
Securing RAG:
A Risk Assessment and Mitigation Framework

Lukas Ammann1,**, Sara Ott1,**, Christoph R. Landolt1,2, and Marco P. Lehmann1,*

1Eastern Switzerland University of Applied Sciences (OST), Rapperswil, Switzerland
2Cyber-Defence Campus, armasuisse Science and Technology, Thun, Switzerland

*Corresponding author: marco.lehmann@ost.ch
**Equal contribution

This work has been submitted to the IEEE for possible
publication. Copyright may be transferred without notice,
after which this version may no longer be accessible.

Abstract—Retrieval Augmented Generation (RAG) has
emerged as the de facto industry standard for user-facing NLP
applications, offering the ability to integrate data without re-
training or fine-tuning Large Language Models (LLMs). This
capability enhances the quality and accuracy of responses but
also introduces novel security and privacy challenges, particularly
when sensitive data is integrated. With the rapid adoption of
RAG, securing data and services has become a critical priority.
This paper first reviews the vulnerabilities of RAG pipelines,
and outlines the attack surface from data pre-processing and
data storage management to integration with LLMs. The iden-
tified risks are then paired with corresponding mitigations in
a structured overview. In a second step, the paper develops a
framework that combines RAG-specific security considerations,
with existing general security guidelines, industry standards,
and best practices. The proposed framework aims to guide the
implementation of robust, compliant, secure, and trustworthy
RAG systems.

Index Terms—Large Language Model (LLM), Retrieval-
Augmented Generation (RAG), RAG Systems Security, Secure
Data Retrieval, AI System Vulnerabilities.

I. INTRODUCTION

Large Language Models (LLMs) are powerful tools, lever-
aging extensive parametric memory to store knowledge ac-
quired during training. However, their parametric memory
inherently limits them to the data available at the time of
training. Consequently, LLMs lack knowledge about events
that occurred after training or facts that may be hidden
in non-public or proprietary data, resulting in inaccuracies
or hallucinations in their outputs [1], [2]. To address these
limitations, Lewis et al. [3] introduced RAG, a framework
that combines the strengths of pre-trained LLMs with non-
parametric memory, enabling the integration of external doc-
uments and providing a mechanism for knowledge updates.
The enhanced versatility of RAG systems, combined with their
improvements over standard LLMs, has opened up new use
cases and led to widespread interest in business applications
[4]–[6]. However, RAG systems introduce new security risks,
such as the potential leakage of sensitive data or manipu-
lating behavior in user-facing applications [7], [8]. With the

widespread adoption of RAG applications, the reputational and
financial risks become significant, making the protection of
RAG systems mission-critical.

Given the recency of the field, the systematic analysis of
RAG-related security issues lags behind the rapid evolution
and adoption of the technology. Current discussions of attacks
and mitigations are often presented informally, for example
in blog posts, industry reports, or case studies. This scattering
of information impedes the implementation of responsible and
secure systems. However, as RAG continues to gain traction,
security analysts and engineers would benefit from a quick
and structured guide to address emerging security challenges.
To address this need, we take a twofold approach: First, we
conduct a comprehensive literature review to identify emerging
attack vectors and corresponding mitigation strategies. Second,
we propose a structured framework that incorporates RAG-
specific security measures within a broader context: Securing
a RAG System is not an isolated task but requires a holistic
approach to assess system risks, balance mitigations with
available resources, and ensures regulatory compliance [9].
From a security perspective, RAG systems inherit the risks
of the underlying system and expand the attack surface [7],
[10], [11]. Furthermore, the growing system complexity and
the fast development of the LLM/RAG applications make it
challenging for organizations to keep up their responsible AI
(RAI) programs [12], [13].

The paper is structured as follows:
• We first describe a standard RAG architecture to establish

a reference for analyzing the attack surface (Fig 1).
• We then reviewed scientific literature and industry re-

ports for known RAG risks and mitigation strategies.
A condensed summary is presented in section III. We
analyzed and structured the fragmented literature into the
risk and mitigation matrix (Table I). Finally, in section IV,
Guidelines for Implementation, we integrate our RAG-
specific analysis into the broader context of general
security practices, and compiled a high-level framework
(Fig. 2) for quick orientation.

II. BACKGROUND AND RELATED WORK

The security of machine learning systems has garnered
significant attention due to increasing risks as well as the
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influence of legislative regulations (e.g. EU AI Act [14]
and the US Executive Order on AI [15]). These initiatives
emphasize the need for robust instruments to ensure security,
transparency, and fairness in AI systems. Complementary to
these legislative efforts are technical frameworks like the NIST
AI Risk Management Framework (AI RMF) [16] and the Open
Worldwide Application Security Project (OWASP) Top Ten
for LLM Applications [11], which address specific vulner-
abilities in Large Language models (LLMs). RAG systems
have introduced new challenges to the AI threat landscape.
Extensive reviews, such as [4], [5], highlight the importance
of securing these systems. The OWASP 2025 Top 10 Risks for
LLMs and Gen AI Apps [11] include specific risks associated
with RAG systems, including prompt injection [17], data
leakage [8], embedding inversion [18], data poisoning [19],
cross-context information conflicts [20], and unintentional
behavior alterations [21], which compromise model outputs,
expose sensitive information, and undermine trustworthiness
and integrity.

A. Background on RAG Systems

To effectively analyze vulnerabilities and their mitigations
in RAG Systems, it is essential to understand their architecture.
This section describes a generic RAG architecture, outlining
a high-level, abstract representation of its core components.
This helps in understanding the attack surface and identifying
potential security risks.
The four main components are shown in Figure 1 and briefly
discussed here:

1. General RAG Pipeline: This component represents the
entire system, encapsulating all processes from user input to
response generation. The risks in this box do not target a
specific component, but affect the user or peripheral systems.
The pipeline includes the user interface, input mechanisms,
and interactions between components. While optional, practi-
cal RAG pipelines often include a. Pre-processing and b. Post-
processing components, typically used for input validation and
output evaluation. 2. Data Ingestion: This process involves
asynchronous (offline) preprocessing and adding new data to
the system. It consists of two subcomponents: a. Dataset:
Contains the information, such as documents, that the sys-
tem requires to provide accurate answers using the language
model. b. Data Pre-processing: Transforms data into a format
suitable for retrieval by chunking documents and calculating
embedding vectors. 3. Retriever: This component identifies
the most relevant documents aligned with the user’s query
and passes them to the generator. It includes: a. Retrieval
Datastore: Optimized storage for datasets, which may include
a vector database but does not strictly require one. b. Retrieve
Documents: Searches for the most relevant documents (or
chunks) using similarity measures between vectorized prompts
and documents. c. Re-Ranker: An additional LLM can be used
to analyse the semantics of the retrieved documents and re-
rank them against the user prompt. d. Create Query: Com-
bines the user prompt with retrieved information to form an

augmented query, potentially including additional instructions
for the generator.

4. Generator: A pre-trained LLM generates the answer
based on the augmented query.

Fig. 1. General RAG Pipeline (1): A general architecture with the main
components Data Ingestion (2), Retriever (3), and Generator LLM (4). R0 to
R10 indicate the risks associated with each component.

III. RAG RISKS AND MITIGATION STRATEGIES

A. Methods

We identified risks and mitigations through a comprehensive
literature review. To capture recent developments and trends,
we also incorporated non-peer-reviewed sources, including
preprints, blog posts, and industry reports. While this may
reduce the technical depth of some findings, it provides a
broader understanding of the challenges currently faced by
industries adopting RAG.

Instead of reiterating the specific technical details of the
attacks, which are addressed in the cited references, we
compiled a concise overview of the vulnerabilities associated
with RAG adoption. While the list presented here cannot be
exhaustive, it aims to cover the RAG attack surface through a
set of representative vulnerabilities. In Figure 1, the risks R0 to
R10 are associated with the targeted components, while Table
I maps the identified risks to their corresponding mitigations.
They are grouped into categories to improve the framework’s
organization and facilitating their application.

B. Risks

R0: Blind spot and zero-day vulnerability pose a chal-
lenge for RAG systems, as not all risks can be identified, and
patches may not fix all problems. Zero-day vulnerabilities arise
from factors that are currently unknown or undisclosed [22].
This emphasizes the need for proactive risk management and
continuous monitoring.
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RISK AND MITIGATION MATRIX
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General
+ R0: Blind spot and zero-day vulnerability x x x x x x
+ R1: System Limitation x
Vectorization and Retrieval
+ R2: Retrieval Data Leakage x x x x x x x x x x x
+ R3: Embedding Inversion Attack x x x x x
+ R4: Membership Inference Attack (MIA) x x x x x x x x x x
+ R5: Retrieval Data Disclosure during embedding x x x x x
Operational Risks
+ R6: Retrieval Data Disclosure during prompting x x x x x x x x x x
+ R7: Prompt Disclosure x x x x
Data Manipulation
+ R8: Knowledge Corruption Attack x x x x x x x
+ R9: Indirect Prompt Injection x x x x x x x
+ R10: Indirect Jailbreak Attack x x x x x x x

R1: System Limitation comprises the system inherent
shortcomings of RAGs, in particular in handling and retrieving
complex, multi-dimensional data. Retrieved documents may
not fully address prompts, and generators can struggle to
extract correct information from large input contexts, compro-
mising system integrity. While parametric memory evaluation
is well-studied [23], [24], non-parametric memory presents
unique challenges and requires a critical evaluation of the
output.

R2: Retrieval Data Leakage refers to an attack in which
information from the retrieval dataset is exposed to unautho-
rized entities [8]. This dataset may contain sensitive informa-
tion, ranging from Personally Identifiable Information (PII) to
more general confidential domain-specific data. Two primary
categories of attack can be distinguished: In a targeted attack,
specific information is extracted from the retrieval dataset. In
an opportunistic attack, the attackers collect large volumes
of data and then sift through it later to identify valuable
information.

R3: Embedding Inversion Attack aims to reconstruct the
original data from the embeddings. The specific methods used
in such an attack can vary significantly. Some approaches
leverage embeddings in conjunction with the exact embedding
model used for their computation [25]. Other strategies involve
training a surrogate model to approximate the embedding
model using the original data and the associated embeddings
[18]. The ability to reconstruct original data with alarmingly
high accuracy highlights a critical security risk. Consequently,
embeddings require the same level of protection as the original
data. [18], [25].

R4: Membership Inference Attack (MIA) attempts to
determine whether specific data were included in the retrieval
dataset used to populate the retrieval datastore [26]. This attack
is categorized into two types: In sample-level inference, the
attacker aims to ascertain whether a specific sample x was
used to populate the datastore. In user-level inference, the goal
is to determine if data associated with a particular user was
used.

R5: Retrieval Data Disclosure during embedding refers
to the unintended exposure of data from the retrieval datastore
to unauthorized individuals during the embedding process [8].
As the entire dataset passes through the embedding step, a
successful attack may have severe consequences. The risk
increases further if the vectorization is carried out by an
external service provider.

R6: Retrieval Data Disclosure during prompting refers
to the unintended exposure of data from the retrieval datastore
to unauthorized individuals during the prompting process. This
risk emerges as the most relevant documents from the re-
trieval datastore are retrieved and transmitted to the generator.
Although this step involves only a subset of the dataset, it
remains a critical concern, especially when sensitive data is
involved, as prompts can be intentionally crafted to target
specific documents [27], [28].

R7: Prompt Disclosure refers to the privacy risk arising
when sensitive information is included in a prompt transmitted
to a cloud-hosted LLM. This risk is analogous to the estab-
lished concern of search engines monitoring and recording
user-entered queries [29], [30]. While this phenomenon may
seem self-evident, it poses significant privacy concerns due to



the potential exposure of sensitive data. The risk is further
exacerbated in the context of chatbots, where users may be
tempted to copy and paste extensive prompts, inadvertently
including confidential information.

R8: Knowledge Corruption Attack aims to compromise
the responses of RAG systems by manipulating the retrieval
process [19], [31]. These attacks work by influencing the
retrieval of specific or manipulated documents to skew the
system’s outputs. One common approach involves altering
retrieval ranking results [31]. This is achieved by injecting
manipulated text into documents that align with a specific
opinion, thereby artificially increasing their relevance. This
increases the likelihood that these manipulated documents will
rank highly and be passed to the generator. There are multiple
methods for injecting manipulated documents into a RAG
system. Attackers may directly alter the retrieval datastore by
adding, modifying, or removing documents. Alternatively, if
the retrieval system itself scrapes data, the documents in the
specific sources can be modified [19].

R9: Indirect Prompt Injection refers to a security risk
where malicious prompts embedded within retrieved docu-
ments manipulate the generator to execute unwanted behavior,
unintended actions or produce harmful outputs [11]. This
risk becomes particularly critical when the generator has the
capability to perform far-reaching actions, such as executing
API calls or interacting with action modules to interact with
external systems.

R10: Indirect Jailbreak Attack is designed to bypass
security protocols and manipulate the generator into generating
malicious or harmful content. Jailbreak attacks can be broadly
categorized into two types: direct and indirect. Direct jail-
break attacks attempt to bypassing protection using customized
prompts. However, their effectiveness has diminished with the
implementation of advanced filtering techniques in modern
LLMs [32]. Indirect jailbreak attacks do not manipulate the
prompt, but work via retrieved documents to manipulate the
generator indirectly. This method significantly increases both
the success rates and the associated risks of such attacks [33].

C. Mitigations

M0: Anonymization is the process of irreversibly removing
personal information from data [34]. This mitigation strategy
is distinguished by two key characteristics. First, it can be
employed as a preprocessing technique. Second, by ensuring
that sensitive information is removed before populating the
retrieval datastore, the risk of data leakage is significantly
reduced. However, the removed information can no longer
be included in the system’s responses. Thus, anonymization
requires careful consideration to balance privacy concerns
against the need to include specific information for answering
queries in the given use case. Anonymization is a non-trivial
task, requiring meticulous planning and execution [34].

M1: Pseudonymization is a reversible process of substi-
tuting all sensitive information with pseudonyms [34]. The
technique is particularly beneficial for RAG systems where
sensitive information is needed to produce accurate and

relevant responses. The pseudonymization process consists
of three straightforward steps: 1: Replace identifiable data
with placeholders while maintaining a mapping between the
original data and its placeholders. 2: Generate the response
using the pseudonymized data. 3: Replace all placeholders in
the response with the original data based on the mapping.
This approach helps to prevent sensitive data from being
disclosed to unauthorized parties, while preserving sensitive
information in responses. Pseudonymization can be applied
at various points in the RAG pipeline, including the prompt
(Input Pre-processing), documents (Data Pre-processing), or
retrieved documents.

M2: Synthetic Data are artificially generated items that
replicate the characteristics and structure of the original data
[35]. This replication is achieved through a model trained
on the original data to learn its properties. By replacing
sensitive data with synthetic equivalents, RAG systems can
operate with reduced risk of exposing confidential information
while maintaining functionality and accuracy. Synthethic data
is used when the RAG serves a downstream task. Development
and testing can take place without disclosing real data. For
certain use cases, the synthetic data offers a viable solution to
mitigate this risk while preserving system performance [36].
The generation of non-leaking synthetic data is not a trivial
task and needs careful validation.

M3: Access Limitation restricts a user’s right to access
only certain documents or services. It is an effective strat-
egy to mitigate several risks associated with RAG systems.
However, implementing this approach requires an organization
to establish a robust user authentication system that defines
and enforces the necessary permissions for each user and
document [37]. Access Limitation enables an organization to
control access to documents in the retrieval datastore based
on user roles, clearance levels, or other specific permissions.
An organization may also restrict access to the service to a
specific subgroup of users; the risk exposure is fundamentally
different for an internal tool compared to a public, client-
facing chatbot. This strategy ensures that sensitive data are
only accessible to authorized users, significantly reducing the
risk of data exposure.

M4: Reinforcement of System Instruction refers to the
enhancement of the generator specifications to ensure a more
restrictive handling of the prompt and the data retrieval.
System instructions typically function as a template that in-
tegrates the user prompt, the retrieved data, and administrator-
defined constraints or directives before passing them to the
generator. Since this approach is highly dependent on the
specific use case, there is no universal template that provides
optimal risk mitigation across all scenarios. Therefore, suitable
instructions must be designed and tailored individually for
each application. As a starting point, templates relevant to their
domain or area of interest can be explored [38]. Investing time
and effort in designing, implementing, and testing robust sys-
tem instructions is strongly recommended, as this mitigation
strategy can address multiple risks effectively.

M5: Input Validation safeguards the RAG pipeline by



detecting and rejecting user prompts or documents containing
malicious content or instructions [27]. The system can also
be extended to remove only unwanted parts of the prompt,
such as sensitive information. Implemented as part of the
input pre-processing component, it prevents harmful inputs
from affecting subsequent steps or outputs. While effective in
mitigating risks, implementing input validation is challenging
due to the complexity of natural language and the diverse ways
malicious content can be expressed.

M6: Evaluation improve the factual accuracy and reliability
of RAG systems by identifying and (self-) correcting inaccu-
racies. This iterative process enhances output precision and
mitigates risks [39]. Advanced approaches like Graph RAG
[40] and Multi-Head RAG [41] address retrieval challenges
by leveraging graph structures and multi-head attention for
improved performance. Non-parametric memory evaluation
uses tasks like Needle In A Haystack, testing retrieval of
specific text from large contexts, as seen in Gemini [42].
Metrics such as Character-MAP [43], BLEU [44], ROUGE
[45], and BERTScore [46] evaluate the textual overlap or
semantic similarity. Recent evaluation frameworks like EXAM
[47], RAGAS [48], and ARES [49] assess retrieval relevance
and generation quality, with ARES offering a standardized
evaluation approach across diverse tasks. More broadly, eval-
uation may also include MLOps measures such as continuous
service monitoring.

M7: Self-hosting of AI-models has the advantage of having
control over data flow, and allows secure, local execution of
computations without offsite data transmission. Self-hosting
may encompass the hosting of the generator LLM, the em-
bedding service, and the additional LLMs used for evaluation
and re-ranking. This approach may demand significant com-
putational resources.

M8: Adding Noise at various stages of the RAG pipeline
can help mitigate privacy risks and, in some cases, improve
response accuracy [8], [25], [50]. Techniques include adjusting
embeddings [8], inserting random characters [25], or adding
entire documents [50]. Although it has been demonstrated
that noise does not necessarily enhance RAG protection to a
significant degree, its careful application can still yield positive
results by increasing response accuracy [50].

M9: Distance Threshold is technique for controlling the
data selected from the retrieval store. The relevance of a
document relative to the user prompt is typically measured
using a similarity function (for example cosine similarity).
Developers can define an appropriate threshold for the sim-
ilarity score. Instead of retrieving the k-nearest chunks, only
up to k sufficiently close chunks are retrieved. By limiting
data retrieval, this method reduces the amount of exposed
data. The method has the additional (often primary) effect of
reducing the presence of irrelevant or misleading data. This
helps improving the accuracy of a service [8].

M10: Summarization serves as a mitigation strategy by
aggregating retrieved information while excluding details un-
related to the user prompt, thus reducing data exposure and
minimizing sensitive content [8]. A distinct LLM performs the

summarization, creating a concise summary based on the user
prompt and retrieved information. The summary then replaces
the retrieved data and is passed to the generator for response
generation.

M11: Re-Ranking uses an LLM (the Re-Ranker) to identify
and filter the most relevant documents based on their relevance
to the user prompt, preventing irrelevant data from advancing
in the RAG pipeline. This approach reduces the data volume
exposed to potential misuse while enhancing the relevance
and quality of generated responses [8], [51], [52]. Although
effective in mitigating privacy risks by focusing on relevant
information, re-ranking alone is insufficient for comprehen-
sive protection [8]; additional mitigation strategies should be
considered.

M12: Minimization of Exposure is the counterpart to
unknown risks (R0). Risks that are not known are mitigated by
minimizing data collection, limiting service exposure, restrict-
ing access rights, and reducing complexity. More specifically,
Data minimization is a universal principle, and part of many
regulations, such as the GDPR [53]. Mitigation M12 may
involve developing a Data Strategy to identify critical data
and services, and implementing Data Governance policies.

IV. GUIDELINES FOR IMPLEMENTATION

To implement a secure and trusted RAG, it is essential to
address all organizational and technical aspects of the system,
for which we propose a holistic framework (Figure 2) that
integrates the RAG-specific Risks and Mitigations with the
different standards, methodologies, and best practices of the
field.

Fig. 2. Securing a RAG requires a holistic approach. Three overarching
activities are ML-Ops, Data Governance, and Project- and Risk Management.
Risks and Mitigations are addressed at layers IT Baseline Protection, AI and
LLM Protection, and RAG Protection.

Our framework integrates three overarching activities, ML-
Ops, Data Governance, and Project- and Risk Management,
and three security-specific layers IT Baseline Protection, AI
and LLM Protection, and RAG Protection. In this section we
briefly discuss these components and provide references to
industry standards for practitioners.

The three overarching activities provide the ground for
successful and responsible AI projects.

Project- and Risk Management face the additional chal-
lenges of ML and RAG projects, namely the increased system



complexity, and the risks of data driven applications. The NIST
Risk Management Framework (RMF) [54] provides guidelines
and processes to manage information security and privacy risk.
Depending on the project scope, compliance with regulations
(e.g. EU AI Act [55] and the US Executive Order on AI
[15]) can be a formal requirement which requires the Project
Management to integrate the necessary steps early on.

Data Governance is based on design principles and is
a foundation of trustworthy AI [56]. It comprises policies
and responsibilities for managing data, and supports safe and
compliant (e.g. with GDPR) use of data [57]. In addition, Data
Governance can address more general, societal risks related to
the use of AI for decision making.

ML-Ops extends Continuous Integration (CI) and Con-
tinuous Delivery (CD) with the requirements of machine
learning model development, testing, validation, deployment,
monitoring, and re-training [58], [59]. The monitoring and re-
training feedback-loop may enhance the trustworthyness of AI
[60].

Together, these three overarching components address the
organizational, regulatory, and methodological requirements.
To tackle the complexity of securing an IT system, we adopt
a layered approach, going from general IT risks to AI and
RAG specific risks (Figure 2).

The goal of the IT Baseline Protection layer, is to provide
general IT security. To this end, the German Federal Office
of Information Security (BSI) developed the IT-Grundschutz
(IT Baseline Protection in English)) [61]. Similarly, the NIST
Cybersecurity Framework (CSF) [62] in the USA, or the
international norm ISO/IEC 27001 provide standardized guide-
lines for general IT system protection. These frameworks
provide structured methodologies and their adoption typically
progresses in breath and in depth. Depth refers to the level of
protection. Profiles and tiers [62] allow organizations to scale
their security practices based on available resources and risk
tolerance. Breath refers to the scope of a cybersecurity strat-
egy: all components of a system need to be considered, from
hardware, to data pipelines, to staff. For example, securing
a RAG at the technical level is ineffective if untrained staff
disclose the same data as a result of social engineering tactics.
This comprehensive defense is exemplified by Zero Trust
Architectures (ZTA) , which shift the defense focus to users
and resources (assets, services, workflows, network accounts,
etc.) [63]. ZTA emphasizes verifying and validating users
and resources before granting access, treating each service as
external, and securing it accordingly.

It should be noted, that these general frameworks must be
adapted to the specific context and technologies, which can
represent a considerable effort.

The AI and LLM protection layer establishes a secured
ML system. A practical approach is to refer to the OWASP Top
10 lists, including the OWASP Machine Learning Security Top
10 [64] and the OWASP Top 10 for Large Language Model
Applications [11], which highlight critical AI security risks
related to data, models, and their usage. On a more general
level, the NIST AI Risk Management Framework (RMF) [65]

promotes trustworthy and responsible AI by providing a com-
prehensive information security and privacy risk-management
process.

Finally, the RAG Protection layer, addresses the task
of identifying and mitigating the specific risks discussed in
section III. We structure the risk along four categories and,
where needed, formulate questions that help identifying the
risks, while table I lists the corresponding mitigation.

General Risks: The use of a RAG comes with system inher-
ent risks, described in R0 and R1. These risks are (partially)
addressed when adopting a general security framework (see
the aforementioned layers 1 and 2), while table I identifies the
specific mitigations at the RAG layer.

RAG Usage Scenarios: The same attack vector can present
a radically different risk depending on the scope of the
RAG service. Public-facing applications can lead to signif-
icant reputational or legal consequences in the event of an
incident. Consequently, the protection of the (vectorized) data,
and the protection against service alteration requires tailored
assessment of the risks listed in Table I. Ask: Is the RAG used
privately, internally within the company, or exposed to users
via a public interface? In addition to technical mitigations,
operators must ensure that users do not place more trust in
the RAG system than is justified by its accuracy, completeness,
and reliability.

External RAG Hosting: Where is your RAG hosted? Cloud
hosting and hybrid cloud hosting introduce risks R6 and R7,
while on-premises does not have those forms of disclosure
risks.

Data Sources: How is the retrieval data obtained? Blindly
scraping data from the internet, or accepting document uploads
from unverified sources,introduces risks R8, and R9. On the
other hand, if local data (for example internal documents) are
used, then ask Who can manipulate the data? If (untrusted)
users can manipulate the retrieval data, then R8 applies. If
only (trusted) admins have access, then R8 is not relevant.

RAG Service Validation and Monitoring: The service
quality may vary depending on several factors, such as the
quality of the user prompt, the documents in the RAG data-
store, or conversational drift over a sequence of prompts.
Maintaining high service quality and data protection requires
measures throughout all phases of the RAG service lifecycle.
The novel risks introduced by RAG and LLM systems require
additional efforts during the operational phase. Specifically,
continuous system monitoring and service validation are essen-
tial. Existing monitoring techniques can be combined with new
approaches. For example, the sanity of the user’s input prompt
may be automatically verified using an additional, specifically
instructed LLM. Similarly, the output generator’s response
may be passed through an LLM for validation and policy
enforcement. Instances of such systems exist, but they are
often ad-hoc, and there are currently no scientifically validated
solutions available.



V. CONCLUSION

RAG technology enables the integration of up-to-date,
domain-specific, or proprietary knowledge into LLMs without
the need for fine-tuning. This makes RAG an attractive tech-
nology for a variety of use cases and has led to rapid industry
adoption in both internal and client-facing applications. The
goal of this research was to provide a practical and easy-to-
use framework that facilitates the implementation of secure
RAG systems. To this end, we reviewed the security risks
associated with RAG and identified corresponding mitigations.
The resulting risk and mitigation matrix offers practitioners
a structured reference, which helps securing RAG systems.
Furthermore, we introduce a framework that embeds RAG-
specific security considerations within existing security stan-
dards and provide implementation guidelines that emphasize
the importance of a holistic approach to security.

It is important to note that implementing a secure RAG
system is inherently challenging and may require significant
investment. Some proposed mitigations may also impact sys-
tem performance or accuracy, aspects which are not addressed
in this paper.

As the technology continues to evolve, new attack vectors
are likely to emerge. Researchers investigating new risks may
benefit from our framework, as it provides an overview of the
RAG attack surface.
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