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Abstract. Machine learning (ML) algorithms are heavily based on
the availability of training data, which, depending on the domain, of-
ten includes sensitive information about data providers. This raises
critical privacy concerns. Anonymization techniques have emerged
as a practical solution to address these issues by generalizing fea-
tures or suppressing data to make it more difficult to accurately iden-
tify individuals. Although recent studies have shown that privacy-
enhancing technologies can influence ML predictions across differ-
ent subgroups, thus affecting fair decision-making, the specific ef-
fects of anonymization techniques, such as k-anonymity, ℓ-diversity,
and t-closeness, on ML fairness remain largely unexplored. In this
work, we systematically audit the impact of anonymization tech-
niques on ML fairness, evaluating both individual and group fair-
ness. Our quantitative study reveals that anonymization can de-
grade group fairness metrics by up to four orders of magnitude.
Conversely, similarity-based individual fairness metrics tend to im-
prove under stronger anonymization, largely as a result of increased
input homogeneity. By analyzing varying levels of anonymization
across diverse privacy settings and data distributions, this study
provides critical insights into the trade-offs between privacy, fair-
ness, and utility, offering actionable guidelines for responsible AI
development. Our code is publicly available at: https://github.com/
hharcolezi/anonymity-impact-fairness.

1 Introduction
As machine learning (ML) systems increasingly shape critical
decision-making across domains such as healthcare, finance, and so-
cial services, concerns about privacy and fairness have gained signif-
icant attention. Privacy is essential to safeguard personal data, ensur-
ing compliance with regulatory frameworks and protecting individu-
als from potential data misuse. Fairness, on the other hand, ensures
that ML models provide unbiased and equitable outcomes across dif-
ferent demographic groups. Both aspects are fundamental to foster-
ing trust and accountability in AI-driven decision-making.

The growing emphasis on privacy is reflected in strict regula-
tory frameworks such as the General Data Protection Regulation
(GDPR) [32] and the California Consumer Privacy Act (CCPA) [25],
which impose stringent requirements on data collection, storage, and
sharing. Beyond privacy, the proposed European Union AI Act [33]
extends regulatory concerns to fairness, requiring AI systems to be
transparent, non-discriminatory, and aligned with ethical and social
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values. These evolving legal frameworks highlight the dual impera-
tive of privacy and fairness in the design of ML models.

Given the importance of balancing privacy and fairness in ma-
chine learning, a substantial body of work has investigated their in-
terplay—primarily through the lens of differential privacy (DP) [40,
20]. Much of this literature focuses on central DP mechanisms [17],
such as DP-SGD, which have been shown to exacerbate group fair-
ness disparities in some settings [7], while other studies report more
bounded effects [15]. On the other hand, few works have concluded
that Local DP mechanisms positively impact group fairness met-
rics [5, 12, 28, 29] by removing the dependency between protected
attributes and the target variable.

Despite growing research on the interplay between fairness and
DP, the fairness implications of anonymized datasets on ML remain
unexplored. Anonymization methods, such as k-anonymity [38, 39],
provide privacy guarantees by generalizing specific attributes or sup-
pressing data to prevent re-identification attacks [27, 26, 30]. These
techniques are widely used due to their simplicity, interpretabil-
ity [21, 19], and compatibility with existing privacy regulations such
as GDPR, as noted by the Article 29 Working Party [6].

Ensuring fairness in ML involves mainly two key principles: (i)
group fairness, which ensures that model predictions are consis-
tent across demographic groups [13, 8], and (ii) individual fairness,
which ensures that similar individuals receive similar treatment [18].
While anonymization techniques are effective in preserving privacy,
they introduce transformations such as generalization or suppression,
which may distort data distributions and induce unintended bias in
ML models [3]. These alterations can inadvertently affect protected
attributes, shift group distributions, and influence fairness metrics.

Existing research on the interplay between anonymization and
fairness has primarily focused on dataset-level fairness, evaluating
how anonymization techniques alter dataset properties [36]. Some
studies have explored optimal parameter selection, such as determin-
ing the best value of t in t-closeness, to balance privacy and fairness
trade-offs [22, 35]. However, a significant gap remains in under-
standing the direct impact of anonymization on model fairness, par-
ticularly how these techniques influence bias propagation and fair-
ness metrics in ML models. Addressing this challenge is crucial for
the development of privacy-preserving yet fair AI systems.

Our contributions. In this paper, we present the first in-depth,
systematic audit of the impact of three widely-used anonymiza-
tion methods, namely, k-anonymity [38, 39], ℓ-diversity [27], and
t-closeness [26] on fairness in ML. While anonymization is widely
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used to meet privacy regulations such as GDPR, its downstream
effects on fairness remain poorly understood. We fill this gap
by examining their effects on group fairness metrics (e.g., equal-
ized odds [23]), individual fairness metrics (e.g., similarity fair-
ness [18]), while also examining the trade-offs with utility met-
rics (e.g., F1-score). Our findings highlight the nuanced interplay
between anonymity, fairness, and utility, offering valuable insights
and actionable guidance for practitioners working with anonymized
datasets. In summary, the key contributions of this paper are:

• We conduct a comprehensive audit on the effects of k-anonymity,
ℓ-diversity, and t-closeness on both group and individual fairness
metrics across diverse datasets and ML models. This dual focus
offers a nuanced understanding of how anonymization techniques
influence different aspects of fairness.

• We analyze how factors such as record suppression thresholds,
dataset size, and target class balance modulate the fairness-
utility trade-off. This enables a fine-grained understanding of how
anonymization interacts with data characteristics in practice.

• Based on our findings, we provide practical guidelines for miti-
gating fairness risks in ML pipelines. These include strategies for
balancing privacy and fairness under different anonymization con-
figurations, empowering practitioners to make informed decisions
when deploying privacy-preserving technologies.

Outline. The remainder of this paper is structured as follows. In
Section 2, we present preliminary concepts. In Section 3, we formu-
late the problem, describe our research questions, and present our
experimental setup. Afterward, in Section 4, we present the experi-
mental results with an analysis and guidelines for practitioners, and
we conclude the paper with a discussion for future work in Section 5.

2 Preliminaries

2.1 Anonymization Methods

Three main anonymization methods are commonly used: k-
anonymity [38, 39], ℓ-diversity [27], and t-closeness [26]. These
methods aim to reduce the risk of re-identification by transforming
the data while maintaining its utility for downstream tasks. In the
context of anonymization, attributes in a dataset are typically cate-
gorized as follows: 1) identifiers that uniquely identify individuals,
such as social security numbers, 2) quasi-identifier (QI) attributes
that, when combined, may potentially identify an individual, such
as zip codes, birth dates, and genders. While these attributes lack
uniqueness in isolation, their conjunction often yields a one-to-one
mapping with identifiers. And 3) sensitive attributes that adversaries
are prohibited from discovering, such as a patient’s disease or an em-
ployer’s salary. An equivalence class, also known as an equivalence
group, is a set of records in a dataset that share the same values for the
quasi-identifier attributes. We now formally define each anonymiza-
tion method.
k-anonymity: A dataset D satisfies k-anonymity with respect to a

set of QIs, if and only if every equivalence class E ⊆ D formed
by the unique combinations of values in QI contains at least k
records [38, 39]. Formally, ∀E ⊆ D, |E| ≥ k, where E is an equiv-
alence class of records that share the same generalized values across
QI . The k-anonymity property ensures that any individual repre-
sented in the dataset cannot be distinguished from at least k−1 other
individuals based on the quasi-identifier attributes, thus reducing the
risk of re-identification. Achieving k-anonymity typically involves

generalization (replacing specific values with broader categories) or
suppression of quasi-identifiers to create equivalence classes.

ℓ-diversity: A dataset D satisfies ℓ-diversity with respect to a set
of attributes QIs and a sensitive attribute S if, for every equivalence
class E ⊆ D formed by unique combinations of values in QI , there
are at least ℓ well-represented distinct values of S [27]. Formally,
∀E ⊆ D, |distinct(S(E))| ≥ ℓ, where S(E) denotes the set of
sensitive attribute values in the equivalence class E. ℓ-diversity en-
sures that each equivalence class contains sufficient diversity in the
sensitive attribute values, mitigating the risk of attribute disclosure.

t-closeness: A dataset D satisfies t-closeness with respect to a set
of attributes QI and a sensitive attribute S if, for every equivalence
class E ⊆ D, the distribution of S within E is within a distance
t from the distribution of S in the overall dataset D [26]. Formally,
∀E ⊆ D, d(S(E), S(D)) ≤ t, where d is a distance metric, such as
the Earth Mover’s Distance (EMD) [34], and S(E) and S(D) repre-
sent the distributions of S in E and D, respectively. The t-closeness
property ensures that sensitive attribute distributions in each equiv-
alence class closely resemble the overall distribution, reducing the
risk of inference attacks. Generalization and suppression are applied
to satisfy the t-closeness constraint.

2.2 ML Fairness Metrics

Machine learning fairness [8] refers to the principle that ML mod-
els should produce predictions or decisions that are impartial and
equitable across individuals or groups, particularly when protected
attributes such as race, gender, or socioeconomic status are involved.
This study employs a comprehensive evaluation of fairness using two
primary categories of metrics: group fairness metrics (Section 2.2.1)
and individual fairness metrics (Section 2.2.2).

2.2.1 Group fairness metrics.

Group fairness metrics assess the degree to which model outcomes
are distributed equitably across demographic groups defined by pro-
tected attributes. These metrics aim to ensure that the treatment of
groups is consistent and does not result in discrimination.

Model Accuracy Difference (MAD) quantifies the difference in
model accuracy between two specific demographic groups defined
by a protected attribute A. Specifically, MAD evaluates whether the
model performs equally well for individuals in group A = 1 com-
pared to those in group A = 0. Formally:

MAD = Pr
[
Ŷ = Y | A = 1

]
− Pr

[
Ŷ = Y | A = 0

]
(1)

where Y is the true label, Ŷ is the predicted label, and A is the binary
protected attribute defining two groups (A = 1 and A = 0). A value
of MAD = 0 signifies equal model accuracy across the two groups.

Equalized Odds Difference (EOD) [23] ensures that the model’s
prediction is independent of the protected attribute, conditioned on
the true label. It measures the disparity in true positive and false pos-
itive rates between two specific demographic groups defined by a
protected attribute. Formally:

EOD = Pr
[
Ŷ = 1 | Y = 1, A = 1

]
−Pr

[
Ŷ = 1 | Y = 1, A = 0

]
(2)

An EOD = 0 indicates equality of true positive rates across groups.
Statistical Parity Difference (SPD) [18] evaluates whether the

likelihood of a positive outcome is the same across two specific de-



mographic groups defined by a protected attribute. Formally:

SPD = Pr
[
Ŷ = 1 | A = 1

]
− Pr

[
Ŷ = 1 | A = 0

]
(3)

An SPD = 0 indicates equal selection rates between the groups.

2.2.2 Individual fairness metrics.

Individual fairness metrics evaluate the consistency of a model’s pre-
dictions for similar individuals [18].

Lipschitz Fairness (LF) evaluates the maximum sensitivity of a
model’s predictions to changes in its input features. It measures the
largest rate of change in the model’s outputs relative to input vari-
ations, quantified by the Lipschitz constant. A lower LF value indi-
cates better fairness, as it reflects reduced sensitivity and ensures that
similar inputs yield similar predictions. Formally:

LF = max
i̸=j

diff(f(xi), f(xj))

dist(xi, xj)
, (4)

where f(x) is the model’s prediction for input x, dist(xi, xj) is the
distance between inputs xi and xj , and diff(f(xi), f(xj)) is the dif-
ference between the model’s predictions for inputs xi and xj , often
computed using measures such as entropy for classification tasks.

Similarity Fairness (SF) assesses the degree to which a model
treats similar inputs consistently. It evaluates the average variation in
predictions for input pairs that are deemed similar based on a defined
similarity metric. A lower SF value indicates better fairness, as it
ensures consistent treatment of similar individuals. Formally:

SF =
1

n

n∑
i=1

1

|N (xi)|
∑

xj∈N (xi)

|f(xi)− f(xj)| · sim(xi, xj), (5)

where N (xi) represents the neighborhood of xi, sim(xi, xj) is the
similarity score derived from the inverse of the distance, and n is the
total number of data points.

Neighborhood Consistency Fairness (NCF) evaluates the con-
sistency of predictions within local neighborhoods, ensuring equi-
table treatment for instances with similar characteristics. A lower
NCF value reflects better fairness, as it ensures that predictions are
consistent for neighboring inputs. Formally:

NCF =
1

n

n∑
i=1

1

|N (xi)|
∑

xj∈N (xi)

I (f(xi) = f(xj)) , (6)

where N (xi) is the neighborhood of xi, I(·) is the indicator function,
which equals 1 if predictions for xi and xj are identical, and n is the
total number of data points.

Approximation via k-Nearest Neighbors (k-NN): Computing
LF, SF, and NCF requires evaluating pairwise distances between all
data points, resulting in a computational complexity of O(n2), which
is prohibitive for large datasets. To improve efficiency, we approxi-
mate these metrics using k-NN, reducing the complexity to O(kn),
where k ≪ n, as also motivated in prior work [41]. Specifically,
each sample is compared with its k-nearest neighbors instead of the
entire dataset. We use Euclidean distance and set k = 100, which
provides a balance between computational tractability and the ability
to capture a meaningful local neighborhood. Throughout the paper,
we refer to these approximated versions as Approximate LF (ALF)
and Approximate SF (ASF).

3 Methodology and Experimental Setup
This section formulates the problem, introduces the research ques-
tions, and describes the experimental setup.

3.1 Problem Formulation

While anonymization aims to protect individual privacy by trans-
forming the data before learning, its downstream impact on fairness
in ML is poorly understood. We therefore aim to systematically audit
how different anonymization methods influence group and individual
fairness outcomes, as well as predictive performance, across a range
of ML models and datasets.

To formalize this problem, we define the following components.
Let D = {(ai, xi, yi)}ni=1 be a dataset consisting of n i.i.d. samples
drawn from an unknown joint distribution over A×X × Y , where:

• A ∈ A: Protected attribute(s) (e.g., race, gender), often binary
(A ∈ {0, 1}), with A = 1 denoting the privileged group and
A = 0 the unprivileged group.

• X ∈ X : Non-sensitive, non-protected features (e.g., employment
status, credit score).

• Y ∈ {0, 1}: Binary target variable (e.g., loan approval outcome),
where Y = 1 denotes a favorable decision.

Given this setting, a supervised ML model learns a predictive
function f : A × X → [0, 1] such that Ŷ = f(A,X) approxi-
mates the true label Y . In practice, the model is trained on a dataset
D′, which may differ from D due to privacy constraints. Specif-
ically, to preserve privacy, we consider an anonymization mecha-
nism A, which transforms the raw dataset D into an anonymized
dataset D′ = A(D). In this work, A represents one of the follow-
ing methods: k-anonymity, ℓ-diversity, or t-closeness, each of which
enforces privacy by applying generalization and suppression over
quasi-identifiers. We then train ML classifiers on both original (D)
and anonymized (D′) datasets, and compare them using performance
(e.g., F1-score) and fairness metrics (Section 2.2).

3.2 Research Questions

We structure our evaluation around the following research questions:

• RQ1) How do different anonymization techniques and anonymity
levels affect the fairness of ML models? This research question ex-
plores the impact of three widely used anonymization techniques
(k-anonymity, ℓ-diversity, and t-closeness) on the fairness of ML
models. By adjusting their respective privacy parameters (i.e., k, ℓ,
and t), we evaluate how these techniques influence fairness met-
rics and whether certain configurations disproportionately affect
specific demographic groups. The experiments addressing this
question are presented in Section 4.1.

• RQ2) What is the impact of varying the record level suppression
in anonymization on the fairness of ML models? Because suppres-
sion often targets outlier data, this may disproportionately affect
certain sub-populations, potentially exacerbating fairness dispari-
ties. This research question investigates how varying suppression
thresholds (removing rows) impact fairness metrics. The experi-
ments addressing this question are detailed in Section 4.2.

• RQ3) What is the impact of varying target distributions on the
fairness of ML models? This research question examines how
changes in the target distribution, specifically by varying the
threshold used to binarize the target variable (see "Datasets" in



Section 3.3), influence fairness metrics. Varying the target distri-
bution affects the balance between positive and negative outcomes
in the dataset, which can, in turn, affect fairness metrics between
demographic groups. The experiments addressing this question
are presented in Section 4.3.

• RQ4) How does dataset size influence the relationship between
anonymization and fairness in ML models? This question ex-
plores the role of dataset size in mediating the relationship be-
tween anonymization and fairness. By systematically varying the
data fraction, we analyze how sample size influences the trade-offs
between privacy, fairness, and utility. The experiments addressing
this question are detailed in Section 4.4.

• RQ5) To what extent are the fairness results obtained with XG-
Boost representative across different ML classifiers? This research
question investigates whether the fairness results observed in our
default experiments using XGBoost [14] (RQ1 – RQ4) general-
ize across other ML classifiers. By comparing the fairness metrics
and predictive performance of multiple classifiers (e.g., Random
Forest, Neural Networks), we aim to assess whether the trends ob-
served with XGBoost are consistent. The experiments addressing
this question are presented in Section 4.5.

3.3 Experimental Setup

Environment: All algorithms are implemented in Python3 and ex-
ecuted on a local machine with 2.50GHz Intel Core i9 and 64GB
RAM. The source code is publicly available in our GitHub reposi-
tory: https://github.com/hharcolezi/anonymity-impact-fairness.

Datasets: For our experiments, we used three widely-used bench-
mark datasets in the fairness literature: the Adult dataset from the
UCI ML repository [9], the Compas dataset gathered by ProPub-
lica [4], and the ACSIncome retrieved with the folktables [16]
Python library. The datasets are randomly split into a training set
(80%) and a testing set (20%). To simulate a worst-case privacy sce-
nario, all attributes (X and A) are treated as quasi-identifiers subject
to generalization or suppression during anonymization. For fairness
evaluation, we consider both gender and race as protected at-
tributes across all datasets. A detailed description of each dataset is
provided in Appendix A.

Anonymization parameters: The anonymization parameters are
varied as follows: k ∈ {1, 2, . . . , 9, 10, 25, 50, 75, 100} for k-
anonymity, ℓ = 2 for ℓ-diversity (binary target), and t ∈
{0.45, 0.50, 0.55} for t-closeness1. Note that for k = 1, no
anonymity is satisfied, which serves as the non-private baseline. Un-
less otherwise mentioned, the allowed record suppression level is
fixed at supp_level = 20%2. The anonymization methods were im-
plemented with Anjana [37]. The same generalization levels applied
to the training set are replicated for the test set to ensure consistency
and prevent discrepancies between training and evaluation.

Model training: For our experiments, we use XGBoost [14] as the
default ML classifier. In Section 4.5, we further benchmark the per-
formance and fairness of other state-of-the-art ML classifiers, includ-
ing LightGBM (LGBM) [24], Random Forests [10], and Neural Net-
works (i.e., Multi-Layer Perceptron – MLP). Classifiers are trained
using their default hyperparameters to ensure consistency across ex-
periments. All models are trained and evaluated on both the original
1 The values of t specify upper bounds on the Earth Mover’s Distance be-

tween the distribution of the sensitive attribute in the entire dataset and its
distribution within each equivalence class.

2 Our attempts with lower suppression levels (0%-15%) did not achieve
anonymization for high k values because we operated under a worst-case
assumption where all attributes except the target were treated as QIDs.

and anonymized datasets. Evaluation metrics are computed on pre-
dictions from the transformed test sets, enabling a comparative anal-
ysis of fairness and utility under different anonymization scenarios.

Metrics: We evaluate the performance of ML models trained on
the original data (i.e., baseline k = 1) and anonymized data on utility
and fairness. First, for utility, we use accuracy (ACC), F1-score (F1),
and the area under the receiver operating characteristic curve (ROC
AUC). Second, for fairness, we assess group and individual fairness
metrics as defined in Section 2.2 (i.e., MAD, SPD, EOD, ALF, ASF,
and NCF). To address the randomness in train-test splitting and ML
algorithms, all experiments are repeated over 40 runs, with the results
reported as averages alongside their standard deviations.

4 Results and Analysis
Following the methodology and experimental setup described in the
previous Section 3, this section presents an analysis of the impact
of anonymization methods on ML fairness. Due to space limitations,
we present in the main paper the results obtained using the Adult
dataset with gender as the protected attribute. Additional details
and discussions, including results with race as the protected at-
tribute and those for both Compas and ACSIncome datasets (eval-
uating both gender and race as protected attributes), are provided
in Appendix B. However, it is important to emphasize that the dis-
cussions in this section are broadly applicable to the findings across
both datasets and all protected attributes.

4.1 Impact of Anonymization on Fairness in ML
To answer RQ1 from Section 3.2, we consistently analyze the im-
pact of anonymity methods on fairness in ML. Specifically, Fig-
ure 1 illustrates the impact of three anonymization techniques (i.e.,
k-anonymity, ℓ-diversity, and t-closeness) on group fairness (MAD,
EOD, SPD), individual fairness (ALF, ASF, NCF), and utility (ACC,
F1, ROC AUC) metrics, for the Adult dataset with gender as the
protected attribute. The results are aggregated across different pri-
vacy parameter levels to provide a comprehensive overview of the
trade-offs among anonymity, fairness, and utility in ML models.
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Figure 1. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness metrics (MAD, EOD, SPD), individual fair-
ness metrics (ALF, ASF, NCF), and utility metrics (Accuracy, F1-score, ROC
AUC) in ML. The results are based on the Adult dataset, with gender
as the protected attribute for fairness evaluation.

From Figure 1, it is evident that anonymization techniques
negatively affect group fairness metrics such as SPD and EOD.
For instance, as the parameter k increases in k-anonymity, these
fairness metrics tend to degrade, suggesting that stricter privacy
constraints may amplify fairness disparities between demographic
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groups. Specifically, at k = 100, the EOD metric increases from
EOD = 0.2 (baseline k = 1) to nearly EOD = 0.8 for both
k-anonymity and t-closeness, representing an approximately four-
fold increase. Similarly, the SPD metric rises from SPD = 0.38
(baseline k = 1) to almost SPD = 0.68 (for k-anonymity
and t-closeness). A similar trend is observed in Figure 6 for the
Adult dataset with race as the protected attribute, where both
SPD and EOD exhibit slight increases for some values of k. Fur-
thermore, as shown in Figures 7–10, at least two group fairness
metrics consistently degrade across the Compas and ACSIncome
datasets, regardless of whether gender or race is used as the pro-
tected attribute. These findings highlight the broader implications of
anonymization on fairness metrics across different datasets and pro-
tected attributes.

Regarding individual fairness, Figure 1 reveals distinct trends
across the three evaluated metrics: ALF, ASF, and NCF. ALF ex-
hibits mixed behavior depending on the anonymization technique.
For k-anonymity (and 0.55-closeness), the metric tends to degrade
for 2 ≤ k ≤ 50, indicating that stricter anonymity levels increase
the sensitivity of model predictions to input changes. This suggests
reduced stability in preserving Lipschitz fairness under k-anonymity.
Conversely, for ℓ-diversity and 0.45-closeness, ALF shows improve-
ment, demonstrating their potential to balance privacy and prediction
stability for similar inputs. A similar trend is observed in Figure 6
for the Adult dataset with race as the protected attribute. In con-
trast, ASF generally worsens across all three anonymization meth-
ods in experiments with the ACSIncome dataset, irrespective of the
protected attribute (i.e., see Figures 9 and 10).

These observations highlight the varied impact of anonymiza-
tion on individual fairness metrics. While ALF demonstrates mixed
trends, our results with all three datasets and protected attributes
demonstrate that anonymization techniques positively affect both
ASF and NCF individual fairness metrics (i.e., see Figures 1, 6–
10). Specifically, ASF consistently improves with higher levels of
anonymization across all three techniques. This improvement indi-
cates that anonymization reduces variations in predictions for sim-
ilar individuals, fostering more equitable treatment at the individ-
ual level. Notably, for k ≥ 10, the ASF metric stabilizes at nearly
zero, reflecting a substantial alignment in predictions for similar data
points. Similarly, the NCF metric also benefits from anonymization,
showing a clear decline in its values as k increases. Lower NCF val-
ues imply fewer inconsistencies in predictions within local neighbor-
hoods of similar inputs. For instance, k-anonymity demonstrates a
significant drop in NCF at smaller k-values, with marginal improve-
ments at higher levels of k. These trends can be attributed to the
inherent differences in how ASF and NCF measure individual fair-
ness. ASF captures the magnitude of prediction variations for similar
inputs, penalizing even minor differences, whereas NCF focuses on
exact consistency within local neighborhoods, relying on a binary
indicator (see Eq. (6)). As anonymization increases, generalized at-
tributes cause predictions to align more rapidly, leading to a faster
decrease in ASF. In contrast, NCF, being less sensitive to small in-
consistencies, decreases more gradually. Importantly, this smoothing
effect and the resulting improvements in individual fairness metrics
align with similar phenomena observed in differential privacy [18].

While privacy-preserving transformations reduce the risk of re-
identification, they also degrade model utility [11], consistent with
the well-known privacy-utility trade-off. Metrics such as accuracy,
F1-score, and ROC AUC consistently decline as anonymization pa-
rameters are tightened. Notably, the lowest utility results are ob-
served at k = 2, as ℓ-diversity and t-closeness enforce the presence
of at least two distinct classes within equivalence classes, leading
to reduced predictive performance. However, utility metrics begin to
recover as k increases, as there might have a majority class decision
even under ℓ-diversity or t-closeness. Despite this recovery, utility
metrics remain below the baseline (k = 1) and below the levels
achieved under k-anonymity, underscoring the persistent trade-offs
between privacy and utility.

4.2 Detailed Analysis #1: Record Suppression Levels
and Their Effect on Fairness in ML

Following the findings of Section 4.1, to answer RQ2 from Sec-
tion 3.2, we now investigate the impact of the allowed record sup-
pression level (supp_level) on fairness and utility in ML. Record
suppression, which involves removing rows during anonymization,
can exclude outliers from the dataset, potentially worsening fairness
metrics as certain demographic groups may be disproportionately
impacted. To understand this effect, we vary the suppression level
(supp_level ∈ {10, 20, 30, 40, 50}) and evaluate its impact on
both group and individual fairness metrics, as well as utility. For
the remainder of this analysis, the anonymity parameters are fixed at
k = 10 for k-anonymity and t = 0.5 for t-closeness. The choice of
k = 10 represents a moderate level of anonymity, balancing privacy
protection and data utility. Similarly, t = 0.5 ensures a reasonable
level of distributional closeness under t-closeness, reflecting practi-
cal settings often used in real-world applications. Fixing these pa-
rameters allows for a focused evaluation of how varying suppression
levels impact fairness and utility, independent of additional variabil-
ity introduced by the anonymity parameters.
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Figure 2. Effect of allowed record suppression level (supp_level ∈
{10, 20, 30, 40, 50}) in anonymization techniques (10-anonymity, 2-
diversity, 0.5-closeness) on group fairness (MAD, EOD, SPD), individual
fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) met-
rics in ML. The results are derived from the Adult dataset, using gender
as the protected attribute for fairness evaluation.

From the results for both datasets and protected attributes pre-
sented in Figures 2, 11–15, the impact of suppression levels on fair-
ness and utility metrics reveals nuanced patterns. For instance, the ef-
fect of suppression on group fairness metrics such as SPD, EOD, and
MAD is more mixed. In some cases, increasing suppression levels
slightly improve these metrics, likely due to the exclusion of outliers
that disproportionately skew fairness. For example, SPD and EOD in
the Adult dataset with race as the protected attribute (Figure 11) ex-
hibit slight improvements at moderate suppression levels. However,
in other cases, particularly for the ACSIncome dataset (Figures 14
and 15), the metrics remain stable or even worsen with higher sup-
pression levels, suggesting that the removal of data points introduces
disparities between demographic groups.

In addition, as the suppression level increases, individual fair-
ness metrics such as ALF, ASF, and NCF show some degradation
across all anonymization techniques and datasets. Higher suppres-
sion levels remove more rows, which disproportionately affects lo-
cal neighborhoods and similar instances, introducing inconsistencies
in predictions. For instance, in the Adult dataset with gender as
the protected attribute (Figure 2), NCF values increase steadily as
the suppression level rises, signaling worsening prediction consis-
tency. Similarly, both ALF and ASF metrics are also worsened, high-
lighting increased variations in predictions for similar inputs. This



trend suggests that higher suppression levels may hinder the ability
of anonymization methods to preserve fairness at the individual level.

In terms of utility, record suppression shows mixed impacts on
utility metrics such as ACC, F1-score, and ROC AUC. In most cases,
utility metrics remain stable or even improve slightly as the sup-
pression level increases, likely due to the removal of noisy or less
representative data. However, in a few instances (for ℓ-diversity and
t-closeness), utility decreases, particularly at higher suppression lev-
els, reflecting the trade-off between privacy and maintaining a dataset
that is representative of the original population. These observations
suggest that while suppression can enhance privacy, its effect on
utility is nuanced and may vary depending on the dataset and the
anonymization method applied.

4.3 Detailed Analysis #2: ML Fairness Across Target
Distribution Variations

To answer RQ3 from Section 3.2, we now investigate the impact of
target distribution variations on fairness and utility in ML models.
With both Adult and ACSIncome datasets, we modify the distri-
bution of the income target variable by thresholding it at deciles
ranging from 10% to 90%, simulating shifts in the balance between
positive and negative classes. Similarly, for the Compas dataset,
we modify the distribution of the COMPAS risk score target
variable by thresholding it from scores 1 to 9. Figure 3 presents
the results of these experiments focusing on the Adult dataset with
gender as the protected attribute. Additional results for the Adult
dataset with race, and both gender and race in the ACSIncome
and Compas datasets are shown in Figures 16–20.
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Figure 3. Effect of target distribution variation (i.e., thresholded at deciles
ranging from 10% to 90%) on anonymity techniques (10-anonymity, 2-
diversity, 0.5-closeness) regarding group fairness (MAD, EOD, SPD), indi-
vidual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC)
metrics in ML. Results are presented for the Adult dataset, with gender
serving as the protected attribute for fairness evaluation.

The results across all datasets and protected attributes (Fig-
ures 3, 16–20) reveal consistent trends regarding the impact of
anonymization techniques on fairness and utility metrics. Notably,
the anonymized models tend to follow the same general shape as
the baseline across varying deciles, indicating that the overall dis-
tributional patterns of fairness and utility metrics are preserved un-
der anonymization. However, the magnitude of these metrics differs:
anonymization consistently worsens group fairness metrics such as
MAD, SPD, and EOD, reflecting an amplification of disparities be-
tween demographic groups. Conversely, individual fairness metrics,
particularly ASF and NCF, generally benefit from anonymization,
showing improved consistency in predictions for similar inputs. On
the other hand, utility metrics such as ACC, F1-score, and ROC AUC
are negatively impacted, with performance often falling below the

baseline. These findings align with the conclusions drawn for RQ1
in Section 4.1, further underscoring the trade-offs between privacy,
fairness, and utility introduced by anonymization techniques.

4.4 Detailed Analysis #3: Impact of Data Size on
Fairness in ML

To address whether data fraction impacts fairness as formulated in
RQ3 in Section 3.2, we analyze the behavior of anonymization tech-
niques across subsampled data fractions. Specifically, we vary the
data fraction from 10% to 100% of the original dataset, subsampling
the data randomly at each fraction level. Figure 4 illustrates the re-
sults for the Adult dataset with gender as the protected attribute;
additional results for other datasets and protected attributes are pro-
vided in Figures 21–25 in Appendix B.
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Figure 4. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness metrics (MAD, EOD, SPD), individual fairness metrics (ALF, ASF,
NCF), and utility metrics (Accuracy, F1-score, ROC AUC) in ML. This anal-
ysis is performed using the Adult dataset, considering gender as the
protected attribute for fairness evaluation.

Figures 4, 21–25 reveal that performance and fairness metrics
under anonymization techniques follow a relatively stable pattern
across different data fraction levels sampled from 10% to 100%.
For instance, anonymization introduces consistent increases in group
fairness disparities compared to the baseline, regardless of the dataset
size. Similarly, we observe a positive effect of anonymization on in-
dividual fairness that remains stable across data sizes. Performance
metrics improve gradually with increasing data, as expected. In con-
clusion, these findings suggest that the trade-offs between privacy,
fairness, and utility are primarily driven by the anonymization tech-
niques and their parameter settings, rather than by the scale of the
dataset. The random sampling of fractions introduces minor variabil-
ity but does not fundamentally alter the patterns observed.

4.5 Detailed Analysis #4: Comparison of ML
Classifiers in Fairness Under Anonymization

Finally, to address RQ5 in Section 3.2, we compare the impact
of anonymization techniques on fairness and utility across multiple
state-of-the-art ML classifiers, including LGBM [24], Random For-
est [10], Neural Networks (MLP), and XGBoost [14]. Figure 5 illus-
trates the results using the Adult dataset with gender as the pro-
tected attribute; additional comparisons are shown in Figures 26–30.

From Figure 5, 26–30, results show that the trends observed with
XGBoost in previous sections (RQ1–RQ4) are consistent across
other classifiers. Specifically, anonymization continues to negatively
affect group fairness and to improve individual fairness. Moreover,



as expected, utility degrades under anonymization, regardless of the
classifier. However, the magnitude of degradation varies slightly.
XGBoost and LGBM tend to retain higher performance than Ran-
dom Forest and MLP, especially in terms of F1-score and ROC AUC.
Although minor differences exist, such as XGBoost’s marginal ad-
vantage in utility and fairness stability, the median values for all fair-
ness and utility metrics are nearly identical across classifiers. This
visual and statistical consistency reinforces that our findings are not
specific to XGBoost. Hence, the conclusions drawn from XGBoost
experiments can be considered broadly representative, supporting the
generalizability of our results across different learning algorithms.
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Figure 5. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results
are based on the Adult dataset, with gender as the protected attribute
for fairness evaluation.

4.6 General Findings and Practical Guidelines
This section summarizes the key findings from Sections 4.1–4.5 and
provides actionable guidelines for practitioners.

Anonymity negatively impacts group fairness in ML:
Anonymization methods generally degraded group fairness met-
rics (i.e., MAD, EOD, and SPD) as privacy parameters tight-
ened. By coarsening quasi-identifiers and suppressing records,
these anonymity-based methods distort the true joint distribution
of (A,X, Y ), skew subgroup prevalences and error rates, and
thereby amplify accuracy and positive-rate gaps between privi-
leged and unprivileged groups.

Anonymity positively impacts individual fairness in ML:
Anonymization techniques improve similarity-based individual
fairness metrics such as ASF and NCF by inducing input homo-
geneity through generalization, which leads to more consistent
predictions for similar individuals. A similar effect has been ob-
served with differential privacy mechanisms [18]. However, since
these improvements emerge from changes in data structure rather
than targeted fairness interventions, they should be interpreted
carefully to avoid overclaiming fairness benefits (see [1, 2, 31]).

Higher record suppression levels negatively impacts individ-
ual fairness in ML: Our findings reveal that higher suppression
thresholds decrease the density of local equivalence classes, un-
dermining the model’s capacity to generate consistent predic-
tions for nearby instances. In contrast, group fairness metrics
show mixed behavior, with minimal or no consistent degradation
across suppression levels.

Target distribution variations amplify group fairness dispari-
ties but stabilize individual fairness: Adjusting the distribution
of the target variable (e.g., varying thresholds for binarization)
has a significant impact on group fairness metrics, with dispari-
ties (e.g., EOD and SPD) peaking at middle deciles. However, in-
dividual fairness metrics such as ASF and NCF remain relatively
stable across target variations, benefiting from anonymization-
induced generalization.

Data size variations have minimal impact on fairness trends:
Across subsampled data fractions (10% to 100%), fairness and
utility metrics follow consistent trends. Group fairness metrics
remain negatively impacted by anonymization, while individual
fairness metrics improve consistently. Utility metrics exhibit mi-
nor degradation at smaller fractions but generally remain stable.

XGBoost findings generalize across ML classifiers: Fairness
and utility trends observed with XGBoost are consistent across
other classifiers, such as Random Forest and Neural Networks
(MLP). While XGBoost often achieves slightly better utility, the
broader patterns—negative group fairness impacts, positive in-
dividual fairness outcomes, and utility trade-offs—remain simi-
lar. This consistency supports the generalizability of conclusions
drawn from XGBoost experiments.

Guidelines. Based on our empirical findings, we propose the fol-
lowing recommendations for practitioners working with anonymized
datasets in ML pipelines:

• Use moderate privacy parameters (e.g., k = 10, t = 0.5) to
balance privacy, fairness, and utility. Stricter settings can severely
degrade group fairness and predictive performance..

• Handle record suppression carefully as high suppression thresh-
olds may disproportionately remove minority or outlier samples,
harming both individual and group fairness. When possible, com-
bine suppression with imputation or domain-specific filtering to
minimize bias.

• Avoid median splits when binarizing continuous target vari-
able, as they tend to maximize group disparities. Evaluate multi-
ple cutpoints across deciles. We found that thresholds below the
30th or above the 70th percentile yields lower group disparities;
whereas median splits (40–60%) tend to exacerbate them.

• Interpret individual fairness improvements cautiously. Im-
provements in individual-fairness scores (ASF, NCF) are primar-
ily due to feature homogenization and may not reflect “genuine
improvements in equitable treatment”. Practitioners should there-
fore exercise caution and perform targeted case audits to avoid the
risk of “fair washing/hacking” [1, 2, 31], for example.

5 Conclusion and Perspectives
This study systematically audits the tradeoff between anonymization
techniques and fairness in ML. Through a comprehensive analysis,
we evaluated the effects of three well-known anonymization methods
(k-anonymity, ℓ-diversity, and t-closeness) on group and individual
fairness metrics, as well as utility metrics, across multiple datasets
and ML classifiers. By addressing five key research questions, our
findings highlight the inherent trade-offs between privacy, fairness,
and utility in anonymized ML models. Overall, our results show that
anonymization tends to negatively affect group fairness metrics, of-
ten exacerbating disparities between demographic groups as privacy
constraints increase. In contrast, similarity-based individual fairness
metrics tend to improve under stronger anonymization, driven by
increased data homogeneity. While this effect aligns with phenom-
ena observed in differential privacy [18], it stems from data struc-
tural smoothing rather than fairness-aware optimization, and must
therefore be interpreted with caution. Importantly, we demonstrate



that these findings are robust across different datasets, protected
attributes, target distributions, data scales, suppression levels, and
learning algorithms, confirming the generalizability of our conclu-
sions. This work opens several promising research directions. A the-
oretical characterization of how anonymization influences fairness,
e.g., through the lenses of causal modeling or information-theoretic
frameworks, remains an open challenge. Future efforts could also fo-
cus on designing privacy mechanisms that jointly optimize for fair-
ness constraints, or on adapting anonymization strategies to richer
settings such as multi-class classification or regression.
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A Description of Datasets

• Adult Dataset: The Adult dataset, obtained from the UCI ML
repository [9] originates from the 1994 U.S. Census Bureau
database. For this study, we use the Reconstructed Adult
dataset as described in [16], where the target variable, income,
is represented as a discrete value. This variable can be bina-
rized into > ThresholdIncome or ≤ ThresholdIncome, where
ThresholdIncome serves as a configurable threshold. By default,
the threshold is set to the median income value; however, in Sec-
tion 4.3, we vary this threshold to analyze the impact of target
distribution shifts on fairness and utility. After preprocessing and
data cleaning, the dataset consists of n = 45, 849 samples and 10
discrete and categorical attributes. The protected attributes used
for fairness evaluation are gender and race, while the target at-
tribute is income.

• Compas Dataset: The Compas dataset, curated by ProPub-
lica [4], contains defendants from Broward County, Florida,
screened between 2013 and 2014. We restrict to Black and
White individuals who received a COMPAS risk score within 30
days of arrest. After preprocessing, the dataset comprises n =
5, 278 and five attributes: race, sex, age, priors_count,
and days_b_screening_arrest. The target variable is the
COMPAS risk score (v_decile_score), which consists of a
rating of 1 − 10; the higher the score, the more likely the de-
fendant is to re-offend. This target variable can also be binarized
into > RiskScore or ≤ RiskScore, where RiskScore serves as a
configurable threshold. By default, the threshold is set to the me-
dian score value (i.e., 3); however, as in Section 4.3, we vary this
threshold (1–10) to analyze the impact of target distribution shifts
on fairness and utility. The protected attributes used for fairness
evaluation are gender and race.

• ACSIncome Dataset: The ACSIncome dataset, sourced from
the U.S. Census Bureau’s American Community Survey (ACS),
represents a geographically distributed sample of individuals
across U.S. states. Similar to the Adult dataset, the target
variable income is categorized as > ThresholdIncome or ≤
ThresholdIncome, with ThresholdIncome configurable to sev-
eral representative income levels (median by default). For this
study, we use the 2018 1-Year ACS Public Use Microdata Sample
(survey_year="2018" and horizon="1-Year") across
all U.S. states. The whole dataset contains n = 1, 599, 229 data
points with 10 discrete and categorical attributes. To reduce com-
putational resource consumption, we randomly sample 10% of the
data. The protected attributes for fairness evaluation are gender
and race (i.e., SEX, RAC1P), while the target attribute is income.

B Additional Results

This section presents additional analyses answering the same re-
search questions presented in Section 3.2 for Adult dataset with
race as the protected attribute, on the Compas dataset with
gender and race as protected attributes, and on the ACSIncome
dataset with SEX and RAC1P as protected attributes.

B.1 Impact of Anonymization on Fairness in ML

Figures 6, 7, 8, 9, and 10 show the impact of k-anonymity, ℓ-
diversity, and t-closenesson group and individual fairness across dif-
ferent datasets. Specifically, they present results for the Adult dataset
with race as the protected attribute and for both Compas and AC-
SIncome datasets, considering gender and race as protected at-
tributes. These experiments extend the findings discussed in Sec-
tion 4.1.

The results confirm that anonymization negatively affects group
fairness, with the impact becoming more pronounced as privacy con-
straints become stricter. Conversely, while the trends in Approximate
Lipschitz Fairness (ALF) vary across different settings, anonymiza-
tion generally has a positive effect on individual fairness.
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Figure 6. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness (MAD, EOD, SPD), individual fairness (ALF,
ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Re-
sults with the Adult dataset with race as the protected attribute for
fairness evaluation.
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Figure 7. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness (MAD, EOD, SPD), individual fairness (ALF,
ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Re-
sults with the Compas dataset with gender as the protected attribute
for fairness evaluation.

B.2 Impact of Record Suppression Levels on Fairness
in ML

Figures 11, 12, 13, 14, and 15 demonstrate the impact of suppres-
sion levels on ML fairness for the Adult dataset with race as the
protected attribute and for both Compas and ACSIncome datasets,
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Figure 8. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness (MAD, EOD, SPD), individual fairness (ALF,
ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Re-
sults with the Compas dataset with race as the protected attribute
for fairness evaluation.
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Figure 9. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness (MAD, EOD, SPD), individual fairness (ALF,
ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Re-
sults with the ACSIncome dataset with gender as the protected at-
tribute for fairness evaluation.
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Figure 10. Impact of anonymity methods (k-anonymity, ℓ-diversity, t-
closeness) on group fairness (MAD, EOD, SPD), individual fairness (ALF,
ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Re-
sults with the ACSIncome dataset with race as the protected at-
tribute for fairness evaluation.

considering gender and race as protected attributes, respectively.
These results extend the experiments presented in Section 4.2.

It can be observed that the impact of suppression levels on fair-
ness and utility metrics exhibits complex patterns across datasets
and protected attributes. For group fairness, metrics such as SPD,
EOD, and MAD show mixed trends—moderate suppression levels
sometimes lead to slight improvements by removing outliers, while
in other cases, especially in the ACSIncome dataset, fairness met-
rics remain stable or worsen due to the introduction of demographic
disparities. In contrast, individual fairness metrics (ALF, ASF, and
NCF) consistently degrade as suppression increases, as the removal
of records disrupts local consistency in predictions. Regarding util-
ity, suppression generally has a neutral or slightly positive effect by
eliminating noisy data, but at high levels, it can reduce model perfor-
mance, particularly for ℓ-diversity and t-closeness.
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Figure 11. Impact of suppression level in anonymization (k-anonymity, ℓ-
diversity, t-closeness) on group fairness (MAD, EOD, SPD), individual fair-
ness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics
in ML. Results with the Adult dataset with gender as the protected
attribute for fairness evaluation.

10 20 30 40 50

Suppression Level (%)

−0.05

0.00

0.05

0.10

M
A

D
G

ro
u

p
F

ai
rn

es
s

M
et

ri
cs

10 20 30 40 50

Suppression Level (%)

0.0

0.5

1.0

E
O

D

10 20 30 40 50

Suppression Level (%)

0.0

0.5
S

P
D

10 20 30 40 50

Suppression Level (%)

1

2

A
L

F

In
d

iv
id

u
al

F
ai

rn
es

s
M

et
ri

cs

10 20 30 40 50

Suppression Level (%)

0

1

A
S

F

10 20 30 40 50

Suppression Level (%)

0.0

0.1

0.2

N
C

F

10 20 30 40 50

Suppression Level (%)

0.65

0.70

0.75

0.80

A
C

C

U
ti

li
ty

M
et

ri
cs

10 20 30 40 50

Suppression Level (%)

0.65

0.70

0.75

0.80

f1

10 20 30 40 50

Suppression Level (%)

0.65

0.70

0.75

0.80

R
O

C
A

U
C

Baseline (k = 1) 10-anonymity 2-diversity 0.5-closeness

Figure 12. Impact of suppression level in anonymization (k-anonymity, ℓ-
diversity, t-closeness) on group fairness (MAD, EOD, SPD), individual fair-
ness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics
in ML. Results with the Compas dataset with gender as the protected
attribute for fairness evaluation.

B.3 ML Fairness Across Target Distribution
Variations

Figures 16, 17, 18, 19, and 20 show the ML fairness across target
distribution for the Adult dataset with race as the protected at-
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Figure 13. Impact of suppression level in anonymization (k-anonymity, ℓ-
diversity, t-closeness) on group fairness (MAD, EOD, SPD), individual fair-
ness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics
in ML. Results with the Compas dataset with race as the protected
attribute for fairness evaluation.
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Figure 14. Impact of suppression level in anonymization (k-anonymity, ℓ-
diversity, t-closeness) on group fairness (MAD, EOD, SPD), individual fair-
ness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) in ML.
Results with the ACSIncome dataset with gender as the protected
attribute for fairness evaluation.
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Figure 15. Impact of suppression level in anonymization (k-anonymity, ℓ-
diversity, t-closeness) on group fairness (MAD, EOD, SPD), individual fair-
ness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC) metrics
in ML. Results with the ACSIncome dataset with race as the pro-
tected attribute for fairness evaluation.
tribute and for both Compas and ACSIncome datasets, consider-

ing gender and race as protected attributes, respectively. These
results extend the experiments presented in Section 4.3.

These results reveal that anonymization techniques generally pre-
serve the overall distributional patterns of fairness and utility metrics
compared to the baseline. However, they significantly affect metric
magnitudes: group fairness metrics (MAD, SPD, and EOD) deteri-
orate under anonymization, amplifying disparities between demo-
graphic groups, whereas individual fairness metrics (ASF and NCF)
tend to improve, indicating greater consistency in model predictions.
Meanwhile, utility metrics (ACC, F1-score, and ROC AUC) consis-
tently decline, highlighting the trade-off between privacy and predic-
tive performance.
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Figure 16. Effect of target distribution changes (i.e., thresholded at deciles
ranging from 10% to 90%) on anonymity techniques (k-anonymity, ℓ-
diversity, t-closeness) regarding group fairness (MAD, EOD, SPD), individ-
ual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC)
metrics in ML. Results are presented for the Adult dataset, with race
serving as the protected attribute for fairness evaluation.
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Figure 17. Effect of target distribution changes (i.e., thresholded at COM-
PAS Risk Score ranging from 1 to 9) on anonymity techniques (k-anonymity,
ℓ-diversity, t-closeness) regarding group fairness (MAD, EOD, SPD), in-
dividual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC
AUC) metrics in ML. Results are presented for the Compas dataset, with
gender serving as the protected attribute for fairness evaluation.

B.4 Impact of Data Size on Fairness in ML

Figures 21, 22, 23, 24, and 25 show the effect of dataset sizes on
ML fariness for the Adult dataset with race as the protected at-
tribute and for both Compas and ACSIncome datasets, considering



1 2 3 4 5 6 7 8 9
COMPAS Risk Score

−0.2

0.0

0.2

M
A

D

G
ro

u
p

F
ai

rn
es

s
M

et
ri

cs

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

−0.5

0.0

E
O

D

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

−0.75

−0.50

−0.25

0.00

S
P

D

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

0

1

2

3

A
L

F

In
d

iv
id

u
al

F
ai

rn
es

s
M

et
ri

cs

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

0

1

2

A
S

F

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

0.0

0.1

0.2

N
C

F
1 2 3 4 5 6 7 8 9

COMPAS Risk Score

0.6

0.8

1.0

A
C

C

U
ti

li
ty

M
et

ri
cs

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

0.0

0.5

f1

1 2 3 4 5 6 7 8 9
COMPAS Risk Score

0.5

0.6

0.7

0.8

R
O

C
A

U
C

Baseline (k = 1) 10-anonymity 2-diversity 0.5-closeness

Figure 18. Effect of target distribution changes (i.e., thresholded at COM-
PAS Risk Score ranging from 1 to 9) on anonymity techniques (k-anonymity,
ℓ-diversity, t-closeness) regarding group fairness (MAD, EOD, SPD), indi-
vidual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC)
metrics in ML. Results are presented for the Compas dataset, with race
serving as the protected attribute for fairness evaluation.

10 20 30 40 50 60 70 80 90

Decile (%)

−0.1

0.0

0.1

M
A

D

G
ro

u
p

F
ai

rn
es

s
M

et
ri

cs

10 20 30 40 50 60 70 80 90

Decile (%)

0.0

0.2

0.4

E
O

D

10 20 30 40 50 60 70 80 90

Decile (%)

0.0

0.1

0.2

S
P

D

10 20 30 40 50 60 70 80 90

Decile (%)

0

1

2

3

A
L

F

In
d

iv
id

u
al

F
ai

rn
es

s
M

et
ri

cs

10 20 30 40 50 60 70 80 90

Decile (%)

0

2

4

A
S

F

10 20 30 40 50 60 70 80 90

Decile (%)

0.0

0.1

0.2

N
C

F

10 20 30 40 50 60 70 80 90

Decile (%)

0.7

0.8

0.9

A
C

C

U
ti

li
ty

M
et

ri
cs

10 20 30 40 50 60 70 80 90

Decile (%)

0.0

0.5

1.0

f1

10 20 30 40 50 60 70 80 90

Decile (%)

0.5

0.6

0.7

0.8

R
O

C
A

U
C

Baseline (k = 1) 10-anonymity 2-diversity 0.5-closeness

Figure 19. Effect of target distribution changes (i.e., thresholded at deciles
ranging from 10% to 90%) on anonymity techniques (k-anonymity, ℓ-
diversity, t-closeness) regarding group fairness (MAD, EOD, SPD), individ-
ual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC)
metrics in ML. Results are presented for the ACSIncome dataset, with
gender serving as the protected attribute for fairness evaluation.
gender and race as protected attributes, respectively. These re-
sults extend the experiments presented in Section 4.4.

These experiments demonstrate that fairness and performance
metrics under anonymization remain relatively stable across varying
data fractions, ranging from 10% to 100% of the dataset. These re-
sults indicate that the trade-offs between privacy, fairness, and utility
are predominantly influenced by the choice of anonymization tech-
niques and their parameter configurations, rather than by the dataset
size. While random sampling introduces slight variations, it does not
fundamentally alter the observed trends, reinforcing the robustness
of the identified patterns.

B.5 Comparison of ML Classifiers in Fairness Under
Anonymization

Figures 26, 27, 28, 29, and 30 show the ML fairness using differ-
ent ML models on anonymizaed datasets for the Adult dataset with
race as the protected attribute and for the ACSIncome dataset, con-
sidering SEX and RAC1P as protected attributes, respectively. These
results extend the experiments presented in Section 4.5.
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Figure 20. Effect of target distribution changes (i.e., thresholded at deciles
ranging from 10% to 90%) on anonymity techniques (k-anonymity, ℓ-
diversity, t-closeness) regarding group fairness (MAD, EOD, SPD), individ-
ual fairness (ALF, ASF, NCF), and utility (Accuracy, F1-score, ROC AUC)
metrics in ML. Results are presented for the ACSIncome dataset, with
race serving as the protected attribute for fairness evaluation.
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Figure 21. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness (MAD, EOD, SPD), individual fairness (ALF, ASF, NCF), and utility
(Accuracy, F1-score, ROC AUC) metrics in ML. This analysis is performed
using the Adult dataset, considering race as the protected attribute
for fairness evaluation.

The results confirm that the trends observed with XGBoost remain
consistent across different classifiers. While minor variations exist,
such as XGBoost exhibiting slightly better utility and fairness stabil-
ity, the overall patterns persist. Specifically, anonymization continues
to negatively affect group fairness, improve individual fairness, and
introduce trade-offs in utility across classifiers. These findings indi-
cate that the insights gained from XGBoost-based experiments are
broadly applicable to other models, reinforcing the generalizability
of our study’s conclusions.
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Figure 22. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness (MAD, EOD, SPD), individual fairness (ALF, ASF, NCF), and utility
(Accuracy, F1-score, ROC AUC) metrics in ML. This analysis is performed
using the Compas dataset, considering gender as the protected at-
tribute for fairness evaluation.
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Figure 23. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness (MAD, EOD, SPD), individual fairness (ALF, ASF, NCF), and utility
(Accuracy, F1-score, ROC AUC) metrics in ML. This analysis is performed
using the Compas dataset, considering race as the protected at-
tribute for fairness evaluation.
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Figure 24. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness (MAD, EOD, SPD), individual fairness (ALF, ASF, NCF), and utility
(Accuracy, F1-score, ROC AUC) metrics in ML. This analysis is performed
using the ACSIncome dataset, considering gender as the protected
attribute for fairness evaluation.
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Figure 25. Effect of varying data fraction on the performance of anonymity
techniques (10-anonymity, 2-diversity, 0.5-closeness) in terms of group fair-
ness (MAD, EOD, SPD), individual fairness (ALF, ASF, NCF), and utility
(Accuracy, F1-score, ROC AUC) metrics in ML. This analysis is performed
using the ACSIncome dataset, considering race as the protected at-
tribute for fairness evaluation.
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Figure 26. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results
are based on the Adult dataset, with race as the protected attribute
for fairness evaluation.
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Figure 27. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results are
based on the Compas dataset, with gender as the protected attribute
for fairness evaluation.
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Figure 28. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results are
based on the Compas dataset, with race as the protected attribute for
fairness evaluation.
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Figure 29. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results
are based on the ACSIncome dataset, with gender as the protected
attribute for fairness evaluation.
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Figure 30. Comparison of the impact of different state-of-the-art ML clas-
sifiers on anonymized dataset (k-anonymity, ℓ-diversity, t-closeness) and re-
lation to group fairness (MAD, EOD, SPD), individual fairness (ALF, ASF,
NCF), and utility (Accuracy, F1-score, ROC AUC) metrics in ML. Results
are based on the ACSIncome dataset, with race as the protected at-
tribute for fairness evaluation.
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