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Abstract

Machine unlearning methods take a model trained on a dataset D and a forget set D 𝑓 , then attempt
to produce a model as if it had only been trained on D \ D 𝑓 . We empirically show that an adversary
is able to distinguish between a mirror model (a control model produced by retraining without the data
to forget) and a model produced by representative unlearning methods from the literature [10, 15, 18,
49]. We build distinguishing algorithms based on evaluation scores in the literature (i.e. membership
inference scores) and Kullback-Leibler divergence.

We propose a strong formal definition for machine unlearning called computational unlearning. Com-
putational unlearning is defined as the inability for an adversary to distinguish between a mirror model
and a model produced by an unlearning method. If the adversary cannot guess better than random
(except with negligible probability), then we say that an unlearning method achieves computational
unlearning.

Our computational unlearning definition provides theoretical structure to prove unlearning feasibility
results. For example, our computational unlearning definition immediately implies that there are no
deterministic computational unlearning methods for entropic learning algorithms. We also explore the
relationship between differential privacy (DP)-based unlearning methods and computational unlearning,
showing that DP-based approaches can satisfy computational unlearning at the cost of an extreme utility
collapse. These results demonstrate that current methodology in the literature fundamentally falls short
of achieving computational unlearning. We conclude by identifying several open questions for future
work.

1 Introduction
Machine learning models require massive amounts of training data. Data is collected by scraping publicly
available web content [11, 29, 48], purchasing access to private databases [2, 12, 25, 32, 33, 34, 35, 39], and
collecting data on their own to assemble training datasets [6, 36, 43]. Due to the massive scale, datasets
cannot be thoroughly vetted and may contain data that is copyrighted, inaccurate, protected, or contain
otherwise undesirable information.

Legal protections exist for those who wish to protect their privacy, copyrighted content, and financial
history in multiple countries. Examples include the EU GDPR (right to be forgotten) [14], US DMCA (copy-
right infringement takedown) [45], US FCRA (corrections to credit history) [46], and US HIPAA (corrections
to personal health data) [8]. Specific instances of training data may also be illegal on their own: for example,
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it is illegal to possess child sexual abuse material (CSAM) in the US and in many other jurisdictions. Despite
this, popular datasets [36] used to train models like Stable Diffusion contained illegal CSAM [41]. Further,
prior work has established the threat of data poisoning attacks that create undetectable backdoors in models
[17]. This means that model data may be intentionally corrupted by an adversary.

These threats can be addressed by re-training the model from scratch without the offending data. How-
ever, since training large models is capitally and computationally intensive, a major area of interest is machine
unlearning: efficiently removing traces of the offending data, known as the as the forget set, without training
a new model from scratch [1, 5, 7, 10, 15, 16, 18, 20, 31, 44].

1.1 Our Contributions
This work consists of three major contributions: (1) a new formal definition and framework for evaluating
unlearning, (2) empirical results showing that many unlearning methods produce results that are distin-
guishable from a control, and (3) several theoretical implications of our framework.

Computational unlearning framework. Our primary contribution is a new formal definition and frame-
work for evaluating unlearning called computational unlearning that we detail in §3. In brief, computational
unlearning tests the ability of an adversary to distinguish between a model produced by an unlearning
method and a model trained from scratch with the forget set removed. If the adversary is only able to do
so with negligible probability, then we say that the unlearning method achieves computational unlearning.
Because the adversary is unable to distinguish between the control and unlearned models, it follows that
all information about the forget set has been “deleted” by the unlearning method. The game is defined in
both a white-box (i.e. adversary has full access to model parameters) and a black-box (i.e. adversary only
has API access to model) setting.

Many unlearning methods do not achieve indistinguishability. We construct two scoring methods
MIAScore and KLDScore in §4.1 which an adversary can use to distinguish between an unlearned model
and a model that has never seen the forget set. We study previously proposed unlearning methods [10, 15,
18, 49] and show that each fail to achieve computational unlearning for ResNet-18 models [21] trained on
CIFAR-10 [27] in §4. We also experiment with how distinguishing rates are affected by the forget set size
and unlearning method hyperparameters.

Theoretical implications of computational unlearning. We describe several implications of our com-
putational unlearning framework in §5. We first show that any deterministic computational unlearning algo-
rithms must achieve perfect unlearning (i.e. it must produce the exact same model as retraining) and discuss
implications for heuristic and certified removal unlearning methods. Second, we show that using differential
privacy to achieve black-box computational unlearning leads to utility collapse (i.e. utility must be equivalent
to a model that is randomly initialized).

2 Background
Widespread interest in machine unlearning has led to a great deal of work in the area. We briefly review
several approaches explored in the literature, extending the taxonomy proposed by Nguyen et al. [31]. We
categorize machine unlearning method in one of three ways: as heuristic unlearning, approximate unlearning,
or exact unlearning as applied to classification models.

Heuristic unlearning. Unlike exact and approximate unlearning methods, heuristic unlearning methods
do not have any formal guarantees. However, they are typically much less expensive than applying differential
privacy or retraining the model [10, 15, 16, 26, 40]. These rely on various heuristics that aim to minimize
an unlearning “score” that that attempts to capture how well a machine learning model has forgotten.
Membership inference attacks (MIA) [38] are a popular scoring method used in the literature.
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We now describe three heuristic unlearning methods: bad teacher unlearning [10], amnesiac unlearning
[18], and selective synaptic dampening (SSD) [15]. Each of these heuristic unlearning methods are evaluated
on membership inference attack (MIA) scores; this is representative of many heuristic unlearning methods.

• Bad teacher unlearning. Bad teacher unlearning rests on the assumption that, after forgetting a data
point, a model’s behavior on that data point should be similar to that of a randomly initialized model.
To forget D 𝑓 the model is “taught” to reflect the behavior of a randomly initialized model (i.e. a bad
teacher).

• Amnesiac unlearning. Amnesiac unlearning tries to reverse the changes to the model incurred by train-
ing on D 𝑓 by keeping track of all batches containing elements from D 𝑓 ; gradient ascent is performed
on these training batches at forget time. This attempts to “backtrack” towards a model that never had
those gradient updates applied. We note that this approximates the approaches taken by many exact
unlearning methods.

• Selective synaptic dampening (SSD). SSD measures the D 𝑓 -related information in each neuron by using
the Fisher information matrix (FIM). Neurons that contain lots of information about examples in D 𝑓

are “zeroed out” by scaling down their weights. One can think of SSD as a pruning algorithm where
“branches” of the network are “removed” based on their “knowledge” of D 𝑓 .

Approximate unlearning. An approximate machine unlearning method attempts to output a model that
is approximately equal to a model trained without the forget set with high probability. Approximate machine
unlearning methods are typically based on the notions of differential privacy [13] and certified removal [19].

Differential privacy. Differential privacy [13] bounds the difference between outputs of a randomized
algorithm on similar data sets. In the context of machine learning, this can be implemented as either (1)
producing model parameters that are similar to the model parameters produced by training on a similar
dataset or (2) producing an inference that is similar to the inference produced by a model trained on a
similar dataset.

In the first case, we achieve a “white-box” differential privacy property because noise is incorporated
into the model parameters during the training process. A practical example of such a learning method is
differentially private stochastic gradient descent (DP-SGD) [1].

In the second case, we achieve a weaker “black-box” differential privacy property because the noise is only
integrated after training. Intuitively, this means a differentially private model has no guarantee to maintain
privacy if you are given access to model parameters. Additionally, privacy budget is consumed at inference
time; this forces an upper bound of the number of permitted queries.

Certified removal. Certified removal draws inspiration from the aforementioned notion of differential
privacy, extending a white box privacy guarantee to hold for a learning and unlearning method. Their aim is
to bound the difference in model parameters produced by the unlearning method and the model parameters
produced by the learning method without a particular data point in the training set:

Definition 1 ((𝜖, 𝛿)−Certified Removal [19]). learn, unlearn satisfy (𝜖, 𝛿)−certified removal if, for all 𝑇 ⊆
H , 𝑥 ∈ D ⊆ U,

P
(
learn

(
init

(
1𝜆

)
,D \ 𝑥

)
∈ 𝑇

)
≤ 𝑒𝜖 P (unlearn (𝑀𝑜, {𝑥}) ∈ 𝑇) + 𝛿

and
P (unlearn (𝑀𝑜, {𝑥}) ∈ 𝑇) ≤ 𝑒𝜖 P

(
learn

(
init

(
1𝜆

)
,D \ 𝑥

)
∈ 𝑇

)
+ 𝛿

where 𝑀𝑜 = learn
(
init

(
1𝜆

)
,D

)
.
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Note the similarity in this definition to the constraint imposed by differential privacy (DP). Indeed,
Guo et al. mention that a DP learning algorithm is sufficient for (𝜖, 𝛿)−certified removal. Certified removal
extends the DP framework to a pair of methods (learn, unlearn) instead of a single DP mechanism. As a
result, certified removal allows for models with higher base performance, since less noise needs to be added
during training than is required for DP.

Notably, Guo et al. [19] introduced a Newton update removal mechanism to remove information from
linear models with convex objectives, which has been explored further by other works [30, 47]. Zhang et
al. [49] extend this to non-linear models with non-convex objectives via certified deep unlearning. These
methods allow practitioners to have some certification regarding how “close” the unlearned model is to a
model retrained from scratch without the forget set.

Certified deep unlearning extends the Newton update removal mechanism (introduced in [19]) to non-
linear models with non-convex objective functions. Their approach resorts to using projected gradient descent
(PGD) [3] for optimization, allowing for the guarantees introduced by Guo et al. [19] to be extended to these
models.

Despite certified removal being defined as a white-box property — that is, an adversary seeing model
parameters — literature typically evaluates unlearning performance by computing membership inference
attack scores (MIA) [38] that do not have access to the model weights (i.e. a black-box evaluation setting).
We discuss certified removal methods in §4.

Exact unlearning. An exact unlearning method modifies the original model such that its outputs exactly
match a model trained without the forget set. We are unaware of any exact unlearning method for neural
networks that does not involve some degree of retraining. The most common approaches rely on saving
checkpoints of model state at train time [5, 44]. Unlearning then consists of rewinding to a checkpoint that
has not been influenced by the forget set and then resuming training from that point without the forgotten
data. This technique is essentially a time-space tradeoff; multiple checkpoints of the model must be saved
out during training. The worst-case retraining cost may be equivalent to retraining the model from scratch
(for example, if the forget set contains an element from the first batch). We do not study exact unlearning
in this work.

Unlearning evaluation. Many machine unlearning works attempt to justify their approach by optimizing
some unlearning score. Examples include accuracy gap scores and membership inference attacks:

• Accuracy Gap Scores: A popular approach in prior work is to demonstrate an “accuracy gap” between
the unlearned model’s performance when queried on the forget set (the set of examples to be forgotten)
and the retain set (the training set minus the forget set) in a black-box manner [5, 7, 9, 16]. The
intuition here is that the unlearning method has “remembered” the retain set (because it maintains
good accuracy) but “forgotten” the forget set (because it has lost accuracy on the items to be forgotten).

• Membership Inference Attack Scores: Membership inference attacks, formalized in [38], are another
common way to evaluate the performance of machine unlearning algorithms in literature. An attacker
is given a data point and black-box access to a machine learning model; the attacker then attempts to
predict if the data point was part of the training set. Some heuristic machine unlearning proposals are
specifically designed to minimize these scores [10, 15, 18].

Framing machine unlearning in a score-based manner is attractive: it provides an easy way to facilitate
comparison, and it also satisfies intuitive beliefs about how the model should behave after unlearning.
However, the use of score-based definitions does not fully capture the expectations of model behavior after
unlearning.

Prior work has demonstrated multiple issues with unlearning evaluation:

• Over-Unlearning: Hu et al. [23] considers the phenomenon of over-unlearning, where an attacker with
black-box access to a model has the model provider run an unlearning method adversarially with the
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intent of reducing overall model utility. A key feature of this scenario is that an attacker can adaptively
issue requests to forget data.

• Unlearning Inversion: Hu et al. [24] shows that many machine unlearning techniques are vulnerable
to unlearning inversion attacks. In this scenario, an attacker with white-box access is able to recover
an unlearned dataset by considering the differences between an original and unlearned model. This is
similar in spirit to membership inference attacks.

• Forgeability: Recent work [37, 42] demonstrates that current machine unlearning definitions permit
forgeability. Forgeability is achieved if an adversary can forge a proof that demonstrates their model
was trained without the forget set despite being trained with it it. An adversary is permitted to order
the retained data points in batches. This allows them to arrive at the same weights as a model trained
on the forget set.

We believe that these issues fundamentally stem from the score-based approach to evaluating machine
unlearning and that repairing this requires a fundamentally different formal definition of unlearning based
on indistinguishability.

Machine unlearning is indistinguishability. We first motivate our desired functionality through the
lens of the 𝑘-nearest neighbors (𝑘-NN) machine learning algorithm. 𝑘-NN is a simple learning algorithm
that memorizes every training example it is presented with. At inference time, the model finds the 𝑘 nearest
training examples according to some metric and classifies based on the their round truth labels. One of
the properties of 𝑘-NN is that it immediately admits an unlearning algorithm: simply delete the training
examples you wish to forget. This produces a model that is indistinguishable from a control.

We claim that indistinguishability represents a superior way to evaluate unlearning. This idea is not
new and features in prior work [15, 19, 49] but is not measured directly. We propose doing so here. In
other words, no efficient (p.p.t., or probabilistic polynomial time) adversary A should be able to distinguish
between 𝑀𝑢 and 𝑀𝑐. We also assume that A has access to 𝑀𝑜, learn, unlearn, D, and D 𝑓 .

3 Formalizing Unlearning
We propose computational machine unlearning as a formal way to capture that machine unlearning is in-
distinguishability. Unlike prior machine unlearning scores, our definition is defined as a security game,
inspired by the cryptographic notion of semantic security and indistinguishability under chosen plaintext
attack (IND-CPA) [4]. Instead of considering a membership inference score or accuracy gap, computational
unlearning considers the ability of an adversary to distinguish between an unlearned model and a control
model.

3.1 Preliminaries
Let U be the universe of all possible data, and 𝑑 ∈ U be a particular data point. Let D ⊆ U be our entire
training dataset with D 𝑓 ⊆ D be the forget set. Let H be our hypothesis space of possible models, with
ℎ ∈ H being a particular model.

Definition 2 (Learning scheme). We formally define a learning scheme as a tuple of probabilistic polynomial
time (p.p.t.) algorithms (init, learn, infer):

• init(1𝜆) → ℎ: randomly samples some initial model ℎ. The notation 1𝜆 simply denotes that there are
𝜆 copies of the symbol 1 written on the input tape of the Turing machine and 0 in every other location.
This ensures that init runs in polynomial time with respect to 𝜆, a cryptographic formality.

• learn(ℎ,D) → ℎ: given some initial model ℎ, performs some model update process with respect to
the training set D.
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• infer(ℎ, 𝑑) → R𝑛: performs some inference procedure with the given model ℎ on the provided data
point 𝑑.

Remark 3 (Baseline and meaningful utility). A newly initialized model under some learning scheme (i.e. the
output of init) is expected to only have some baseline utility. Formally, we say the following:

E(util(init(1𝜆))) = 𝑏

for some 𝑏, where init(1𝜆) initializes a model and does no training on it. We say utility is meaningful if it
is larger than 𝑏.

Definition 4 (Forgetting learning scheme). We likewise define a forgetting learning scheme as a tuple of
p.p.t algorithms (init, learn, infer, unlearn) such that it is a learning scheme with an additional unlearn
algorithm:

• unlearn(ℎ,D 𝑓 ) → ℎ: performs some model update process with respect to the forget set D 𝑓 .

Remark 5 (Cost and utility functions). We also assume the existence of cost and utility functions for learning
schemes and forgetting learning schemes.

cost : Φ→ R+

util : H → R+

where cost measures the expense of performing a model update algorithm (e.g. learn, unlearn) and util
is a function that measures the performance of a particular model in the hypothesis space.

Definition 6 (Negligible function). We define negl(𝜆) to be a function that is negligible in terms of a security
parameter 𝜆. We borrow the definition of a negligible function from cryptography — namely, that a function
𝑓 : Z≥1 → R is negligible if and only if for all 𝑐 > 0 we have:

lim
𝑛→∞

𝑓 (𝑛)𝑛𝑐 = 0

For example, if a function is bounded by 2−𝜆 then that function is negligible with respect to 𝜆.

3.2 Computational Unlearning
We now formally define computational unlearning in both white-box and black-box settings. As described
earlier, these definitions are inspired by the cryptographic notions of semantic security and indistinguishabil-
ity under chosen plaintext attack (IND-CPA) [4]. We assume a computationally bound adversary and allow
a negligible adversary advantage in keeping with these formal cryptographic definitions.

Definition 7 (White-Box Computational Unlearning). We consider the following experiment:

1. C sends the description of the forgetting learning scheme (i.e. the learn and unlearn algorithms).
2. A chooses D and sends it to C.
3. C computes 𝑀𝑜 ← learn(init(1𝜆),D) and sends (𝑀𝑜, learn, unlearn,D, cost, util) to A.
4. A selects a forget set D 𝑓 ⊂ D and sends D 𝑓 to C.
5. C computes 𝑀𝑢 ← unlearn(𝑀𝑜,D 𝑓 ) and computes 𝑀𝑐 ← learn(init(1𝜆),D \ D 𝑓 ).
6. C samples a random bit 𝑏

$← {0, 1}. If 𝑏 = 0, C sends [𝑀𝑐, 𝑀𝑢]. If 𝑏 = 1, C sends [𝑀𝑢, 𝑀𝑐].
7. A computes a guess 𝑏′ and sends 𝑏′ to C. A wins the game if 𝑏′ = 𝑏.

We say that an unlearning algorithm is a white-box computational machine unlearning algorithm if

P (𝑏′ = 𝑏) < 1

2
+ negl(𝜆)

We denote this computational indistinguishability by saying 𝑀𝑢

𝑐≈ 𝑀𝑐. This game is illustrated in Figure 1.
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Challenger Adversary

sends learn, unlearn

sends training set

sends original model

sends forget set

shuffles and sends
{control, unlearned}

guesses ordering

Figure 1: Overview of the security game for computational unlearning.

Definition 8 (Black-Box Computational Unlearning). We consider the following experiment:

1. C sends the description of the forgetting learning scheme (i.e. the learn and unlearn algorithms).
2. A chooses D and sends it to C.
3. C computes 𝑀𝑜 ← learn(init(1𝜆),D) and sends (𝑀𝑜, learn, unlearn,D, cost, util) to A.
4. A selects a forget set D 𝑓 ⊂ D and sends D 𝑓 to C.
5. C computes 𝑀𝑢 ← unlearn(𝑀𝑜,D 𝑓 ) and computes 𝑀𝑐 ← learn(init(1𝜆),D \ D 𝑓 ).
6. C samples a random bit 𝑏

$← {0, 1}. If 𝑏 = 0, C sends [O𝑀𝑐
,O𝑀𝑢

] where O is an oracle that allows A
to call infer on the underlying model. If 𝑏 = 1, C sends [O𝑀𝑢

,O𝑀𝑐
].

7. A computes a guess 𝑏′ and sends 𝑏′ to C. A wins the game if 𝑏′ = 𝑏.

We say that an unlearning algorithm is a black-box computational machine unlearning algorithm if we
have:

P (𝑏′ = 𝑏) < 1

2
+ negl(𝜆)

Remark 9 (Threat Model). This definition intuitively captures a setting inspired by the GDPR process: we
assuming the adversary is a user who can select which data should be deleted (i.e. the set of items to be
deleted is, to some extent, adversarially-controlled) as in [23]. We also acknowledge that this game defines
a very strong adversary and that a real-world adversary may not have access to the full training set, the
description of the unlearning algorithm, or other information provided in this game. However, each of these
alternatives envisions a strictly weaker adversary than our computational learning game, meaning that an
unlearning method that achieves computational unlearning would still be indistinguishable from a control
model in these scenarios.
Remark 10 (Trivial Solutions). Observe that there is a trivial solution for computational unlearning: sim-
ply defining unlearn to call init(1𝜆) and emit new models whose weights are initialized randomly. To
prevent these trivial solutions, we require that |util(𝑀𝑜) − util(𝑀𝑐) | < 𝜖 for some small 𝜖 and that
cost

(
learn

(
D \ D 𝑓

) )
< cost

(
unlearn

(
𝑀𝑜,D 𝑓

) )
.

Remark 11 (Utility Equivalence). We note that if the definition above is met, then util(𝑀𝑐)
𝑐≈ util(𝑀𝑢)

implicitly holds. If this was not the case, it would allow A to distinguish the two models.
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4 Empirical Results
We now present empirical distinguishers for A to evaluate if unlearning methods from literature achieve com-
putational unlearning. We experimentally demonstrate the effectiveness of these distinguishing algorithms
on heuristic unlearning and certified removal methods.

4.1 Distinguisher Scores
Each distinguisher for A uses a scoring function to separate 𝑀𝑐 from 𝑀𝑢. The scoring function takes in the
original model 𝑀𝑜, a candidate model 𝑀 ∈ {𝑀1, 𝑀2}, the training set D, and the forget set D 𝑓 . The scoring
function then outputs a value 𝑠 that is used to determine if the candidate model is 𝑀𝑢 or 𝑀𝑐.

Scoring with membership inference attacks. As described in §2, membership inference attacks (MIA)
are a common method for evaluating the performance of a given unlearning algorithm and several unlearning
methods are justified by reducing them as much as possible. However, we are able to leverage these scores to
distinguish an unlearned model from a control model because the unlearning method will often produce models
whose MIA scores are out of distribution. We propose that an unlearning algorithm should achieve similar
MIA scores to a model that never saw the forget set rather than attempting to absolutely minimize it. In
practice, we use the approach of Shokri et al. [38] for computing MIA scores using the same implementation
as [15]. We refer to this scoring algorithm as MIAScore.

Scoring with Kullback-Leibler divergence. We also present a novel scoring method KLDScore. We
drew inspiration from the fact that Certified Removal bounds the KL-Divergence between different models.
To calculate the score, A calculates the KL-Divergence between the inferences of the original model 𝑀𝑜 and
the candidate model 𝑀 (such as on instances in or near the forget set). This provides a measure of how
different the behaviors of 𝑀 and 𝑀𝑜 are. In practice, we find that models produced by unlearning methods
have much lower divergence from the original model than a control.

KLDScore(𝑀𝑜, 𝑀,D,D 𝑓 ) =
∑︁

𝑥𝑖∈D 𝑓

𝐷KL (𝑀 (𝑥𝑖 + N(0, 0.1)) ∥ 𝑀𝑜 (𝑥𝑖 + N(0, 0.1))) (1)

where N(0, 0.1) represents Gaussian noise with mean 0 and variance 0.1.

Choice of decision rule. A will compute 𝑏′ using the results from one of the aforementioned scoring
algorithms. By Definitions 7 and 8, A is free to use prior knowledge of learn, unlearn,D, and D 𝑓 in the
decision rule. We refer the reader to Kerckhoffs’s principle in cryptography.

4.2 Experimental Results
We evaluate the distinguishers via their success rates in differentiating between 𝑀𝑢 and 𝑀𝑐. We present
our findings from two experiments: one varying the size of the forget set D 𝑓 and the other varying the 𝜎

parameter from Certified Deep Unlearning. Both experiments were run using an Intel Xeon Gold 6330 and a
NVIDIA A40. All results are statistically significant (i.e. a 95% confidence interval under a Beta distribution
with the Jeffries prior does not contain 50%).

Implementation Details All models used the ResNet-18 [22] architecture. The original and control mod-
els were trained using stochastic gradient descent with momentum and weight decay. The hyperparameters
used are as follows:

• Number of epochs: 50

• Batch size: 512
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• Learning rate: 10−2

• Weight decay: 5 × 10−4

For SSD [15], we used a dampening constant of 1 and a selection weighting of 100. For all other methods
[10, 18, 49], we used the parameters specified in their original papers (with the exception of 𝜎 for CDU [49],
which we varied as described below).

Forget set size. We evaluated the effect of the forget set size on four different unlearning techniques. We
used three heuristic methods and the approximate technique Certified Deep Unlearning (CDU) all discussed
in §2.

For each method, a random subset of D was chosen as the forget set. We varied the forget set size to
evaluate its effect on the ability of A to distinguish between 𝑀𝑢 and 𝑀𝑐 and correctly guess 𝑏′ using the
distinguishing algorithms discussed above. We ran 128 trials, each with a different randomly selected forget
set. We found that with increased forget set size the adversary was able to correctly guess 𝑏′ with higher
frequency, but always maintained above a 60% success rate at every forget set size. As we hypothesized,
many heuristic unlearning techniques over-minimized MIAScore during their process of unlearning: for all
heuristic unlearning methods the decision rule assigns a lower MIAScore score to 𝑀𝑢 (except for SSD [15]
with greater than 30 forget set examples).
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(a) KLDScore
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Amnesiac
Bad Teacher

SSD
CDU
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Figure 2: Forget set size against adversary success rate using KLDScore and MIAScore distinguishers.

We also explored classwise unlearning, where an entire class in D is chosen as the forget set. We found
it always possible to distinguish in this setting (e.g. 100% adversary success rate under both distinguishers).
This is unsurprising given our results on the impact of forget set size. Recall that CIFAR-10 has 50,000
images in the training set, distributed evenly across 10 classes; forgetting an entire class amounts to a forget
set size of 5,000 [27].

Dependence on 𝜎. We additionally explored the relationship between computational unlearning and
certified removal’s privacy parameters. For this we examined A’s KLDScore for certified deep unlearning
(CDU) from Zhang et al. [49] with different hyperparameters. The CDU method is based on a single
hyperparameter 𝜎, derived from 𝜖 and 𝛿 values, that represents the magnitude of noise used. We follow
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the hyperparameters from the CDU published experiments [49], including a random forget set of 1000 data
points. We then varied 𝜎 from 10−5 to 10−1 in powers of 10 running 128 trials at each value.

10−5 10−4 10−3 10−2 10−1
10−5

10−1

103

107

1011

1015

𝜎

KL
DS

co
re

Control (Retrain)
Certified Deep Unlearning

Figure 3: Certified Deep Removal against KLDScore for different values of 𝜎.

In our experiments we found that the adversary was able to distinguish using KLDScore with 100%
accuracy for all choices of 𝜎. We found as 𝜎 increases the unlearned model’s KLDScore also increases (see
Figure 3). Since the control model has no dependency on 𝜎, an adversary can distinguish with extremely high
success rate by choosing a decision rule appropriate for the chosen value of 𝜎. This relationship does imply
there is a point of intersection (between 0.001 and 0.01) where the KLDScore score for 𝑀𝑢 and 𝑀𝑐 should
be very close, making it harder to distinguish using KLDScore. We believe understanding the intersection
constitutes an interesting topic for future work.

5 Theoretical Analysis
We now show several interesting consequences of our computational unlearning definition. We begin by show-
ing that 𝑘-NN admits a white-box computational unlearning algorithm in line with the technical intuition
from §2.

Theorem 12 (𝑘-NN admits white-box computational unlearning). There is an efficient white-box compu-
tational unlearning algorithm for 𝑘-NN models.

Proof of Theorem 12. Let learn be defined as normal for 𝑘-NN models. Let unlearn be defined as deleting
the specified D 𝑓 from the 𝑘-NN database. Observe that this produces the same database as learn on D\D 𝑓 .
Therefore, an adversary cannot distinguish between 𝑀𝑢 and 𝑀𝑐 with non-negligible advantage because they
are exactly the same model. □

We first show that for entropic machine learning algorithms (e.g. stochastic gradient descent) there
are no deterministic algorithms that can achieve computational unlearning. This result means that many
heuristic unlearning methods can never admit computational unlearning algorithms. Secondly, we show that
differentially private algorithms can achieve computational unlearning at the cost of collapsing model utility.

10



5.1 Deterministic Computational Unlearning does not exist
Preliminaries. We now show that a forgetting learning scheme that is entropic must have a randomized
unlearning algorithm. Additionally, we show that a forgetting learning scheme that is deterministic must
achieve perfect unlearning. Because forgetting learning schemes that are entropic must must be randomized
and because forgetting learning schemes that are deterministic must be perfect, we say that deterministic
computational learning does not exist.

Before beginning, we define entropic learning schemes and perfect unlearning.

Definition 13 (Deterministic learning scheme). A learning scheme is deterministic if the distribution of
models produced by learn

(
init

(
1𝜆

)
,D

)
has Shannon entropy of 0.

Definition 14 (Entropic learning scheme). A learning scheme is ℎ-entropic if the distribution of models
produced by learn

(
init

(
1𝜆

)
,D

)
has Shannon entropy greater than or equal to ℎ. In the absence of a

particular value specified for ℎ, we take ℎ to be 1 bit.

Remark 15. If a learning scheme is entropic, it cannot be deterministic. For all practical purposes, learning
schemes are either deterministic (i.e. 𝑘-nearest neighbors) or entropic (i.e. randomly initialized neural nets
trained under stochastic gradient descent).

Definition 16 (Perfect unlearning). We say a forgetting learning scheme achieves perfect unlearning algo-
rithm if, for all 𝑀 = learn(init(1𝜆),D), the following always holds:

learn(init(1𝜆),D \ D 𝑓 ) = unlearn(𝑀,D 𝑓 )

This is to say, unlearn is perfect if it produces exactly the same model as retraining on the retain set.

Remark 17. A perfect unlearning algorithm is distinct from the notion of exact unlearning described in §2.
Literature that explores exact unlearning rewinds the learning process to the first step that used items from
the forget set; in other words, it implements the below:

learn
(
learn

(
init

(
1𝜆

)
,D \ D 𝑓

)
,D \ D 𝑓

)
Recall that in our definition, A is given unlearn, the description of the unlearning method, and also has

access to the original model 𝑀𝑜. Intuitively, this means that an adversary can simply run the unlearning
method on its own.

Because the unlearning algorithm is deterministic and the learning scheme is entropic, this means that
only one of the two models will exactly match the adversary’s own computed result with high probability
and allow the adversary distinguish with non-negligible probability.

We now prove the above for entropic learning schemes that are forgetting and achieve computational
unlearning.

Theorem 18. There are no deterministic computational unlearning algorithms for entropic learning schemes.

Proof of Theorem 18. Suppose that a forgetting learning scheme is entropic. Therefore, learn
(
init

(
1𝜆

)
,D

)
is a randomized algorithm that samples some ℎ ∈ H with minimum entropy greater than 1 bit. Let P(ℎ) be
the probability that learn samples a particular ℎ ∈ H and let

𝑝max = max
∀ℎ∈H

P(ℎ)

Now suppose that the challenger uses a deterministic unlearn algorithm. Then the adversary can also run
unlearn on 𝑀𝑜 and will win the game if 𝑀𝑐 ≠ 𝑀𝑢. Because the probability learn will output a particular
model is bounded by 𝑝max, the probability that 𝑀𝑐 = 𝑀𝑢 is also bounded by 𝑝max and the probability
𝑀𝑐 ≠ 𝑀𝑢 is at least 1 − 𝑝max. Because unlearn is a computational unlearning algorithm, we must have
that 1 − 𝑝max < 1

2 + negl(𝜆). We can rearrange symbols to get that negl(𝜆) > 1
2 − 𝑝max. But we have a

contradiction because 𝑝max does not asymptotically approach 1
2 as 𝜆 approaches infinity. □
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We now show that a forgetting learning scheme that is deterministic and achieves computational un-
learning must be perfect. The intuition for this result is similar: the adversary has access to learn, the
description of the learning algorithm, and has access to the D \ D 𝑓 . This means that the adversary can
compute the control model on their own, use its own control model to identify the control model provided
by the challenger, and distinguish with non-negligible probability.

Theorem 19. Let L be a forgetting learning scheme that is deterministic. Then if it satisfies the computa-
tional unlearning notion of Definitions 7 and 8 it must perfectly unlearn under Definition 16.

Proof of 19. Suppose that L is a deterministic learning scheme. Therefore, it must output a single model
for a given training set D. Suppose L is also forgetting and achieves computational unlearning. We now
consider two possible cases: that unlearn is randomized and that it is deterministic.

• Randomized case: Suppose that unlearn is a randomized algorithm that samples some ℎ ∈ H . Let
P(ℎ) be the probability that unlearn selects a particular ℎ ∈ H and let

𝑝max = max
∀ℎ∈H

P(ℎ)

Recall that in this scenario, the challenger uses a deterministic learn algorithm to produce 𝑀𝑐. Then
the adversary can also run learn to produce 𝑀𝑐 and will win the game if 𝑀𝑐 ≠ 𝑀𝑢. Because the
probability unlearn will output a particular model is bounded by 𝑝max, the probability that 𝑀𝑐 = 𝑀𝑢

is also bounded by 𝑝max and the probability 𝑀𝑐 ≠ 𝑀𝑢 is at least 1 − 𝑝max. Because unlearn is a com-
putational unlearning algorithm, we must have that 1− 𝑝max < 1

2 + negl(𝜆). We can rearrange symbols
to get that negl(𝜆) > 1

2 − 𝑝max. But we have a contradiction because 𝑝max does not asymptotically
approach 1

2 as 𝜆 approaches infinity.

• Deterministic case: Now suppose that unlearn is a deterministic algorithm. Then the adversary can
also run learn and unlearn on 𝑀𝑜 and will win the game if 𝑀𝑐 ≠ 𝑀𝑢. Because learn and unlearn are
deterministic and will each output a particular model for a given dataset, we must have that 𝑀𝑐 = 𝑀𝑢.
Thus, unlearn must be a perfect unlearning algorithm.

□

Remark 20 (Viability of computational unlearning methods). These results constrain the space of learning
algorithms that are compatible with unlearning. To reiterate: Theorem 18 shows that entropic learn-
ing schemes that are forgetting and achieve computational unlearning must have a randomized unlearning
method. In the opposite direction, no deterministic learning algorithms can support entropic unlearning al-
gorithms. Any deterministic learning scheme that is forgetting and achieves computational unlearning must
implicitly realize a perfect unlearning scheme, as noted in Theorem 19. As a consequence of these findings,
any forgetting learning schemes that achieves computational unlearning must either be perfect, or both the
learning and unlearning process must inherently be randomized. Note that Certified Deep Unlearning [49]
and many heuristic unlearning methods we studied in §4 are not randomized and are not perfect. Thus, they
can never achieve computational unlearning.

5.2 Computational Unlearning from Differential Privacy Collapses Utility
One natural approach to constructing computational unlearning uses techniques from differential privacy [13].

While differentially private learning algorithms imply the existence of black-box computational unlearn-
ing, the parameters choices required to achieve computational unlearning will lead to utility collapse for the
resulting models. We claim that the 𝜖 and 𝛿 parameters must be phrased in terms of 𝜆 and that values
needed to obtain security imply unacceptably high utility loss.

We begin by recalling the definition of privacy loss and differential privacy.

12



Definition 21 (Privacy Loss, [13]). The privacy loss L over neighboring databases 𝑥, 𝑦 after observing 𝜉 is
given by:

L ( 𝜉 )M(𝑥 ) ∥M(𝑦) = ln

(
P(M(𝑥) = 𝜉)
P(M(𝑦) = 𝜉)

)
Definition 22 (Differential Privacy, [13]). A randomized algorithmM with domain N |X | is (𝜖, 𝛿)-differentially
private if for all S ⊆ Range(M) and for all 𝑥, 𝑦 ∈ N |X | such that ∥𝑥 − 𝑦∥1 ≤ 1:

P(M(𝑥) ∈ S) ≤ 𝑒𝜖 · P(M(𝑦) ∈ S) + 𝛿

If 𝛿 = 0, we say that M is 𝜖-differentially private.

Differential privacy’s definition bounds the privacy loss from any query, which we discuss below.

Remark 23 (Privacy Loss Bounded for Differentially Private Algorithms, [13]). Suppose that M is a (𝜖, 𝛿)-
differentially private algorithm. Then by definition, the absolute value of the privacy loss L ( 𝜉 )M(𝑥 ) ∥ M(𝑦) is
bounded by 𝜖 with probability at least 1 − 𝛿.
Remark 24 (Differential Privacy is Immune to Post-Processing, [13]). Additionally, one of the most useful
properties of differential privacy is that it is “immune” to post-processing. This means that there exists no
algorithm that, given the output of a differentially-private function, can “undo” the differential privacy. We
refer the reader to [13, Proposition 2.1] for the proof of this claim.

We will use this property to show that differential privacy can be used to satisfy the definition of black-box
computational unlearning (Definition 8).

Lemma 25. Privacy Loss is an upper bound on relative entropy.

Proof of Lemma 25. Recall the definition of relative entropy (Kullback-Leibler divergence) of probability
distribution 𝑄 with respect to 𝑃 [28]:

𝐷KL (𝑃 ∥ 𝑄) =
∑︁
𝑥∈X

𝑃(𝑥) ln
(
𝑃(𝑥)
𝑄(𝑥)

)
(2)

Now, suppose we have some randomized algorithm M with inputs 𝑎, 𝑏. Let 𝑃,𝑄 represent the output
distributions of M(𝑎),M(𝑏) respectively. Let Lmax refer to the maximum privacy loss observed for any
element 𝑥.

(2) =
∑︁
𝑥∈X

𝑃(𝑥) ln
(
P(M(𝑎) = 𝑥)
P(M(𝑏) = 𝑥)

)
=
∑︁
𝑥∈X

𝑃(𝑥)L (𝑥 )M(𝑎) ∥ M(𝑏)

≤
∑︁
𝑥∈X
Lmax

Because 𝑃 is a probability distribution, we have that 𝑃(𝑥) ∈ [0, 1]. Then privacy loss is an upper bound
because the relative entropy is equal to the privacy loss multiplied by 𝑃(𝑥) by definition. □

Having reviewed important properties of differential privacy, we now show how to construct black-box
computational unlearning (Definition 8) from differential privacy. There are two main ways to accomplish
this: to use differential privacy directly or to aggregate the outputs of models in a differentially private way.
The theorem below captures both of these cases.
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Theorem 26 (Differentially private computational unlearning). Let L be a forgetting learning scheme that
achieves black-box computational unlearning. Let unlearn simply output the original model (with fresh
randomness for the differentially private mechanism). Then learn and unlearn satisfy the definition of
black-box computational unlearning (Definition 8) if and only if 𝛿 ≤ negl (𝜆) and let 𝜖 ≤ ln (1 + negl (𝜆)).

Proof of Theorem 26. Observe that the privacy loss is negligible in 𝜆 with overwhelming probability. This
means that the relative entropy between the outputs of 𝑀𝑢 and 𝑀𝑐 is negligible by Lemma 25. By Remark
24, there is no algorithm an adversary can use to increase the relative entropy. So then 𝑀𝑢 and 𝑀𝑐 are
computationally indistinguishable.

We now show that our bounds are tight. Suppose that 𝛿 > negl(𝜆). Then the privacy loss guarantee does
not hold with overwhelming probability and an adversary could obtain a query result with non-negligible
privacy loss after a polynomial number of queries.

Alternatively, suppose that 𝜖 > ln (1 + negl (𝜆)). Then the privacy loss guarantee is at least polynomial
in 𝜆 and an adversary could obtain query results that lead to a non-negligible privacy loss after a polynomial
number of queries. □

Unfortunately this approach also has the following undesirable result:

Corollary 27. Let L be a forgetting learning scheme that achieves black-box computational unlearning, with
learn implemented as described in Theorem 26. Then 𝑀𝑢 and 𝑀𝑜 are also computationally indistinguishable.
This implies that the utility of 𝑀𝑜 is equivalent to the utility of 𝑀𝑢.

Proof of Corollary 27. We follow the proof of Theorem 26. Observe that the privacy loss is negligible in 𝜆

with overwhelming probability. This means that the relative entropy between the outputs of 𝑀𝑢 and 𝑀𝑐 is
negligible. But 𝑀𝑢 is the same model as 𝑀𝑜, with fresh randomness for the differential privacy mechanism.
So 𝑀𝑢 and 𝑀𝑜 are also computationally indistinguishable.

In other words, this means that util (𝑀𝑜)
𝑐≈ util (𝑀𝑢). Since C does not know a priori the choice of

A, unlearn must be indistinguishable for all possible choices. So then 𝑀𝑢

𝑐≈ 𝑀𝑐 for D 𝑓 = D. That is
to say that 𝑀𝑢

𝑐≈ learn
(
init

(
1𝜆

)
, ∅
)
. But we because util(𝑀𝑜)

𝑐≈ util(𝑀𝑢) we also have util (𝑀𝑜)
𝑐≈

util
(
learn

(
init

(
1𝜆

)
, ∅
) )

, which is bounded by a small 𝜖 and thus not meaningful. □

Remark 28 (Black-box infeasibilty implies white-box infeasibility.). The security notion of white-box com-
putational unlearning in Definition 7 is strictly stronger than the black-box computational unlearning of
Definition 8. Thus, the an infeasibility result for black-box computational unlearning immediately implies
an infeasibility result for white-box computational unlearning.

We note that most use cases of differentially private infer algorithms are designed to support a number
of queries bounded by a constant. One possible interpretation of our result is that we assume an adversary
is able to query the model some polynomial number of times.

We additionally stress that Theorem 26 and Corollary 27 only consider applying differential privacy to the
infer algorithm of a learning scheme. Our result does not necessarily imply a utility collapse for a forgetting
learning scheme that achieves computational unlearning with a differentially private learn algorithm.

6 Discussion
Several unlearning methods are deterministic. Several unlearning methods in the literature are de-
terministic. This means that an adversary will always be able to distinguish in the computational unlearning
game (see §5.1). In particular, [15, 18, 19, 49] each provide deterministic unlearning methods and will never
achieve computational unlearning. This includes various certified removal and approximate techniques; while
they are randomized during the learn process they are not randomized during the unlearn process.

In contrast to the above methods, [1, 10] are randomized. Therefore, it is possible that they could achieve
computational unlearning if other issues leading to distinguishing attacks are resolved.

See Table 1 for an overview.
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Name Category Randomized

DP-SGD [1] Approximate ✓
Certified Removal [19, 49] Approximate ✗

SSD [5] Heuristic ✗
Amnesiac [18] Heuristic ✗

Bad Teacher [10] Heuristic ✓

Table 1: Summary of the randomization of unlearning meth-
ods.

Bounding the difference between models does not imply indistinguishability. As described in
§4, we compare (1) the KL divergence between 𝑀𝑜 and 𝑀𝑐 and (2) the KL divergence between 𝑀𝑜 and the
𝑀𝑢 to distinguish certified removal models with advantage far higher than would be expected from the 𝛿

parameter. This may seem unintuitive at first. We diagram in Figure 4 how this is possible.

Epsilon-Delta Bound

Control
Model

Unlearned
Model

Original
Model

Figure 4: Intuition of how KL divergence is able to distinguish between 𝑀𝑢 from certified removal and 𝑀𝑐.
The distribution produced by the unlearned model is within the 𝜖, 𝛿 bound but the adversary is able to
leverage access to the original model to distinguish between the original model and a control model.

While 𝑀𝑢 falls within the certified removal bound around 𝑀𝑐, the certified removal bound does not
guarantee that 𝑀𝑢 will be uniformly distributed within the bound. Because we assume the adversary also
has knowledge of 𝑀𝑜 under our computational unlearning threat model, we can find the model that has
the least divergence with the original model. Under other notions of distance, it may also be possible to
distinguish based on the direction of the differences—not just the magnitude of the differences.

As described in Theorem 26, conventional choices for 𝜖 and 𝛿 are too loose to achieve computational
unlearning. They must be phrased in terms of 𝜆, the security parameter, with 𝛿 ≤ negl (𝜆) and 𝜖 ≤
ln (1 + negl (𝜆)). This ensures that the privacy loss of every query is negligible. After a polynomial number
of queries, the adversary will still have negligible information and thus will have negligible advantage.

When not set properly, the bound is loose enough to permit distinguishing as empirically demonstrated
in §4.
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6.1 Future work
Relaxations of our definition. As described in [13], the Fundamental Law of Information Recovery
states that “overly accurate answers to too many questions will destroy privacy in a spectacular way.” For
this reason, most research into differential privacy considers a bounded query model; there is at most some
fixed number of queries that the adversary can make. We claim that this is impractical for unlearning. This
would still require complete retraining of the model and avoiding this is the entire point of unlearning.

While we do not believe that a constant of queries is a suitable unlearning scenario, we believe there
are various other relaxations that may prove useful. For example, it may be possible to let the challenger
delete additional information beyond what is selected by the adversary. It is unclear if this would provide
meaningful realizations of unlearning, but is more in line with [5]. Another possible relaxation could be to
allow for some bounded, non-negligible adversary advantage.

Alternative relaxations could include giving the adversary less information, such as not giving them access
to the original model (𝑀𝑜). Our analysis in §5 depends on this information being available to the adversary.
In cases where this information is not available, certified removal with a sufficiently tight bound may be a
viable alternative.

Alignment of generative models via unlearning. This work focuses on image classification models to
facilitate iterative experimentation but our definition naturally extends to generative models, including large
language models (LLMs). In this context, unlearning can be viewed as an alignment technique. However,
this presents additional challenges.

Language is a discrete sequence-based modality where changes to few tokens in the sequence can cause
massive semantic changes to the meaning. Similarly, drastically different input sequences can contain the
exact same information. This can make it hard to specify data points that contain the information you wish
to forget. It is also unclear if certain concepts are emergent, meaning that the model can infer them even
without explicit training data. For example, if you wish to remove all the information from a generative
model about weapons, it is not as simple as forgetting all data points that contain the word “weapon.” This
is further complicated because language datasets are often scraped from many different sources, meaning
there are many possible sources of information that a user may wish to remove.

Accurately specifying all data points that contain the relevant information is non-trivial and an open
area of research. It may be possible to use an embedding of some kind to determine semantic similarity, but
the effect this has on downstream models is an open area of research.

Fine-tuning to foundation models. A common technique is to fine-tune large foundation models (e.g.
LLMs, diffusion models) to a particular task. It is natural to rephrase our definitions of learn and unlearn
to be fine-tunings of a foundation model. Because the adversary already has foreknowledge of the foundation
model (they have the description of learn) the adversary is only distinguishing the results of the fine-tuning
process from a control model.

7 Conclusion
In summary, we have proposed computational unlearning, a new framework for evaluating machine unlearn-
ing. Computational unlearning is satisfied by an unlearning method if the output of the unlearning method is
indistinguishable from a mirror (control) model. We rigorously define indistinguishability in terms of a novel
two-party cryptographic protocol which captures an adversary’s ability to distinguish between two models.
Computational unlearning provides both empirical and theoretical contributions to the field of unlearning
by improves upon prior evaluation methods, such as membership inference attack (MIA) scores.

We empirically showed that several machine unlearning methods from literature [10, 15, 18, 49] do not
achieve computational unlearning by presenting multiple algorithms that allow an adversary to distinguish
between the model produced by an unlearning method and a control model.
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We have identified several theoretical implications that naturally follow from our formal definition of
computational unlearning. For example, all unlearning methods that meet our definition of computational
unlearning must be randomized; there are no deterministic computational unlearning methods despite there
being several deterministic unlearning methods proposed in prior work. We also proved that building com-
putational machine unlearning using differential privacy techniques leads to utility collapse.

Lastly, we outlined various directions for future work. This includes implementing high-utility general-
purpose computational unlearning, potential relaxations of our computational unlearning framework, using
unlearning to align generative models, and exploring how to incorporate notions of foundation models into
computational unlearning.
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