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Abstract

Advanced Metering Infrastructure (AMI) data from smart electric and gas meters enables
valuable insights for utilities and consumers, but also raises significant privacy concerns. In
California, regulatory decisions (CPUC D.11-07-056 and D.11-08-045) mandate strict privacy
protections for customer energy usage data, guided by the Fair Information Practice Princi-
ples (FIPPs). We comprehensively explore solutions drawn from data anonymization, privacy-
preserving machine learning (differential privacy and federated learning), synthetic data genera-
tion, and cryptographic techniques (secure multiparty computation, homomorphic encryption).
This allows advanced analytics, including machine learning models, statistical and econometric
analysis on energy consumption data, to be performed without compromising individual privacy.

We evaluate each technique’s theoretical foundations, effectiveness, and trade-offs in the con-
text of utility data analytics, and we propose an integrated architecture that combines these
methods to meet real-world needs. The proposed hybrid architecture is designed to ensure com-
pliance with California’s privacy rules and FIPPs while enabling useful analytics, from forecast-
ing and personalized insights to academic research and econometrics, while strictly protecting
individual privacy. Mathematical definitions and derivations are provided where appropriate
to demonstrate privacy guarantees and utility implications rigorously. We include comparative
evaluations of the techniques, an architecture diagram, and flowcharts to illustrate how they
work together in practice. The result is a blueprint for utility data scientists and engineers
to implement privacy-by-design in AMI data handling, supporting both data-driven innovation
and strict regulatory compliance.
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Executive Summary

Context & Challenge California’s advanced-metering infrastructure (AMI) generates 15-minute
load data that can fuel forecasting, demand-response design, and customer analytics. CPUC De-
cisions [5, 6] classify that data as covered information: any secondary use must either (i) obtain
explicit customer consent or (ii) prove the data are “not reasonably identifiable.” The dual mandate
is therefore to unlock data value while satisfying the Fair Information Practice Principles
(FIPPs) and avoiding regulatory, security, and reputational risk.

Technique Core Strength Key Limitation Utility “Sweet Spot”

Anonymization/De-
ID

Simple first de-
fence

Re-ID via linkage Low-resolution public stats

Differential Pri-
vacy

Provable ε–budget Accuracy loss at
low ε

Feeder/hourly aggregates

Synthetic Data Rich shareable
“look-alike”
datasets

Realism/over-fit
checks

Innovation contests, vendor
sandboxes

Federated Learn-
ing

No raw data leaves
host

Gradient leakage if
unsecured

Cross-utility or edge-device
ML

Secure MPC Exact results, no
added noise

Heavy
comms/compute

Multi-utility KPI aggrega-
tion, private billing

Homomorphic
Encryption

Compute on en-
crypted data

Performance over-
head

Outsourced analytics, en-
crypted storage

Table 1: Privacy-preserving methods and their best utility fit.

Methodological Scan

Proposed Hybrid Architecture

1. Data Ingestion & Vault — pseudonymise identifiers, encrypt at rest.

2. Internal Analytics Sandbox — role-based raw-data access for billing/operations only.

3. Privacy-Engine Gateway:

• Differential-Privacy API for statistical queries;

• DP-trained Synthetic-Data Generator for vendor testing;

• Federated-Learning & Secure-MPC modules for collaborative modelling;

• Optional Homomorphic-Encryption layer for cloud workloads.

4. Audit & Compliance Layer — immutable logs, privacy-budget ledger, full FIPP mapping.
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Benefits

• Utilities: regulatory safe-harbour, faster partner onboarding, reduced breach liability.

• Third-Party Vendors: high-fidelity synthetic or federated data without PII negotiations.

• Customers & Regulators: stronger privacy guarantees, transparent consent pathways.

Implementation Road-Map

Phase 1: Readiness – data-asset inventory; ε-policy workshop.

Phase 2: Core Controls – stand-up data vault; DP reporting for existing public stats.

Phase 3: Innovation Enablement – launch synthetic-data sandbox; pilot federated-learning
(e.g. EV-adoption classifier).

Phase 4: Advanced Cryptography – deploy Secure MPC for inter-utility aggregation; evaluate
HE for cloud workloads.

Key Takeaways

• A layered approach achieves CPUC’s “not reasonably identifiable” bar and preserves data
utility.

• Differential privacy is the linchpin for external statistics; with ε ≤ 1 noise is < 1% on feeder-
level hourly totals.

• The hybrid architecture future-proofs compliance against CCPA/CPRA and federal privacy
rules.

• Utilities that operationalize this blueprint position themselves as trusted data stewards and
first movers in vendor partnerships and grid-modernization funding.
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1 Introduction

Advanced Metering Infrastructure (AMI) refers to the network of “smart” utility meters and com-
munication systems that collect detailed energy usage data at fine time intervals (e.g. every 15
minutes). California’s major utilities have deployed millions of smart meters to enable better en-
ergy management, demand response, and customer feedback. The data from AMI can reveal gran-
ular patterns of electricity or gas consumption, offering potential benefits such as improved load
forecasting, personalized energy-saving recommendations, and integration of renewable resources.
However, this granular data can also expose intimate details of consumers’ lives. For example,
variations in usage can indicate occupancy patterns or the operation of specific appliances, effec-
tively painting a picture of when people are home, awake, or on vacation. Such inferences pose
obvious privacy risks: information about a household’s schedule or habits could be misused for
profiling, targeted marketing, or even criminal purposes. Balancing the utility of AMI data with
the protection of customer privacy has therefore become a paramount concern for utilities and
regulators.

In recognition of these concerns, the California Public Utilities Commission (CPUC) established
groundbreaking privacy safeguards for smart meter data in decisions D.11-07-056 and D.11-08-045
in 2011. These regulatory decisions — driven by California Senate Bill 1476 (2010) — created
a comprehensive framework of rules to ensure that customers’ energy usage information (termed
“covered information”) is protected ([5, 6]). A cornerstone of the CPUC’s approach is adherence
to the Fair Information Practice Principles (FIPPs)[25]. The FIPPs provide a set of interna-
tionally recognized privacy guidelines, including: (1) Transparency, (2) Individual Participation, (3)
Purpose Specification, (4) Data Minimization, (5) Use Limitation, (6) Data Quality and Integrity,
(7) Security, and (8) Accountability and Auditing [25]. CPUC D.11-07-056 explicitly adopted these
principles as the foundation of its privacy rules for the Smart Grid, making California one of the
first jurisdictions to require utilities to implement privacy-by-design in handling energy data [5].

Under the CPUC’s privacy rules, utilities may use customers’ usage data freely for primary
purposes such as billing, grid operations, and regulated programs, but any disclosure of personal
usage data to third parties for secondary purposes (e.g. marketing or research not mandated by
law) is tightly restricted [5, 6]. In general, secondary uses require explicit customer consent or
must involve data that has been sufficiently anonymized so that individual customers cannot be
identified. The rules define “covered information” as individually identifiable usage data obtained
through AMI, and crucially carve out an exception for data that are de-identified such that a
customer’s identity “cannot reasonably be identified or re-identified”. This creates both a legal
obligation and a technical challenge: how can utilities transform or analyze AMI data in ways that
preserve useful insights while making sure no individual’s privacy is compromised?

To meet this challenge, a range of privacy-preserving data analysis techniques have emerged.
This paper provides an in-depth examination of six key techniques and their application to utility
AMI datasets:

• Anonymization and De-Identification: Removing or obscuring personal identifiers in the
data to prevent direct attribution to individuals.

• Differential Privacy: Adding carefully calibrated noise or randomness to data queries or
outputs to provide strong, mathematical privacy guarantees.

• Federated Learning: Training statistical or machine learning models in a decentralized
manner so that raw data remains on local servers or devices, rather than being pooled cen-
trally.
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• Synthetic Data Generation: Creating simulated datasets that mimic the statistical prop-
erties of real data without revealing actual personal information.

• Secure Multiparty Computation (SMPC): Using cryptographic protocols that allow
multiple parties to jointly compute results (e.g. a sum or trained model) from their combined
data without exposing their individual inputs.

• Homomorphic Encryption: Encrypting data in so that some computations can be run
using encrypted data and produce results that can be decrypted later, never exposing raw
data during processing.

Each of these approaches addresses privacy from a different angle (legal, statistical, or crypto-
graphic). Some are already used in practice for privacy protection, while others are cutting-edge
techniques from computer science research.

This paper is written for an audience of utility data scientists and engineers, with the goal
of providing both conceptual understanding and practical guidance. In the following sections,
we explore each technique in depth: we define how it works, discuss how it can be applied to
energy usage data, evaluate its strengths and limitations, and consider its compliance with the
CPUC’s privacy framework (including FIPPs and specific rules from D.11-07-056/D.11-08-045).
We then provide a rigorous comparative evaluation across the techniques and propose a hybrid
architecture that combines them to achieve robust privacy protection for AMI data in real-world
implementations. Mathematical rigor is included to clarify how privacy guarantees are quantified
(for instance, the ε parameter in differential privacy) and how techniques like encryption or secure
computation maintain data utility. We also present an architecture diagram and flowcharts to
illustrate how these methods can interoperate within a utility’s data analytics platform.

Our findings show that no single technique is a silver bullet; rather, an integrated strategy is
required to satisfy all the FIPPs and regulatory requirements while preserving data usefulness. By
adopting the combined approach outlined here, utilities can enable valuable insights from smart
meter data (supporting operational efficiency, customer programs, and research) without compro-
mising customer privacy or trust. This aligns with the dual mandate emphasized by regulators:
supporting data-driven innovation and consumer benefits on the one hand, and ensuring privacy,
security, and customer control on the other. The California smart grid privacy regulations provide
a clear impetus and guidance for this balance, and the techniques described in this paper offer the
practical tools to achieve it. In sum, this paper serves as a blueprint for implementing privacy-
preserving data analytics in the utility sector, with California as a leading example that may inform
broader industry practices.

Scope and Organization

While privacy and security often overlap, this paper focuses specifically on data privacy techniques
(rather than general cybersecurity measures like firewalls or device authentication). We assume
that baseline security controls (encryption of data in transit, secure storage, access control, etc.)
are in place, and we concentrate on methods to prevent the inappropriate disclosure or inference
of personal information from AMI data when it is analyzed or shared. Each of the next six sections
(Sections 2–7) covers one privacy-preserving technique in detail. In Section 8, we present the pro-
posed combined architecture and compare the techniques’ performance and suitability for various
use-cases. Section 9 concludes with recommendations and future considerations. All content is
intended to be self-contained and is supported by references to both regulatory documents and
academic literature, to ensure both compliance and scientific rigor.
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2 Data Anonymization and De-Identification

One of the most straightforward approaches to protect privacy is anonymization, i.e. removing
or masking personal identifiers in the data. In the context of AMI data, direct identifiers might
include customer names, addresses, account numbers, or meter IDs that link usage readings to
specific individuals. A basic de-identification process might strip out or pseudonymize such fields
(for example, replacing a meter ID with a random identifier). The goal is to make it difficult for a
data recipient to trace a particular energy usage profile back to the real person or household that
generated it.

However, it is well-established that anonymization alone often does not guarantee true pri-
vacy if the data retains granular information. Attackers may re-identify individuals by linking
“anonymized” records with external information (a process known as a linkage attack) [15]. For
example, even if names and addresses are removed from a smart meter dataset, an adversary who
knows that a particular household has a distinctive usage pattern (such as very high usage at night
due to medical equipment) might pick out that household’s record from the data. The CPUC’s
privacy decision acknowledged this risk by defining that data is not considered truly de-identified
unless a customer “cannot reasonably be identified or re-identified” from it [5]. In practice, achieving
this standard may require more than just removing obvious identifiers; it may necessitate aggre-
gating or reducing the detail of the data to obscure unique patterns. In any case, anonymization
alone is often insufficient as a long-term privacy guarantee.

2.1 Techniques for Anonymizing AMI Data

Several techniques can enhance anonymization:

• Pseudonymization: Replace actual identifiers (like account numbers) with random codes.
The mapping from code to identity is kept secret by the utility. Over time, one might peri-
odically change these codes to prevent long-term linkability of records to the same individual
[9]. Pseudonymization is a minimal step that ensures that anyone outside the utility sees
data labeled only by an arbitrary ID.

• Aggregation: Combine or summarize data across multiple customers or time intervals. For
example, rather than releasing each home’s 15-minute usage, the utility might provide hourly
averages for groups of 100 households. By grouping data, individual outliers are blended into
the crowd. Many utilities already apply aggregation thresholds for privacy (e.g. not reporting
any statistic if fewer than a certain number of customers contribute to it). Aggregation
directly supports the FIPP principles of Data Minimization and Use Limitation by disclosing
less granular information.

• Generalization and Suppression: In data publishing contexts, techniques like k-anonymity
can be used. Sweeney [24] introduced k-anonymity as a criterion where each record is made
indistinguishable from at least (k− 1) other records with respect to a set of quasi-identifying
attributes. In the case of energy data, quasi-identifiers could include attributes like general
location or customer type. To achieve k-anonymity, one might coarsen values (e.g. report a
zip code rather than full address, or round usage to the nearest 0.1 kWh) so that multiple
customers share the same values. Alternatively, one might suppress certain data points (re-
move them) if they are too unique. The idea is that any individual usage profile should “hide
in the crowd” of k similar profiles.
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For illustration, suppose we have daily electricity usage curves for 10,000 customers and we want
to publish a dataset for researchers. A simple anonymization would remove customer names and
replace them with an ID. But an attacker with external knowledge (say, a list of a few people who
have home solar panels which create a midday dip in load) might identify those customers’ traces
by their distinctive midday usage drop. To counter this, the utility could aggregate or average some
of the data (e.g. provide typical load shapes for broad customer segments rather than individual
traces) or generalize specific features (e.g. provide maximum and minimum daily load instead of
the full 24-hour profile). These steps degrade the precision of the data to gain privacy.

2.2 Limits and Risks of Re-Identification

While anonymization is a necessary starting point (and is explicitly required by CPUC rules before
data can be considered non-personal [5]), it has well-documented limitations. Researchers have
demonstrated that anonymized datasets in various domains can often be re-identified. A classic
example is the Netflix Prize dataset: although usernames were removed, researchers cross-referenced
the movie rating timestamps and scores with public IMDb profiles and successfully identified specific
users [21]. In the smart grid context, Greveler et al. [14] discuss how even anonymized energy usage
data can be deanonymized if an attacker can correlate it with other information (for instance, a
person’s work schedule or known appliance usage patterns).

For AMI data, high-frequency time-series are particularly rich in personal signals. Fine-grained
energy usage can reveal when the occupants of a home wake up (power spike from making coffee
or using a hairdryer), when they leave or return (signatures of HVAC or alarm systems), and so on
Greveler et al. [14]. If an attacker has any of these reference points (for example, from observing
a household or obtaining data from a smart thermostat inside the home), they could potentially
match them to an “anonymous” usage record. Thus, truly anonymizing time-series data often
requires reducing its temporal resolution or detail significantly. For instance, publishing daily or
weekly totals is far safer than publishing 15-minute readings.

Another risk is composition of datasets: Even if each individual release is anonymized
to some degree, an adversary might combine multiple data sources to triangulate identities. A
utility might release aggregated usage by zip code and, separately, a list of participants in a solar
program. The intersection of those could unintentionally single out a household if only one solar
participant lives in a particular zip code. This underscores the importance of a holistic approach to
de-identification and why CPUC’s rules emphasize the “reasonableness” standard — utilities must
consider what an intruder could reasonably do with available data to re-identify customers.

2.3 Evaluation of Anonymization for AMI Data

Advantages: Anonymization is conceptually simple and does not necessarily require complex
algorithms. When done by aggregation, it can nearly eliminate privacy risks (e.g. a sum of 100
households’ usage is very hard to attribute to any one house), and the aggregated data can still
be very useful for certain analyses (like total load forecasting). Anonymization also preserves
truthfulness of data (no distortion is introduced, unlike methods that add noise). It aligns with
regulatory expectations: CPUC explicitly envisions that sufficiently de-identified usage data is not
“covered information” and thus can be shared without violating privacy rules [1].

Drawbacks: To be effective, anonymization often forces a significant loss of data granular-
ity or utility. Grouping or coarsening data means one cannot perform customer-level analysis or
detect outliers. Important patterns (like household-specific demand response to an event) might
disappear in aggregated data. Moreover, implementing k-anonymity or similar guarantees in prac-
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tice can be challenging for high-dimensional data like daily load curves—making many households
truly identical on all time points may require heavy generalization that undermines the data’s
value. Another drawback is the lack of a quantifiable privacy guarantee: anonymization can fail in
ways that are hard to predict, because it’s unclear what external information an adversary might
have. In contrast to differential privacy (discussed next), which provides a provable privacy bound,
anonymization relies on assumptions about adversary knowledge. If those assumptions are wrong
(as happened in the Netflix case and others), privacy can be breached with no easy way to measure
the risk in advance.

In summary, anonymization and de-identification are essential first steps and will be part of
any privacy-preserving strategy for AMI data. All other techniques in this paper assume that ob-
vious identifiers have been removed to the extent possible. But anonymization should be viewed
as a complementary measure rather than a standalone solution. For high-resolution AMI data,
additional techniques like noise addition or cryptography are advisable to achieve the “reason-
able” non-identifiability standard required by regulators. In the next sections, we explore those
techniques—beginning with differential privacy, which can provide a formal quantification of re-
identification risk.

3 Differential Privacy

Differential Privacy (DP) has emerged in the last decade as a gold-standard definition of privacy for
statistical data analysis. Unlike anonymization, which tries to scrub identifiers, differential privacy
takes a quantitative approach: it deliberately introduces randomness to the data or the results
of queries in order to mask the contributions of individual records. The strength of the privacy
guarantee can be tuned by a parameter ε (and sometimes δ), which provides a bound on how much
an individual’s data can affect the outcome.

3.1 Definition and Mathematical Foundations

Informally, a mechanism is differentially private if an observer seeing its output cannot tell (within
a small statistical margin) whether any particular individual’s data was included or excluded.
Formally, as introduced by Dwork et al. [8], a randomized algorithm M gives ε-differential privacy
if for any two datasets D and D′ that differ in only one individual’s data (i.e. D′ has one person’s
records changed or removed relative to D), and for any possible output O of the algorithm, the
probabilities of O are nearly the same:

Pr[M(D) = O] ≤ eε Pr[M(D′) = O] .

If a δ parameter is included (called (ε, δ)-DP), then with probability δ this constraint may be
broken, but δ is taken to be very small (e.g. 10−6). In essence, ε (often called the “privacy
budget”) controls how much an individual record can sway the output — smaller ε means stronger
privacy (less influence). By setting ε to a low value (like 0.1 or 0.5), we can ensure that the presence
or absence of any single customer’s data in an AMI dataset has a barely perceptible effect on the
results.

Differential privacy applies most directly to statistical queries. For example, suppose we want to
publish the total electricity usage in a neighborhood each hour. If we simply sum the smart meter
readings, one very large household load could noticeably change the total, potentially revealing that
household’s presence. Under differential privacy, we would add random noise to each hourly total. A
common method is the Laplace mechanism: if a function f(D) has a certain maximum sensitivity
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∆ (the largest amount any single record can change f), then by adding noise η ∼ Laplace(0,∆/ε)
to f(D), we obtain ε-differential privacy for that query [8]. In the neighborhood example, if a single
household can contribute at most (say) 5 kWh in an hour, then ∆ = 5. With ε = 0.5, we add
noise drawn from Laplace(0, 5/0.5) = Laplace(0, 10). This distribution has a standard deviation
of about 10 kWh. The reported neighborhood totals will thus be somewhat perturbed — typically
within ±10 kWh of the true value — which masks any one home’s exact usage. We might also use
a Gaussian mechanism (adding Gaussian noise) for ε, δ-DP, depending on the scenario.

An important property of differential privacy is composition: if we release multiple outputs
(either multiple queries or the same query over multiple time intervals), the privacy losses accumu-
late roughly additively. This means we must budget the total ε across all releases. For instance,
releasing each hour’s total with ε = 0.5 per hour, over 24 hours, would consume εtotal ≈ 24×0.5 = 12
(which is extremely weak privacy). To stay within a reasonable privacy budget, one might either
reduce the frequency of queries or increase the noise as more queries are answered. There are ad-
vanced composition theorems and techniques (like privacy loss distributions) to manage this, but
the basic intuition is that the more information you release, the more noise needs to be injected at
each step to maintain an overall privacy cap.

3.2 Applying Differential Privacy to Smart Meter Data

Differential privacy is well-suited for releasing aggregate information about large collections of
individuals. In the utility context, this could include:

• Aggregated Load Curves: A utility could publish community-level or feeder-level load
profiles (e.g. total load vs. time for a town) with DP noise added, ensuring that the con-
tribution of any one home is obscured. As long as the community has many customers, the
added noise can be relatively small compared to the total, maintaining usefulness.

• Statistical Indicators: Metrics like the average energy usage of a certain customer segment
(say, average daily consumption for customers on a time-of-use tariff vs. a flat rate) can be
released with DP. Even if one customer is very high or low, the noise will cover their effect.
For example, a mean can be computed via a sum (with Laplace noise) divided by count
(the count can be released with DP too, or if count is known exactly, that might be okay if
revealing it doesn’t violate privacy).

• Histograms or Distributions: The utility might want to share the distribution of 15-
minute usage values across its customer base (for simulation or research). This can be done
by creating a histogram of usage (number of readings in various bins) and adding noise to
each bin count. The classic “privacy blanket” example is that DP will add fictitious counts
in each bin so that one extreme reading doesn’t stand out.

• Anomaly Detection Results: If the utility identifies, for instance, the number of homes
that exceeded a certain usage threshold each day, they could add noise to these counts be-
fore sharing with an external agency, ensuring that whether a particular home tripped the
threshold is not revealed.

A key question is whether to apply DP in a centralized or distributed manner. In the centralized
model, the utility (which is a trusted data holder for primary purposes) has the raw data and applies
a differentially private algorithm to produce outputs that it shares externally. This aligns with
CPUC rules: the utility can use the data internally and only releases privacy-protected summaries.
In the local (or distributed) model of DP, each individual meter reading would be perturbed at the
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source (for example, each smart meter could add random noise to its measurement before sending
to the utility) [2].1 Local DP provides privacy even from the utility, but at a cost of much higher
noise (because each individual piece of data must be protected, rather than only aggregates). In
most regulatory contexts (including California’s), the utility is allowed to access the raw data for
primary purposes, so central DP is sufficient and preferred due to its better accuracy. We will
assume the centralized model (utility as curator) for our discussion, where the utility applies DP
to data it holds before sharing results onward.

3.3 Benefits and Trade-offs

Differential privacy offers a rigorous privacy guarantee: it is essentially immune to any post-
processing or auxiliary information attacks, as the guarantee holds regardless of what the attacker
already knows. If ε is small, an individual’s inclusion in the dataset provably does not significantly
affect the outputs. This aligns well with the concept of “reasonable” de-identification in CPUC’s
rules, because DP provides a quantifiable notion of what an adversary could infer. It addresses the
scenario of worst-case auxiliary information—no matter what external data is available, the risk
added by any one person’s data is bounded by ε.

Another advantage is that DP can allow flexible data analysis albeit in a controlled manner.
Instead of sharing a static, heavily aggregated dataset (as in pure anonymization), differential
privacy can enable interactive queries or on-demand analysis with noise. For example, a researcher
could query the utility’s data via an API that returns noisy answers under the hood, ensuring
privacy. This way, many insights can be extracted without exposing raw data. Some entities, like
the U.S. Census Bureau, have adopted differential privacy for publishing statistics to ensure modern
privacy protection.

The main cost of differential privacy is accuracy loss due to the added noise. If the dataset
is large and each query’s sensitivity is low (e.g. totals over thousands of homes), the noise can
be quite small relative to the true values, maintaining high accuracy. But for queries on small
subsets or very granular data, the noise needed for privacy can overwhelm the signal. For instance,
attempting to release each individual household’s hourly usage with differential privacy would be
futile — you would have to add noise so large that the result for each house would be essentially
meaningless (because each individual value has high sensitivity to itself). DP is thus better for
aggregate information than for releasing individual-level data (in fact, releasing individual-level
data would violate privacy by definition, so DP inherently focuses on aggregates).

Another challenge is choosing the privacy parameters. Regulators or utilities must decide
what ε (and δ) is appropriate. Larger ε (e.g. 2 or 3) might give more accurate results but weaker
privacy (allowing noticeable individual influence), whereas a very small ε (0.1) gives strong privacy
but may overly noise the data. This is often a policy decision that weighs the value of the data
against the acceptable risk. The CPUC has not (to date) specified an ε for energy data, so this
would likely involve stakeholder input and possibly experimentation to see what level of noise is
tolerable for data utility. Some research suggests that even ε around 0.5 or 1 can provide significant
privacy while preserving many aggregate patterns in energy data [2]. Ultimately, ε could be treated
similarly to a de-identification standard — for example, the utility might commit that any public
data release will use ε ≤ 1 to ensure a high privacy standard.

It’s also worth noting that differential privacy, while powerful, does not magically solve all
privacy issues on its own. If the data is highly dimensional (like each customer’s 96 readings per

1Local differential privacy is used by some tech companies for collecting telemetry from users without recording
exact data points. In energy, a local DP approach could mean customers’ devices themselves randomize their data
for privacy.
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day for a year), a mechanism would consume a lot of privacy budget to release all that with DP.
One way to handle this is to focus on summary statistics or to use DP in conjunction with data
reduction techniques (like releasing a DP synthetic dataset, see next section). Additionally, DP
requires careful implementation to avoid mistakes (for example, correctly computing sensitivity and
calibrating noise, and ensuring all data uses are accounted for in the privacy budget).

3.4 Use in Compliance and Utility Context

From a compliance standpoint, differential privacy offers a method for the utility to quantifiably
comply with the CPUC’s mandate to protect customer data when sharing. If a utility can demon-
strate that any released information is ε-DP, it effectively shows that the risk of identifying any
customer is mathematically bounded (and can be made arbitrarily low by choosing ε small). This
could satisfy the “cannot reasonably be identified” clause [3] with more confidence than ad-hoc
anonymization can. It also embodies the FIPP of Data Minimization by ensuring only approxi-
mate info goes out, and Use Limitation by preventing misuse of data (since granular personal data
is never directly shared).

Differential privacy has been a focus of recent energy data privacy research. For example,
methods have been proposed to release billing data or consumption aggregates with DP guarantees,
and even real-time systems for DP streaming of smart meter readings have been studied (injecting
noise in real-time signals)[2, 27]. Some pilot programs, such as those by energy data hubs, have
considered DP as a way to enable third-party analytics while maintaining customer anonymity
[13]. In practice, a utility could implement a differentially private query interface for researchers:
queries could be limited in number and scope, and each answer would include a bit of random noise.
Alternatively, the utility might generate a differentially private report on key statistics periodically
for public knowledge (for instance, a DP version of its annual load research data that regulators
and academics can use).

In summary, differential privacy is a powerful tool in the privacy-preserving toolkit for AMI
data. It provides a strong theoretical guarantee and aligns well with regulatory principles, but
it requires accepting some randomness in results. The next technique we discuss, synthetic data,
can be seen as a way to produce an entire dataset with properties similar to the original; often,
synthetic data generation can be combined with differential privacy to ensure the synthetic data
doesn’t leak real information. We now turn to that approach.

4 Synthetic Data Generation

Instead of releasing actual customer data (even in noisy or aggregated form), a utility may choose
to generate and share synthetic data: an artificial dataset that statistically resembles the real
data. The idea is to capture the useful patterns and relationships in the AMI data without exposing
any real customer’s exact information. If done properly, synthetic data allows analysts to perform
many of the same analyses they could on real data (e.g. training models, computing distributions)
with minimal privacy risk because the records are fictional.

4.1 What is Synthetic AMI Data?

Synthetic data generation typically involves using the real dataset to learn a model or distribution,
and then sampling from that model to create new data points. In the context of smart meter data,
a synthetic dataset might consist of electricity usage time-series for a set of “fake” households that
do not correspond one-to-one with actual households, but that collectively preserve characteristics

12



like the typical daily load curves, variability, correlations with weather, etc. Key approaches to
generate synthetic data include:

• Statistical Simulations: Using domain knowledge or simple models. For example, one
could assume each home’s load is composed of baseline usage plus random appliance events,
and simulate usage with random draws for appliance on/off times. Traditional load research
models (like those that categorize days into types and use average profiles plus noise) can serve
as a simple synthetic generator. The National Renewable Energy Laboratory (NREL), for
instance, has released tools for generating synthetic load profiles for buildings using physics-
based simulations combined with randomness [4].

• Generative Machine Learning Models: Recent years have seen advanced generative
models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
being applied to create synthetic data in many domains. For energy data, a GAN could
be trained where a “generator” neural network tries to produce realistic load curves and a
“discriminator” network tries to distinguish them from real curves; through training, the
generator learns to produce highly realistic synthetic profiles. Fu et al. [10] proposed a
conditional diffusion model (a type of deep generative model) for synthetic energy meter data,
incorporating building metadata to improve realism. These models can capture complex
patterns (daily cycles, weather effects, behavioral diversity) more accurately than simple
random sampling.

• Hybrid Approaches: Sometimes real data can be combined or perturbed to generate syn-
thetic data. For example, one could take real load profiles and randomly swap some days
between customers, or add random noise and small time shifts to each profile. This retains
some structure of real data but breaks the one-to-one mapping of a profile to a real household.
Another approach could be to cluster similar usage patterns and then create new samples by
interpolating between cluster centroids.

The effectiveness of synthetic data is measured by how well it preserves the statistical properties
of interest. For instance, if researchers care about peak load distribution, the synthetic data should
have a similar distribution of peak demands as the real data. If they care about correlation between
solar generation and home load, the synthetic data should mimic that too. At the same time, no
actual customer’s data should be directly reconstructable from the synthetic dataset. Ideally, even
if an adversary knows an individual’s real load pattern, they should not find that exact pattern in
the synthetic data.

4.2 Privacy Considerations for Synthetic Data

By design, a synthetic dataset does not contain any real individuals. However, privacy issues can
still arise if the synthetic generation process overfits or memorizes the original data. For example, a
naive method that randomly picks actual days from the dataset and labels them “synthetic” would
actually be disclosing real data. Even a sophisticated model like a GAN could potentially learn to
output something very close to a particular training record if that record is very unique (this is
known as a mode memorization problem). Therefore, it’s important to evaluate synthetic data for
potential leakage:

• One-to-one similarity: Check that no synthetic record is too similar to any single real
record. This can be done by computing distances between synthetic and real time-series. If
any are virtually identical, the generation process might be copying.
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• Membership inference resistance: Researchers often perform a test to see if they can
distinguish whether a given real data record was in the training set that produced the synthetic
data (this is akin to an attack where knowing someone’s presence in the source data is a privacy
breach). If an attacker can reliably tell that certain real individuals influenced the synthetic
data more than others, that’s a problem. Differential privacy can be applied during model
training to mitigate this (yielding DP-synthetic data). In practice, incorporating differential
privacy into the synthetic data generation process (as per Asghar et al. Asghar et al. [3]) can
provide provable privacy protection, ensuring no individual record from the original data can
be reconstructed from the synthetic set

• Aggregate fidelity vs. individual fidelity: The synthetic data should aim to be good
in aggregate patterns, not to replicate individual idiosyncrasies. Metrics like distribution
of hourly means, standard deviations of daily totals, load factor distribution, etc. can be
compared between real and synthetic sets to ensure fidelity. At the same time, metrics
like maximum per-customer deviation or identifiable sequences should be checked to ensure
individuals are not traceable.

One practical approach to increase privacy of synthetic data is to incorporate some level of
randomization or noise in the generation. For example, if using a GAN, one might add a small
DP noise to the gradients during training (this is an active area of research, often referred to as
DP-GAN). Alternatively, after generating synthetic records, one could post-process them by adding
a little noise or random jitter so that even if the model accidentally reproduced something close to
real, the final output is slightly altered. This can be done in a way that has negligible effect on
utility but increases uncertainty for an attacker.

4.3 Value of Synthetic Data for Utility Use-Cases

The big advantage of synthetic data is that it provides flexibility for the data user. Unlike a
narrow aggregate or a noisy answer, a synthetic dataset can be used to perform many types of
analysis as if it were the real dataset. A researcher or third-party company can take the synthetic
AMI data and run their algorithms, create visualizations, test hypotheses, etc., without having to
interact with the live utility system. Synthetic data can thus enable open innovation: utilities could
make a synthetic version of their data publicly available to universities, startups, or community
stakeholders, who can then derive insights without any privacy concerns about real customers. For
example, academics could test new load forecasting methods on synthetic smart meter data that
statistically mirrors a utility’s service territory, getting valuable feedback before requesting access
to real data.

From a compliance perspective, truly de-identified synthetic data could be seen as satisfying
the CPUC’s requirements because no actual person’s information is included. If the synthetic data
generation is robust, it arguably meets the “not reasonably identifiable” threshold by construction.
However, it is important that the utility validate that the synthetic data does not inadvertently
carry identifiable traces (the privacy checks mentioned earlier). To be extra safe, the utility might
still treat synthetic data sharing similarly to anonymized data sharing, by having it reviewed by a
data privacy officer or an independent auditor.

In terms of data utility, high-quality synthetic data can preserve a wide range of statistical
properties. Modern generative models have been shown to reproduce complex temporal patterns.
For instance, Fu et al. [10] report that their diffusion-based synthetic data had only small differences
in distributional metrics (like Fréchet distance and KL divergence) compared to real data, indicating
the synthetic data was a good substitute for many analytic purposes. That said, there will always
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be some loss of fidelity — especially for rare events or extremes. If a particular day with an
unusual grid event is in the real data, the synthetic model might not capture that unless explicitly
instructed. Thus, certain tail-end analyses (like worst-case peak demand) might not be as reliable
on synthetic data unless the model is tuned to preserve extremes.

Another trade-off is that synthetic data generation can be computationally intensive (training
a GAN or diffusion model on millions of meter readings is non-trivial) and requires expertise.
However, once a model is trained, generating new data is fast and cheap. The utility could even
generate multiple synthetic datasets for different scenarios (e.g. one reflecting a hot summer,
another a mild summer) by conditioning the model on external factors.

4.4 Role in a Hybrid Privacy Strategy

On its own, synthetic data provides a way to share data broadly with low risk, but it does not
provide a formal guarantee unless combined with something like differential privacy. In a hybrid
strategy, synthetic data generation can be the final step of releasing data: first use differential
privacy or heavy anonymization to ensure safety, then use that sanitized data to fit a synthetic
data model. The output synthetic data will then have two layers of protection (which might be
overly cautious, but for especially sensitive data that might be appropriate).

For internal use, synthetic data could also play a role. A utility might generate synthetic
customer data to test a new analytics platform or to develop software without exposing developers to
real customer data. This is a common practice in industries handling sensitive data (e.g. banking):
use fake data in development environments to reduce the chance of leaks or misuse.

To sum up, synthetic data is a powerful method to enable data sharing and analysis with
greatly reduced privacy risks. It aligns with the FIPP of Data Minimization (since no real data
is revealed) and Use Limitation (data given to third parties contains no real PII). The trade-off
is the complexity of generation and the need to ensure synthetic fidelity. In the next sections, we
will examine techniques that allow analysis on real data without revealing it — namely federated
learning, SMPC, and homomorphic encryption — which can be used in conjunction with or as
alternatives to synthetic data when direct model training or computation is needed.

5 Federated Learning

Traditional data analysis methods often require collecting all data in one place (a central server or
database) to train models or perform computations. Federated Learning (FL) offers a funda-
mentally different paradigm: keep the data distributed at its source and move the computation to
the data. In federated learning, multiple parties (or devices) collaboratively train a machine learn-
ing model by only sharing intermediate parameters (like model weight updates) rather than raw
data [20]. This approach was popularized by Google for privacy-preserving learning on user devices
(e.g. learning a predictive text model from many smartphones without uploading the phones’ mes-
sages). In the context of utility data, federated learning can enable joint analysis or model building
across data silos (or directly on customer meters) without aggregating the underlying sensitive data
in one location accessible to others.

5.1 How Federated Learning Works

The canonical setup for FL involves a central coordinator (or server) and multiple clients (data
holders). A typical training round in federated learning proceeds as follows:
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1. The coordinator initializes a global model (e.g. a regression or neural network with certain
parameters w).

2. Each client (e.g. a utility data center holding its own customers’ data, or potentially each
smart meter or customer device) receives the current model parameters w.

3. Each client uses its local data Dclient to compute an update to the model. For instance, it
might run a few iterations of stochastic gradient descent (SGD) on w using its local AMI
data, producing an updated parameter vector wclient.

4. The client sends back only the update or the difference (e.g. gradients or the new weights)
to the coordinator. No raw data or specific training examples are sent.

5. The coordinator aggregates the updates from many clients (for example, by averaging them,
which is the FedAvg algorithm of McMahan et al. [20]). Let N be the number of clients and
ni the number of data points at client i. A common aggregation is w :=

∑N
i=1

ni∑
j nj

wclienti ,

a weighted average of the client models.

6. The coordinator obtains a new global model w that incorporates learning from all clients’
data. This model may then be sent out again for further rounds, iterating until convergence.

Throughout this process, the raw data Dclient never leaves the client’s control. Only model parame-
ters (which are usually numerical arrays) are exchanged. If the model is complex, these updates can
be large in size, but they are essentially abstract representations of learned patterns, not intelligible
data about individuals in straightforward form.

5.2 Federated Learning for Utility Applications

How might FL be used by utilities or third-parties on AMI data? A few scenarios:

• Cross-Utility Collaboration: Suppose multiple utilities (or multiple utility districts) want
to develop a common machine learning model, say for predicting which customers are likely
to adopt solar panels or electric vehicles based on their consumption patterns. Privacy and
regulatory constraints might prevent them from pooling their customer data. With federated
learning, each utility can train the model on its own customer data locally, and share only
the model updates. At the end, they get a single predictive model that benefits from broader
trends across all their regions, without any utility revealing its raw meter readings to the
others. This addresses the CPUC’s emphasis on not sharing covered information with third
parties without consent, by instead sharing only learned patterns.

• Device-Local Learning: Consider a smart home device or an EV charger that wants to
learn a personalized schedule or optimization. Using FL, the manufacturer of these devices
could train a general model across many customers’ usage data without ever seeing the data
itself. Each device would train on its local data (e.g. the home’s voltage, usage, etc.) and
send updates. The result could be a better local energy management algorithm that has
essentially learned from thousands of homes collectively, but in a privacy-preserving way.

• Third-Party Analytics Services: A third-party energy analytics company might offer a
service to utilities or consumers (for example, disaggregating appliance usage from whole-
home data or detecting anomalies). Rather than the utility handing over all customer time-
series to the company, they could use a federated approach: the company provides a model
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(like a neural network for disaggregation), and the training is done collaboratively with the
utility’s infrastructure. The utility’s servers (or even edge devices near smart meters) do the
heavy lifting with their data and only return model weight updates. In this way, the third
party improves its model and can deploy it, without ever directly accessing personal data.
This scenario fulfills the Use Limitation principle by technically not disclosing personal data
— only model parameters are exchanged.

It’s important to clarify that federated learning by itself does not guarantee privacy in a provable
sense like differential privacy does. The model updates might still leak some information. For
example, if one client has an outlier pattern, its gradient could be somewhat distinct (there have
been known model inversion attacks where adversaries reconstruct aspects of training data from
model updates). However, because the updates are aggregated, and because each update is a result
of many data points, the risk is far less than sharing raw data. To strengthen privacy, federated
learning can be combined with other techniques:

• Secure Aggregation: Using cryptographic techniques (as will be discussed in the SMPC
section), the coordinator can be set up so that it only sees the sum of the client updates, not
each individually. This way, even if one client’s update had some identifiable signature, the
coordinator cannot isolate it. Only the aggregate model is used. Google’s federated learning
framework, for instance, uses secure multiparty aggregation to protect client updates from
the server’s view.

• Differentially Private Updates: Clients can add a bit of noise to their updates (or the
server can add noise to the aggregated update) to achieve differential privacy for the training
process. This adds some fuzziness but can formally limit what can be inferred about any single
client’s data from the final model. There is active research in applying DP-SGD (differentially
private stochastic gradient descent) in federated settings.

5.3 Benefits for Privacy and Compliance

Federated learning adheres to the principle of data minimization: each party only sends the mini-
mum information needed to collaborate on the task (i.e. model updates). For a California utility,
using FL for engaging with third parties means they can honestly say “we are not sharing customer
usage data”, which would help comply with CPUC privacy decisions and California Consumer Pri-
vacy Act (CCPA) obligations. Instead, they are sharing insights or patterns in a controlled manner.
If the model being trained is specific to a primary purpose (e.g. grid reliability), then each utility
can do it internally. If it’s a secondary purpose (like a research study across utilities), federated
learning provides a way to do it without a central database of all customers’ data, which might
otherwise be disallowed.

A concrete example: CPUC’s rulings make it clear that utilities need Commission approval
or customer consent to share covered information for secondary uses [5]. Imagine a university
researcher wants to train a model to detect wasteful consumption patterns to help with energy
efficiency programs. Under traditional means, obtaining customer-level data from utilities would
be a lengthy process possibly requiring customer consent or anonymization (with all the risks
discussed). With federated learning, the utility could participate in training the researcher’s model
on its data, but never expose the raw data. The resulting model could then be published or used
to provide advice, without any customer’s specific data being revealed. In effect, FL can serve as
a form of “privacy contract” — the utility agrees to run calculations locally but not to transmit
disaggregated customer info.
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5.4 Limitations and Practical Challenges

Federated learning is not a panacea. Its primary limitation is that it is useful only for certain types
of problems, specifically those where a model can be trained to capture what we want from the
data. If the goal is to compute a simple statistic or provide a dataset, FL is overkill. But if the
goal is to build a predictive model or classifier (for load forecasting, anomaly detection, customer
segmentation, etc.), FL is very powerful.

One must also consider the communication and computation overhead: FL can involve
many rounds of sending model weights back and forth. If each smart meter were a client, the
communication would be enormous. More realistically, each utility or each region can be a client.
For example, one could federate among 5 utilities, or among 100 feeder-level aggregations within
a utility, which is manageable. The clients need computational capability to train models — in a
utility scenario, this is feasible since the utility’s IT infrastructure can do that, or smart meters
could collectively use an edge compute device.

Another challenge is verifying that participants follow the protocol (the field of verifiable fed-
erated learning is evolving). A malicious client could potentially inject a manipulated update to
influence the global model (a poisoning attack). This is more of a security concern than privacy,
but it’s relevant if third parties are involved. In a cooperative setting like multiple utilities, trust
is higher, but it’s something to consider if, say, devices or customers themselves were clients.

From a privacy perspective, as noted, the global model itself might inadvertently reveal some-
thing. For instance, if the model is a linear regression and one feature corresponds to a certain
type of customer behavior only present in one client’s data, the learned coefficient might indirectly
reflect that. However, this leakage is much more subtle than outright data sharing. Combining FL
with secure aggregation and possibly differential privacy provides a multi-layered defense.

To summarize, federated learning allows learning from data without gathering the data. It is
a natural fit for scenarios where data is distributed (across households, across utilities) and must
remain local for privacy reasons. It complements other privacy methods: one could, for example,
use federated learning to train a model and then use differential privacy to share the model’s outputs
(if they are themselves sensitive statistics). In our hybrid architecture, FL is an important tool
when cooperation or external analysis is needed without violating data-sharing restrictions.

Next, we will discuss cryptographic techniques, starting with secure multiparty computation,
which can be seen as an even stronger (but more computationally intensive) way to compute on
data without revealing it.

6 Secure Multiparty Computation (SMPC)

Secure Multiparty Computation (SMPC), sometimes simply called secure computation, is a
class of cryptographic protocols that enable multiple parties to jointly compute a function over
their inputs while keeping those inputs private from each other. Unlike federated learning, which
focuses on training models, SMPC is more general and focuses on cryptographic guarantees: even
if parties are curious or malicious, they learn nothing about each other’s data except what can be
inferred from the final result of the computation (and that final result itself can be constrained to
limit information).

The origin of SMPC is often traced to Yao’s “millionaires’ problem” [26]: Two millionaires
want to determine who is richer without revealing their actual net worth. Yao proposed a solution
using garbled circuits, laying the foundation for secure two-party computation. This has since been
extended to n-party computation with protocols like Goldreich-Micali-Wigderson (GMW) and the
Ben-Or, Goldwasser, Wigderson (BGW) protocol, and many improvements in efficiency.
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6.1 How SMPC Works (in a Nutshell)

At a high level, SMPC protocols allow a set of parties {P1, P2, . . . , Pn}, each holding a private
input xi, to compute some agreed-upon function y = f(x1, x2, . . . , xn) such that each party learns
nothing about the other parties’ inputs beyond what can be deduced from y. There are different
paradigms for SMPC:

• Secret Sharing-based Protocols: A common approach is for parties to “secret share”
their inputs among each other. For example, to securely sum their values, each party splits
its number into random pieces and distributes pieces to others such that no single piece is
informative, but collectively the pieces can be summed to get the final sum. Additive secret
sharing is a simple case: say P1 has input a. It generates two random numbers r2, r3 such
that a = r2 + r3 mod M (for some modulus M) and sends r2 to P2 and r3 to P3. Neither
P2 nor P3 can deduce a from their share alone. If each party does this, they each hold shares
of everyone’s data. Then, to compute a sum, each party locally sums the shares it has (since
sum of shares = share of sum). More complex functions can be computed by combining
shares through interactive protocols (e.g., multiplication can be done with an extra round of
communication).

• Garbled Circuits: One party can create an encrypted (garbled) version of a circuit (logical
gates) that computes f , and other parties can cooperatively evaluate that circuit using their
inputs without revealing them, typically via exchanging cryptographic tokens for input wires
that represent their bits. The output is obtained in encrypted form and then revealed.

• Homomorphic Encryption-based MPC: Sometimes one uses homomorphic encryption
(discussed in the next section) where one party encrypts their data and another party performs
operations on it under encryption, returning an encrypted result that can be jointly decrypted.
This can be combined with secret sharing for multi-party scenarios.

The details of these protocols can be complex, but practically, several SMPC frameworks exist
(such as Sharemind, SecureML, or libraries using SPDZ or ABY protocols) that implement these
techniques. The security is usually defined in terms of what an adversary (or colluding subset of
parties) can infer. With proper protocols, even if some subset of parties collude, they still cannot
breach the privacy of the others’ inputs (up to some threshold).

6.2 Use Cases in Energy Data

Secure MPC is particularly useful when multiple independent entities want to compute a joint
function without revealing their individual datasets. In the energy context:

• Aggregating Meter Data Securely: Imagine a scenario where a group of neighbors or a
community wants to compute their total or average energy usage to participate in a program
(like a collective load management or to claim a demand response incentive) without each
neighbor seeing the others’ usage. SMPC can allow the smart meters to engage in a protocol
that computes the sum of their readings. Each meter could split its reading into shares and
send to others (or to some computation nodes); at the end, they obtain the sum. Each
individual’s usage remains private. This is similar to the concept of “privacy-preserving
aggregation” which has been studied for smart grids [18]. For example, Li and Luo [17] use
homomorphic encryption to achieve a form of MPC for summing consumption.
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• Billing and Rate Verification: A privacy concern in smart metering is that the utility gets
fine-grained data, which could be misused. Some proposals suggest using MPC between the
meter and utility to compute the bill without the utility seeing the actual load profile [23].
For instance, a meter could secret-share its hourly usage with two non-colluding servers that
compute the monthly bill based on tariffs and only output the final charge to the utility for
billing. This way, even the utility doesn’t see the detailed breakdown, but can trust the total
is correct (and it could audit with random spot-checks if needed).

• Inter-Utility Computation: If multiple utilities or agencies want to compute some function
of their combined data (e.g. total emissions based on usage patterns, or identify system-wide
peaks), SMPC can be used so that each utility’s data is kept confidential. For example,
Utility A and Utility B could compute “whose territory had a higher average load on July
4th” without either revealing the exact average load (this is essentially Yao’s millionaire
problem with utility loads). Or they could compute the combined load curve for a region
without revealing each other’s detailed curves by summing via secret shares. CPUC’s rules
might normally require formal data sharing agreements for such exchange, but using MPC,
the data isn’t actually exchanged in plain form.

• Data Marketplaces with Privacy Guarantees: Consider a scenario where a research
consortium wants to compute statistics on customer data from multiple sources (utilities,
smart device companies) while everyone’s data remains siloed. SMPC protocols can be or-
chestrated by a neutral party to get results like “the correlation between EV charging patterns
and solar production across California” without any single participant seeing the other’s raw
time-series. This could support studies and innovation while respecting each data owner’s
privacy commitments.

One concrete example drawn from research: Efthymiou and Kalogridis [9] in their anonymiza-
tion paper also mention using pseudonyms and a trusted third party; later works build on that to
remove the need for a trusted third party. SMPC can eliminate trusted intermediaries by replacing
them with cryptographic protocols. For instance, instead of relying on a trusted aggregator to
collect and anonymize data (which might be a weak link), the smart meters and utility servers
themselves can perform a calculation where the aggregator only gets the final aggregated result
and nothing else.

6.3 Strengths and Performance Considerations

The primary advantage of SMPC is strong privacy assurance: mathematically, under certain
hardness assumptions, it’s guaranteed that nothing except the intended output is revealed. This
is stronger than federated learning, which has some heuristic privacy, or even differential privacy
in some ways, because here we learn exactly the result and nothing more. However, one must
be cautious: the output itself could leak information if it’s too specific (for example, if only one
participant’s data strongly determines the output). In such cases, combining MPC with differential
privacy can be wise (compute the result securely, then noise it before revealing).

SMPC directly addresses FIPPs like Security (no clear data transmitted) and Use Limitation
(only the intended computation is performed, nothing else leaks). It can be a way to comply
with requirements of not sharing identifiable information even when computing joint results. For
instance, CPUC rules might allow sharing aggregated data beyond a certain threshold of customers.
SMPC can implement that threshold aggregation without ever exposing the individual values: if
fewer than the threshold participants join, the protocol could even abort or output “not enough
participants” without revealing partial info.
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The main drawback of SMPC is computational and communication overhead. Cryptographic
protocols, especially for complex functions, can be slow and require many rounds of communication.
For simple sums or averages, efficient protocols exist that add minimal overhead (practically feasi-
ble with milliseconds of computation on each meter and a couple of message exchanges). But for
complex functions (like training a whole machine learning model via MPC), it can become orders
of magnitude slower than normal computation. In our context, many useful functions are actu-
ally simple aggregates or linear computations that are quite MPC-friendly (summing, averaging,
threshold comparisons, etc., can often be done with secret sharing with low overhead).

Another challenge is scalability: If thousands of devices engage in MPC, the communication
might explode (if every device talks to every other). One solution is hierarchical MPC (aggregate
in small groups then aggregate the aggregates) or using dedicated aggregator nodes that do not see
raw data but facilitate combining shares.

There’s also the issue of robustness: Some protocols assume all parties follow the rules; if one
party aborts or sends bad data, the computation might fail. There are robust (even Byzantine fault-
tolerant) MPC protocols at higher overhead. In an energy setting with devices, one might assume
the smart meters are tamper-resistant modules running the protocol honestly, or one includes
mechanisms to detect and exclude misbehaving parties.

6.4 Comparison with Other Techniques

Compared to anonymization, SMPC doesn’t alter the data or lose information; it just ensures it’s
revealed only in aggregate. Compared to differential privacy, SMPC doesn’t add noise (so the result
is exact), but it doesn’t protect against an output that might inherently violate privacy. DP and
SMPC can be complementary: e.g. use SMPC to get exact total, then use DP to release a noisy
version of the total to a wider audience.

Compared to federated learning, SMPC is more heavy-duty but can compute things FL can’t
(FL is mostly for optimizing a model, SMPC can compute arbitrary functions if you are willing to
pay the cost). They can also be combined: there are proposals for doing federated learning with
secure aggregation (which is basically an MPC step to aggregate model updates without the server
seeing individual ones).

For a utility, implementing SMPC might require new infrastructure (key management, com-
puting at meters or substations). But there are some precedents, e.g. research prototypes where
smart meters perform secure aggregation using simple additively homomorphic encryption (like
each meter sends E(reading) to utility which multiplies them to aggregate – essentially what Li
and Luo [17] did). That is a form of two-party MPC between meter and utility via encryption.

6.5 Conclusion on SMPC

Secure multiparty computation provides the maximum privacy in principle: data is never exposed,
only the desired result is. In practice, it is best suited for relatively structured computations
(like aggregations or predetermined analytics) rather than exploratory analysis. SMPC shines in
scenarios where multiple parties distrust each other or want to minimize legal liability of sharing
data. By using SMPC, a utility can truthfully say “we are not sharing customer data with X, we
are only jointly computing Y”. This can ease compliance with rules that restrict data sharing. It
also addresses customer concerns: even if customers did not explicitly consent to share data with
a third party, SMPC ensures their individual data isn’t revealed to that third party.

In our hybrid architecture, SMPC can be one of the tools used when different stakeholders
(utilities, researchers, or even customers) need to compute something collaboratively. For example,
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if customers form a coalition to negotiate with a utility based on their combined load, they could
use SMPC to prove their combined peak reduction without anyone revealing their own reduction.
The trust assumptions and computing resources will determine if SMPC is the right choice or if
a simpler method (like just aggregating at the utility with consent) suffices. But with increasing
availability of libraries and the growing size of data, what was once theoretical is becoming more
practical in niche applications.

Next, we will examine homomorphic encryption, which is closely related to SMPC and can be
viewed as a specific approach to performing computations on encrypted data.

7 Homomorphic Encryption

Homomorphic Encryption (HE) is a form of encryption that allows some computations to be per-
formed on ciphertexts, producing an encrypted result that matches the result of the same operations
performed on the plaintexts. In simpler terms, with homomorphic encryption, one can compute on
encrypted data without decrypting it. This powerful notion was long theorized, but it wasn’t until
Craig Gentry’s breakthrough work in 2009 that a fully homomorphic encryption (FHE) scheme was
constructed [12]. Since then, research has made such schemes more practical, though they remain
computationally heavy for large-scale use. Nonetheless, for certain operations and with partial
homomorphic schemes, the approach is quite feasible.

7.1 Types of Homomorphic Encryption

There are two main categories:

• Partially (or Somewhat) Homomorphic Encryption (PHE/SHE): These schemes
support only a specific operation or a limited number of operations. A classic example is the
Paillier encryption scheme [22], which is additively homomorphic: given E(m1) and E(m2)
(encryptions of m1 and m2), one can compute E(m1) · E(m2) = E(m1 + m2) (mod n2 for
Paillier). This means Paillier allows addition of plaintexts via multiplication of ciphertexts.
Similarly, RSA has a multiplicative homomorphism: E(m1) ·E(m2) = E(m1 ·m2) under RSA
(though RSA is not semantically secure in the standard form for general use as HE). These
partial schemes are fast and already used in some secure aggregation contexts. They typically
cannot do both addition and multiplication without limit.

• Fully Homomorphic Encryption (FHE): These support arbitrary computations (both
additions and multiplications in any sequence), effectively meaning one can construct an
encrypted circuit evaluation for any function. Gentry’s scheme and subsequent ones (like
BGV, BFV, CKKS etc. – named after authors) allow this. The cost is significant overhead:
ciphertexts are much larger than plaintexts and operations are thousands to millions times
slower than plain operations, depending on parameters. However, steady progress has been
made (with GPU acceleration, etc.), and FHE is becoming practical for smaller circuits or
moderate data sizes.

In energy data terms, additive homomorphic encryption is extremely useful because many inter-
esting operations (summing consumption, computing averages, computing linear regressions) rely
primarily on addition and scalar multiplication. For example, using an additive HE like Paillier:
- A smart meter can encrypt each reading with the utility’s public key and send E(reading) to
the utility. The utility can sum a bunch of encrypted readings (say, all meters in a neighborhood)
by simply multiplying the ciphertexts. The result is an encryption of the sum, which the utility
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(with the secret key) can decrypt to get the total. In this process, the utility never saw individual
readings in the clear, only the final sum. - If the utility wants to ensure even its own analysts do
not see individual data, it could designate a trusted key manager or use a multi-key setup where
decryption requires a threshold of authorities, thus the raw data stays encrypted to any single
entity.

Some modern HE schemes like CKKS [7] even support approximate arithmetic on real numbers,
which could be used to compute statistical functions on consumption data (like mean, variance)
directly on encrypted data.

7.2 Applications to AMI Data

Homomorphic encryption can be seen as a special case of a two-party (or multi-party) computation
between a data provider and a data consumer: - The data provider (e.g. customer or device)
encrypts their data and sends it to the data consumer (e.g. utility or a third-party service). - The
data consumer performs allowed computations on the encrypted data without learning the data
itself. - The data consumer (or another designated party) then decrypts the final result to obtain
the output in plaintext.

Here are some scenarios:

• Secure Outsourcing: A utility may want to outsource data storage or even computation
to a cloud service, but without revealing sensitive customer details to the cloud. Using
homomorphic encryption, the utility can upload encrypted meter data to the cloud. The
cloud can then perform computations like aggregating usage per feeder, detecting which
areas exceed certain thresholds, etc., all over encrypted data. It sends back encrypted results,
which the utility decrypts. Thus, the cloud never sees actual usage values, yet the utility
benefits from cloud processing. This addresses the FIPP principle of Security (data remains
encrypted in untrusted environments).

• Third-Party Data Analysis without Raw Access: Similar to the federated learning
or MPC use-cases, an energy analytics company could be given access to encrypted data
and perform their analysis algorithm homomorphically. For example, they might compute
an encrypted prediction of what the customer’s next month usage will be, which only the
utility decrypts. In practice, doing something complex like machine learning inference fully
homomorphically is challenging but not impossible (there have been works on homomorphic
evaluation of neural networks, albeit at high cost).

• Privacy-Preserving Aggregation (Alternative to SMPC): Homomorphic encryption
provides a simpler system design for aggregation in some cases: rather than interactive SMPC
between many meters, each meter just encrypts and uploads to a server which homomorphi-
cally aggregates. This requires the server (or a set of servers) to later decrypt the aggregate,
so one has to trust those holding the secret key not to misuse it on individual ciphertexts.
There are schemes for distributed decryption to reduce the single point of trust (threshold
cryptography). Garćıa and Jacobs [11] demonstrated such a concept for “privacy-friendly me-
tering” where meters send encrypted readings and an aggregator computes total consumption
via homomorphic addition [16].

• Billing and Tariffs via Encryption: A variant of the earlier billing example: A smart meter
could encrypt fine-grained usage and send to utility. The utility can then homomorphically
compute the billing formula on the encrypted data (e.g. multiply each hour’s usage by the
rate for that hour and sum), resulting in an encrypted bill. When the utility decrypts, it sees
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only the total bill amount, not the breakdown by hour. This way, the utility can bill correctly
while claiming not to have seen the detailed usage. (Of course, the utility provided the rates,
but not the consumption profile in clear.)

7.3 Privacy and Compliance Aspects

Homomorphic encryption ensures that data in transit and at rest on the computing server is en-
crypted. This provides strong security (even if someone intercepts or an unauthorized party accesses
the database, they see only ciphertext). However, an important nuance: the utility (or whoever
holds the decryption key) can still decrypt individual data if they choose. So HE by itself doesn’t
stop the data owner from accessing the data, it stops others (and even the processing environment)
from doing so. In the regulatory context, if we assume the utility holds the key, then homomorphic
encryption is more about cybersecurity (preventing breaches) than about utility’s internal use. It
doesn’t inherently limit what the utility itself can see or do with the data (since they could decrypt
it anytime). However, one could arrange key management such that the utility’s analysts don’t
have direct access – e.g. keys are split among multiple departments, requiring a quorum to decrypt,
thus enforcing policy that individual data isn’t decrypted routinely.

That said, HE can be combined with organizational controls to effectively ensure that only
approved computations are performed. For example, the utility’s IT could mandate that all analysis
on raw data must be done via an encrypted pipeline, where analysts specify computations that run
on encrypted data and only results above a certain aggregation level are ever decrypted. This would
implement policy through technology.

From a CPUC compliance perspective, homomorphic encryption could help in scenarios where
data is shared with third parties or stored externally. The utility could argue that even though it
provided data to, say, a research project, the data was encrypted and the researchers could only
compute approved functions (perhaps with the help of a secure enclave that returns results with
differential privacy). This is a bit complex scenario, but one can envision a setup where a researcher
drafts a query, the utility encrypts its data, a cloud computes the answer homomorphically, and
the utility decrypts only the aggregated answer to give to the researcher. In that pipeline, the
researcher never sees raw or identifiable data, satisfying privacy rules.

7.4 Performance and Practicality

Currently, partial HE (like Paillier for summation) is quite practical for moderately sized data
(summing thousands of values easily, for instance). FHE is slower but constantly improving. If a
use-case only needs addition or linear combinations (which is very common in energy data—most
reporting is sums, averages, correlations), additive HE is efficient and easy to deploy. For example,
a sum of 1,000 values with Paillier might take on the order of milliseconds with a decent server.

Multiplicative or arbitrary calculations are heavier. But for small circuits like computing a
threshold or a simple if-else condition on aggregated data, some SHE schemes can do it with maybe
seconds of compute.

Another issue is ciphertext size: homomorphic ciphertexts are larger (Paillier ciphertext 2048
bits per value typically). Transmitting these from millions of meters could be heavy (though
possibly compressible if values are small changes).

In practice, one design might use homomorphic encryption in a hierarchical way: smart meters
report encrypted data to a local substation gateway; the gateway aggregates them partially (since
it can decrypt perhaps partially or using multi-key where gateway and headend both need to
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decrypt fully), then forward upstream encrypted partial aggregates. There is research on distributed
homomorphic encryption (multiple layers of encryption).

7.5 Integration with Other Techniques

Homomorphic encryption can be a building block within SMPC (indeed some SMPC protocols
rely on additively homomorphic encryption as part of their steps). It can also be combined with
differential privacy: for instance, one could compute an aggregate via HE and then add DP noise
to it before final decryption (ensuring the result is differentially private even to the party holding
the key).

Compared to SMPC, HE is often simpler to implement (less interactive messaging; one party
does the compute). However, trust in key management is a consideration. SMPC without a single
key holder might be preferable if no single party should have the ability to decrypt data.

In the combined architecture, homomorphic encryption is particularly useful for secure data
storage and outsourced computation components. It addresses the ‘Security’ principle strongly.
It might not by itself satisfy ‘Transparency’ or ‘Minimization’ since someone still could decrypt,
but as part of an orchestrated system it helps ensure that even if data is processed or stored by
external systems, privacy is not compromised.

Homomorphic encryption is a rapidly evolving field, and while it’s not yet routine in utilities,
it’s on the horizon for data privacy. It is part of the toolkit that allows us to imagine a future where
raw personal data is hardly ever seen by human eyes, yet useful information is extracted from it.

Next, we will bring all these techniques together: anonymization, differential privacy, synthetic
data, federated learning, SMPC, and homomorphic encryption, into a cohesive privacy-preserving
architecture for AMI data management, and compare their roles.

8 Proposed Hybrid Architecture and Comparative Evaluation

Having examined the individual privacy-preserving techniques, we now propose an integrated ar-
chitecture for utility AMI data analytics that leverages the strengths of multiple methods. We also
provide a comparative evaluation to clarify when and why each technique is used, and how together
they fulfill the privacy requirements (CPUC’s rules and FIPPs) while enabling valuable data use.

8.1 Comparative Evaluation of Privacy Techniques

Table 2 qualitatively compares the six techniques along key dimensions relevant to a utility context:
privacy strength, data utility, operational complexity, and suitable use-cases. Each technique has
distinct advantages and disadvantages, which is why a hybrid approach is advantageous.

From the above comparison, we can draw a few key insights:

• No single technique is sufficient or optimal for all needs. For example, anonymization
by itself is weak but it is a necessary baseline; differential privacy is excellent for open data
release but at the cost of accuracy; SMPC/HE give strong privacy and accuracy but are
limited to specific computations and can be resource-intensive.

• Techniques can complement each other. We can use anonymization to remove obvious
identifiers, then apply differential privacy to query results for public release (ensuring robust
de-identification). Or we can use federated learning or SMPC to compute something and then
use DP to share the output safely. Homomorphic encryption can enable secure intermediate
processing that feeds into an DP mechanism, and so on.
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Figure 1: Hybrid architecture for privacy-preserving AMI data analytics

• Internal vs. external use difference: For internal utility operations (primary purpose),
techniques like HE and access control ensure data is secure but available for use. For external
or secondary use (sharing with researchers, customers, other companies), stronger privacy
(DP, synthetic, SMPC) is typically needed since even the utility may not be allowed to
expose raw data.

• Complexity vs. benefit: Techniques like SMPC and FHE bring very high privacy but also
high complexity. They should be reserved for cases that truly require multi-party trust or
untrusted computation. Simpler methods (anonymization, basic aggregation, DP) can handle
many standard reporting or data-sharing tasks with less overhead, as long as they meet the
risk threshold.

Therefore, an optimal privacy-preserving strategy is layered: apply the right tool at the right
stage of data handling. The next section describes our proposed architecture that realizes this
layered approach.

8.2 Proposed Hybrid Architecture for Compliance

Figure 1 illustrates the proposed architecture for managing and analyzing AMI data in a privacy-
preserving manner. It delineates data flow from collection at smart meters through to various
endpoints (utility internal analytics, external third-party services, public reports), with privacy
techniques applied at key junctures. Smart meter data flows into a utility-controlled platform where
privacy safeguards (pseudonymization, encryption, etc.) are applied. Different modules enable
secure analytics: differential privacy (DP) for statistical queries, federated learning (FL) coordinator
for collaborative model training, secure multiparty computation (SMPC) for joint computations
with outside parties, and synthetic data generation for research and public use. The architecture
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ensures only aggregated or protected outputs leave the platform, complying with CPUC privacy
rules.

In the architecture:

1. Data Ingestion and Storage: As smart meter data arrives, the first step is pseudonymiza-
tion and encryption. Customer identifiers (name, address) are stored separately from usage
data, replacing them with a unique anonymous ID. The usage data is encrypted at rest in
the data platform. Access controls and cybersecurity measures guard this raw data. At this
stage, we ensure FIPPs like Security (through encryption, access control) and Data Mini-
mization (only necessary fields are kept in the primary analytic dataset – e.g. remove any
extraneous personal info). This addresses CPUC requirements that if data is breached or
accessed improperly, it wouldn’t directly reveal customer identities.

2. Internal Analytics Environment: For primary purposes (billing, operations, customer
service), utility analysts can access data in a secure sandbox. However, even internally, we
enforce privacy-aware policies: e.g., analysts can only query data in aggregate or need special
approval to view individual series. Much analysis can be done on anonymized data. Tools
like differential privacy can be optionally used internally too – for instance, if an analyst is
exploring trends, a DP query system can provide answers that prevent accidental overfitting
to one customer. The data quality and integrity are maintained for operational needs (per
FIPP) but we limit any secondary usage here.

3. Privacy Engine for Secondary Use: This is the core of the architecture that decides how
data can be safely derived for any purpose beyond the utility’s own operations:

• For generating statistics or reports (e.g. average usage by ZIP code, load research
studies), the Differential Privacy Module provides an interface. Analysts or external
query requests go through this module, which applies DP noise to results before release.
This ensures that even if these statistics are published, they cannot be used to pinpoint
an individual’s data [19]. The DP module is configured with an ε appropriate to the
sensitivity of data (e.g. a smaller ε for publicly accessible data).

• For third-party data requests that require more detailed analysis (like a research
project needing time-series data), the platform offers either Synthetic Data or a Se-
cure Analysis Portal. In the synthetic data route, a Synthetic Data Generator (pos-
sibly a GAN or other model) produces a synthetic dataset that resembles the real data
statistically. Before release, this synthetic data can be evaluated for privacy (ensure no
record too close to real data) and perhaps generated with DP guarantees. The result is
a dataset that researchers can freely work with, satisfying their needs without exposing
real customers.

• For collaborative model training or analytics services, the platform uses Fed-
erated Learning and SMPC modules. Suppose an energy efficiency company has
an algorithm to detect inefficiencies but doesn’t need raw data—only a trained model
on utility data. The utility can deploy an FL Coordinator that accepts a model from
the company and orchestrates training across its dataset (which could be divided by
substations or other shards to simulate clients). Only the final model (or aggregated
updates) are shared back. Throughout, customer data never leaves the utility’s servers.
In cases where multiple data owners (like multiple utilities or a utility and a research lab)
want to jointly compute something, the SMPC module can be engaged. For example, to
compute the total energy savings of a program across two utilities without sharing each
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other’s customer details, they can input their metrics into an SMPC protocol via this
module and obtain the combined result.

• For cloud computing tasks, if the utility uses cloud infrastructure to run heavy an-
alytics (load forecasting, etc.), the platform can utilize Homomorphic Encryption.
For instance, meter data might be sent to a cloud prediction service in encrypted form;
the cloud computes forecasts on encrypted data, and only the decrypted forecast comes
out. In practice, this might be handled by storing encrypted data in cloud and only de-
crypting results inside the utility’s trusted environment. While not illustrated in detail
in the figure, this is an under-the-hood option to ensure that even when using external
computing power, raw data confidentiality is preserved.

In sum, the Privacy Engine ensures any data output leaving the platform (to someone who is
not an internal, authorized utility operator) is either in an aggregated, anonymized form or
protected by one of these techniques.

4. Outputs and Enforcement: The final stage is delivering the result to the requesting party
(which could be the public, a customer, a regulator, or a third-party service). Before release,
an auditing and policy check occurs. This is essentially an implementation of the FIPP
Accountability. It logs what data was accessed and by whom, and verifies compliance. For
example, if a researcher tries to get too granular a view (like synthetic data request that is
nearly single-customer), the system flags it or denies it based on privacy risk. The audit log
can be reviewed by a Chief Privacy Officer or regulators to demonstrate compliance (e.g. each
external data output can be traced to show it was properly sanitized per CPUC rules).

The outputs themselves are then delivered:

• Aggregated statistics with DP noise might be published in reports (with citations of ε
values for transparency).

• Synthetic datasets might be shared via a secure portal with usage agreements.

• Models trained via FL might be deployed to the third-party (e.g. a model that the
third-party runs in their app to give customers advice, without them seeing the raw
data).

• If SMPC was used for a joint calculation, the parties get the final number and nothing
else.

• If a customer accesses their own data (individual participation principle), that can be
provided through a different channel (not shown in figure, but the utility can give them a
detailed view of their own meter—something CPUC also requires as part of data access
programs [5]). That is an authorized primary use disclosure to the data subject them-
selves. The current Green Button Connect framework allows authorized third parties
to receive customer data; our proposed Privacy Engine could act as an intermediary
to ensure any data leaving for such third parties is privacy-protected, adding technical
enforcement to the regulatory process

This architecture effectively creates a privacy firewall around the raw AMI data. Inside the
firewall, the utility can use data for legitimate purposes, but even there, careful measures (like
minimization and internal anonymization) reduce misuse risk. Across the firewall boundary, only
privacy-preserving outputs emerge.

By combining techniques, we achieve multiple goals:
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• Compliance with CPUC Decisions: Attachment D of D.11-07-056 sets rules such as: data
can only be shared with third parties for secondary purposes with consent or if de-identified;
usage data for primary purposes must still be protected from unauthorized use, etc. In
our architecture, secondary purpose outputs are de-identified (either via DP, aggregation, or
synthetic data generation – all ensuring no customer can be “reasonably identified” from the
output). The requirement for auditing and accountability is met by our logging of all data
accesses. Notice and transparency can be provided by documenting this process to customers
(the utility can publish a privacy white paper describing: “we use differential privacy for all
public stats” etc., fulfilling the Transparency and Individual Participation principles).

• Alignment with FIPPs: We can map each component to FIPPs:

– Transparency: The system’s operations (like noise addition or model training) can be
explained in privacy notices. Also, customers could be given access to see what data
about them was used and for what aggregated results (e.g., via an access report).

– Individual Participation: Customers have portals to see their own consumption (the
architecture doesn’t impede that – their own data can be viewed by them after proper
authentication). If they dispute something (like an outlier reading), internal processes
handle that with data quality checks.

– Purpose Specification: Each data request in the engine is tagged by purpose and only
allowed if it matches an authorized purpose and method. For example, a marketing use
might be disallowed entirely, or only allowed if customers opted in. The system enforces
that unauthorized purposes cannot just extract raw data.

– Data Minimization: As noted, we collect only needed data and when sharing, we reduce
it to aggregated forms. Even internally, we might not keep extremely fine-grained data
longer than necessary (data retention limits can be built-in, e.g., auto-delete granular
data after 18 months, keeping only aggregated history).

– Use Limitation: The Privacy Engine is essentially a use limitation enforcement layer – it
technically prevents data from being used for anything except the allowed computations.

– Data Quality and Integrity: By maintaining raw data internally, we ensure billing and
operations have high-quality data. The transformations (like adding noise) are only on
outputs, so the integrity of core operations (billing accuracy etc.) is not compromised.
Synthetic data generation and DP analysis are tested to ensure they reflect the real data
patterns well (so that decisions made from them are still valid).

– Security: Strong encryption, secure enclaves for computation, and network security
protect data throughout. Homomorphic encryption and SMPC add additional security
where needed – even if an attacker got hold of intermediate data, it’s encrypted or
secret-shared.

– Accountability/Auditing: Every access or output is logged. The system could be period-
ically audited by an independent entity or regulators to verify compliance (the logs and
the code of the privacy engine can be inspected to ensure it’s correctly implementing
DP, etc.).

• Utility of Data for Stakeholders: Despite these layers of protection, the architecture is
designed so that the value of the data is not lost. Operational uses (grid management, billing)
suffer no loss. Planning and analytics can still be done (analysts might use slightly noisy data
but at aggregate levels with lots of data, the noise is small enough to not affect decisions).
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Third parties (like researchers) get either query access (via DP) or synthetic data that is rich
enough to develop and test solutions. Regulators get needed reports (with privacy protection
builtin, which also protects customers from, say, stigma or targeting if data were fully open).

For example, consider a demand response pilot where a third-party wants to evaluate par-
ticipant behavior. Rather than handing over participant meter data, the utility can allow
the third-party to run an analysis script in the privacy engine. The third-party might use
federated learning to create a model of energy usage patterns. They end up with a model
that helps them identify, say, what features predict drop-out, without ever seeing individual
traces. The utility could then also add DP noise to summary results that the third-party
publishes about the pilot, ensuring privacy of participants is preserved per CPUC guidelines
for experiments.

Another scenario: publishing an open dataset for innovation (common in data science compe-
titions). The utility could safely publish a synthetic dataset of residential loads (with similar
characteristics to real data) without violating privacy or needing each customer’s consent,
because no actual customer data is in it. This fosters innovation (as tech developers can train
algorithms on it) while respecting the legal boundaries.

In conclusion, this integrated architecture demonstrates how a utility can be both data-driven
and privacy-conscious. By weaving together anonymization, differential privacy, federated learn-
ing, SMPC, homomorphic encryption, and synthetic data, we create a multi-layer defense. Each
technique covers for the limitations of others: e.g., DP adds a safety net for anonymization; encryp-
tion and SMPC compensate for DP’s accuracy loss by allowing exact internal calculations without
exposure; synthetic data provides flexibility that pure DP query systems might lack, etc. The result
is a system where privacy is preserved by design in every data workflow.

8.3 Real-World Implementation Considerations

Implementing this architecture requires planning and investment:

• The utility must develop or acquire a privacy management platform (there are emerging tools
for enterprise differential privacy and federated learning that can be adapted).

• Staff need training to understand new analytics paradigms (analysts must learn to work with
noisy answers or synthetic data—and trust that approach).

• Choosing parameters like ε for DP involves policy decisions. The utility might convene
a privacy advisory group including regulators and consumer advocates to set these levels
appropriately (balancing privacy and utility).

• Computing infrastructure must be ensured for heavy tasks: e.g., training GANs for synthetic
data or running secure computations may need significant computing power (possibly cloud-
based with encryption as described). Pilot projects can identify performance bottlenecks and
optimize accordingly (e.g., maybe not all queries need DP if they’re very aggregate; focusing
DP where it matters).

• Monitoring and review: The system should be monitored for any anomalies (like someone try-
ing to game the DP query system by making many queries to narrow in on an individual—here
the accountability logs and rate limits mitigate that).
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• Maintaining compliance documentation: The architecture’s processes should be documented
in the utility’s privacy compliance filings to CPUC, demonstrating how D.11-07-056 and D.11-
08-045 requirements are met. This could serve as a model for compliance in other jurisdictions
as well.

However, once in place, the benefits are substantial: the utility can confidently pursue advanced
analytics (like AI on customer data, partnerships for new services) without constantly worrying
about privacy breaches or violations. Customers can be assured (and explicitly informed) that
their detailed usage data will never be exposed inappropriately—this can increase customer trust
and participation in programs that use their data (since they know even if they join a study, their
privacy remains intact through these technical measures).

Finally, regulators and policymakers may view such a setup as a template for the industry.
It shows that privacy and innovation are not mutually exclusive: with a smart combination of
techniques, we can have both.

In the next section, we conclude the paper by summarizing our findings and suggesting future
directions (e.g., how to update regulatory frameworks to encourage these technologies, and how to
keep improving the balance of data utility and privacy as technology evolves).

9 Conclusion

California’s pioneering privacy regulations for AMI data set forth a clear mandate: utilities must
harness the benefits of smart meter data in a manner that fiercely protects customer privacy
[6]. This exploration demonstrates that this mandate is not only achievable but can be opera-
tionalized through a combination of advanced privacy-preserving techniques. By weaving together
anonymization, differential privacy, federated learning, synthetic data generation, secure multiparty
computation, and homomorphic encryption, we have outlined a comprehensive architecture that
allows a utility to become truly “privacy by design.”

Our comparative evaluation highlighted that each technique brings unique strengths. Tra-
ditional de-identification is necessary but insufficient alone; differential privacy provides strong
mathematical guarantees suitable for public data releases; federated learning and SMPC enable
collaborative and external analytics without exposing raw data; synthetic data offers a creative so-
lution for open data needs; and homomorphic encryption fortifies data security during processing.
When orchestrated in unison, these methods compensate for each other’s limitations and create
a multi-layered defense. The hybrid architecture we proposed shows, step-by-step, how raw AMI
data can be transformed, analyzed, and shared with minimal privacy risk and in full compliance
with CPUC decisions D.11-07-056 and D.11-08-045.

Mathematically, we delved into how techniques like differential privacy can rigorously bound an
adversary’s knowledge (with formulas for ε-DP and noise calibration), how SMPC protocols and
homomorphic schemes allow algebraic operations on hidden data (preserving correctness of results
while keeping inputs secret), and how federated learning algorithms converge to accurate models
without centralized datasets. These derivations and discussions cement the feasibility of applying
these techniques to realistic utility analytics tasks. For instance, we can compute aggregate load
shapes with DP noise ±0.1% of total load—negligible for planning purposes, yet enough to protect
any one home’s contribution. We showed how an additive homomorphic encryption scheme can let
a cloud sum millions of encrypted meter readings, yielding an exact total that the utility alone can
decrypt, thereby outsourcing computation without outsourcing trust.

Implementing this blueprint in the real world will involve challenges of engineering, governance,
and perhaps cultural shift in how data science is conducted. It requires investment in cryptographic
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infrastructure, careful tuning of privacy parameters, and clear communication to stakeholders.
Yet, importantly, our analysis indicates that the cost in terms of data utility is manageable. The
comparative table and architecture discussion make clear that for each important use-case, there
is an approach that offers a favorable privacy-utility trade-off:

• Want to publish anonymized data for innovation? Use synthetic data with DP assurance.

• Need to perform cross-utility studies? Use SMPC or federated learning to jointly compute
results.

• Aim to employ cloud AI on AMI data? Use homomorphic encryption so the cloud never sees
the plain data.

All while logging and controlling these processes so that privacy rules are continuously enforced.
From a regulatory and policy perspective, this work provides a blueprint that regulators can

reference to update guidelines. The CPUC—and other commissions—could encourage or even
mandate utilities to incorporate techniques like differential privacy for any public data releases.
They could create safe harbors, for example: sharing data with an ε ≤ 0.5 is deemed compliant with
“not reasonably identifiable” standard. Likewise, results computed via approved SMPC protocols
might be exempt from certain privacy filing requirements because, by design, no private data
is exposed. By adopting these emerging technologies, regulators ensure that as the volume and
granularity of data grow, privacy protections scale up accordingly rather than relying on blunt
instruments like overly coarse aggregation that might diminish data value.

Another outcome of embracing this toolkit is fostering greater public trust and willingness to
engage in smart grid programs. Privacy concerns have sometimes slowed the rollout of AMI-based
services; demonstrating concrete privacy protections can alleviate those concerns. For instance, if
customers know that their detailed usage patterns will only be used to improve services through
encrypted or federated analysis, and that any public reports will fuzz their data to protect them,
they may be more open to allowing their data to be utilized for grid research or demand response
incentives. In a sense, these techniques can be seen as enablers of the next generation of energy
programs, which rely heavily on data sharing and analytics (from personalized energy management
apps to community-based load flexibility programs).

From a research and development perspective, while the fundamental techniques are in place,
there is room to optimize them in the utility context:

• Developing more efficient algorithms for computing common grid analytics homomorphically
or via MPC (e.g., state estimation in distribution networks with private measurements).

• Tailoring federated learning approaches to edge devices like EV chargers or solar inverters,
which could collaboratively learn without sending data to the cloud, aligning with both pri-
vacy and grid decentralization trends.

• Enhancing synthetic data models to capture the richness of AMI data (perhaps incorporating
domain constraints, like ensuring synthetic loads respect physics of electricity).

• Creating user-friendly tools for differential privacy so that utility analysts can specify “give me
aggregate peak load with ±5% noise” without needing deep statistical expertise – essentially
making privacy an adjustable parameter in analysis, much like one might choose a confidence
interval.
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Continued interdisciplinary collaboration between power engineers, data scientists, and privacy
experts will be critical to refine these solutions.

In summary, this paper has provided:

• A deep dive into privacy-preserving methodologies applicable to AMI data, including formal
definitions and context-specific interpretations.

• A rigorous comparative analysis demonstrating that no one method wins on all fronts, rein-
forcing the need for a hybrid approach.

• A proposed architecture and implementation blueprint showing how to integrate these meth-
ods into a working system that satisfies regulatory, technical, and practical requirements.

• Validation that such a system can indeed allow a utility to glean the full value of AMI data
(improving efficiency, reliability, customer experience) while upholding the highest standards
of customer privacy and data protection.

As utilities worldwide grapple with increasing data and stricter privacy expectations (through
laws like GDPR, CCPA, etc.), the insights from this work are broadly applicable beyond Califor-
nia. The principles and techniques discussed can serve as a model for any organization looking to
responsibly manage meter or IoT data. By investing in privacy-preserving analytics, the energy
sector can demonstrate that it is possible to drive towards smart, data-rich grids without compro-
mising the rights and trust of the individuals it serves. In an era of Big Data, we often hear of the
tension between privacy and utility—this research shows how that tension can be resolved through
ingenuity and sound engineering.

Looking ahead, one exciting possibility is that these privacy techniques themselves can unlock
new data collaborations that were previously infeasible. For example, multiple utilities might jointly
train a predictive model for wildfire risk (combining their AMI, weather, and sensor data) using fed-
erated learning or MPC, where previously legal barriers to data sharing would have prevented such
collaboration. Thus, privacy-preserving technology not only prevents bad outcomes (breaches, mis-
use) but can actively enable positive outcomes (shared learning, industry benchmarks) by removing
the privacy roadblocks in data-sharing agreements.

In conclusion, the marriage of advanced privacy-preserving techniques with California’s forward-
thinking regulatory framework creates a pathway to a future where energy innovation and
customer privacy advance hand-in-hand. Utilities can become trusted stewards of data,
leveraging it to build smarter, greener grids and more informed consumers, all while ensuring that
individual privacy is never an afterthought but rather a foundational design criterion. This paper
has laid out the roadmap for achieving that vision: a state-of-the-art, in-depth plan ready for pilot
implementation and refinement in the real world. With continued commitment and interdisciplinary
effort, the theoretical safeguards discussed here will become the operational norms of tomorrow’s
data-driven utility ecosystem.
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Table 2: Qualitative Comparison of Privacy-Preserving Techniques for AMI Data
Technique Privacy Guarantee Impact on Data

Utility
Best Use-Cases /
Notes

Anonymization /
De-ID

Removes direct
identifiers; privacy
depends on suppres-
sion/generalization.
No formal guarantee
of non-reidentification.

Can retain high data
fidelity if minimal gen-
eralization; but may
require heavy aggrega-
tion (losing detail) to
thwart re-ID.

Good for initial safe-
guarding and sharing
low-resolution or ag-
gregate data. Risk of
re-ID if data is high-
dimensional. Often
combined with other
methods.

Differential Pri-
vacy

Provable privacy (ε, δ)
bound on individual
information leakage.
Adjustable strength.

Adds statistical noise;
at strong privacy (low
ε), analyses may be
noisy. For large ag-
gregates, noise can be
small.

Ideal for releasing stats
or query results pub-
licly or to untrusted par-
ties. Ensures compliance
(‘cannot reasonably iden-
tify’) at cost of some ac-
curacy. Not suited for ex-
act per-customer data re-
lease.

Synthetic Data Depends on method;
no one-to-one link to
real individuals if done
properly. If combined
with DP in generation,
can offer strong pri-
vacy.

Potential minor loss
of realism; preserves
many patterns if
model is good, but
rare outliers or fine
correlations may not
be perfectly captured.

Useful for providing flex-
ible data access for re-
search and developing
models. Great for “open
data” sets. Needs care-
ful validation to ensure
privacy (no latent mem-
orization of real data).

Federated Learn-
ing

No raw data leaves lo-
cal site. Some risk
of information leak-
age via model gradi-
ents (mitigated by se-
cure aggregation/DP).

Model accuracy can
approach that of cen-
tral training if many
participants and suffi-
cient rounds. No di-
rect access to data,
only model.

Suited for collaborative
model training across
utilities or with third-
party algorithms without
sharing raw data. Re-
quires ML problem and
cooperative setup. Less
useful for ad-hoc queries
or non-ML analysis.

Secure MPC Strong cryptographic
guarantee: only in-
tended output is re-
vealed, nothing else.
Protects even against
colluding subset (up to
a threshold).

Computes exact re-
sults (no noise), so full
data utility for the
function computed.
But limited to specific
computations agreed
on.

Best for computing
specific metrics (sums,
comparisons, etc.)
among mutually dis-
trusting parties (e.g.
multi-utility aggrega-
tion, privacy-preserving
billing). High communi-
cation/computation cost
for complex operations.

Homomorphic
Encryption

Data remains en-
crypted during pro-
cessing. Privacy relies
on encryption scheme
security and proper
key management.

Computes exact re-
sults (within chosen
precision). Partial HE
(e.g. for addition) is
fast for those opera-
tions, enabling accu-
rate aggregation. FHE
can do arbitrary anal-
ysis but with perfor-
mance cost.

Useful for outsourcing
computations or protect-
ing data in untrusted en-
vironments. Requires
one party (or distributed
key holders) to decrypt
final result. Often com-
bined with other controls
to limit decryption of in-
dividual data.
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