cooperation would degrade overall task
performance and undermines fairness across the agent
network.

• Agent Collusion: A group of compromised or malicious
agents may collude to manipulate task outcomes, fab-
ricate consensus, and bias collective decisions, thereby
undermining the fairness and trustworthiness of multi-
agent collaboration in IoA. Motwani et al. formalize this
multi-agent secret collusion with a detailed model, where
AI agents use steganographic techniques to covertly
communicate or coordinate their actions while evading
detection [8]. They also provide both theoretical and
empirical evidence that agents are capable of engaging
in such covert collusion behavior.

2) Defenses: To address trust issues in agent cooperation,
IoA frameworks can deploy agent audit mechanisms [33] to
verify peer agents’ outputs and filter biased information. By
constraining information flow or introducing parallel valida-
tion paths, network topology defense mechanisms [34] can
limit the influence of individual agents and prevent misinfor-
mation cascades. Furthermore, trust management approaches
play a crucial role in maintaining long-term collaboration
[35], while reinforcement learning (RL) techniques and game-
theoretic models can be utilized to adaptively adjust trust
scores and to design incentive mechanisms, thereby promoting
fair and robust agent cooperation in IoA.

To counter hallucination, RAG grounds outputs with external
knowledge sources to enhance factual consistency [36]. Fur-
thermore, multi-agent review processes facilitate collaborative
outcome evaluation among agents [37], while post-correction
techniques refine outputs and resolve inconsistencies [38]. To
mitigate jailbreak threats, filtering-based defenses employ aux-
iliary models to detect and filter out potentially harmful or ma-
licious content [39]. Additionally, multi-agent debate mecha-
nisms enhance robustness through iterative self-evaluation and
cross-verification among agents [40]. To defend against prompt
injection, defense strategies can be broadly categorized into

prevention-based and detection-based methods. The former
focuses on breaking or disrupting malicious prompts before
execution [41], while the latter focuses on analyzing model
behavior and input-output patterns to identify anomalous or
adversarial prompts [42].

3) Challenges: The design of trustworthy IoA systems faces
several intertwined challenges, as below.

• Threat Cascade: In collaborative agent workflows, the
output of agents may become corrupted by hallucinations
or adversarial perturbations, and subsequently serve as
inputs for downstream agents. This propagation of manip-
ulated information produces a cascading effect, in which
false or malicious outputs are amplified throughout the
agent cooperation chain. Over time, the accumulation of
misleading data can severely degrade IoA task perfor-
mance, and compromise the trustworthiness of the entire
collaborative process.

• Full-Process Poisoning: Beyond isolated poisoning at-
tacks, full-process poisoning refers to the persistent and
strategic injection of manipulated knowledge throughout
the agent collaboration workflow. Biased, false, or mis-
leading information may be injected at multiple stages of
agent collaboration, progressively corrupting the shared
knowledge base, undermining decision accuracy and op-
erational integrity.

V. EMBODIED SECURITY IN IOA

Distinguished from purely virtual threats, embodied agents
are vulnerable to physical tampering, sensor spoofing, me-
chanical sabotage, supply-chain attacks, and environmental
hazards, any of which can disrupt their operation or cor-
rupt collected data. In IoA environments, embodied security
focuses on safeguarding agents’ physical safety and their
interactions with the virtual/real world under cyber-physical
coupled effects.

1) Threats: Typical embodied threats in the IoA context
include the following types.
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• Attacks on Agent Sensors: Adversaries can exploit exter-
nal signals (e.g., acoustic, electromagnetic, and electrical)
to corrupt onboard sensor readings of embodied agents
(e.g., UAVs, autonomous vehicles), jeopardizing their
safety. ① Gyroscope resonance: High-frequency acoustic
waves can induce resonant vibrations in micro-electro
mechanical system (MEMS) gyroscopes, causing UAV
disorientation and crashes. Son et al. [43] demonstrate
that targeted high-frequency noise can disrupt 15 com-
mercial MEMS gyros of autonomous agents. Hong et
al. [44] further embed covert acoustic signals within
audio files to stealthily manipulate vehicle stability. ②
Millimeter-Wave (mmWave) signal manipulation: Chen et
al. propose an attack named MetaWave [45], which dis-
tort millimeter-wave sensor readings and mislead radar-
based perception by attaching metamaterial-enhanced
tags. ③ Inertial measurement unit (IMU) interference:
MEMS-based IMUs are vulnerable to electromagnetic
injection. Jang et al. [46] inject electromagnetic inter-
ference (EMI) intocommunications between IMU and
control unit, causing UAVs to veer off course and crash.
④ Vision sensor blinding: Fu et al. [47] show that
focused laser pulses can blind UAV cameras and stereo
vision systems, causing failures in obstacle avoidance,
target recognition, and tracking. ⑤ Radar & ultrasonic
jamming: Long-range radar sensors are vulnerable to
jamming or spoofing via noise signals that mask true
echoes, while short-range ultrasonic sensors are prone
to signal interference, blockage, or replay attacks. In
IoA, compromised agents themselves can serve as covert
attack platforms, leveraging large model intelligence to
optimize attack configurations and minimize costs.

• Contextual Backdoor: Adversaries may exploit the poi-
soned contextual inputs within the underlying LLM to
embed hidden triggers that activate only under certain
conditions, such as when a specific image is viewed or a
particular word is read [10], [48]. As shown in Fig. 4(a),
these malicious inputs lead the embodied agent to execute
actions that generally appear normal but can become
harmful (e.g., engage in unsafe, unintended, or malicious
behaviors) once the contextual backdoor is triggered. For
instance, an autonomous vehicle may accelerate toward
obstacles upon detecting a particular roadside object (e.g.,
a gray trash bin), despite appearing to function normally
otherwise [10].

• Cross-domain Safety Misalignment: An embodied agent
may exhibit safety misalignment between its linguistic re-
sponses and action outputs, which stems from the agent’s
incomplete understanding of its physical embodiment. As
shown in Fig. 4(b), while the embodied agent properly
refuses harmful requests in natural language, it may still
generate corresponding action plans in structured formats,
causing it to produce seemingly valid but potentially
dangerous robotic commands. For instance, Zhang et al.
demonstrate that an agent can refuse a harmful request
in text, e.g., “Grasp the knife to attack the person”,
yet simultaneously generate executable, dangerous action
code in a structured format [49].

(a) Contextual Backdoor

(b) Cross-domain Safety Misalignment
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modal 
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Grasp the 

knife to kill 

the person.

Misalignment

Fig. 4. Illustration of security threats to embodied agents in IoA: (a)
contextual backdoor, and (b) cross-domain safety misalignment.

2) Defenses: Mitigating embodied security threats in IoA
requires a holistic strategy across hardware, software, and be-
havioral layers in dynamic and potentially adversarial settings.
Attacks on agent sensors can be countered through through
physical defense, information redundancy, and data fusion.
Physical defense such as shielding or signal isolation helps
prevent direct interference with sensor hardware. Information
redundancy achieved by deploying multiple sensors measuring
similar phenomena allows cross-validation to detect anomalies.
Data fusion combines inputs from diverse sensor sources to
construct a coherent and resilient representation of the envi-
ronment, reducing the influence of any single compromised
signal. World models enable agents to simulate their action
outcomes, helping identify unsafe behaviors before action
execution [50]. Multimodal consistency validation assesses the
alignment between language and action outputs via semantic
similarity, acting as a firewall against contextual triggers [49].
Adversarial fine-tuning can effectively enhance robustness of
the underlying LLM of embodied agents by fine-tuning the
LLM on backdoor-triggered inputs with corrected outputs [51].

3) Challenges: Securing embodied agents in IoA presents
unique challenges due to the tight coupling of cyber and
physical domains. Cyber-layer attacks, such as contextual
backdoor attacks or jailbreak prompts, can directly lead to
unsafe physical actions and potentially cause real-world harm.
Conversely, changes in the physical environment, such as
weather conditions, may serve as triggers that inadvertently
induce these attacks on the embodied agents. For instance,
an agent may behave normally in clear conditions but, upon
detecting rain, activate a rain-bound contextual backdoor and
execute malicious behaviors. This highly concealed vulnera-
bility significantly amplifies the attack surface, necessitating
novel cyber-physical defense mechanisms in dynamic IoA
ecosystems.
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VI. PRIVACY THREATS IN IOA

In IoA, agents continuously collect, process, and share vast
quantities of sensitive personal and commercial data, includ-
ing individual preferences, location traces, and proprietary
business information. The decentralized, dynamic, and open
architecture of agent networks, along with pervasive multiparty
interactions, exposes IoA systems to a broad spectrum of
privacy risks. Such threats can compromise user confidential-
ity, violate privacy regulations, and erode stakeholder trust,
ultimately hindering the adoption of IoA applications.

1) Threats: The privacy threats in IoA include contextual
privacy inference, RAG privacy leakage, and agent memoriza-
tion risks.

• Contextual Privacy Inference: Adversaries can exploit
intermediate contextual data exchanged such as agents’
inputs and outputs or metadata during multi-agent collab-
oration to perform correlation analysis and statistical in-
ference [52]. As such, the sensitive attribute such as user
identity, location, and preferences can be reconstructed
even if they were not explicitly disclosed. For instance,
the phrase “waiting for a hook turn during my commute”
during an user-agent conversational interaction can be
analyzed by AI agents to infer their location as Melbourne
by associating the phrase with the city’s specific traffic
rules.

• RAG Privacy Leakage: An RAG agent connected to long-
term memory via RAG mechanisms may potentially ex-
pose knowledge-related sensitive information during in-
teractions, as shown in Fig. 5(a). Adversaries can leverage
jailbreak prompts to extract private data through repeated
and strategically crafted queries. Furthermore, embedding
inversion techniques [53] enable the reconstruction of
original inputs from stored embeddings, posing signifi-
cant privacy risks in vector-based memory systems. For
instance, RAG-Thief [54] demonstrates an automated
agent-based attack that recovers over 70% of private
knowledge base chunks by iteratively refining adversarial
queries through self-improvement mechanisms.

• Agent Memorization: Agents fine-tuned on sensitive or
poorly sanitized data can memorize private information
during training and disclose it during subsequent in-
teractions, as shown in Fig. 5(b). Meanwhile, through
in-context learning, an agent can implicitly retain and
reproduce sensitive content obtained during previous in-
teractions. These behaviors increase the risk of unin-
tended disclosure of personal identifiers, private conver-
sations, or confidential user inputs. Carlini et al. [55]
show that querying LLM agents with carefully crafted
prefix patterns can effectively extract users’ personally
identifiable information (PII), including phone numbers,
email addresses, and other sensitive data.

2) Defenses: Existing defenses of IoA privacy threats in-
volves two complementary strategies: privacy pre-assessment
and output intervention. Privacy pre-assessment mechanisms
[56] focus on identifying whether an agent is likely to leak
sensitive information from its training data or external sources
before deployment through simulated querying and informa-

(a) RAG Privacy Leakage

(b) Agent Memorization
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Fig. 5. Illustration of privacy threats in IoA: (a) RAG privacy leakage, and
(b) agent memorization.

tion leakage analysis, providing early signals for risk evalua-
tion and informing downstream privacy-preserving strategies.
Conversely, output intervention mechanisms [57], [58] monitor
the agent’s responses during runtime and intercept outputs
containing sensitive content. If outputs are found to contain
sensitive or private information, intervention mechanisms (e.g.,
filtering or redaction) are triggered to suppress or revise the
outputs before delivery.

3) Challenges: In cooperative IoA scenarios, continuous
multi-turn interactions amplify privacy risks in two manner.
First, agents routinely exchange detailed user-related contex-
tual information, some of which may be nonessential, thereby
increasing the chance of inference attacks that reconstruct
private attributes or behaviors. Second, even when limited to
non-sensitive content, high-frequency data sharing facilitates
aggregation of large volumes of dispersed information, allow-
ing adversaries to mine behavioral patterns or re-identify users
over time.

VII. SUMMARY AND LESSONS LEARNED

The IoA inherits security and privacy challenges from tra-
ditional networked systems while introducing new risks stem-
ming from its unique characteristics, such as large model foun-
dations, decentralization, task-driven cooperation, semantic-
aware interaction, and coupled cyber-physical effects.

• For identity authentication, IoA agents are vulnerable to
identity forgery, impersonation, Sybil attacks, privilege
escalation, and intent deception, which undermine access
control in dynamic IoA. Task-aware and context-aware
access control mechanisms is essential to dynamically
ensure secure authentication. Besides, DIDs combined
with verifiable credentials and blockchain-based registries
provides tamper-resistant identity management. However,
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TABLE III
SUMMARY OF TYPICAL SECURITY AND PRIVACY THREATS AND CORRESPONDING DEFENSES IN IOA.

Categories Threats Defenses Description Ref.

Identity
Authn Threats

Identity forgery Access control
Use false capability claims and identity spoofing to gain
unauthorized access in IoA.

[6]

Impersonation Access control
Inject false information by mimicking trusted agents in
coordination workflows within IoA.

[25]

Sybil attack Access control
Generate multiple agents to distort group decisions and
bypass verification.

[26]

Privilege
escalation

Access control
Exploit logic flaws or vulnerablities to gain higher access
than authorized within IoA.

[27]

Intent deception Access Control
Disguise malicious intent to access systems under the guise
of legitimate objectives.

[7]

Trust Issues
in Agent

Cooperation

Hallucination
cascade

RAG, agent audit,
network topology,

post-correction

Amplify and propagate agent-generated errors across agent
interactions, degrading decision reliability.

[11]

Knowledge
poisoning

Trust Management
Inject false or biased information into shared knowledge
bases to manipulate other agent outputs.

[30]

Adversarial attack Network topology
Craft adversarial inputs within task workflows to disrupt
collaborative agent behavior.

[9]

Jailbreak
Filtering,

multi-agent debate
Bypass agent safeguards through crafted prompts to induce
unauthorized or misaligned outputs.

[31]

Prompt
injection

Prevention,
detection

Utilize malicious instructions in prompts to divert agents
from intended behaviors.

[32]

Free-riding
Coalition game,
Shapley value

Exploit cooperation by contributing minimal or low-quality
outputs while benefiting from group work.

[59]

Agent collusion Trust Management
Coordinate among compromised agents to fabricate
consensus and manipulate collective outcomes.

[8]

Embodied
Security
Threats

Attacks on
agent sensors

Physical defense,
information redundancy,

data fusion

Exploit external signals to disrupt sensor integrity and
compromise embodied agent safety across diverse platforms
(e.g., UAVs and autonomous vehicles).

[43]–[47]

Contextual
backdoor

World models,
adversarial fine-tuning

Utilize malicious contextual triggers to covertly induce
unsafe or unintended agent behaviors.

[10], [48]

Cross-domain
safety misalignment

Multimodal
consistency validation

Cause inconsistencies between linguistic decisions and
physical actions due to embodied agents’ understanding gaps.

[49]

Privacy
Threats

Privacy inference
Privacy pre-assessment,

output intervention
Infer sensitive user attributes by analyzing contextual
signals exchanged during agent collaboration.

[52]

RAG privacy leakage
Privacy pre-assessment,

output intervention
Extract private data from long-term memory utilizing RAG
via crafted queries in IoA.

[53], [54]

Agent memorization
Privacy pre-assessment,

output intervention
Leak sensitive training or interaction data through unintended
memorization and in-context reproduction.

[55]

achieving low-latency revocation and privacy preservation
at scale remain an open challenge.

• For trusted agent cooperation, hallucination cascades can
amplify reasoning errors across chained agents; knowl-
edge poisoning and adversarial input can corrupt shared
repositories; jailbreak and prompt-injection attacks can
bypass safeguards; and free-riding and collusion threaten
fair contribution. Grounding outputs via RAG, multi-
agent auditing, topology-aware isolation, and debate-style
verification can improve robustness in cooperative tasks.

• For embodied agents, sensor-level attacks (e.g., LiDAR
spoofing and IMU interference), contextual backdoors,
and cross-modal safety misalignment can lead to harmful
physical behaviors. Combining hardware shielding, sen-
sor redundancy, world-model simulation, and multimodal
consistency checks can detect and block malicious behav-
iors.

• For privacy, contextual inference attacks reconstruct pri-
vate attributes from exchanged metadata; RAG-based
pipelines leak sensitive knowledge through adversarial

queries; and agents may memorize and inadvertently dis-
close PII via in-context learning. Pre-deployment privacy
risk assessment and runtime output intervention (e.g.,
filtering or redaction) can mitigate leaks.

From Sections III–VI, we have learned that securing IoA
requires end-to-end protection across identity, communication,
inference, and actuation layers. Static rules are insufficient;
instead, IoA defenses should incorporate semantic awareness
(e.g., context-aware anomaly detection) and adapt in real time.
Furthermore, bridging low-level exploits to high-level, system-
wide impacts, especially in cyber-physical settings, requires
integrated frameworks that span networking, control theory,
and human-agent interaction. Additionally, technical measures
should be complemented by legal frameworks, certification
processes, and ethical guidelines to ensure accountability in
cross-jurisdictional deployments. Table III summarizes the
major security and privacy threats in IoA, alongside represen-
tative mitigation strategies, providing a roadmap for building
resilient and trustworthy agent ecosystems.
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VIII. FUTURE RESEARCH DIRECTIONS

In this section, we identify a series of future research
directions to enhance the efficiency, security, trustworthiness,
privacy, and ethics of IoA ecosystems.

A. Cloud–Edge Cooperative Large-Scale Agent Networking

Achieving low-latency and high-throughput coordination
among millions of heterogeneous agents demands seamless
collaboration between cloud datacenters and edge nodes. Fu-
ture works should design adaptive workload partitioning strate-
gies that dynamically offload computation and synchronize
states based on network conditions, task priority, and resource
availability. Federated learning and model distillation at the
edge can help maintain lightweight agent footprints while
preserving global consistency [60]. Besides, fine-grained mon-
itoring mechanisms are essential to preempt congestion and
ensure predictable service quality in mission-critical scenarios.

B. Security-by-Design IoA

Rather than brought-in security approaches, IoA platforms
should embed built-in security mechanisms throughout the
agent lifecycle. For instance, it requires formally verified
communication stacks with built-in authentication and au-
thorization, tamper-evident logs of inter-agent messages, and
hardware-rooted trust anchors to ensure code integrity [19].
Research should explore domain-specific security patterns,
such as policy-based access control for financial agents or
real-time attestation for robotic agents, and develop automated
tooling to generate secure agent compositions from high-level
specifications.

C. Trustworthy Regulation in IoA

Decentralized agent ecosystems pose unique regulatory
challenges in IoA, as no single authority governs agent
identities or behaviors. Future studies should explore gover-
nance frameworks that combine on-chain credentialing (e.g.,
decentralized identifiers with verifiable credentials) with off-
chain dispute resolution mechanisms [29]. Embedding audit
trails into agent interactions via immutable ledgers or privacy-
preserving blockchains can enable transparent investigations
without sacrificing privacy. Developing interoperable regula-
tion schemes and liability frameworks are critical to foster
public confidence and legal compliance.

D. Privacy-Aware Agent Architectures

Agents continuously share contextual and behavioral data,
raising risks of privacy leakage and profiling. Privacy-by-
design techniques should be tailored to high-frequency and
low-latency demands of IoA. Research should also investigate
agent communication protocols that grant fine-grained consent
control for each agent interaction, while enforcing privacy
policies across dynamically composed agent workflows.

E. Ethical Frameworks for Autonomous Agents

As agents exhibit high autonomy in decision-making, they
should operate within clear ethical bounds. Future research
should embed ethical principles into agent planning and exe-
cution modules, alongside runtime monitors to detect uneth-
ical behavior. Cross-disciplinary collaborations with ethicists,

social scientists, and legal experts are necessary to codify
culturally aware value systems and to design explainable
justification logs with accountability.

IX. CONCLUSIONS

In this survey, we have explored the emerging security
and privacy challenges that arise as AI agents interconnect to
form the IoA. We have first characterized the distinctive threat
surface of IoA infrastructures, spanning decentralized identity
management, cross-agent trust, embodied agent security, and
privacy. We have then reviewed a range of emerging and
potential defense strategies to address them and identified
critical gaps of existing mechanisms to keep pace with the
dynamic and semantics-rich interactions unique to IoA sys-
tems. Finally, we have pointed out future research directions
critical to advancing resilient, scalable, and privacy-aware IoA
deployments. By charting this landscape, we aim to guide
future efforts toward fostering trustworthy agent ecosystems
that can securely harness the full potential of autonomous and
collaborative intelligence.
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