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Abstract—WiFi fingerprint-based indoor localization schemes
deliver highly accurate location data by matching the received
signal strength indicator (RSSI) with an offline database using
machine learning (ML) or deep learning (DL) models. However,
over time, RSSI values degrade due to the malicious behavior
of access points (APs), causing low positional accuracy due
to RSSI value mismatch with the offline database. Existing
literature lacks detection of malicious APs in the online phase and
mitigating their effects. This research addresses these limitations
and proposes a long-term reliable indoor localization scheme by
incorporating malicious AP detection and their effect mitigation
techniques. The proposed scheme uses a Light Gradient-Boosting
Machine (LGBM) classifier to estimate locations and integrates
simple yet efficient techniques to detect malicious APs based
on online query data. Subsequently, a mitigation technique
is incorporated that updates the offline database and online
queries by imputing stable values for malicious APs using
LGBM Regressors. Additionally, we introduce a noise addition
mechanism in the offline database to capture the dynamic
environmental effects. Extensive experimental evaluation shows
that the proposed scheme attains a detection accuracy above
95% for each attack type. The mitigation strategy effectively
restores the system’s performance nearly to its original state
when no malicious AP is present. The noise addition module
reduces localization errors by nearly 16%. Furthermore, the
proposed solution is lightweight, reducing the execution time by
approximately 94% compared to the existing methods.

Index Terms—WiFi fingerprint, indoor localization, security,
malicious AP

I. INTRODUCTION

With the rapid advancement of wireless communication
technologies and the Internet of Things (IoT), location-based
services have become indispensable in many application do-
mains. Various localization mechanisms that operate either
indoors or outdoors are employed to determine location. In
outdoor environments, positions can be accurately determined
using the Global Navigation Satellite System (GNSS). How-
ever, indoor positioning is challenging due to the attenuation
of the Global Positioning System (GPS) signal caused by
building structures and their materials [1]. Accurate indoor
location tracking is critical for several purposes such as
firefighter tracking under hazardous conditions and in emer-
gencies, location-based smart resource management, robotics,
shopping mall navigation, healthcare, and virtual reality [1],
[2], [3]. Consequently, indoor localization has become a major
focus for both academia and industry.

One of the most widely used and preferred techniques for
indoor localization is WiFi-based fingerprinting. This method

uses existing WiFi networks and does not require additional
hardware installation [4]. Existing research focuses mainly
on designing a highly accurate WiFi fingerprint-based indoor
localization system that minimizes localization errors [5]–[7].
However, the security and privacy issues of indoor localization
systems have not been thoroughly explored. The absence of
adequate security mechanisms can result in security attacks,
such as jamming, spoofing, and sniffing [6], [8]. These attacks
ultimately lead to inaccurate location estimation, raising sig-
nificant concerns about the reliability of localization schemes.

A significant security issue is the presence of malicious
access points that generate false RSSI signals [8]. Over time,
APs may behave maliciously due to component malfunctions
[9], [10] and security attacks such as signal jamming [8],
spoofing [6], distance fraud [11], [12], and physical attacks
[5]. These malicious APs mislead localization systems and
reduce location accuracy. Unreliable location accuracy can
have serious consequences in critical situations. For example,
if a person needs immediate medical attention in a hospital,
inaccurate location prediction of healthcare professionals and
facilities can elevate health risks. Similarly, robots navigating
in complex indoor environments with unreliable localization
methods may cause damage to assets and potentially lead to
injuries. Existing literature deals with malicious APs during
the initial database construction phase (offline phase) by
selecting a subset of feasible APs [5], [6]. However, filtering
out malicious APs only in the offline phase does not guarantee
the long-term robustness of the indoor localization systems
as a reliable AP may become malicious over time. Current
literature lacks research on detecting the long-term malicious
behavior of APs [10], [13]–[15].

After detecting malicious APs, it is crucial to mitigate
their effect to ensure the accurate functioning of the indoor
localization system. One approach to achieving this goal is
to reconstruct the database. However, each time a malicious
AP is detected, conducting a site survey to build the database
in a dynamic environment is highly expensive and labor-
intensive [13]. Existing literature has explored the use of
crowdsourcing techniques [15] for creating and updating the
fingerprint database, which significantly reduces human labor.
However, this scheme is vulnerable to various security issues
[16]. Additionally, robots are utilized for autonomous database
construction, which can be expensive and may not perform
effectively in a challenging environments [17]. Instead, it
would be more beneficial to develop a mechanism that enables
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an indoor localization system to function accurately despite
the presence of a reasonable percentage of malicious APs,
eliminating the need for frequent database reconstruction. This
would enhance the system’s accuracy while reducing the costs
associated with repeated database creation. Although several
existing research works mitigate the effect of RSSI value
alteration due to environmental factors [18], [15], [13], none
of them consider the malicious behavior of APs causing abrupt
and dynamic changes to RSSI values.

This paper addresses the above-mentioned shortcomings
and proposes lightweight mechanisms for detecting malicious
APs over the long term during their operation. Additionally,
it introduces a mitigation strategy to manage the impact of
malicious APs while maintaining the accuracy of location
prediction over an extended period, without requiring frequent
database reconstruction.

II. RELATED WORKS

WiFi RSSI-based indoor localization schemes provide
highly accurate location data at low additional cost. How-
ever, the location predicted by these models often becomes
erroneous due to the alteration of RSSI values caused by
malicious AP behaviour [5], [11], [8], changes in layout [15],
removal of AP [14], position change of AP [14], [15], and
environmental factors [4], [14], [18]. Existing literary works
[5], [6], [19], [20] detect and filter malicious APs during the
model training phase (offline phase) of indoor localization
systems. Here, a subset of optimal AP is selected, and using
these selected nonmalicious APs, a fingerprint database is
constructed to train the machine learning model. The selection
of correlated APs increases localization accuracy and reduces
computational complexity. Wang et al. [5] utilized interclass
dispersion to calculate AP confidence and selected APs with
high confidence. Ye et al. [6] used the Pearson Correlation
Coefficient (PCC), where a lower correlation value indicates
greater susceptibility of an AP to being malicious. Chen et al.
[19] considered the resolution capability to select a set of APs,
where APs are chosen based on information gain. Panja et al.
[20] used the Binary Particle Swarm Optimization (BPSO) to
select a set of suitable APs. In contrast, our proposed scheme
uses Spearman’s Correlation Coefficient (SRCC) to select
correlated APs in the offline phase. We use normalization, cor-
related AP selection, and noise addition as data preprocessing,
where normalization speeds up the computational time, and
noise addition makes the system robust to long-term signal
variation due to dynamic environmental change.

Detecting malicious APs only in the offline phase is not
sufficient for long-term model reliability. Several works ex-
plore long-term model robustness challenges in the online
phase. For example, Yan et al. [18] proposed a crowdsourcing-
based mechanism to handle RSSI signal value alteration in the
online phase. This scheme utilizes a denoising autoencoder to
address RSSI alteration caused by environmental dynamics. It
requires extensive high-quality crowdsourced data for training,
and the model is updated frequently, which can be resource-
intensive. Li et al. [10] addressed signal variation caused by

dynamic environmental change and temporal effects using
disagreement-based semi-supervised learning. This scheme
struggles to handle sudden and significant alterations in the
environment, which can impact localization accuracy. Tiku
and Pasricha [4] utilized Siamese neural encoders to address
RSSI signal variation without the need for model retraining.
This scheme handles signal alteration caused by environmen-
tal changes, human movement, and removal or replacement
of AP. Significant changes in the environment can affect
localization accuracy. Huang et al. [13] addressed location
accuracy degradation caused by environmental changes. This
scheme utilizes a Gaussian Process Regression to create an
offline database and incorporates the Marginalized Particle
Extended Gaussian process that uses crowdsourced data to
recursively update the database. However, this scheme is
susceptible to localization errors due to rapid fluctuations in
signal strength, and its effectiveness depends on the quality
of the crowdsourced data. Jiang et al. [14] addressed RSSI
signal alteration caused by the change in the number of AP
and environmental factors. The authors proposed a feature
adaptive extreme learning machine-based approach that can
adapt to a changing number of features. This scheme faces
difficulties to cope with sudden environmental changes and
runs the risk of overfitting to recent signal variations. Yang et
al. [15] proposed the Altered AP Identification and Fingerprint
Updating (AAIFU) scheme, which detects altered APs in the
online phase by considering changes in RSSI values due
to positional changes of APs. This scheme uses a Gradient
Boosting Decision Tree (GBDT) regression model to identify
the positional changes of APs. It then updates the database
by replacing the outdated RSSI values with fresh RSSI values
obtained through GBDT regression. However, the effectiveness
of this scheme depends on a large volume of crowdsourced
data. Moreover, positional changes of an AP only create
persistent changes in RSSI values. Among these works, Li
et al. [10], Huang et al. [13], Jiang et al. [14], and Yang
et al. [15] update database to keep the fingerprints fresh.
On the other hand, none of the schemes except Yang et
al. [15], identify the causes of RSSI signal alteration. In
contrast to the existing works, our proposed scheme addresses
the RSSI value alteration caused by malicious AP behavior,
characterized by abrupt and random changes in RSSI values.
Our proposed scheme detects malicious APs in real time by
analyzing data from various location queries. Additionally, it
utilizes the LGBM regression model [21] to update the existing
database, which mitigates the effect of malicious APs on the
performance of the indoor localization scheme. Here to note
that the proposed scheme handles both static and dynamic
changes in RSSI values.

III. SYSTEM MODEL

As shown in Fig. 1, the proposed scheme augments the
existing WiFi fingerprint-based indoor localization system [22]
by including a malicious effect mitigation module and online
database. The proposed system model comprises q access
points and r reference points (RPs). The offline database com-



Fig. 1. System model.

prises a set of records of form [RSSIj , lj ], where RSSIj =
[ri,j ] is the RSSI vector and ri,j is the RSSI value of ith
AP measured at jth RP, and lj is the location of the jth RP,
i ∈ 1, 2, . . . , q, and j ∈ 1, 2, . . . , r. In the online phase, a
device measures a fingerprint vector [RSSI] with respect to its
location p and sends it to the location prediction module. The
location prediction module matches [RSSI] with the records
stored in the offline database using either a ML or DL model
and returns the estimated location lp to the mobile device.
The online database is constructed by saving the results of
online queries along with associated RSSI vectors and used to
detect malicious APs in the online phase. The malicious effect
mitigation module detects malicious APs and takes measures
to diminish their effect. The proposed system model subjects
to false fingerprints both in online and offline phases due to
various environmental factors [4], [14], temporal effects [6],
malicious behavior of APs [5], [6]. We assume that the offline
and online databases, the location prediction module, and the
malicious effect mitigation module reside in a trusted server.

IV. PROPOSED SCHEME

As shown in Fig. 2, the proposed scheme consists of four
modules: offline phase, online phase, malicious AP detection,
and malicious effect mitigation. The notations used to describe
the proposed scheme are listed in Table I.

TABLE I
LIST OF NOTATIONS

Notation Description
ri,j RSSI value of ith AP at jth RP
lj Location of the jth RP
RSSIj A vector of form [ri,j ] for jth RP and i ∈ 1, 2, . . . , q
RSSI′j An offline data sample of form [r′i,j ] for jth RP and

i ∈ 1, 2, . . . , n and n ≤ q
[RSSI′j , lj ] A labeled sample representing location lj for RSSI′j in

offline database
RSSI′′p Online query of form [r′′i,p] for pth RP where p is

unknown
[RSSI′′p , lp] A labled sample representing location lp for RSSI′′p in

online database

Train Localization Model

Correlated AP Selection
Data Normalization

Noise Addition
Data Fitting

Classification Model

Database Construction

Online Queries

Location Prediction

Online Database

Train Regression Models 

Update Offline
Database 

Retraining

Offline Phase Online Phase Malicious AP Detection

Malicious Effect Mitigation

Check Variance

Check Mean Difference

Update

Fig. 2. Overview of the proposed scheme.

A. Offline Phase

1) Database Construction: At first, a reliable database is
created using site survey [23]. This mechanism involves a
person with multiple reliable mobile devices visiting every
RP. It collects several labeled samples in the form [RSSIj , lj ],
where RSSIj is a RSSI fingerprint vector computed at jth RP
and lj is the location of the jth RP. The raw database created
by site survey is a collection of records [RSSIj , lj ].

2) Correlated AP Selection: The proposed scheme selects a
set of reliable APs from the available ones in the environment
using the Spearman’s Rank Correlation Coefficient (SRCC)
[24] method with a threshold value set to 0.1 empirically,
which is optimal for the considered UJI’s dataset [25]. Suppose
the number of selected correlated APs is n. The proposed
scheme constructs an offline database {[RSSI ′j , lj ]} from
the raw database constructed via site survey, where RSSI ′j
contains RSSI entries only for the selected n APs.

3) Data Normalization: Training data in the offline
database is converted in [0,1] using Eq. 1 [26].

r′i,j =

{
0, if r′i,j = no signal(

r′i,j−min
max−min

)
× (1− 0.25) + 0.25, if r′i,j ̸= no signal

(1)
where, r′i,j ∈ RSSI ′j is the RSSI value of ith AP measured
at the jth AP. Eq. 1 replaces no signal RSSI values to 0 and
all other RSSI values in the range [0.25, 1]. Here, min = -100
and max = 0 [25].

4) Noise Addition: Our scheme randomly selects 10% of
the samples per RP and creates a Gaussian distribution curve
with a standard deviation of 0.5. Random values taken from
this distribution are added to the actual RSSI values as noise.

5) Data Fitting/Model Training: Data is fitted to the LGBM
classifier model [21] built with tuned hyperparameters.

B. Online Phase

The proposed scheme receives online queries of form
RSSI ′′p = [r′′1,p, r

′′
2,p, r

′′
3,p, . . . , r

′′
n−1,p, r

′′
n,p] from a user who



wants to know their location, where r′′i,p is the RSSI value of
the ith AP from the user’s position p, and p is unknown. The
localization model predicts the location l′′p (the position of the
closest RP to the user’s position p) for incoming queries and
saves them to create an online database, a collection of labeled
records [RSSI ′′p , l

′′
p ] corresponding to the online queries.

C. Malicious AP Detection

The proposed scheme separates online and offline data
samples based on reference points and conducts two tests on
the RSSI values of every AP. Let,
Aj = data samples RSSI ′′j for RP j in the online database
Ai,j = collection of r′′i,j for an AP i where r′′i,j ∈ RSSI ′′j
Bj = data samples RSSI ′j for RP j in the offline database
Bi,j = collection of r′i,j for an AP i where r′i,j ∈ RSSI ′j

1) Check Variance: It checks the variance of an AP for
every RP in the online database. If the maximum variance
value of an AP equals or exceeds the variance threshold, the
proposed scheme marks that AP as malicious. The variance
threshold TH1 is set to 0.05, as nearly 99% of the variance
for each AP in the offline database is within 0.05 for the UJI
dataset [25]. Let,
t = |Ai,j | = number of entries in Ai,j

µ = 1
t

∑
r′′i,j = mean of RSSI values of an AP i where r′′i,j ∈

Ai,j

σ2
i,j = 1

t

∑
(r′′i,j − µ)2 = variance of an AP i for RP j

An AP i is malicious if max(σ2
i,j) ≥ TH1, where, j ∈ 1 . . . r

2) Check Mean Difference: It checks the difference in the
mean value of offline and online data for a specific AP for
every RP. If the minimum value of the differences exceeds a
defined threshold value TH2, the AP is marked as malicious.
We empirically set TH2 to 0.005 as it detects nearly 98%
malicious APs for the UJI dataset [25]. Let,
u = |Bi,j | = number of entries in Bi,j

v = |Ai,j | = number of entries in Ai,j
1
u

∑
r′i,j = mean of RSSI values of an AP i where r′i,j ∈ Bi,j

1
v

∑
r′′i,j = mean of RSSI values of an AP i where r′′i,j ∈ Ai,j

δi,j = ( 1u
∑

r′i,j − 1
v

∑
r′′i,j) = difference of mean values.

An AP i is malicious if min(δi,j) > TH2, where j ∈ 1 . . . r

We considered 1560 data samples from the first month of
the UJI dataset [25] to determine TH1 and TH2.

D. Malicious Effect Mitigation

1) Train Regression Model: Suppose the malicious
AP detection module identifies p malicious APs,
leading to m = n - p APs behaving honestly.
An online query for ith RP can be rewritten as
RSSI ′′i = [r′′1,i, r

′′
2,i, . . . , r

′′
m−1,i, r

′′
m,i, r

′′
m+1,i, . . . , r

′′
m+p−1,i,

r′′m+p,i] where r′′m+1,i ∼ r′′m+p,i are RSSI entries for malicious
APs. The proposed scheme deploys p LGBMRegressors [21]
and trains them with offline database’s reliable data RSSI ′i
of form [r′1,i, r

′
2,i, . . . , r

′
m−1,i, r

′
m,i] (contains the RSSI entries

for m honest APs), where i ∈ 1, 2, . . . r.

TABLE II
PARAMETER USED IN PERFORMANCE METRICS

Parameter Description
True Positive (TP) Correctly predicted positive/malicious instances

True Negative (TN) Correctly predicted negative/nonmalicious instances
False Positive (FP) Incorrectly predicted positive/malicious instances

False Negative (FN) Incorrectly predicted negative/nonmalicious instances

TABLE III
EVALUATION METRICS

False Positive
Rate (FPR)

Ratio of legitimate APs falsely
identified as malicious

FPR = FP
FP+TN

False Negative
Rate (FNR)

Ratio of malicious APs falsely
identified as legitimate

FNR = FN
FN+TP

Precision Ratio of correctly detected ma-
licious APs

Precision = TP
TP+FP

Recall Ratio of correctly identified
malicious APs to the total ac-
tual malicious APs

Recall = TP
TP+FN

Accuracy Ratio of correctly identified
malicious APs and legal APs

Accuracy =
TP+TN

TP+TN+FP+FN

F1 Score Relationship between preci-
sion and recall

F1 = 2 ×
precision×recall
precision+recall

Mean
Localization
Error (MLE)

Deviation of the predicted lo-
cation from the actual location

MLE =√
(x− x̄)2 + (y − ȳ)2

2) Update Online Queries and Offline Database: The
LGBMRegressors predicts p RSSI values when input data is
RSSI ′i of form [r′1,i, r

′
2,i, . . . , r

′
m−1,i, r

′
m,i] and use these data

to replace the values of malicious APs r′m+1,i, . . . , r
′
m+p−1,i,

r′m+p,i in the offline RSSI ′i record. Similarly, when the
input data is RSSI ′′i of form [r′′1,i, r

′′
2,i, . . . , r

′′
m−1,i, r

′′
m,i], the

predicted p RSSI values replace r′′m+1,i, . . . , r
′′
m+p−1,i, r

′′
m+p,i

in the online query RSSI ′′i . The localization model is retrained
with the updated offline database. The updated query RSSI ′′i
is used by the classification model to predict the location. The
process of predicting p RSSI values is inspired by Montoliu
et al. [27].

V. EXPERIMENTAL EVALUATION

We implemented the proposed scheme using Python and
evaluated its performance using the UJI’s dataset [25]. The
UJI’s dataset [25] is the longest public dataset with 103584
WiFi fingerprints. We used only the data of floor 3 for brevity,
as also done in [4]. This data set contains 4320 data samples
for training purposes for floor 3 [28]. We incorporated noise-
added samples in this set and extended its size to 4800.
Initially, there were 620 APs in the environment. However, we
took only 40 APs after correlated AP selection. We trained our
localization model which is a LGBMClassifier [21], with the
offline dataset. We used seven performance metrics shown in
Table III to evaluate the performance. The parameters used in
defining performance metrics are shown in Table II.

A. Impact of Noise Addition

Figure 3 shows mean localization errors over the data of
25 months from UJI’s dataset [25]. The curve labeled SRCC
(0.1) shows the effect of correlated AP selection only, the
curve labeled SRCC (0.1) + Normalized shows the impact
of AP selection and normalization, and the curve labeled



Fig. 3. Impact of noise addition.

TABLE IV
ATTACK DESCRIPTION AND ACRONYMS

Attack Type Acronym Description
Constant Value CV A constant RSSI value is set for the

malicious AP. Here, the constant value
is 100, interpreted as no signal from
the AP. It also represents that an AP
is removed.

Random Value RV Random RSSI values are assigned for
APs.

Actual RSSI Plus
Constant Offset

ARCO A fixed offset ([-100,0]) is added to the
actual RSSI value for malicious APs.
This also represents the movement of
AP from its original position.

Actual RSSI Plus
Random Offset

ARRO A random offset ([-100,0]) is taken and
added to the actual RSSI value.

SRCC (0.1) + Normalized + Noise (0.5) shows the effect
of AP selection, normalization, and noise addition. Figure 3
shows a notable reduction in localization error for the curve
SRCC (0.1) + Normalized + Noise (0.5) with respect to SRCC
(0.1) + Normalized after the 10th month because the model
becomes robust to RSSI fluctuations in the long term. The
MLE is reduced by nearly 16% in the 16th month, which is
the maximum change of the red curve with respect to the
green one. Normalizing data helps models converge faster
and adding noise makes the model more robust against long-
term noise. Correlated AP selection, noise addition, and data
normalization bring the MLE of the proposed scheme below 2
meters, outperforming existing machine learning schemes [4].

B. Malicious AP Detection

We considered four malicious behaviors of an AP following
the studies of [18], [15], [7], [29]: constant RSSI value, random
RSSI value, constant offset alteration of the actual RSSI value,
and random offset alteration of the actual RSSI value as
shown in Table IV. We evaluated the malicious AP detection
capability of the proposed scheme using test data comprising
1560 samples from the first month’s data (floor 3). We chose
this data because the first month’s data is less susceptible to
errors caused by undetected malicious APs and environmental
changes. For each attack type, each experiment was iterated
100 times with malicious APs in the range 10% ∼ 50%. Each
data point in the result was averaged over 100 iterations.

1) Performance Analysis of the Proposed Scheme: Figure
4 shows the performance of the proposed detection module.

1) False Positive Rate (FPR): Figure 4(a) shows that the
FPR consistently remains below 4%. The legitimate APs
sometimes exhibit signal variation due to temporal effect
and are marked as malicious by the detection system.

2) False Negative Rate (FNR): Figure 4(b) shows that except
for the ARCO attack, all other attacks show a negligible
FNR. As marking an AP as malicious in our experiment
was a random process, in very few cases, the selected
malicious AP was assigned the same original RSSI value,
leading to a false negative outcome. In ARCO attacks,
FNR stays nearly 10%. In this attack, we add or subtract
a fixed value and also add an offset in the noise addition
module, leading to very little change in the mean that can
not be distinguished with the mean difference checker,
resulting in an increased FNR.

3) Recall: The recall is consistently 100% for RV and ARRO
attacks, almost 98% for CV attacks, and nearly 92% for
ARCO attacks, as shown in Fig. 4(c). In ARCO attacks,
the recall is lower for the higher FNR than other attacks.

4) Precision: Figure 4(d) shows that the detection rate in-
creases with escalating malicious APs for all attack types.
The proposed scheme achieves a satisfactory precision of
nearly 98%, 97%, 95%, and 96% for the RV, CV, ARCO,
and ARRO attacks, respectively, for 50% malicious APs.

5) Accuracy: Figure 4(e) shows that the accuracy of the
detection module consistently remains above 95% for all
types of attack, underscoring the robustness and reliability
of the detection system across various scenarios.

6) F1 Score: Figure 4(f) shows that the F1 score increases
with malicious APs for all attack types. The proposed
scheme exhibits an F1 score within 84%∼99%.

2) Comparative Analysis of AAIFU and Proposed Schemes:
In this section, we compare the performance of the AAIFU
[15] and proposed schemes for 50% malicious APs.

1) False positive rate (FPR): Figure 5(a) shows that the FPR
ranges between 2% ∼ 6% and 2% ∼ 4% for AAIFU
and proposed schemes, respectively. Due to the temporal
effect both schemes exhibit FPR.

2) False negative rate (FNR): Figure 5(b) shows that the
FNR in the AAIFU scheme is dramatically higher, rang-
ing between 80%∼100%. The proposed scheme never
misses any malicious AP in RV and ARRO attacks. It
shows nearly 9% and 2% for ARCO and CV attacks,
respectively. In the AAIFU scheme, FNR is visible when
the alarm frequency of altered APs is lower than that
of unaltered APs. From the alarm frequency distribution,
the AAIFU scheme uses a clustering method to find the
actual altered APs, ignoring the altered (malicious) APs
with low alert frequency, causing a significant FNR.

3) Recall: The AAIFU scheme exhibits a recall of nearly
0% for ARRO and ARCO attacks, visible from Fig. 5(c).
For RV and CV attacks, the AAIFU scheme shows lower
recall values of around 21% and 5%, respectively. On



(a) False positive rate (b) False negative rate (c) Recall

(d) Precision (e) Accuracy (f) F1 score

Fig. 4. Performance analysis of the proposed scheme.

(a) False positive rate (b) False negative rate (c) Recall

(d) Precision (e) Accuracy (f) F1 score

Fig. 5. Performance comparison between AAIFU and proposed schemes.



the other hand, the proposed scheme exhibits a recall of
100% for RV and ARRO attacks and always maintains a
recall ≥ 92% for other attacks. The ineffective clustering
of the AAIFU scheme lead to higher FNR and 0 TPs.

4) Precision: As shown in Fig 5(d), the AAIFU scheme
shows a precision of nearly 0% for ARRO and ARCO
attacks due to 0% TP for nearly 100% FNR. It displays
a precision of approximately 85% and 34% for RV and
CV attacks, respectively. In contrast, the proposed scheme
shows precision values ≥ 93% for all attack types.

5) Accuracy: Figure 5(e) shows that the highest accuracy
for the AAIFU and proposed schemes are approximately
75% and 99%, respectively. Despite the lower TP, the
AAIFU scheme exhibits a higher TN value, resulting in
greater accuracy than recall and precision.

6) F1 score: The AAIFU scheme exhibits an F1 score of 0%
for ARCO and ARRO attacks and approximately 33%
and 9% F1 scores for RV and CV attacks, respectively,
visible from Fig 5(f). On the contrary, the proposed
scheme maintains a good balance between precision and
recall, with an F1 score ≥ 92% for all attack types. The
0 in precision and recall results in 0 in the F1 score for
the AAIFU scheme.

C. Impact of Malicious Effect Mitigation

Five Cumulative Distribution Function (CDF) curves in
Fig. 6 show the localization error using 8112 samples for 25
months from the UJI dataset [25] for the following scenarios:

1) Without malicious AP – shows the MLE without the
presence of malicious AP. Here, the malicious AP detection
and effect mitigation modules were not deployed.

2) 50% malicious AP – presents the MLE when 50% of the
APs are malicious. Here, malicious AP detection and effect
mitigation modules were not used.

3) AAIFU Scheme – shows the MLE for the AAIFU scheme
[15], where 50% APs were malicious.

4) Proposed Scheme without offline database updation and
model retraining – displays the MLE for the proposed
scheme where a malicious AP detection module was used
and online queries were updated. Here, the offline database
was not updated, the model was not retrained, and 50% of
the APs were malicious.

5) Proposed scheme with offline database updation and model
retraining – shows the MLE for the proposed scheme
where the malicious AP detection and effect mitigation
modules were used. The offline database was updated, the
model was retrained, and 50% of the APs were malicious.

Figure. 6 shows that the curve for 50% malicious AP exhibits
significant degradation from the curve with no malicious AP
across all types of attacks. The proposed scheme, which in-
cludes database update and model retraining, shows an almost
unnoticeable deviation from the curve with no malicious AP
for every type of attack. However, the proposed scheme that
does not include the database updation and model retraining
exhibits degraded performance compared to the proposed

scheme with the database updation curve. By updating the
database and retraining the model after identifying malicious
APs, the localization error is minimized. The AAIFU scheme
[15] focuses on the steady change in the behavior of APs
rather than the dynamic malicious effects during the online
phase. This scheme produces results similar to our proposed
scheme without requiring the database update, as shown in
Fig. 6. The CDF curve for the AAIFU scheme is smoother
for the use of a regressor and the CDF curve for the proposed
scheme appears more like a staircase for the use of a classifier.

It is observed from experiments that the proposed scheme
effectively handles at most 60% malicious APs. After that the
performance deviates to a greater extent.

D. Execution Time

The proposed scheme exhibits a gradual increase in runtime
with the increasing number of malicious APs as shown in
Table V. The AAIFU scheme randomly detects malicious APs,
which is displayed by the non-gradual increase of runtime.
The AAIFU scheme spends a significant amount of time
in the detection phase than the proposed scheme as the
proposed scheme uses only some simple statistical calcu-
lations whereas the AAIFU scheme uses GBDTRegressors.
The AAIFU scheme detects fewer APs than the proposed
scheme. Hence, even though both schemes use regressors for
updating database, the proposed scheme takes more time than
the AAIFU scheme. The proposed scheme takes more time
than the AAIFU scheme in model retraining, indicating that
training a classifier is more time-consuming than a regressor.
Lastly, in the inference phase, the proposed scheme involves
regressors to predict the values of malicious APs in online
queries, resulting in greater time consumption compared to the
AAIFU scheme. The overall time consumed by the proposed
scheme is approximately 94% less than the AAIFU scheme.

VI. CONCLUSION

We have proposed a reliable and efficient long-term indoor
localization system by incorporating malicious AP detection
and effect mitigation modules. Experimental results demon-
strate that the proposed scheme achieves detection accuracy
above 95% for all attack types. Besides, the malicious effect
mitigation module ensures the accurate functioning of the in-
door localization system by restoring the system’s performance
to the initial state where the system operates without any
malicious APs. In addition, the proposed indoor localization
system cuts down the execution time by approximately 94%
compared to existing works. We believe the proposed scheme
enhances the existing literature by offering a faster and more
reliable indoor localization system. We plan to extend this
work by considering device diversity and attack scenarios for
online and offline databases.
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