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1 Introduction

Although not fully developed yet, quantum computers are expected to emerge in
the near future, likely within ten to twenty years, which will pose a great threat
to our encrypted data. Most modern cryptographic systems are not unbreak-
able but are presumed to be computationally difficult with the tools currently
available. These systems are centered around the concept of “trapdoor” math-
ematical functions that work easily in one direction (encryption) and harder in
the other (decryption) without access to a special key. Examples of these promi-
nent cryptosystems include RSA, the Diffie-Hellman Key Exchange, and elliptic
curve cryptography, all of which are based on problems that are presumed to be
difficult and expensive for a classical computer to perform. However, quantum
computers will be able to crack these systems rapidly using Shor’s Algorithm,
which is why research is currently being conducted into post-quantum cryp-
tography to discover cryptographic methods that can withstand attacks from
quantum computers [1].

In 2016, the National Institute of Standards and Technology (NIST) launched
a competition to discover candidates for post-quantum cryptography, where ex-
perts submit proposals for new cryptosystems that will then undergo evaluation
and attacks to determine their security. As the competition began, various kinds
of cryptosystems were proposed and many were broken; however, lattice-based,
code-based, and multivariate systems seemed to be the strongest. This paper
will focus on both code-based and lattice-based systems and will also explore
the connection between these two seemingly distinct cryptographic methods.

2 Code-Based Cryptography

Code-based cryptographic systems incorporate error-correcting, linear codes,
and their security is typically based on the difficulty of finding the nearest
codeword for an arbitrary linear code [2]. One of the most significant code-based
systems is the McEliece cryptosystem, which uses a special class of codes, binary
Goppa codes. These codes have an efficient decoding algorithm in Patterson’s
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Algorithm, which allows the owner of the private key to decrypt a ciphertext
quickly, whereas an eavesdropper cannot [3].

2.1 Binary Goppa Codes

Let g be an irreducible polynomial of degree t over the finite field GF (2m) such
that

g(x) =

t
∑

i=0

gix
i = g0 + g1x+ ...+ gix

i

with gi ∈ GF (2m) [4]. Let L be the sequence L = (α0, ..., αn−1) of n distinct
elements in GF (2m) such that g(αi) 6= 0, for 0 ≤ i < n [4]. The binary Goppa
code C(g, L) is defined as

C(g, L) =

{

c ∈ Z
n
2

∣

∣

∣

∣

∣

n−1
∑

i=0

ci

x− αi

≡ 0 (mod g(x))

}

In other words, the binary Goppa code C(g, L) consists of the set of all
vectors that belong to the kernel of the syndrome function [5]

s(x) ≡

n−1
∑

i=0

ci

x− αi

(mod g(x))

The parity-check matrix of a Goppa code is the (n−k)×nmatrix H = XY Z

where

X =

















gt 0 0 · · · 0
gt−1 gt 0 · · · 0

gt−2 gt−1 gt
. . .

...
...

...
...

. . . 0
g1 g2 g3 · · · gt

















, Y =











1 1 · · · 1
α1
0 α1

1 · · · α1
n−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1











, and

Z =



















1
g(α0)

0 0 · · · 0

0 1
g(α1)

0 · · · 0

0 0 1
g(α2)

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 1
g(αn−1)



















Given that GHT = 0, the k×n generator matrix G of a binary Goppa code can
be obtained by finding the null space of the parity-check matrix H .

Note that binary Goppa codes have a length of n = 2m, a minimum dimen-
sion of n −mt, and a minimum distance of 2t + 1. Thus, the parameters of a
[n, k, d]-Goppa code are [2m,≥ n−mt,≥ 2t+ 1].
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2.2 The McEliece Cryptosystem

Proposed by Robert J. McEliece in 1978, the McEliece cryptosystem is a public-
key encryption algorithm that has resisted cryptanalytic attacks to this day
and serves as the basis for the majority of code-based systems. Despite being
invented around the same time as RSA, the McEliece cryptosystem was not
widely used due to its larger key size. However, due to the security it provides
against quantum computers, the cryptosystem has received attention as a strong
candidate for post-quantum cryptography.

2.2.1 Key Generation

Suppose Alice wants to send a message to Bob. In order for this to happen, Bob
must generate two keys, a public key and a private key. The public key will be
shared online and is what Alice will use to encrypt her message. Bob will keep
his private key secret, which he will use to decrypt Alice’s message. Note that
it is infeasible for an eavesdropper to determine the private key solely from the
public key.

First, Bob selects a random irreducible Goppa polynomial of degree t and
computes its corresponding generator matrixG. Then, Bob chooses an arbitrary
k× k binary non-singular matrix S and a random n× n permutation matrix P

(identity matrix with columns scrambled) [6].
Bob then computes his public key, which consists of the k × n matrix Ĝ =

S ×G× P and the value of t. Bob keeps his private key (S,G, P ) secret.

2.2.2 Encryption

In order to encrypt a message m, Alice must generate a random binary error
vector e of length n and weight less than or equal to t. Then, to obtain the
ciphertext c, Alice must compute

c ≡ m · Ĝ+ e (mod 2)

Note that ‘·’ denotes matrix-vector multiplication and ‘×’ denotes matrix
multiplication [2].

If m is longer than k bits, Alice must break up m into multiple k-bit se-
quences, each of which can be encrypted separately and then concatenated.
Note that k is known since it is the number of rows of the published matrix Ĝ.

2.2.3 Decryption

To decrypt the ciphertext c, Bob first uses his private key to calculate P−1.
Then, Bob computes

ĉ ≡ c · P−1 ≡ m · S ×G+ e · P−1 (mod 2)

Next, Bob decodes ĉ to the scrambled message v ≡ m ·S (mod 2) using Patter-
son’s Algorithm, an efficient decoding algorithm. Note that the permuted error
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vector e ·P−1 has weight t since P−1 simply scrambles the elements of the error
vector, which means that decoding still works [6].

Finally, Bob recovers m by calculating m ≡ v · S−1 (mod 2).

2.2.4 Encryption and Decryption Example

For the sake of simplicity, this example will use small parameters for the binary
Goppa code; however, note that in practice, the McEliece cryptosystem with
these parameters would not be secure.

Suppose Alice wants to send a message to Bob. First, Bob selects a [16, 8, 5]
binary Goppa code and finds its generator matrix [7]

G =

























1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0

























Next, Bob randomly chooses an invertible matrix

S =

























0 0 1 0 0 1 1 0
1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1
1 1 1 1 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 1 1 1 1 0

























and a permutaion matrix

P =
[

e4, e5, e1, e12, e13, e11, e16, e2, e8, e9, e15, e7, e6, e3, e10, e14
]

where the columns are the standard basis vectors ei.
Bob then computes his public key

Ĝ = S ×G× P =

























0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1
0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1
0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0
0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1
1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1
1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0
1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0

























and makes his private key (S,G, P ).
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Alice wants to encrypt the messagem = (1, 0, 1, 0, 0, 1, 1, 0), so she chooses an
error vector e = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) of weight 2 and computes

c ≡ m · Ĝ+ e ≡ (0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0) (mod 2)

which she sends to Bob.
Bob then calculates

ĉ ≡ c·P−1 ≡ m·S×G+e·P−1 ≡ (1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0) (mod 2)

Next, Bob uses the Patterson algorithm to decode ĉ to the message v = m ·S ≡
(1, 1, 0, 0, 1, 1, 1, 1) (mod 2)

Finally, Bob recovers m by calculating

m ≡ v · S−1 ≡ (1, 0, 1, 0, 0, 1, 1, 0) (mod 2)

2.2.5 Security

Suppose a third party named Eve intercepts the encrypted message sent from
Alice to Bob. Eve has access to the public information, so she knows Ĝ. Since
she intercepts the ciphertext, she also knows the value of c = m · Ĝ+ e, as well
as the weight t of the error vector e.

Without the private key, there are generally two attacks that Eve would
attempt. First, Eve may try to determine the structure of the original code
from a generator matrix of an equivalent code (i.e. recover G from Ĝ). Note
that two linear codes C and Ĉ are equivalent if there exists an invertible matrix
S and a permutation matrix P such that G

Ĉ
= S × GC × P . This explains

why G and Ĝ = S ×G × P generate equivalent codes. However, with suitable
parameter choices for Goppa codes, the generator matrix of the equivalent code
does not present any visible structure that an attacker could exploit (i.e. it is
difficult to distinguish between a permuted Goppa code and a random linear
code), meaning that it is infeasible to determine G from Ĝ [8]. Also, note
that without knowledge of the matrices S or P , determining G by calculating
S−1 × Ĝ× P−1 = G is infeasible given the immense amount of possibilities for
the matrices S and P when n and t are large [9].

Secondly, Eve may attempt to determine the message m directly from the
ciphertext c without finding G. In other words, Eve is attempting to decode a
random linear code with t errors, which is proven to be NP-hard [10].

In his initial paper, McEliece proposed the use of the parameters [n, k, t] =
[1024, 524, 50] because these parameters result in 10149 potential Goppa polyno-
mials and an immense amount of possibilities for S and P [9]. McEliece noted
that a brute-force approach based on decoding each codeword has a work factor
of 2k = 2524 (i.e. 2524 iterations performed), which is infeasible [9]. Moreover,
a brute-force approach based on coset leaders has a work factor of 2n−k = 2500,
which is also infeasible [9].

However, in 2008, improvements were made to Stern’s attack on the McEliece
cryptosystem, which made it possible to break the system with parameters
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[1024, 524, 50] in 260.55 bit operations [11]. Thus, the parameters were revised
to [2048, 1751, 27], which guaranteed 80-bit security against the attack [11].

For security against attacks from quantum computers, larger parameters are
certainly needed. In fact, for 128-bit post-quantum security, the parameters
[6960, 5413, 119] are recommended [12].

2.2.6 Key Size

The public-key of the McEliece cryptosystem is the k×n matrix Ĝ = S×G×P ,
meaning that the key size is k × n bits. However, the matrix S is typically
chosen so that it transforms the matrix Ĝ into systematic form, meaning the
last k columns of Ĝ consist of the k × k identity matrix I. Thus, only the first
n− k columns have to be stored, and therefore, the key size can be reduced to
k × (n− k) bits.

Thus, the aforementioned parameters have the following key sizes:
Parameters Key Size

[1024,524,50] 262,000
[2048, 1751, 27] 520,047
[6960,5413,119] 8,373,911

These key sizes are substantially larger than other cryptographic methods. For
instance, RSA can withstand attacks from classical computers with a key size
of only 2,048 bits. Yet, there are currently efforts to reduce the key size of the
McEliece cryptosystem without compromising the security it provides against
attacks from quantum computers.

2.3 Variations of the McEliece Cryptosystem

The original McEliece cryptosystem is the basis for code-based cryptographic
systems. For example, Harald Niederreiter developed the Niederreiter cryptosys-
tem in 1986, which initially proposed using Generalized Reed-Solomon (GRS)
codes before being proved insecure in 1992 [13]. However, when using Goppa
codes, the Niederreiter cryptosystem reaches equivalent security to the McEliece
cryptosystem, while also being faster. It functions in a similar way to McEliece’s
proposal but uses a parity-check matrix H rather than a generator matrix G.

Moreover, Classic McEliece, a key encapsulation method (KEM) based on
Niederreiter’s system with Goppa codes, is a finalist in NIST’s Post-Quantum
Cryptography Standardization competition. A KEM randomly generates a pub-
lic key and a private key. A sender then uses the public key to encrypt a shared
secret key, which the recipient will then decrypt with their private key. This
transmitted key will then be used in a symmetric key cryptosystem, which is
typically more efficient than public-key cryptosystems.
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3 Lattice-Based Cryptography

Lattice-based cryptographic systems such as NTRU are based on lattices, and
their security is dependent on the difficulty of solving problems like the Shortest
and Closest Vector Problems, which become increasingly complex in higher
dimensions.

3.1 Lattices

A lattice is a discrete subgroup of Rn that geometrically appears like a periodic
set of points, such as the two-dimensional lattice displayed in Figure 1 below:

x

y

e1

e2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

Figure 1

Every lattice is generated by a basis. For a linearly independent set of vectors
B = {b0, ..., bn−1}, the lattice generated by B is

Λ(B) =

{

xi ∈ Z

∣

∣

∣

∣

∣

n−1
∑

i=0

xi · bi

}

In other words, the lattice is generated by taking integer linear combinations of
the basis vectors. For instance, the lattice in Figure 1 could be generated by
the basis B = {e1, e2} = {(1, 0), (0, 1)}.

The basis of a lattice is not unique and in fact, a lattice has an infinite number
of bases. Note that a “good” basis for a lattice consists of short, almost orthog-
onal vectors, whereas a “bad” basis consists of long vectors with a small angle
between them [15]. As depicted below in Figure 2, the basis B1 = {(1, 0), (0, 1)}
is a good basis for the lattice, whereas the basis B2 = {(3, 0), (5, 1)} is a bad
basis.
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Figure 2

The security of lattice-based cryptographic systems is typically based on
three problems that are presumed to be computationally difficult [4]:

1. Shortest Vector Problem (SVP): Given a random “bad” basis B for a
lattice Λ, find the shortest nonzero vector in Λ.

2. Closest Vector Problem (CVP): Given an arbitrary “bad” basis B for a
lattice Λ and a target point x, find the lattice point closest to x.

3. Shortest Independent Vectors Problem (SIVP): Given an arbitrary basis

B ∈ Z
n×n for a lattice Λ, find a new basis B̂ = {b̂0, ..., b̂n−1} for Λ that

minimizes the value of maxi ||b̂i|| (i.e. minimizes the length of the longest
vector in the basis).

The primary approach to these problems involves basis reduction, in which
an arbitrary lattice basis is transformed into a new basis that consists of shorter,
nearly orthogonal vectors. In fact, one of the most successful algorithms, the
Lenstra-Lenstra-Lovász (LLL) algorithm, can approximate a reduced lattice ba-
sis in polynomial time [16]. However, it is important to note that the LLL algo-
rithm is not effective in higher dimensions n such as n ≥ 100 because the quality
of the approximation decreases (i.e. the reduced basis vectors are not as short
or orthogonal) [6]. Currently, there is no known polynomial-time algorithm
that can solve these problems with classical or quantum computers, which has
made lattice-based cryptographic systems ideal candidates for post-quantum
cryptography.

3.2 NTRU Cryptography

NTRU is a lattice-based, asymmetric cryptographic system that is a finalist in
NIST’s Post-Quantum Cryptography Standardization project. Its security is

8



based on the Shortest Vector Problem, which becomes computationally difficult
in higher dimensions. As a result, NTRU has been resistant to attacks from
classical and quantum computers, which makes it an excellent candidate for
post-quantum cryptography.

3.2.1 Arithmetic in NTRU

NTRU is defined over the polynomial ring R = Z[X]/(XN − 1), meaning the
system reduces polynomials with integer coefficients modulo xN − 1.

For a ring R, the following properties are satisfied [2]:

1. Closed Under Addition and Multiplication: ∀a, b ∈ R, (a + b) ∈ R and
(a · b) ∈ R

2. Associative Property of Addition and Multiplication: ∀a, b, c ∈ R, (a +
b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

3. Commutative Property of Addition: ∀a, b ∈ R, a+ b = b+ a

4. Additive Identity: ∀a ∈ R, a+ 0 = a

5. Additive Inverse: ∀a ∈ R, there exists the negative element −a such that
a+ (−a) = 0

6. Multiplicative Identity: ∀a ∈ R, a · 1 = a

7. Distributive Property: ∀a, b, c ∈ R, a · (b + c) = (a · b) + (a · c)

In a polynomial ring, addition is the same as traditional polynomial addition,
where the coefficients of “like terms” (terms with the same degree) are added
together. Multiplication is defined by the cyclic convolution product [17]:

f ∗ g = h with hk =

k
∑

i=0

figk−i +

N−1
∑

i=k+1

figN+k−i =
∑

i+j≡k (mod N)

figj

and is denoted by ∗ . This is the same as multiplying the polynomials out and
reducing modulo xN − 1. When performing multiplication modulo an integer q,
reduce the coefficients modulo q and the polynomial modulo xN − 1.

3.2.2 Key Generation

Suppose Alice wants to send a message to Bob. First, Bob must select integer
values for the parameters of the system, N , p, and q. Note that p and q must
be relatively prime (gcd(p, q) = 1) and that p must be smaller than q [6].

Next, Bob must arbitrarily generate two polynomials, f and g, with degrees
less than N and small coefficients, typically between −1 and 1. Also, f must be
invertible modulo p and modulo q, meaning there exist f−1

p and f−1
q such that

f−1
p ∗ f ≡ 1 (mod p) and f−1

q ∗ f ≡ 1 (mod q) [6].
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Then, Bob efficiently calculates the inverses f−1
p and f−1

q using the extended
Euclidean algorithm. Bob computes h ≡ f−1

q ∗ g (mod q) and makes his public
key (N, p, q, h) [6]. Bob keeps (f, f−1

p ) as his private key and discards g, as it
will no longer be used [6]. Note that it is not necessary to store f−1

p since it can
be efficiently calculated from f , but storing the value makes decryption faster.

3.2.3 Encryption

In order to encrypt her message, Alice must first convert it into a polynomial
m with degree less than N and coefficients modulo p. Note that in this case,
coefficients modulo p refers to the integers from − p

2 to p

2 . For instance, if p = 3,
the coefficients range from −1 to 1.

Then, Alice must choose an arbitrary small polynomial r and compute the
ciphertext [17]

c ≡ pr ∗ h+m (mod q)

which she sends to Bob. Note that reduction modulo q refers to reduction of
the coefficients to the integers in the interval (− q

2 ,
q

2 ], not the interval [0, q− 1].

3.2.4 Decryption

To decrypt the ciphertext c, Bob must first calculate [17]

a ≡ f ∗ c (mod q)

with integer coefficients from (− q

2 ,
q

2 ].
Then, Bob can recover the original message by calculating [6]

m ≡ f−1
p ∗ a (mod p)

with integer coefficients from (− p

2 ,
p

2 ].

3.2.5 Encryption and Decryption Example

This example will use smaller parameters for the sake of simplicity; however,
note that in practice, the NTRU cryptosystem with these parameters would not
be secure.

Suppose Alice wants to send a message to Bob. First, Bob selects N = 11,
p = 3, and q = 41 as the parameters for the system. Next, he chooses two
polynomials f and g that have coefficients in the range [−1, 1]:

f = x9 − x8 + x6 + x5 − x+ 1 and g = x10 + x7 − x6 + x3 + x2 − 1

Then, Bob calculates the inverses

f−1
p = 2x8 + x7 + x6 + x5 + 2x2 + x

and

f−1
q = 24x10 + 7x8 + 17x7 + 8x6 + 35x5 + 17x4 + 32x3 + 25x2 + 31x+ 30

10



Next, Bob calculates

h ≡ f−1
q ∗ g ≡ 4x10+x9+x8+11x6+6x5+40x4+15x3+11x2+4x+31 (mod 41)

and makes his public key (N, p, q, h).
To encrypt her message m = x9 + x5 − x3 + 1, Alice chooses a random

polynomial r = x4 + x2 − 1 and computes the ciphertext

c ≡ pr∗h+m ≡ −17x10+16x9−14x8−19x7−3x6−x5+6x4+19x3−19x2+3x−7 (mod 41)

Note that Alice must reduce coefficients to the integers within the interval (- 412 ,
41
2 ] before sending the ciphertext c to Bob.

To decrypt the ciphertext c, Bob first computes

a ≡ f ∗ c ≡ −6x10+4x9−5x8+x7+5x6+5x5+2x4+x3−7x2+x+9 (mod 41)

reducing coefficients to the integers from the interval (- 412 , 41
2 ].

Finally, Bob retrieves the original message by calculating

m ≡ f−1
p ∗ a ≡ x9 + x5 − x3 + 1 (mod 3)

and reducing coefficients to the integers within the interval (- 32 ,
3
2 ].

3.2.6 Why Decryption Works

Bob calculates the polynomial

a ≡ f ∗ c ≡ f ∗ (pr ∗ h+m) (mod q)

≡ pr ∗ f ∗ f−1
q ∗ g + f ∗ m (mod q)

≡ pr ∗ g + f ∗ m (mod q)

Recall that p is smaller than q and that the coefficients for r, g, f , and m are
small, meaning that it is likely that before reduction modulo q, the polynomial
a already has integer coefficients from the interval (− q

2 ,
q

2 ] [6].
Therefore,

f−1
p ∗ a ≡ f−1

p ∗ (pr ∗ g) + f−1
p ∗ (f ∗ m) (mod p)

≡ p ∗ (f−1
p ∗ r ∗ g) + 1 ∗m (mod p)

≡ m (mod p)

meaning that decryption works.

3.2.7 Connection to a Lattice

Although NTRU does not initially seem related to lattices and the Shortest
Vector Problem, the process can be equivalently expressed in terms of lattices.

Terminology: Similar to the cyclic shift π in linear codes, let L be a linear
transformation that cyclically shifts the components of a vector [15]. Define
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L ∗ v = [v, Lv, L2v, ..., LN−1v] to be the circulant matrix of a vector v of length
N (i.e. the matrix with rows consisting of the cyclic shifts of v) [15]. NTRU
uses convolutional modular lattices. A convolutional modular lattice Λ(c, q) is
the set of vectors Λ(c, q) = {(a, b) ∈ Z

2N : a ∗ c ≡ b (mod q)} [18].
Key Generation: The parameters of the system are a prime number N ,

a small integer p, an integer modulus q, and an integer weight bound df [15].
Instead of two polynomials, the private key will be the short vector (f, g) =
(f0, ..., fN−1, g0, ..., gN−1) ∈ Z

2N . Note that f and g must be chosen such that

1. [L ∗ f ] is invertible modulo q

2. f ∈ e1 + {−p, 0, p}N (e1 refers to the standard basis vector) and g ∈
{−p, 0, p}N where f−e1 and g have df +1 positive entries and df negative
entries. Note that as a result of this restriction, [L ∗ f ] ≡ I (mod p) and
[L ∗ g] ≡ 0 (mod p).

The associated lattice to (f, g) is Λ((L ∗ f, L ∗ g)T , q), which is the smallest
convolutional lattice that contains (f, g). Note that when N is sufficiently large,
there is a high probability that (f, g) is the shortest vector in the lattice [19].

The public key is chosen to be the Hermite Normal Form basis of the lattice
Λ((L ∗ f, L ∗ g)T , q), which is considered to be a “bad” basis for the lattice [15].
Thus, the public key is

H =

[

I 0
L ∗ h q · I

]

where h ≡ [L ∗ f ]−1g (mod q) [15].
Encryption: A message is expressed as a vector m ∈ {−1, 0, 1}N that has

exactly df + 1 positive components and df negative entries. To encrypt the
message m, it is concatenated with an arbitrary error vector r ∈ {−1, 0, 1}N

that has df+1 positive components and df negative entries. Then, this resulting
vector is reduced modulo H [15]:

[

r

m

]

mod

[

I 0
L ∗ h q · I

]

=

[

0
(m+ [L ∗ h]r) mod q

]

Given that the first N components of the vector are always 0, the ciphertext is
the N -bit vector

c ≡ (m+ [L ∗ h]r) (mod q)

Decryption: To decrypt the ciphertext c, compute

[L ∗ f ]c ≡ [L ∗ f ]m+ [L ∗ f ][L ∗ h]r ≡ [L ∗ f ]m+ [L ∗ g]r (mod q)

Since the vector [L ∗ f ]m+ [L ∗ g]r already has components between − q

2 and q

2 ,
we can reduce the vector modulo p to obtain m:

[L ∗ f ]m+ [L ∗ g]r ≡ I ·m+ 0 · r ≡ m (mod p)

12



3.2.8 Security

Suppose a third party named Eve intercepts the encrypted message sent from
Alice to Bob. Eve then has access to the ciphertext c ≡ (m+ [L ∗h]r) (mod q),

as well as the public key H =

[

I 0
L ∗ h q · I

]

.

The public key H provides a bad basis for the lattice Λ((L ∗ f, L ∗ g)T , q).
Given that there is a high probability that (f, g) is the shortest vector in the
lattice, determining the private key requires Eve to solve the Shortest Vector
Problem, which is infeasible. Eve could attempt basis reduction with an algo-
rithm such as the LLL algorithm; however, it has previously been stated that
this is not effective in higher dimensions.

For optimal security, it is recommended that p = 3 and that q is a power
of 2. To achieve 128-bit post-quantum security, the parameters [N, p, q] =
[443, 3, 2048] are recommended [20]. Note that N could also be 587 or 743.

4 Connections Between the Systems

Code-based and lattice-based cryptography initially appear very different, with
one process revolving around linear codes and the other around a periodic struc-
ture from abstract algebra. However, when compared more closely, these pro-
cesses actually have many similarities.

4.1 Linear Codes and Lattices

Despite being distinct, linear codes and lattices are very similar at their core.
In fact, one major similarity is that both linear codes and lattices are generated
by bases.

Note that a set of vectors B is considered a basis for a vector space V if:

1. B is a linearly independent set of vectors

2. B spans V (i.e. every vector in V can be obtained by taking linear com-
binations of the basis vectors)

A linear code C is a code that is closed under addition, meaning that ∀u, v ∈
C, u + v ∈ C. Linear codes have various bases. In fact, a linear code C of
dimension k has 1

k!

∏k−1
i=0 (2

k − 2i) different bases [21].
For example, a basis for the vector space K3 is B = {100, 010, 001}, given

that B is a linearly independent set of words that spans K3. In contrast, despite
being a linearly independent set of vectors, B̂ = {100, 010} is not a basis for
K3 because it does not span the space. For instance, the word 001 cannot be
produced by any linear combination of the basis vectors.

As previously mentioned, lattices are also described by their infinite bases
and are generated by taking integer linear combinations of the basis vectors.
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4.2 Code Equivalence and Basis Reduction

The security of various code-based and lattice-based cryptographic systems have
respectively been based on the intractability of code equivalence problems and
basis reduction. In fact, the code equivalence problem in the McEliece cryp-
tosystem and the problem of basis reduction in the NTRU cryptosystem have
similar cryptographic functions.

In the McEliece cryptosystem, the difficulty of the code equivalence problem
is incorporated in the public key. The generator matrix G for the binary Goppa
code is scrambled by two matrices, S and P , to create the public key Ĝ, which
generates an equivalent code to G. This new matrix Ĝ does not present any
structure that an attacker could exploit, meaning that it is infeasible to deter-
mine G from the equivalent code Ĝ. In this sense, code equivalence is used as
a mask for the private key (S, G, P ). Note that although the code equivalence
problem is presumed to be difficult, it has been proven that the code-equivalence
problem is not NP-complete [22].

In the lattice description of the NTRU cryptosystem, the public key is a bad
basis for the lattice. Given that there is no efficient algorithm for basis reduction
in higher dimensions, it is infeasible to determine a good basis for the lattice
and therefore, find the shortest vector in it. Thus, similar to code equivalence,
the difficulty of basis reduction helps conceal the private key.

4.3 Minimum Distance and Shortest Vector Problems

The Minimum Distance Problem (MDP) in code-based cryptography is very
similar to the Shortest Vector Problem (SVP) in lattice-based cryptography.

In MDP, given a linear code C over a finite field, one must find the non-zero
codeword of minimum Hamming weight (codeword with the least number of 1’s).
Note that finding the minimum distance of a binary linear code is NP-hard [23].

In SVP, given a bad basis B for a lattice Λ, one must determine the short-
est nonzero vector in Λ. Yet, without an efficient algorithm to perform basis
reduction, solving SVP is infeasible.

Both the Minimum Distance Problem and Shortest Vector Problem require
one to find the smallest vector in a given space. SVP wants the shortest vector
in terms of Euclidean distance to the origin, whereas MDP wants the smallest
vector in terms of Hamming distance to the zero word. Their shared computa-
tional difficulty makes them ideal problems to use in cryptographic systems.

4.4 Nearest Codeword and Closest Vector Problems

The Nearest Codeword Problem (NCP) in code-based cryptography closely re-
sembles the Closest Vector Problem (CVP) in lattice-based cryptography.

In NCP, given a linear code C and a word w, one must find the codeword v

closest to w (minimum Hamming distance), which is NP-hard [10].
In CVP, given a bad basis B for a lattice Λ and a target point x, one needs

to find the lattice point closest to x, which is infeasible in higher dimensions.
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Both problems require one to find the closest vector to another in a given
space. While solving NCP means finding the nearest codeword in terms of Ham-
ming distance, CVP operates in terms of Euclidean distance. Similar to MDP
and SVP, the intractability of these problems makes them useful in cryptogra-
phy.

The connections between these two problems are evident in the structure
of some modern, polynomial-time decoding algorithms for irreducible binary
Goppa codes. A list-decoding algorithm, as well as an altered version of the
original Patterson’s Algorithm, implement lattice basis reduction in the decod-
ing process [24]. Thus, when performing decoding in code-based systems such
as McEliece, basis reduction, which is typically found in lattice-based crypto-
graphic systems, is employed, which further displays the similarities between
these two systems.

4.5 Security Comparison

Now, let’s compare the security of the McEliece cryptosystem and NTRU.
The Nearest Codeword Problem, which is the basis of the McEliece cryp-

tosystem, is simply the Closest Vector Problem defined in terms of Hamming
distance, which makes the two problems equivalent. Since the Closest Vector
Problem is presumed to be more difficult than the Shortest Vector Problem,
which is the basis of NTRU, the McEliece cryptosystem could be considered
more secure than NTRU.

However, if an efficient algorithm is found to distinguish between binary
Goppa codes and random binary linear codes, the McEliece cryptosystem could
be cracked because the public key would leak information to an eavesdropper.
NTRU would remain intact, which makes it more secure on this front.

Yet, if an efficient algorithm is discovered to solve the Closest Vector Prob-
lem, the security of both cryptosystems would be compromised.

Thus, given that there are multiple ways to attack each system, it is difficult
to definitively compare their security.

5 Conclusion

With the threat that quantum computers will soon pose to our encrypted data,
it is imperative to consider alternative public-key encryption methods that are
secure against attacks from quantum computers.

Having resisted decades of cryptanalytic attacks from both classical and
quantum computers, the security of code-based systems such as the McEliece
cryptosystemmake them good candidates for post-quantum cryptography. More-
over, with ongoing efforts to reduce the key size of the McEliece cryptosystem,
it could become crucial to the future security of our digital information.

Lattice-based systems such as NTRU are arguably the most promising post-
quantum cryptographic systems, with the majority of candidates in NIST’s
Post-Quantum Cryptography Standardization competition being lattice-based.
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These systems are presumed to be secure given the difficulty of problems such
as SVP and CVP, and given that they typically have smaller key sizes than the
McEliece scheme, lattice-based systems may be the future.

Despite initially appearing distinct, code-based and lattice-based systems
have various similarities, given the strong connection between linear codes and
lattices. As a result, the security of both systems seems relatively intercon-
nected, meaning that if an efficient algorithm can break one system, it may also
break the other.
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