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Abstract—With the rapid advancement of quan-
tum computing technology, post-quantum cryptogra-
phy (PQC) has emerged as a pivotal direction for
next-generation encryption standards. Among these,
lattice-based cryptographic schemes rely heavily on the
fast Number Theoretic Transform (NTT) over polyno-
mial rings, whose performance directly determines en-
cryption/decryption throughput and energy efficiency.
However, existing software-based NTT implementa-
tions struggle to meet the real-time performance and
low-power requirements of IoT and edge devices. To
address this challenge, this paper proposes an area-
efficient highly parallel NTT accelerator with glitch-
driven near-memory computing (GDNTT). The design
integrates a 10T SRAM for data storage, enabling
flexible row/column data access and streamlining cir-
cuit mapping strategies. Furthermore, a glitch genera-
tor is incorporated into the near-memory computing
unit, significantly reducing the latency of butterfly
operations. Evaluation results show that the proposed
NTT accelerator achieves a 1.5∼28× improvement in
throughput-per-area compared to the state-of-the-art.

Index Terms—Number theoretic transform (NTT),
near-memory computing, glitch generator, SRAM

I. Introduction

THE rise of quantum computing threatens traditional
encryption methods. As a post-quantum candidate,

lattice-based cryptography resists quantum attacks but
faces efficiency bottlenecks in polynomial multiplication
[1], [2]. To address this, the Number Theoretic Transform
(NTT) and its inverse (INTT) are widely adopted to
accelerate computations, though they remain the most
time-consuming operations in hardware implementations.
Thus, optimizing NTT/INTT accelerators has become a
critical research focus.

NTT accelerator architectures can be broadly classified
into two types: Von Neumann-based and in-memory/near-
memory computing. The Von Neumann approach, with
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its separate compute and memory units, faces significant
data movement overhead, limiting latency and memory
efficiency [3], [4], [5]. In-memory/near-memory comput-
ing integrates processing units within or near memory,
reducing data transfer overhead and improving energy
efficiency and performance. Nejatollahi et al. [6] proposed
a processing-in-memory NTT architecture with fast in-
memory multiplication and modulo operations. Li et al. [7]
developed a near-memory data mapping technique to opti-
mize butterfly operation storage and resolve data conflicts.
Park et al. [8] implemented an RRAM-based CiM NTT
accelerator using vector-matrix multiplication for maximal
parallelism. Zhang et al. [9] proposed a fast in-SRAM
NTT with optimized bit-parallel modular multiplication
and shift operations. Zhang et al. [10] developed an NTT
using hybrid redundant numbers for carry-free modular
multiplication and optimized memory patterns. Pakala
et al. [11] introduced the MBSNTT architecture, which
combines multi-bit serial modular multiplication with in-
memory computing for fully parallel NTT operations. We
observe that most in-memory or near-memory computing
NTT accelerators require significant memory overhead in
exchange for highly parallelized processing. For example,
the 1024-point NTT proposed in [12], based on the Von
Neumann architecture, uses only 1024 bits of RAM. In
contrast, the 1024-point in-memory computing NTT de-
signed in [10] utilizes 61440 bits of SRAM, which is 60
times that of the former.

In this brief, we propose GD-NTT (Glitch-Driven NTT),
a highly parallel accelerator architecture featuring low
memory and area overhead. The 10T SRAM supports con-
current row-column access for efficient butterfly operand
pairing, while the glitch-based clock division technique
generates precise timing signals to reduce near-memory
computation latency. This dual optimization minimizes
memory usage and maximizes throughput. Experimental
results show the NTT achieves 67.1 kNTT/s at 256-point
with only 0.006 mm2 area, providing 1.5∼28× better
throughput-per-area compared to the state-of-the-art.

II. Background
NTT is a variant of the Fast Fourier Transform (FFT)

performed over finite fields. Compared to FFT, NTT
operates in a finite field, avoiding the errors and complex-
ity associated with floating-point operations. Its primary
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function is to accelerate polynomial multiplication. The
transformation converts the polynomial coefficients from
the time domain to the frequency domain, reducing the
computational complexity of polynomial multiplication
from O(N2) to O(N log N). NTT plays an important role
in cryptography, particularly in PQC and fully homomor-
phic encryption (FHE). NTT’s basic principle is to use
primitive roots and unity roots on finite fields to achieve
fast transforms. Given a finite field Fq (where q is a prime),
and a primitive root ω such that ωn ≡ 1 (mod q) and
for all i < n, ωi (mod q) is an n-th primitive root of
unity, for a polynomial a(x) =

∑n−1
j=0 ajxj , its n-point

NTT computation is given by

Ai =
n−1∑
j=0

ajωij (mod q) (i = 0, 1, . . . , n− 1) (1)

INTT recovers the original polynomial a(x) from A(x),
which can be expressed as

ai = 1
n

n−1∑
j=0

Aj · ω−ij (2)

In this brief, we focus on implementing NTT and
INTT transformations using the Cooley-Tukey and
Gentleman-Sande algorithms, respectively. The Cooley-
Tukey method, as shown in Alg. 1, decomposes large-
scale NTT operations into smaller sub-operations through
multi-layer loops, processing each part iteratively. In each
loop, the results of adjacent computations are combined
through butterfly operations, enabling efficient parallel
computation of all terms. When performing the INTT
transformation, the Gentleman-Sande method uses similar
butterfly operations to revert the point-value form back to
polynomial coefficients, as shown in Alg. 2.

Algorithm 1 NTT algorithm with Cooley-Tukey method
Input: Polynomial x, modulus q, length n, inverse twiddle
factor ω
Output: X = NTT (x)

1: ω̂ ← bit-reverse(ω)
2: if n == 1 then
3: return a
4: end if
5: for i = 1; i < log2 n; i = i + 1 do
6: m← 2i

7: for j = 0; j < (m/2); j = j + 1 do
8: for k = 0; k < (n/m); k = k + 1 do
9: t← x[k + 2 ∗ j ∗ (n/m)]

10: u← ω̂j ∗ x[k + 2 ∗ (j + 1) ∗ (n/m)] mod q
11: X[k + 2 ∗ j ∗ (n/m)]← (t + u) mod q
12: X[k + (2j + 1) ∗ (n/m)]← (t− u) mod q
13: end for
14: end for
15: end for

Algorithm 2 INTT algorithm with Gentleman-Sande
method
Input: Polynomial X, modulus q, length n, inverse twid-
dle factor ω−1

Output: x = INTT (X)
1: ˆω−1 ← bit-reverse(ω−1)
2: X̂ ← bit-reverse(X)
3: for i = 1; i < log2 n; i = i + 1 do
4: m← 2i

5: for j = 0; j < (n/m); j = j + 1 do
6: for k = 0; k < m/2; k = k + 1 do
7: t← X̂[k + i ∗m]
8: u← ˆω−j ∗ X̂[k + j ∗m + m/2] mod q
9: X[k + j ∗m]← (t + u) mod q

10: X[k + j ∗m + m/2]← (t− u) mod q
11: end for
12: end for
13: end for

III. Proposed Architecture

A. Overall Architecture
The overall architecture of the proposed NTT/INTT

near-memory computing accelerator is illustrated in
Fig. 1(a). The accelerator consists of modules such as the
top level controller, glitch generator, SRAM array, near
memory logic, and twiddle factor memory. The top level
controller acts as the central control unit, overseeing the
operation of all other components, including the SRAM
array’s row and column control, data retrieval, and writing
back of results. The SRAM arrays, represented in blue,
are used to store operands and intermediate results in two
separate sets. The near memory logic units (highlighted in
yellow) carry out computations close to the memory. These
modules contain a butterfly operation unit that performs
arithmetic operations, such as multiplication, and a twid-
dle factor memory that stores pre-computed rotation fac-
tors used in the butterfly operations. Furthermore, these
near memory logic units enable data exchange between
the two SRAM arrays, facilitating the point-wise multi-
plication of two data sets post-NTT computation. The
glitch generator generates multiple narrow pulse-width
signals with the same frequency as the main clock, used to
synchronously drive row control, column control, and near-
memory computing units, enabling the continuous execu-
tion of multi-step near-memory logic operations within a
single clock cycle. Driven by a series of narrow pulse width
signals generated by the glitch generator, we are able to
complete SRAM data reading, near-memory computation,
and storage of the computation results within a single
clock cycle.

B. Design of 10T SRAM and Parallel Memory Access
Scheme

In conventional vector computing, there is no logical
operation between rows, that is, the rows are decoupled.
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Fig. 1. (a) Overall architecture of the proposed NTT accelerator. (b) Detailed structure of the near-memory computation unit. (c) Structure
of the proposed 10T SRAM bit-cell. (d) Structure of the basic arithmetic module.

However, in the NTT calculation process, there is a cou-
pling relationship between rows. Conventional 8T SRAM
architectures rely on column word lines (CWL) to control
the access of each bit cell in a column. However, precise
row-level control is unachievable with this configuration.
To address this limitation, we designed a 10T SRAM bit
cell, shown in Fig. 1(c).

In this design, when performing read/write operations
via VBL and VBLB, both RWL and HWL are set to
high while CWL remains low. This configuration turns
on transistors N5, N6, N7, and N8, connecting VBL and
VBLB to the bit cell while isolating CBL and CBLB
through N9 and N10. In this configuration, the SRAM
bit cell can perform read/write operations on the near-
memory computing unit via the VBL and VBLB lines.
Conversely, when accessing the CBL and CBLB lines,
RWL and CWL are pulled to high to achieve precise bit
cell control, while HWL is set to low. This activates N5,
N6, N8, and N9, linking CBL and CBLB to the circuit
while isolating VBL and VBLB via N7 and N8. In this
case, the SRAM bit cell is connected to the input/output
interface of the NTT accelerator through a column MUX.
This approach allows dynamic row selection during data
migration, thereby achieving precise matching of butterfly

operation data pairs across different computational stages.

C. Near-Memory Computation
Our NTT/INTT operations are based on the Cooley-

Tukey algorithm and the Gentleman-Sande algorithm,
implementing the conventional data flow of NTT/INTT
computations. Fig. 2 provides an illustrative example of
the computational process for a single-stage butterfly op-
eration in a 4-point NTT. The mapping of data between
butterfly operation stages is achieved through two data
exchanges in Stage1 and Stage2. In Stage1, we perform
data migration of the original data to enable direct parallel
computation. The process begins by reading corresponding
data according to the number of butterfly stages. Once
data is read from the SRAM via CBL and CBLB lines, it is
amplified by sense amplifiers and fed into the near-memory
computation unit. Specifically, a0 and a1 are sequentially
loaded into registers in the near-memory computation unit
before data transfer. The purple lines in Fig. 1(b) represent
the data transmission channels between different near-
memory computing units. Through these data channels,
a0 and a1 are transmitted to another set of near-memory
computing units, and then the data from the two sets of
near-memory computing units are written in parallel into
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SRAM sub-arrays A and B, respectively. Since the original
data in the SRAM sub-array A will disappear after read
operations, a copy of the original data must be rewritten
back to the SRAM sub-array A. At this stage, we have
successfully completed half of the data exchange process.

The modular multiplication of NTT is demonstrated in
Stage2 of Fig. 2. We employ the standard Barrett modular
multiplication method. a2 and a3 are read in parallel from
the SRAM array and carries out modular multiplication
operations in near-memory computing units. After com-
pleting the modular multiplication, the results are written
back to the remaining blank SRAM arrays in sub-array
A and B using the identical data exchange methodology
implemented in Stage 1.

Stage3 demonstrates the modular addition/subtraction
operations. The detailed data transfer mechanism will be
systematically elaborated in the subsequent subsection.
Fig. 1(d) illustrates the internal structure of the basic
arithmetic module, which carries out addition and sub-
traction operations. When executing addition, operands
A and B are fed into latches via CBL and CBLB, where
XOR logic computes A ⊕ B. Carry information is propa-
gated through MUX1, which selects either an initial reset
value or the previous stage’s carry-out value. The sum
is computed iteratively and stored back in SRAM. For
subtraction, B is first inverted, then A and the inverted
B carry out an addition operation with an initial carry-in
value of 1. The MUX2 determines whether the output is
from addition/subtraction or the modular multiplication
module. Upon completion of Stage 3, the processed data is
concurrently written into SRAM sub-array A through par-
allel write operations, where it is retained for subsequent
computational phases.

D. Glitch-driven High-speed Butterfly Operation
The Glitch Generator, as shown in the top-left corner

of Fig. 3, produces multiple narrow pulse-width signals
within a single clock cycle, primarily used for controlling
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Fig. 3. Schematic of the glitch generator and critical timing wave-
forms for NTT operations.

SRAM or near-memory computing units. Under the con-
trol of the glitch signals, near-memory computing units
perform consecutive operations within a single clock cycle,
significantly accelerating the speed of butterfly operations.
Fig. 3 illustrates the detailed schematic diagram of the
glitch generator with its corresponding waveform, along
with the timing diagram of a single-stage butterfly opera-
tion. The data mapping is completed through two data
exchanges in Stage1 and Stage2. Note that a read or
write operation requires L cycles for L bits of data. The
modular multiplication takes 16 cycles. Bit reversal and
addition/subtraction operations allow single-bit data to
be read and processed within one cycle. During the im-
plementation of addition/subtraction operations, the data
designated for subtraction is first fully read out, subjected
to bitwise inversion, and rewritten to the SRAM arrays.
Subsequently, a parallel readout of all row data is executed
to perform modular addition operations, thereby obtaining
the final computational results. The addition/subtraction
steps require almost no additional cycles except for the
final modular operation. Stage3 completes in 4L + 17
cycles.

IV. Results and Discussion
We evaluate the proposed NTT in a 28 nm CMOS

process. Table I provides the results and comparisons
of recent NTT designs and this work. In the case of
N = 256, the throughput of the proposed NTT accelerator
reaches 67.1 kNTT/s, with a minimal area overhead of
only 0.006 m2, achieving the highest throughput-per-area
(11183.3 KNTT/s/mm2). In comparison, the proposed
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TABLE I
Comparison with State-of-the-Art NTT Accelerators

Design Type N Freq Bit Tput. Latency Energy Area Tput./area
(MHz) width (kNTT/s) (µs) (nJ/NTT) (mm2) (kNTT/s/mm2)

This work (28nm)
256 176 14 67.1 14.9 622 0.006 11183.3

SRAM
CIM 512 163 14 51.5 19.4 714 0.011 4681.8

1024 148 14 37.3 26.8 766 0.021 1776.2

TVLSI 2025 (28nma) [11] SRAM
CIM 1024 167 32 62 16.1 126 0.154 403

DAC 2023 (28nma) [9] SRAM
CIM 256 3800 16 26 38.5 13 0.024 1082

TVLSI 2022 (28nma) [7] SRAM
PIM 1024 151 14 80 12.5 93 0.067 1195

MICRO 2021 (28nma) [14] Pipelined 8K 2000 128 36k 0.028 1.24M 68.139 524

DAC 2020 (28nma) [6] ReRAM
PIM 256 909 16 23.4 42.7 1007 0.059b 397

ICASSP 2020 (28nma) [13] FPGA 1024 182.98 16 14 71.3 6135 - -

CICC 2018 (28nma) [15] ASIC 256 267 14 2.7k 0.4 17 0.685b 3910

Notes: a. The process nodes are normalized to 28nm CMOS Process for an apples-to-apples comparison with GD-NTT.
b. The areas are estimated by referring to work [9].

structure demonstrates 1.6×/2.9×/2.7x higher through-
put than those of [9], [6] and [13], respectively, while
achieving 4×/10× area reduction compared to [9] and
[6]. Although the NTT designs in [11], [7], [14], and [15]
outperform the proposed structure in throughput, they
require at least 3.2× more area. This work demonstrates
a balanced performance between throughput and area
efficiency, providing 1.5∼28× better throughput-per-area
compared to the state-of-the-art.

V. Conclusion

This brief proposes a near-memory NTT accelerator
that enhances polynomial multiplication for post-quantum
cryptography. Our design combines reconfigurable SRAM,
glitch-driven execution, and near-memory computing to
optimize throughput and efficiency. The architecture over-
comes traditional memory bottlenecks and latency issues.
Evaluation results show that GD-NTT can achieve a sig-
nificant improvement in throughput-per-area(up to 28×)
over the latest ASIC and in-memory designs, offering an
efficient solution for edge devices and advancing crypto-
graphic hardware research.
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