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Abstract

We develop a generalized framework for invariant-based cryptography by ex-

tending the use of structural identities as core cryptographic mechanisms. Starting

from a previously introduced scheme where a secret is encoded via a four-point

algebraic invariant over masked functional values, we broaden the approach to in-

clude multiple classes of invariant constructions. In particular, we present new

symmetric schemes based on shifted polynomial roots and functional equations con-

strained by symmetric algebraic conditions, such as discriminants and multilinear

identities. These examples illustrate how algebraic invariants—rather than one-way

functions—can enforce structural consistency and unforgeability. We analyze the

cryptographic utility of such invariants in terms of recoverability, integrity bind-

ing, and resistance to forgery, and show that these constructions achieve security

levels comparable to the original oscillatory model. This work establishes a founda-

tion for invariant-based design as a versatile and compact alternative in symmetric

cryptographic protocols.
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Introduction

Invariant-based cryptography (IBC) is a recently introduced paradigm in symmetric cryp-
tographic design, in which structural identities—invariants—replace traditional one-way
functions as the core source of security. In contrast to algebraic hardness assumptions
that rely on inversion difficulty, IBC schemes derive robustness from the preservation

of a deterministic relation among data points. Any deviation from the intended struc-
ture breaks the invariant, enabling implicit integrity checks and recovery logic without
revealing secrets.
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A concrete realization of this idea was presented in [5], where a symmetric crypto-
graphic primitive was constructed around an exact four-point functional identity over
discretized oscillatory functions. That construction demonstrated that a secret index,
hidden within an evaluation grid, could be cryptographically protected not through con-
cealment but through the impossibility of structurally consistent extension. The resulting
scheme was compact, invertible only with internal alignment parameters, and resistant to
adversarial manipulation.

The present work generalizes that approach. Instead of relying on a single analytic
invariant, we introduce a flexible framework that incorporates a broader class of algebraic
structures—such as discriminants of polynomials and projective cross-ratios—as crypto-
graphic invariants. These constructions preserve the core idea of invariant-based security
while broadening its scope and applicability. We describe a range of symmetric schemes,
analyze their recoverability and integrity properties, and show how invariant reuse enables
efficient session modes.

Our contribution is threefold:

1. We extract the underlying design principles from the oscillatory model and express
them in terms of algebraic invariants acting over masked or shared components;

2. We construct new symmetric protocols based on discriminants and cross-ratios, each
enforcing consistency via a structurally rigid identity;

3. We analyze the cryptographic implications of invariant reuse, indistinguishability
under masking, and the design of lightweight verification logic.

Taken together, these developments define a general framework for invariant-based
cryptography—compact, self-validating, and structurally expressive. The result is a novel
design axis in symmetric cryptographic engineering: not what is hidden, but what is

preserved.

1 Symmetric Discriminant-Based Scheme

One of the most classical examples of an algebraic invariant is the discriminant of a
polynomial. Originating in 19th-century algebraic analysis [3], the discriminant provides
a compact expression that vanishes if and only if a polynomial has repeated roots. More
generally, it encodes the symmetric relations among a set of roots and remains invariant
under permutation and certain coordinate transformations.

In this section, we apply the discriminant as a cryptographic invariant within a sym-
metric protocol. By constructing a cubic polynomial whose roots include a hidden com-
ponent, we ensure that the transmitted data satisfy a structural constraint that is both
verifiable and nontrivial to forge. The security of the scheme arises not from concealing
the polynomial itself, but from the difficulty of reconstructing its root structure from
partial information.

This use of the discriminant continues the central theme of invariant-based cryptogra-
phy: leveraging preserved algebraic identities to enforce structural consistency, integrity,
and recoverability. The result is a lightweight symmetric scheme in which a secret offset
is implicitly encoded within a polynomial, and retrieved through constrained evaluation
and algebraic recovery.

2



1.1 Common Setup

• Public parameters:

– A fixed field modulus M ∈ N, typically a 256-bit prime;

– A shared evaluation function t = t(S, z) ∈ Q, derived from session nonce and
shared secret;

– A secure hash function H : {0, 1}∗ → ZM , used for integrity binding;

– Cubic polynomials P (x) ∈ ZM [x] defined by their roots and used to encode
algebraic invariants.

• Shared secret: A 256-bit string S ∈ {0, 1}256, known to both parties.

1.2 Alice’s Generation

Given a session-specific nonce z ∈ {0, 1}256, Alice performs:

1. Derives the rational evaluation point t := t(S, z) ∈ Q, computed via a PRF or
hash-based derivation.

2. Selects:

• Random secret offset h ∈ ZM ;

• Three distinct roots a1, a2, a3 ∈ ZM , where a1 is kept private and a2, a3 will be
transmitted.

3. Constructs the cubic polynomial:

P (x) = (x− a1)(x− a2)(x− a3) ∈ ZM [x].

4. Computes:

• Discriminant D := ∆(P ), an invariant of the root structure;

• Shifted evaluation y := P (t+ h) ∈ ZM , hiding the shift h;

• Binding hash Hcheck := H(S, z, a2, a3, D, y);

• Optional second-level hash Hauth := H(S, z, h).

5. Sends to Bob:

〈a2, a3, D, y, z, Hcheck〉 with optional Hauth.

1.3 Bob’s Verification and Recovery of h

1. Computes t := t(S, z) ∈ Q deterministically from the shared secret and nonce.

2. Verifies integrity of transmitted data:

H(S, z, a2, a3, D, y)
?
= Hcheck.

If this fails, abort immediately.
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3. Given a2, a3, D, reconstructs candidate values for a1 by solving the discriminant
identity:

∆(a1, a2, a3) = D.

This typically yields up to two valid candidates.

4. For each candidate a1, reconstructs the polynomial:

P (x) = (x− a1)(x− a2)(x− a3).

5. Forms the equation:
P (t+ h) = y,

where all quantities are known except h. Expanding the left-hand side yields a cubic
equation in h.

6. Solves this equation in ZM to recover valid roots hi.
If Hauth is present, disambiguation is performed via:

H(S, z, hi)
?
= Hauth.

The correct h is accepted only if exactly one root matches.
If Hauth is absent, all valid roots are considered acceptable.

1.4 Remarks on Generalization

The scheme presented above uses the discriminant of a cubic polynomial as a concrete
and accessible example of an algebraic invariant applied in a symmetric cryptographic
setting. However, this choice is far from exhaustive. In principle, analogous constructions
can be built using polynomials of higher degree, leading to richer invariant structures and
more complex root configurations.

Moreover, future protocols may consider distributed variants, in which different par-
ticipants know different components of a shared polynomial—for instance, different root
subsets or partial coefficient sets. This opens the door to schemes where structural invari-
ants link knowledge held across multiple parties, enabling threshold verification, cross-
authentication, or collaborative key recovery.

While such generalizations are conceptually appealing, we deliberately refrain from
abstracting them in full generality here. Instead, we leave this direction as an open path
for future exploration, emphasizing that the discriminant-based method shown above is
only one instance of a broader class of invariant-driven designs.

2 Session Modes with Invariant Reuse

Invariant-based schemes allow for flexibility in how root triples and transmitted values
are generated and interpreted across sessions. Two primary modes of operation can be
distinguished depending on whether the invariant (e.g., the discriminant of the cubic
polynomial) is re-transmitted for each message or reused throughout a session.
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2.1 Derived Invariant Mode (Minimal Transmission)

In this mode, both parties derive a shared invariant value D ∈ ZM deterministically from
the session parameters:

D := Hinv(S, z),

where Hinv is a cryptographic hash function with domain separation. This invariant
defines the discriminant constraint on root triples used in the session.

For each message, Alice performs the following:

1. Samples a random root triple (a1, a2, a3) ∈ Z3
M such that

∆(a1, a2, a3) = D.

2. Chooses a random offset h ∈ ZM , constructs the cubic polynomial

P (x) = (x− a1)(x− a2)(x− a3),

and evaluates
y := P (t+ h),

where t = t(S, z) ∈ Q is the shared evaluation point.

3. Sends only 〈a2, a3, y〉 to Bob.

Bob, upon receiving the message, performs:

1. Recomputes t := t(S, z) and D := Hinv(S, z).

2. Solves ∆(a1, a2, a3) = D to recover the matching root a1 consistent with the fixed
invariant.

3. Constructs P (x) and solves P (t+ h) = y to recover h.

This mode enables compact messages and invariant enforcement without repeated
transmission of D, while maintaining full recoverability of the embedded value.

2.2 Shared Root Mode (Invariant-Free Continuation)

In this variant, the invariant is used only in the initial transmission to allow Bob to recover
a hidden root a1, after which both parties operate with a shared, fixed a1 in subsequent
messages. This eliminates the need to transmit or enforce the invariant across the session
and simplifies future communication.

Initialization phase. Alice generates a full root triple (a1, a2, a3) with discriminant
D := ∆(a1, a2, a3), chooses a random offset h, and sends:

〈a2, a3, D, y〉, where y := P (t+ h), P (x) = (x− a1)(x− a2)(x− a3).

Bob receives the values, reconstructs a1 from the discriminant condition, and solves P (t+
h) = y to find h. Now, both parties share the value of a1 and agree to keep it fixed
throughout the session.
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Streaming phase. For each subsequent message, Alice:

1. Picks new open roots a2, a3 ∈ ZM and a new random offset h ∈ ZM ;

2. Builds the polynomial P (x) = (x− a1)(x− a2)(x− a3);

3. Sends only:
〈a2, a3, h〉.

Bob, knowing t, a1, and receiving a2, a3, h, performs:

1. Reconstructs P (x) using shared a1 and received a2, a3;

2. Computes the shared value:
y := P (t+ h),

which can serve as a symmetric session secret, ephemeral key, or cryptographic tag.

Note. This mode eliminates the need for discriminant constraints or invariant recovery
after initialization. It is compact and efficient but requires trusting that a1 was correctly
recovered and agreed upon during setup.

3 Symmetric Cross-Ratio Scheme

The cross-ratio is a fundamental invariant in projective geometry, preserved under all
Möbius (or fractional linear) transformations. Defined for ordered quadruples of points
on the projective line, it captures a canonical relation that remains unchanged under the
full action of the group PGL2(ZM). As such, the cross-ratio has long played a central role
in classical geometry, complex analysis, and invariant theory [1].

In this section, we adapt the cross-ratio as a cryptographic invariant within a sym-
metric scheme. The central idea is to hide one element of a quadruple whose cross-ratio
is fixed and recoverable only by parties with knowledge of a shared secret. Projective
masking is employed to obscure the visible components, ensuring that transmitted data
reveals no structural alignment while preserving invariant verifiability.

This construction continues the invariant-based paradigm by demonstrating that pro-
jective consistency—rather than arithmetic secrecy—can serve as the basis for symmetric
coordination, integrity enforcement, and data binding.

3.1 Common Setup

• Public parameters:

– A fixed prime modulus M ∈ N, typically 256 bits;

– A secure hash function H : {0, 1}∗ → Z×

M , used to derive the session invariant;

– An optional masking map f(z) = az+b
cz+d

∈ PGL2(ZM), invertible and known
only to legitimate parties;

– A canonical expression for the cross-ratio:

CR(z1, z2; z3, z4) :=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
mod M.

• Shared secret: A 256-bit string S ∈ {0, 1}256, known to both parties.
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3.2 Alice’s Generation

Given a session-specific nonce z ∈ {0, 1}256, Alice proceeds as follows:

1. Derives the session invariant:

I := H(S, z) ∈ Z×

M .

2. Selects arbitrary but distinct elements z1, z2, z3 ∈ ZM , ensuring denominators in CR
do not vanish.

3. Solves the equation:
CR(z1, z2; z3, z4) = I,

to compute the unique z4 ∈ ZM satisfying the relation.

4. Applies optional projective masking (if used):

z̃i := f(zi), for i = 1, 2, 3.

5. Sends to Bob:
〈z̃1, z̃2, z̃3, z〉.

3.3 Bob’s Recovery of z4

1. Computes the session invariant:

I := H(S, z).

2. Applies inverse masking (if used):

zi := f−1(z̃i), for i = 1, 2, 3.

3. Solves for z4 ∈ ZM the cross-ratio equation:

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
= I.

This is a rational equation linear in z4, solvable by:

z4 =
(z1 − z3)(z2)− I(z2 − z3)(z1)

(z1 − z3)− I(z2 − z3)
mod M,

assuming the denominator is invertible modulo M .

4. Uses z4 as a session-specific shared value or input to a key derivation function.
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Projective masking via PGL2(ZM ). To protect the transmitted values zi from struc-
tural analysis, we apply a shared masking transformation drawn from the projective gen-
eral linear group PGL2(ZM). This group consists of all invertible Möbius (fractional
linear) transformations over the field ZM , defined by:

f(z) =
az + b

cz + d
, where a, b, c, d ∈ ZM , ad− bc 6≡ 0 mod M.

Two such transformations are considered equivalent if they differ by a nonzero scalar
multiple; that is, f ∼ λf for λ ∈ Z×

M . The set of equivalence classes under this relation
forms the group PGL2(ZM), which acts on the projective line P1(ZM) = ZM ∪ {∞}.

These transformations preserve the cross-ratio:

CR(f(z1), f(z2); f(z3), f(z4)) = CR(z1, z2; z3, z4),

making them ideal for cryptographic masking: the functional invariant remains un-
changed, while the inputs become indistinguishable from pseudorandom noise.

In this scheme, the transformation f ∈ PGL2(ZM) is derived from the shared secret
and session nonce, for example:

f :=

(

az + b

cz + d

)

, where (a, b, c, d) := Hmask(S, z) mod M, ad− bc 6= 0.

The inverse transformation f−1 is known to both parties, allowing recovery of the original
points before cross-ratio evaluation.

Integrity binding (optional). To prevent tampering, Alice may also include a hash
tag:

Hcheck := H(S, z, z̃1, z̃2, z̃3),

which Bob verifies before using the result.

Theorem 3.1 (Invariant Indistinguishability under Projective Masking). Let M be a

large prime modulus, and let I ∈ Z×

M be a fixed value. Suppose that for each session

i = 1, . . . , N , a cross-ratio identity holds:

CR(z
(i)
1 , z

(i)
2 ; z

(i)
3 , z

(i)
4 ) = I,

and that only the masked triples

(z̃
(i)
1 , z̃

(i)
2 , z̃

(i)
3 ), z̃

(i)
j := fi(z

(i)
j ), j = 1, 2, 3,

are observable to an adversary, where each fi ∈ PGL2(ZM ) is independently and uniformly

chosen.

Then, in the absence of knowledge of z
(i)
4 , any polynomial-time adversary has negligible

advantage in recovering or distinguishing the invariant I, even given unbounded access to

the masked triples.

Sketch of proof. The cross-ratio function

CR(z1, z2; z3, z4)
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is well-defined only on quadruples and is invariant under the action of PGL2(ZM). In
particular, for any invertible projective map f , we have:

CR(f(z1), f(z2); f(z3), f(z4)) = CR(z1, z2; z3, z4).

Thus, the masked triple (z̃1, z̃2, z̃3) represents the original points up to arbitrary co-
ordinate change (projective basis). Since fi is independently chosen for each session, the
observed masked triples lie in unrelated projective frames. Without a common reference
point (such as z

(i)
4 ), the cross-ratio becomes uncomputable.

Moreover, for each session, the mapping from the secret quadruple (z
(i)
1 , z

(i)
2 , z

(i)
3 , z

(i)
4 )

to the masked triple (z̃
(i)
1 , z̃

(i)
2 , z̃

(i)
3 ) is information-losing with respect to I. No algebraic

relation exists between three projectively transformed points and the invariant, as pro-
jective transformations can arbitrarily reposition triples while preserving cross-ratio only
when the fourth point is available.

Therefore, the distribution of observed masked triples is independent of I, rendering
it indistinguishable across sessions.

4 Extension to Finite Fields and Algebraic Struc-

tures

All invariant-based schemes presented in this work are defined algebraically and make no
structural assumption about the base ring beyond arithmetic closure. Consequently, they
can be instantiated not only over prime fields Zp, but also over:

• Modular rings ZM , where M is composite;

• Finite fields Fpn, constructed via irreducible polynomials;

• Finite algebras, such as vector spaces over fields with additional multiplication rules
(e.g., matrix rings, Clifford algebras).

Fields Defined by Irreducible Polynomials

Finite fields of size pn, denoted Fpn, can be constructed by taking the quotient ring:

Fpn
∼= Fp[x]/(f(x)),

where f(x) is an irreducible polynomial of degree n over Fp. Arithmetic in this field is
performed modulo both p and f(x), yielding a fully multiplicative field of characteristic
p with pn elements [4].

Because invariant-based constructions rely only on algebraic expressions (e.g., polyno-
mial evaluation, cross-ratios, discriminants), all core operations extend naturally to such
fields. The exponential terms pt (or αt) can be reinterpreted in multiplicative subgroups
of F×

pn, and oscillatory components or masking maps can be adapted accordingly.

Impact on Security and Complexity

Choosing different field structures affects both security properties and implementation
trade-offs:
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• Larger fields (n > 1) increase the entropy of sampled values and expand the space
of possible invariants;

• Certain attacks (e.g., interpolation, root recovery, brute-force over ZM ) become less
effective when computations occur in high-order fields;

• When working over extension fields, the complexity of inversion and discriminant
reconstruction may grow, providing additional hardness.

Moreover, embedding schemes into algebraic field extensions may allow encoding ad-
ditional information in component dimensions (e.g., in field traces, conjugates, or norms),
opening the door to richer cryptographic encodings.

Algebraic Extensions and Multidimensional Structures

Beyond classical fields, invariant-based logic can be extended to finite-dimensional alge-
bras [2] over a base ring. For example:

• In matrix rings Matn(Fp), one may define invariant relations based on determinants,
traces, or symmetrized characteristic polynomials;

• In Clifford algebras or group rings, one may construct function values s(t) ∈ A,
where A is a noncommutative or graded algebra, and define invariants via structure-
preserving operations;

• Coordinate algebras and structured invariants:
Invariant-based schemes are not limited to simple numerical fields or rings; they
can be naturally extended to more abstract algebraic settings, such as coordinate
algebras. These structures, typically written as Fp[x1, . . . , xn]/I, arise when one
considers polynomial functions modulo a system of equations represented by an
ideal I. In this context, each element corresponds to a function defined on the set of
solutions to that system—that is, on the points of an algebraic variety determined
by I.

For example, the ring Fp[x, y]/(x
2 + y2 − 1) describes functions over the set of solu-

tions to the equation x2 + y2 = 1 in Fp. Function values in this ring are equivalence
classes of polynomials, and arithmetic is performed modulo the relation x2+y2 = 1.
This framework is common in algebraic geometry and is used to model geomet-
ric structures such as curves, surfaces, and higher-dimensional varieties over finite
fields.

When invariant-based constructions are defined over such coordinate algebras, the
function evaluations s(t) may take values not in a field or modular ring, but in
a structured algebraic environment. The associated invariants can then encode
geometric or combinatorial constraints. For example:

– A collection of points s1, s2, s3, s4 ∈ Fp[x, y]/I might satisfy an invariant rela-
tion only if they lie on a common curve defined by I;

– The invariant might test whether a symbolic ”area” or determinant computed
from the point coordinates vanishes (e.g., collinearity or planarity conditions);

– Alternatively, a cross-ratio could be defined symbolically, provided the denom-
inators involved are invertible within the algebra.
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However, care must be taken in such settings: unlike in a field, not every nonzero
element in a coordinate algebra has a multiplicative inverse. As a result, invariant
expressions involving division (like the cross-ratio) are only well-defined when certain
elements are known to be invertible. In practice, this means:

– Invariants can be defined only on subsets of the coordinate algebra where the
required inverses exist;

– Alternatively, computations can be lifted to the field of fractions of the coor-
dinate ring, though this may introduce additional complexity;

– In some cases, approximate or symbolic invariants can still serve as structural
constraints, even without full division.

These generalizations allow invariant-based cryptography to incorporate deeper al-
gebraic structure—connecting cryptographic constraints with geometric or combina-
torial interpretations. Though more abstract, such extensions may support novel use
cases, particularly in protocols involving symbolic commitments, algebraic proofs,
or function evaluation over structured domains.

Although such generalizations lie beyond the main scope of this work, they indicate
that the foundational idea of invariant-based cryptography—ensuring security through
structural coherence—is not confined to any specific ring or field, but can naturally extend
to a broad range of computable algebraic systems.

5 Usage Scenarios and Cryptographic Properties

Invariant-based schemes support a wide range of symmetric cryptographic operations by
encoding hidden values within structured algebraic identities. In all cases, a secret value—
typically denoted v, h, or z4 depending on the scheme—is not transmitted directly, but
is instead embedded into a relation that only legitimate parties can evaluate, verify, or
invert.

This approach enables compact, self-validating message structures with no need for
asymmetric primitives. Below, we describe several representative scenarios that illustrate
how invariant-based constructions can be deployed.

1. Secure Parameter Exchange

Two parties share a common secret S (e.g., a session key or device binding).

• Sender embeds a private value v into an invariant-preserving structure (e.g., roots
of a polynomial, masked points, or aligned function evaluations).

• The message includes auxiliary data (e.g., (a2, a3, y) or (z̃1, z̃2, z̃3)) sufficient for the
receiver to reconstruct or verify v.

• An integrity tag (such as Hcheck) binds the transmitted values to S and session
context.

This supports authenticated, replay-resistant exchange of per-message parameters
with minimal overhead.

11



2. Commitment to a Hidden Object

Invariant-based schemes can serve as a lightweight commitment mechanism.

• A party computes v := H(object), embeds it into an invariant-based encoding using
secret S.

• The encoding (without v) is published or sent.

• At a later time, v is revealed; anyone with S can verify consistency via the invariant
relation and hash.

This realizes a publicly verifiable commitment scheme without requiring trapdoor as-
sumptions.

3. Split Trust and Cooperative Recovery

The invariant structure can be split across parties to enforce collaboration.

• Sender constructs an encoding where different components (e.g., s1 and s3, or a2
and a3) are sent to different recipients.

• No single recipient can recover the hidden value alone.

• Only when components are combined and processed under the invariant does recon-
struction succeed.

Such setups support threshold-style access control or co-signed message authorization.

4. Challenge-Response without Secret Disclosure

Invariant-based constructions enable lightweight authentication via a challenge-response
protocol, where the prover demonstrates knowledge of a shared secret S without revealing
it or any derived values explicitly.

• Setup: The verifier (e.g., server) selects a random session nonce z and some struc-
tural parameters (e.g., u, polynomial roots a2, a3, or masked points z̃1, z̃2, z̃3) that
partially define an invariant instance.

• Challenge: These values are sent to the prover (e.g., client), who knows the shared
secret S.

• Response: The prover reconstructs the hidden part of the structure using S (e.g.,
computes the missing root a1, offset h, or cross-ratio point z4), and returns either:

– The missing value (e.g., h), or

– A hash binding (e.g., H(S, z, h)) that confirms knowledge without revealing h
directly.

• Verification: The verifier checks consistency with the invariant and validates the
hash (if present).

This interaction authenticates the prover by confirming structural correctness of the
invariant instance, which is only reconstructible with access to S. No direct transmission
of the secret or even the embedded value v is required.
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5. Forward-Secure Ephemeral Derivation

Invariant-based schemes can generate ephemeral secrets on a per-session basis, providing
forward secrecy by construction. The key idea is to embed a temporary value (e.g., offset
h, embedded secret v, or hidden point z4) into an invariant structure derived from a fresh
session nonce z.

• Each session uses a new z, ensuring that derived parameters (e.g., t(S, z)) and
resulting invariants differ.

• The hidden value is recoverable or verifiable only by parties sharing the secret S,
but unlinkable to values in other sessions.

• Even if a single session is compromised, prior and future sessions remain protected.

This enables forward-secure symmetric coordination: lightweight, stateless, and re-
silient to partial compromise. Invariant reuse modes (as discussed earlier) allow minimiz-
ing bandwidth while preserving derivation uniqueness across time.

6. Stateless Stream Generation from Weak PRNGs

In the Shared Root Mode, the root a1 is established at session initialization and reused
throughout the session. Once this shared value is agreed upon, the sender (e.g., Alice)
can generate a stream of invariant-preserving tuples 〈a2, a3, h〉 by choosing new roots and
offsets for each message.

Crucially, because each session is initialized with a unique nonce z, and a1 depends
on this z, even weak or deterministic generators (e.g., cyclic counters or linear feedback
sequences) used to sample a2, a3, h will produce distinct sequences across sessions. That
is:

• Even if a2, a3, h are sampled from a fixed non-cryptographic generator, their inter-
pretation and cryptographic embedding differ across sessions due to the influence of
a1 and t = t(S, z).

• The resulting value y = P (t+h), where P (x) = (x−a1)(x−a2)(x−a3), is structurally
randomized and unlinkable between sessions.

• If additional masking such as f(z) ∈ PGL2 is used to perturb the transmitted
components, the stream becomes further obfuscated.

This behavior implies that within-session generation of ephemeral values can remain
stateless and efficient without compromising isolation between sessions. Invariant-based
design thus enables cryptographic separation through structural dependencies, rather than
requiring cryptographically strong randomness at each step.

In practical deployments, this allows lightweight devices to use minimal or hardware-
available entropy sources, relying on session-level rekeying and invariant enforcement to
achieve security.
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Remark

While each specific scheme (discriminant-based, cross-ratio, or oscillatory) defines its
own structure and recovery path, the overall cryptographic properties remain consistent:
structural consistency enforces authenticity; invariant preservation ensures verifiability;
masked construction preserves confidentiality.

We emphasize that these scenarios represent only a subset of the possible applica-
tions. Invariant-based methods offer a versatile toolkit for protocol designers, especially
in contexts where compactness, recoverability, and low computational cost are key design
goals.

6 Invariant-Based Puzzles and Constraint Embed-

ding

The invariant-based framework also opens the door to constructing structured crypto-
graphic puzzles—challenge instances where solutions are constrained both by invariant
relations and auxiliary algebraic conditions.

For example, consider the cross-ratio identity:

CR(z1, z2; z3, z4) = I,

where z1, z2 ∈ ZM and invariant I ∈ Z×

M are known. The values z3, z4 are unknown
and must be chosen to satisfy the relation. Suppose further that we impose an external
constraint such as:

zz43 ≡ k mod M,

for a known value k ∈ ZM . Then the problem becomes: find values z3, z4 ∈ ZM

satisfying both the invariant and the external equation.
Such puzzles may serve as:

• Verifiable proofs of work or time;

• Structured commitments with embedded computational difficulty;

• Interactive challenges in protocols requiring controlled verification.

The ability to encode constraints into algebraically masked invariant structures pro-
vides a novel mechanism for generating tamper-resistant challenges and hybrid algebraic
puzzles with adjustable difficulty.

7 Outlook: Toward a Taxonomy of Invariants

Across this work and the foundational study [5], we have introduced and analyzed three
distinct cryptographic constructions based on algebraic invariants:

• A functional four-point invariant over oscillatory evaluations;

• A discriminant-based scheme using the structure of cubic polynomials;
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• A cross-ratio scheme derived from projective geometry and masked under PGL2(ZM)
transformations.

Each of these examples demonstrates how invariant-preserving relations can support
verifiable, recoverable, and tamper-resistant symmetric protocols. The diversity of these
constructions indicates that invariant-based cryptography is not limited to a narrow class
of functional identities, but instead offers a flexible and expressive design space.

While this article does not aim to exhaustively classify all possible invariants, it sets
a direction for future exploration. Below, we outline several additional categories of
invariants that may be suitable for cryptographic adaptation:

1. Classical Algebraic Invariants

• Multilinear and bilinear forms: e.g., xTAy, scalar products 〈x, y〉; invariant
under orthogonal or unitary transformations. These may enable schemes involving
masked vector representations or encoded inner products.

• Symmetric functions: elementary symmetric polynomials, power sums, and New-
ton identities; naturally invariant under permutations of inputs. Such structures
may be applicable to pseudorandom multi-point encodings.

2. Geometric and Projective Invariants

• Barycenters and means: simple averaging invariants such as the center of mass;
robust under input reordering.

• Determinants and geometric volumes: expressions such as det(x1, x2, x3) rep-
resent oriented areas, volumes, or hypervolumes depending on dimensionality; they
serve as multilinear invariants under linear transformations and can be used to con-
struct multi-point schemes with geometric consistency.

3. Dynamical and Differential Invariants

• Energy or action integrals: preserved quantities in dynamical systems, such as
Hamiltonians or Lagrangians; may be encoded via pseudorandom oscillator dynam-
ics.

• Lie invariants: expressions invariant under group actions; applicable when func-
tion evaluations s(t) exhibit symmetry under transformations of t.

4. Information-Theoretic Invariants

• Entropy and mutual information: statistical invariants across message ensem-
bles; useful in generalized probabilistic or multi-session settings.

• Divergence measures: e.g., Kullback–Leibler divergence, used to detect tamper-
ing or inconsistency in distributions.
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5. Group-Based and Cryptographic Invariants

• Group-theoretic identities: such as ga ·gb = ga+b; may support schemes in which
s(t) ∈ G, a cryptographic group. This allows potential extensions to elliptic curves
or pairings.

Perspective

Rather than providing a definitive classification, we offer this outline as a guide for fu-
ture development. Each invariant type brings its own structural assumptions, potential
masking mechanisms, and verification logic. Exploring their cryptographic viability re-
quires not only algebraic insight but also an understanding of how invariants behave under
adversarial conditions, noise, and composition.

Invariant-based cryptography invites a new axis of design: not secrecy through con-
cealment, but integrity through structural preservation. The examples developed here
form the initial layer of a broader theory, whose future forms remain to be shaped.

Limitations and Open Questions

While invariant-based cryptography offers a promising alternative to traditional symmet-
ric designs, several limitations and risks should be acknowledged:

• Scheme-specific security analysis: While the framework relies on structural
indistinguishability and the difficulty of invariant recovery, each concrete instantia-
tion requires dedicated cryptographic analysis to establish formal security guaran-
tees. This article presents the conceptual foundation and illustrative constructions,
leaving detailed hardness reductions and adversarial modeling for future work.

• Algebraic fragility: The schemes require precise algebraic consistency. Small
implementation errors (e.g., in polynomial construction, masking, or inversion) may
lead to silent failure or unintended leakage.

• Side-channel susceptibility: Like many symmetric primitives, these schemes may
be vulnerable to side-channel analysis unless properly masked and implemented with
constant-time operations.

• Lack of standardization and review: Invariant-based cryptographic primitives
are novel and have not yet undergone extensive cryptanalytic scrutiny or standard-
ization processes.

• Dependency on field structure: The algebraic behavior may vary significantly
between prime fields, rings, and coordinate algebras, and certain invariants may not
be well-defined or invertible in all settings.

Further study is required to formalize security guarantees, analyze compositional be-
havior, and evaluate performance under real-world constraints. We regard this work as
an initial step in exploring the potential and limitations of invariant-based symmetric
cryptography.
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Conclusion

This work advances the theory of invariant-based cryptography by establishing a general
framework and demonstrating its viability across several distinct constructions. Starting
from a functional identity over oscillatory sequences, and expanding to algebraic and
geometric invariants such as polynomial discriminants and projective cross-ratios, we have
shown that invariant relations can serve as effective cryptographic primitives.

These examples confirm that invariants can enforce structural coherence, resist forgery,
and support lightweight symmetric protocols without reliance on classical one-way func-
tions. While many questions remain open, the central message is clear: algebraic preser-
vation can be as powerful as algebraic opacity. Invariant-based schemes offer a compact,
flexible, and conceptually rich foundation for future cryptographic design.
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